JP5381588B2 - Lithium ion secondary battery, vehicle and battery-equipped equipment - Google Patents

Lithium ion secondary battery, vehicle and battery-equipped equipment Download PDF

Info

Publication number
JP5381588B2
JP5381588B2 JP2009230879A JP2009230879A JP5381588B2 JP 5381588 B2 JP5381588 B2 JP 5381588B2 JP 2009230879 A JP2009230879 A JP 2009230879A JP 2009230879 A JP2009230879 A JP 2009230879A JP 5381588 B2 JP5381588 B2 JP 5381588B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009230879A
Other languages
Japanese (ja)
Other versions
JP2011081920A (en
Inventor
寿夫 山重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009230879A priority Critical patent/JP5381588B2/en
Publication of JP2011081920A publication Critical patent/JP2011081920A/en
Application granted granted Critical
Publication of JP5381588B2 publication Critical patent/JP5381588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質層を有する正電極板と、負極活物質層を有する負電極板と、セパレータとを備えるリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器に関する。   The present invention relates to a lithium ion secondary battery comprising a positive electrode plate having a positive electrode active material layer, a negative electrode plate having a negative electrode active material layer, and a separator, a vehicle equipped with this lithium ion secondary battery, and a battery-equipped device. About.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
特許文献1には、負極板(負電極板)の活物質塗着部(負極活物質層)の幅を、正極板(正電極板)の活物質塗着部(正極活物質層)の幅よりも大きく設定した捲回型のリチウムイオン二次電池が開示されている。
In recent years, lithium ion secondary batteries (hereinafter also simply referred to as batteries) have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
In Patent Document 1, the width of the active material coating portion (negative electrode active material layer) of the negative electrode plate (negative electrode plate) is set to the width of the active material coating portion (positive electrode active material layer) of the positive electrode plate (positive electrode plate). A wound type lithium ion secondary battery set larger than the above is disclosed.

特開2005−190913号公報JP 2005-190913 A

ところで、特許文献1の電池では、負極活物質層は、セパレータを介して、正極活物質層と対向する対向部と、この負極活物質層の幅方向両端側に位置し、セパレータを介して対向する正極活物質層が存在しない非対向部とに分けられる。
この電池では、負極活物質層の対向部と負極集電板との間のほか、非対向部と負極集電板との間でも、電子のやりとりが可能である。このため、この電池を充電すると、正極活物質層から放出されたリチウムイオンが、対向する負極活物質層の対向部内に挿入されるほか、正極活物質層の端部から外側に拡がるようにリチウムイオンが移動して、非対向部の内部にも挿入される。
しかしながら、この非対向部は、対向する正極活物質層が存在しないので、放電の際には、この非対向部からその内部にあるリチウムイオンを放出させ難い。つまり、この非対向部は、負極活物質層でありながら、リチウムイオンを吸蔵するだけで、放電に関与し難い。このため、充電の際に非対向部に挿入されたリチウムイオンの分だけ、放電の際に負極活物質層から放出しうるリチウムイオンの量が減少してしまう、即ち、電池容量が低下してしまう。
By the way, in the battery of Patent Document 1, the negative electrode active material layer is located opposite to the positive electrode active material layer via the separator, and opposite to the negative electrode active material layer in the width direction, and is opposed via the separator. The positive electrode active material layer is divided into a non-opposing portion where no positive electrode active material layer exists.
In this battery, electrons can be exchanged not only between the opposing portion of the negative electrode active material layer and the negative electrode current collector plate but also between the non-opposing portion and the negative electrode current collector plate. Therefore, when this battery is charged, lithium ions released from the positive electrode active material layer are inserted into the opposing portion of the opposing negative electrode active material layer, and the lithium ions spread from the end of the positive electrode active material layer to the outside. The ions move and are inserted into the non-opposing portion.
However, since this non-opposing portion does not have an opposing positive electrode active material layer, it is difficult to release lithium ions in the non-opposing portion from the non-opposing portion during discharge. That is, this non-opposing portion is a negative electrode active material layer, but only occludes lithium ions and hardly participates in discharge. For this reason, the amount of lithium ions that can be released from the negative electrode active material layer during discharge is reduced by the amount of lithium ions inserted into the non-opposing portion during charging, that is, the battery capacity is reduced. End up.

本発明は、かかる問題点に鑑みてなされたものであって、充電の際に、負極活物質層の非対向部内へのリチウムイオンの挿入を抑制して、電池容量の低下を抑制可能なリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器を提供することを目的とする。   The present invention has been made in view of such a problem, and is capable of suppressing lithium ion insertion into the non-opposing portion of the negative electrode active material layer during charging, thereby suppressing reduction in battery capacity. An object is to provide an ion secondary battery, a vehicle equipped with the lithium ion secondary battery, and a battery-equipped device.

本発明の一態様は、導電性を有する正極集電板、及び、正極活物質粒子を含み上記正極集電板上に配置された正極活物質層を有する正電極板と、導電性を有する負極集電板、及び、負極活物質粒子を含み上記負極集電板上に配置された負極活物質層を有する負電極板と、上記正電極板と上記負電極板との間に介在してなるセパレータと、を備え、セパレータを介して、上記正極活物質層と上記負極活物質層とが対向するリチウムイオン二次電池であって、上記負極活物質層は、上記セパレータを介して、上記正極活物質層と対向する対向部と、上記セパレータを介して対向する上記正極活物質層が存在しない非対向部と、からなり、上記負電極板は、上記負極活物質層の上記非対向部と上記負極集電板との間の少なくとも一部に介在する絶縁性の絶縁部材を有するリチウムイオン二次電池である。   One embodiment of the present invention is a positive electrode current collector plate having conductivity, a positive electrode plate including positive electrode active material particles and including a positive electrode active material layer disposed on the positive electrode current collector plate, and a negative electrode having conductivity. A current collector plate, a negative electrode plate having a negative electrode active material layer that includes negative electrode active material particles and is disposed on the negative electrode current collector plate, and is interposed between the positive electrode plate and the negative electrode plate A positive electrode active material layer and the negative electrode active material layer facing each other through the separator, wherein the negative electrode active material layer is interposed between the positive electrode and the positive electrode active material layer. The negative electrode plate includes an opposing portion that faces the active material layer, and a non-opposing portion that does not have the positive electrode active material layer that faces through the separator, and the negative electrode plate includes the non-facing portion of the negative electrode active material layer. Insulation interposed at least in part between the negative electrode current collector plate A lithium ion secondary battery having the insulating member.

上述の電池では、上述のように、負電極板は、負極活物質層の非対向部と負極集電板との間の少なくとも一部に介在する絶縁部材を有している。このため、負極活物質層のうち絶縁部材が介在している部位では、この部位と負極集電板との間での電子のやりとりを抑制することができる。従って、絶縁部材を介在させた分、電池の充電の際にリチウムイオンが挿入される非対向部の領域を減少させることができ、電池容量の低下を抑制することができる。   In the above-described battery, as described above, the negative electrode plate has an insulating member interposed at least in part between the non-facing portion of the negative electrode active material layer and the negative electrode current collector plate. For this reason, in the part where the insulating member is interposed in the negative electrode active material layer, exchange of electrons between this part and the negative electrode current collector plate can be suppressed. Therefore, since the insulating member is interposed, the region of the non-opposing portion into which lithium ions are inserted when the battery is charged can be reduced, and the reduction in battery capacity can be suppressed.

なお、電池としては、いずれも帯状の正電極板と負電極板との間にセパレータを介して捲回してなる捲回型発電要素を有する捲回型電池や、複数の正電極板と複数の負電極板とを、セパレータを介して交互に積層してなる積層型発電要素を有する積層型電池が挙げられる。
また、絶縁部材の材質としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系で、絶縁性で透孔を有さない中実(稠密)の樹脂や、酸化アルミニウム等の金属酸化物が挙げられる。
In addition, as a battery, the winding type battery which has a wound type electric power generation element which all winds through a separator between a strip-like positive electrode plate and a negative electrode plate, a plurality of positive electrode plates, and a plurality of Examples include a stacked battery having a stacked power generation element in which negative electrode plates are alternately stacked via separators.
In addition, examples of the material of the insulating member include a solid (dense) resin that is insulative and does not have through holes, and a metal oxide such as aluminum oxide.

さらに、上述のリチウムイオン二次電池であって、いずれも長手方向に延びる帯状の前記正電極板、前記負電極板及び前記セパレータは、上記長手方向に捲回されて捲回型発電要素をなし、上記長手方向に延びる帯状の前記負極活物質層のうち、前記非対向部は、上記長手方向と直交する幅方向の両端側にそれぞれ位置する幅方向端側非対向部を含み、前記絶縁部材は、上記長手方向に延びる帯状で、上記幅方向端側非対向部と前記負極集電板との間に介在してなるリチウムイオン二次電池とすると良い。   Furthermore, in the lithium ion secondary battery described above, the positive electrode plate, the negative electrode plate, and the separator each having a strip shape extending in the longitudinal direction are wound in the longitudinal direction to form a wound power generation element. Of the strip-like negative electrode active material layer extending in the longitudinal direction, the non-facing portion includes width-direction end-side non-facing portions that are located on both ends in the width direction orthogonal to the longitudinal direction, and the insulating member Is preferably a lithium ion secondary battery having a strip shape extending in the longitudinal direction and interposed between the width direction end side non-opposing portion and the negative electrode current collector plate.

上述の電池は、捲回型発電要素を備え、絶縁部材が、幅方向端側非対向部と負極集電板との間に介在してなる。長手方向に延びる帯状の負極活物質層において、幅方向端側非対向部は非対向部の大半を占める。従って、ここに絶縁部材を介在させたことで、電池の充電の際に、非対向部に挿入されるリチウムイオンを大幅に減少させることができ、これによる電池容量の低下を十分に抑制することができる。   The above-described battery includes a wound power generation element, and an insulating member is interposed between the width direction end side non-opposing portion and the negative electrode current collector plate. In the strip-shaped negative electrode active material layer extending in the longitudinal direction, the width direction end side non-facing portion occupies most of the non-facing portion. Therefore, by interposing the insulating member here, when the battery is charged, the lithium ions inserted into the non-opposing portion can be greatly reduced, and the decrease in the battery capacity due to this can be sufficiently suppressed. Can do.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両である。   Or the other aspect of this invention is a vehicle which mounts one of the above-mentioned lithium ion secondary batteries, and uses the electrical energy stored in this lithium ion secondary battery for all or one part of a motive power source.

上述の車両は、電池容量の低下を抑制した電池を搭載しているので、安定した性能の動力源を有する車両とすることができる。   Since the above-mentioned vehicle is equipped with a battery that suppresses a decrease in battery capacity, it can be a vehicle having a power source with stable performance.

なお、車両としては、電池による電気エネルギを動力源の全部又は一部に使用する車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electric vehicle Examples include assist bicycles and electric scooters.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを駆動エネルギ源の全部又は一部に使用する電池搭載機器である。   Alternatively, according to another aspect of the present invention, a battery-mounted device in which any one of the above-described lithium ion secondary batteries is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of the driving energy source. It is.

上述の電池搭載機器は、電池容量の低下を抑制した電池を搭載しているので、安定した性能の駆動エネルギ源を有する電池搭載機器とすることができる。   Since the battery-mounted device described above is mounted with a battery in which a decrease in battery capacity is suppressed, it can be a battery-mounted device having a drive energy source with stable performance.

なお、電池搭載機器としては、電池を搭載し、これをエネルギ源の全部又は一部に使用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   In addition, as a battery mounting apparatus, what is necessary is just an apparatus which mounts a battery and uses this for all or one part of an energy source, for example, a personal computer, a mobile telephone, a battery-powered electric tool, an uninterruptible power supply, etc. And various home appliances driven by batteries, office equipment, and industrial equipment.

実施形態1にかかる電池の斜視図である。1 is a perspective view of a battery according to Embodiment 1. FIG. 実施形態1の正電極板の斜視図である。2 is a perspective view of a positive electrode plate according to Embodiment 1. FIG. 実施形態1の負電極板の斜視図である。3 is a perspective view of a negative electrode plate according to Embodiment 1. FIG. 実施形態1の負電極板の拡大断面図(図3のA−A部)である。It is an expanded sectional view (AA part of Drawing 3) of the negative electrode plate of Embodiment 1. 実施形態1にかかる電池の製造工程の説明図である。FIG. 4 is an explanatory diagram of a battery manufacturing process according to the first embodiment. 変形形態1にかかる電池の斜視図である。6 is a perspective view of a battery according to a first modification. FIG. 変形形態1の正電極板の斜視図である。It is a perspective view of the positive electrode plate of modification 1. 変形形態1の負電極板の斜視図である。It is a perspective view of the negative electrode plate of modification 1. 実施形態2にかかる車両の説明図である。It is explanatory drawing of the vehicle concerning Embodiment 2. FIG. 実施形態3にかかるハンマードリルの説明図である。It is explanatory drawing of the hammer drill concerning Embodiment 3. FIG.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる電池1について、図1を参照して説明する。
この電池1は、いずれも長手方向DAに延びる帯状の正電極板30、負電極板20及びセパレータ50を備え、これらを長手方向DAに捲回して捲回型の発電要素10をなし、セパレータ50にリチウムイオンを含む電解液60を含浸させてなるリチウムイオン二次電池である(図1参照)。なお、電池1は、図1に示すように、発電要素10を電池ケース80に収容してなる。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the battery 1 according to the first embodiment will be described with reference to FIG.
The battery 1 includes a belt-like positive electrode plate 30, a negative electrode plate 20, and a separator 50 that all extend in the longitudinal direction DA. The battery 1 is wound in the longitudinal direction DA to form a wound power generation element 10. This is a lithium ion secondary battery obtained by impregnating an electrolyte solution 60 containing lithium ions into the battery (see FIG. 1). In addition, the battery 1 accommodates the electric power generation element 10 in the battery case 80, as shown in FIG.

この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と発電要素10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、発電要素10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of resin and bent into a box shape is interposed between the battery case 80 and the power generation element 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collecting member 91 and the negative electrode current collecting member 92 connected to the power generation element 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 pass through, respectively. 1 protrudes from the lid surface 82a facing upward. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電解液60は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比でEC:EMC=3:7に調整した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。 In addition, the electrolytic solution 60 was prepared by adding LiPF 6 as a solute to a mixed organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were adjusted to EC: EMC = 3: 7 by volume ratio, and lithium ions were added. This is a non-aqueous electrolyte having a concentration of 1 mol / l.

また、発電要素10は、帯状の正電極板30及び負電極板20が、帯状のセパレータ50を介して扁平形状に捲回されてなる捲回型である(図1参照)。なお、この発電要素10では、図4(後述する負電極板20の拡大断面図)に示すように、セパレータ50を介して、正電極板30の正極活物質層31(次述)と負電極板20の負極活物質層21(後述)とが対向している。また、この発電要素10の正電極板30及び負電極板20はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図1参照)。このうち、ポリエチレンからなる帯状のセパレータ50は、正電極板30と負電極板20との間に介在して、これらを離間させている。このセパレータ50には、全体に上述した電解液60が含浸させてある。   The power generation element 10 is a wound type in which a strip-like positive electrode plate 30 and a negative electrode plate 20 are wound into a flat shape via a strip-like separator 50 (see FIG. 1). In the power generation element 10, as shown in FIG. 4 (an enlarged cross-sectional view of the negative electrode plate 20 described later), the positive electrode active material layer 31 (described below) and the negative electrode of the positive electrode plate 30 are interposed via the separator 50. The negative electrode active material layer 21 (described later) of the plate 20 is opposed. Further, the positive electrode plate 30 and the negative electrode plate 20 of the power generation element 10 are respectively joined to a plate-like positive current collector 91 or negative current collector 92 bent in a crank shape (see FIG. 1). Among these, the strip-shaped separator 50 made of polyethylene is interposed between the positive electrode plate 30 and the negative electrode plate 20 to separate them. The separator 50 is entirely impregnated with the electrolytic solution 60 described above.

また、正電極板30は、図2の斜視図に示すように、長手方向DAに延びる帯状で、アルミニウム製のアルミ箔38と、このアルミ箔38の両主面上に、それぞれ長手方向DAに延びる帯状に配置された2つの正極活物質層31,31とを有している。
この正極活物質層31は、LiCoO2からなる正極活物質粒子37と、アセチレンブラックからなる導電材(図示しない)と、ポリフッ化ビニリデン(PVDF)からなる結着材(図示しない)とを含む。
Further, as shown in the perspective view of FIG. 2, the positive electrode plate 30 has a belt-like shape extending in the longitudinal direction DA, and an aluminum foil 38 made of aluminum and both main surfaces of the aluminum foil 38 in the longitudinal direction DA. It has two positive electrode active material layers 31 and 31 arranged in an extending strip shape.
The positive electrode active material layer 31 includes positive electrode active material particles 37 made of LiCoO 2 , a conductive material (not shown) made of acetylene black, and a binder (not shown) made of polyvinylidene fluoride (PVDF).

また、負電極板20は、図3の斜視図に示すように、長手方向DAに延びる帯状で銅製の銅箔28と、この銅箔28の両主面28F,28F上に、それぞれ長手方向DAに延びる帯状に配置された2つの負極活物質層21,21とを有している。また、これらのほかに、負極活物質層21の後述する非対向部23(第1非対向部24)と銅箔28との間に介在する、絶縁性のポリプロピレンからなるフィルム状の絶縁部材26を有している(図5参照)。
このうち負極活物質層21は、いずれもグラファイトからなる負極活物質粒子27、及び、PVDFからなる結着材(図示しない)を含む。
Further, as shown in the perspective view of FIG. 3, the negative electrode plate 20 has a strip-like copper foil 28 extending in the longitudinal direction DA and the main surfaces 28F and 28F of the copper foil 28 in the longitudinal direction DA. And two negative electrode active material layers 21 and 21 arranged in a strip shape extending in the vertical direction. In addition to these, a film-like insulating member 26 made of insulating polypropylene and interposed between a non-facing portion 23 (first non-facing portion 24) to be described later of the negative electrode active material layer 21 and the copper foil 28. (See FIG. 5).
Of these, the negative electrode active material layer 21 includes negative electrode active material particles 27 made of graphite and a binder (not shown) made of PVDF.

この負極活物質層21は、図3、及び、図3のA−A部における拡大断面図の図4に示すように、セパレータ50を介して正極活物質層31と対向する対向部22と、セパレータ50を介して対向する正極活物質層31が存在しない非対向部23(次述する第1非対向部24及び第2非対向部25)とからなる。
具体的には、負極活物質層21の面積が、対向する正極活物質層31の面積に比して大きく、対向部22は、負極活物質層21の、長手方向DA及び幅方向DBのそれぞれ中央に位置する一方、非対向部23は、対向部22に隣接した周囲に位置している。このため、電池1を充電した際、負極活物質層21の周縁に位置する銅箔28に金属リチウムが析出するのを防止できる。
As shown in FIG. 3 and FIG. 4 of an enlarged cross-sectional view taken along the line AA in FIG. 3, the negative electrode active material layer 21 includes a facing portion 22 that faces the positive electrode active material layer 31 with a separator 50 interposed therebetween. It consists of a non-opposing portion 23 (a first non-opposing portion 24 and a second non-opposing portion 25 described below) in which the positive electrode active material layer 31 opposed via the separator 50 does not exist.
Specifically, the area of the negative electrode active material layer 21 is larger than the area of the opposed positive electrode active material layer 31, and the facing portion 22 is in each of the longitudinal direction DA and the width direction DB of the negative electrode active material layer 21. While located in the center, the non-opposing portion 23 is located in the vicinity adjacent to the opposing portion 22. For this reason, when the battery 1 is charged, it is possible to prevent metallic lithium from being deposited on the copper foil 28 located at the periphery of the negative electrode active material layer 21.

非対向部23は、負極活物質層21の長手方向DAの両端側に位置する2つの第2非対向部25,25と、負極活物質層21の幅方向DBの両端側にそれぞれ位置する2つの第1非対向部24,24とからなる。なお、負極活物質層21における非対向部23(第1非対向部24及び第2非対向部25)と対向部22との境界の位置は、負電極板20、セパレータ50及び正電極板30を捲回して発電要素10を形成したときに決まる。   The non-opposing portions 23 are two second non-opposing portions 25 and 25 located on both ends in the longitudinal direction DA of the negative electrode active material layer 21 and 2 located on both ends of the negative electrode active material layer 21 in the width direction DB, respectively. It consists of two first non-opposing parts 24, 24. The positions of the boundaries between the non-opposing portion 23 (the first non-opposing portion 24 and the second non-opposing portion 25) and the opposing portion 22 in the negative electrode active material layer 21 are the negative electrode plate 20, the separator 50, and the positive electrode plate 30. Is determined when the power generation element 10 is formed.

また、長手方向DAに延びる帯状の絶縁部材26,26は、図4に示すように、それぞれ銅箔28の主面28F,28F上に配置されて、第1非対向部24と銅箔28との間に介在している。   Further, as shown in FIG. 4, the strip-shaped insulating members 26, 26 extending in the longitudinal direction DA are respectively disposed on the main surfaces 28 </ b> F, 28 </ b> F of the copper foil 28, and the first non-facing portion 24, the copper foil 28, It is interposed between.

このように、本実施形態1にかかる電池1では、負電極板20は、負極活物質層21の非対向部23と銅箔28との間の少なくとも一部に介在する絶縁部材26を有している。このため、負極活物質層21のうち、絶縁部材26が介在している第1非対向部24では、この第1非対向部24と銅箔28との間での電子のやりとりを抑制することができる。従って、絶縁部材26を介在させた分、電池1の充電の際にリチウムイオンが挿入される非対向部23の領域を減少させることができ、電池容量の低下を抑制することができる。   As described above, in the battery 1 according to the first embodiment, the negative electrode plate 20 includes the insulating member 26 interposed in at least a part between the non-facing portion 23 of the negative electrode active material layer 21 and the copper foil 28. ing. For this reason, in the first non-opposing portion 24 in which the insulating member 26 is interposed in the negative electrode active material layer 21, the exchange of electrons between the first non-opposing portion 24 and the copper foil 28 is suppressed. Can do. Therefore, the region of the non-opposing portion 23 into which lithium ions are inserted when the battery 1 is charged can be reduced by the amount of the insulating member 26 interposed, and a reduction in battery capacity can be suppressed.

また、電池1では、捲回型の発電要素10を備え、絶縁部材26が、第1非対向部24と銅箔28との間に介在してなる。このため、長手方向DAに延びる帯状の負極活物質層21において、第1非対向部24は非対向部23の大半を占める。従って、ここに絶縁部材26を介在させたことで、電池1の充電の際に、非対向部23に挿入されるリチウムイオンを大幅に減少させることができ、これによる電池容量の低下を十分に抑制することができる。   Further, the battery 1 includes the wound power generation element 10, and the insulating member 26 is interposed between the first non-facing portion 24 and the copper foil 28. For this reason, in the strip-shaped negative electrode active material layer 21 extending in the longitudinal direction DA, the first non-facing portion 24 occupies most of the non-facing portion 23. Therefore, by interposing the insulating member 26 here, when the battery 1 is charged, the lithium ions inserted into the non-opposing portion 23 can be greatly reduced, and the battery capacity can be sufficiently reduced. Can be suppressed.

次に、本実施形態1にかかる電池1の製造方法について説明する。
まず、負電極板20の銅箔28の主面28F上に絶縁部材26を塗布により形成した。具体的には、図5に示す、軟化したポリプロピレンを自身の内部に貯留した第1ダイコータDC1を2つ用いて、銅箔28の主面28F上のうち、負極活物質層21の第1非対向部24,24が形成される位置に、絶縁部材26をなすポリプロピレンを長手方向DAに延びる帯状に二条塗布し、乾燥させた。
Next, a method for manufacturing the battery 1 according to the first embodiment will be described.
First, the insulating member 26 was formed on the main surface 28F of the copper foil 28 of the negative electrode plate 20 by coating. Specifically, using two first die coaters DC1 in which softened polypropylene is stored inside itself as shown in FIG. Two strips of polypropylene forming the insulating member 26 were applied in a strip shape extending in the longitudinal direction DA at the positions where the facing portions 24, 24 were formed, and dried.

次いで、図5に示す、第2ダイコータDC2を用いて、銅箔28に負極活物質層21をなすペースト21Pを塗布した。
この第2ダイコータDC2は、ペースト21Pを内部に貯留するペースト貯留部DCTと、このペースト貯留部DCTのペースト21Pを銅箔28に向けて連続的に吐出する吐出口DCSとを有する。
このうち、ペースト貯留部DCTは、この内部に、結着材を溶解したN−メチル−2−ピロリドン(NMP)中に前述したグラファイトからなる負極活物質粒子を投入し、混練してできたペースト21Pを自身の内部に貯留している。また、吐出口DCSは、スリット状で幅方向DBに平行に開口している。但し、吐出口DCSのうち、幅方向DBの中央の中央吐出口DS1が、幅方向DBの両端側の端側吐出口DS2に比して、長手方向DAに広く開口している。即ち、中央吐出口DS1の長手方向DAの第1寸法S1が、端側吐出口DS2の第2寸法S2よりも大きい(S1>S2)。このため、予め塗布された絶縁部材26の有無にかかわらず、銅箔28上の塗布後のペースト21Pの高さを幅方向DAに同じにすることができる。
このような第2ダイコータDC2を用いて、絶縁部材26を塗布した銅箔28上に、ペースト21Pを長手方向DAに延びる帯状に塗布した(図5参照)。
Next, a paste 21P forming the negative electrode active material layer 21 was applied to the copper foil 28 using the second die coater DC2 shown in FIG.
The second die coater DC2 includes a paste storage part DCT that stores the paste 21P therein, and a discharge port DCS that continuously discharges the paste 21P of the paste storage part DCT toward the copper foil 28.
Among these, the paste storage part DCT is a paste made by mixing and kneading the negative electrode active material particles made of graphite described above into N-methyl-2-pyrrolidone (NMP) in which the binder is dissolved. 21P is stored inside itself. Further, the discharge port DCS is slit-shaped and opens in parallel with the width direction DB. However, among the discharge ports DCS, the central discharge port DS1 at the center in the width direction DB is wider in the longitudinal direction DA than the end-side discharge ports DS2 at both ends in the width direction DB. That is, the first dimension S1 in the longitudinal direction DA of the central discharge port DS1 is larger than the second dimension S2 of the end-side discharge port DS2 (S1> S2). For this reason, the height of the paste 21P after application on the copper foil 28 can be made the same in the width direction DA regardless of the presence or absence of the insulating member 26 applied in advance.
Using such a second die coater DC2, the paste 21P was applied in a strip shape extending in the longitudinal direction DA on the copper foil 28 to which the insulating member 26 was applied (see FIG. 5).

銅箔28上に塗布したペースト21Pを乾燥させた後、銅箔28の他方の主面28Fについても同様に絶縁部材26及びペースト21Pを塗布し、乾燥させた。
その後、図示しないロールプレスで高密度化して、負極活物質層21と、この負極活物質層21のうち、セパレータ50を介して正電極板30と対向させた際に第1非対向部24となる部位、及び、銅箔28の間に介在する絶縁部材26とを有する負電極板20を作製した(図3参照)。
After the paste 21P applied on the copper foil 28 was dried, the insulating member 26 and the paste 21P were similarly applied to the other main surface 28F of the copper foil 28 and dried.
Thereafter, the density is increased by a roll press (not shown), and when the negative electrode active material layer 21 and the negative electrode active material layer 21 are opposed to the positive electrode plate 30 via the separator 50, The negative electrode plate 20 which has the site | part which becomes and the insulating member 26 interposed between the copper foil 28 was produced (refer FIG. 3).

一方、結着材を溶解したNMP中に、正極活物質粒子37及び導電材をそれぞれ投入し混練してできたペースト(図示しない)を、長手方向DAに延びる帯状のアルミ箔38に塗布した。塗布後、アルミ箔38上のペーストを乾燥させた。アルミ箔38の裏側についても、同様にペーストを塗布し、乾燥させた。その後、図示しないロールプレスで、アルミ箔38の両主面上で乾燥させたペーストを圧縮した正電極板30を作製した(図2参照)。   On the other hand, a paste (not shown) formed by adding and kneading the positive electrode active material particles 37 and the conductive material into NMP in which the binder was dissolved was applied to a strip-shaped aluminum foil 38 extending in the longitudinal direction DA. After application, the paste on the aluminum foil 38 was dried. The paste was similarly applied to the back side of the aluminum foil 38 and dried. Then, the positive electrode plate 30 which compressed the paste dried on both the main surfaces of the aluminum foil 38 with the roll press which is not shown in figure was produced (refer FIG. 2).

上述のように作製した負電極板20と正電極板30との間に、セパレータ50を介在させて捲回し、発電要素10とする。なお、負電極板20の負極活物質層21における対向部22に、セパレータ50を介して正電極板30の正極活物質層31が対向するように、セパレータ50、負電極板20、セパレータ50、正電極板30の順に重ねて捲回する。   A power generation element 10 is obtained by winding the separator 50 between the negative electrode plate 20 and the positive electrode plate 30 manufactured as described above. The separator 50, the negative electrode plate 20, the separator 50, and the positive electrode active material layer 31 of the positive electrode plate 30 are opposed to the facing portion 22 of the negative electrode active material layer 21 of the negative electrode plate 20 with the separator 50 interposed therebetween. The positive electrode plates 30 are wound in order.

その後は、負電極板20(銅箔28)及び正電極板30(アルミ箔38)にそれぞれ負極集電部材92及び正極集電部材91を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1が完成する(図1参照)。   Thereafter, the negative electrode collector member 92 and the positive electrode collector member 91 are welded to the negative electrode plate 20 (copper foil 28) and the positive electrode plate 30 (aluminum foil 38), respectively, inserted into the battery case body 81, and the above-described electrolysis is performed. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 1 is completed (see FIG. 1).

(変形形態1)
次に、本発明の変形形態1にかかる電池101について、図6〜8を参照しつつ説明する。
この電池101は、複数の正電極板と複数の負電極板とを、セパレータを介して交互に積層してなる積層型発電要素を有する点で、前述の実施形態1にかかる電池1と異なり、それ以外は同様である。
そこで、実施形態1にかかる電池1と異なる点を中心に説明し、同様の部分の説明は省略、又は、簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Modification 1)
Next, the battery 101 according to the first modification of the present invention will be described with reference to FIGS.
This battery 101 is different from the battery 1 according to Embodiment 1 described above in that it has a stacked power generation element in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators. The rest is the same.
Therefore, the description will be focused on differences from the battery 1 according to the first embodiment, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

この電池101は、いずれも矩形板状の正電極板130、負電極板120及びセパレータ150を備え、これらを交互に積層してなる積層型の発電要素110をなし、セパレータ150に、実施形態1と同様の電解液60を含浸させてなるリチウムイオン二次電池である(図6参照)。なお、電池101は、図6に示すように、発電要素110を、実施形態1と同様の電池ケース80に収容してなる。   The battery 101 includes a rectangular plate-like positive electrode plate 130, a negative electrode plate 120, and a separator 150, and forms a stacked type power generation element 110 that is formed by alternately stacking these, and the separator 150 includes the first embodiment. 6 is a lithium ion secondary battery impregnated with the same electrolytic solution 60 (see FIG. 6). As shown in FIG. 6, the battery 101 includes the power generation element 110 accommodated in a battery case 80 similar to that of the first embodiment.

このうち、発電要素110は、正電極板130及び負電極板120が、帯状のセパレータ150を介して交互に積層してなる積層型である(図6参照)。なお、この発電要素110の正電極板130及び負電極板120はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図6参照)。このうち、ポリエチレンからなる帯状のセパレータ150は、正電極板130と負電極板120との間に介在して、これらを離間させている。   Among them, the power generation element 110 is a stacked type in which the positive electrode plates 130 and the negative electrode plates 120 are alternately stacked via a strip-shaped separator 150 (see FIG. 6). Note that the positive electrode plate 130 and the negative electrode plate 120 of the power generation element 110 are joined to a plate-shaped positive current collector 91 or negative current collector 92 bent in a crank shape, respectively (see FIG. 6). Among these, the strip-shaped separator 150 made of polyethylene is interposed between the positive electrode plate 130 and the negative electrode plate 120 to separate them.

また、正電極板130は、図7の斜視図に示すように、矩形板状でアルミニウム製のアルミ箔138と、このアルミ箔138の両主面上にそれぞれ配置された2つの正極活物質層131,131とを有している。
この正極活物質層131は、いずれも実施形態1と同様の正極活物質粒子37、導電材(図示しない)及び結着材(図示しない)を含む。
Further, as shown in the perspective view of FIG. 7, the positive electrode plate 130 is a rectangular plate-shaped aluminum foil 138 and two positive electrode active material layers respectively disposed on both main surfaces of the aluminum foil 138. 131, 131.
The positive electrode active material layer 131 includes the same positive electrode active material particles 37 as those in the first embodiment, a conductive material (not shown), and a binder (not shown).

一方、負電極板120は、図8の斜視図に示すように、矩形板状で銅製の銅箔128と、この銅箔128の両主面128F,128F上にそれぞれ配置された2つの負極活物質層121,121とを有している。また、これらのほかに、負極活物質層121の後述する非対向部123と銅箔128との間に介在する、絶縁性のポリプロピレンからなるフィルム状の2つの絶縁部材126,126を有している。
このうち負極活物質層121は、いずれも実施形態1と同様の負極活物質粒子27及び結着材(図示しない)を含む。
On the other hand, as shown in the perspective view of FIG. 8, the negative electrode plate 120 is a rectangular plate-shaped copper foil 128 and two negative electrode active plates arranged on both main surfaces 128F and 128F of the copper foil 128, respectively. Material layers 121 and 121. In addition to these, there are two insulating members 126 and 126 made of insulating polypropylene and interposed between a non-facing portion 123 (described later) of the negative electrode active material layer 121 and a copper foil 128. Yes.
Among these, the negative electrode active material layer 121 includes the same negative electrode active material particles 27 and a binder (not shown) as those in the first embodiment.

この負極活物質層121は、図8に示すように、セパレータ150を介して正極活物質層131と対向する対向部122と、セパレータ150を介して対向する正極活物質層131が存在しない非対向部123とからなる。
具体的には、負極活物質層121の面積が、対向する正極活物質層131の面積に比して大きく、負極活物質層121の周縁には非対向部123が位置する一方、この非対向部123に隣接しつつ、負極活物質層121の中央には対向部122が位置している。このため、電池101を充電した際、負極活物質層121の周縁に位置する銅箔128に金属リチウムが析出するのを防止できる。
As shown in FIG. 8, the negative electrode active material layer 121 has a facing portion 122 that faces the positive electrode active material layer 131 through the separator 150 and a non-facing surface in which the positive electrode active material layer 131 that faces through the separator 150 does not exist. Part 123.
Specifically, the area of the negative electrode active material layer 121 is larger than the area of the positive electrode active material layer 131 facing, and the non-opposing portion 123 is located on the periphery of the negative electrode active material layer 121. While facing the portion 123, the facing portion 122 is located at the center of the negative electrode active material layer 121. For this reason, when the battery 101 is charged, it is possible to prevent metallic lithium from being deposited on the copper foil 128 located at the periphery of the negative electrode active material layer 121.

また、矩形環状の絶縁部材126は、それぞれ銅箔128の両主面128F,128F上に配置されて、非対向部123と銅箔128との間に介在している(図8参照)。このため、負極活物質層121のうち絶縁部材126が介在している部位、即ち非対向部123では、この非対向部123と銅箔128との間での電子のやりとりを抑制することができる。従って、絶縁部材126を介在させた分、電池101の充電の際にリチウムイオンが挿入される非対向部123の領域をなくすことができ、電池容量の低下を抑制することができる。   Further, the rectangular annular insulating member 126 is disposed on both main surfaces 128F and 128F of the copper foil 128, respectively, and is interposed between the non-facing portion 123 and the copper foil 128 (see FIG. 8). For this reason, in the part where the insulating member 126 is interposed in the negative electrode active material layer 121, that is, in the non-facing portion 123, exchange of electrons between the non-facing portion 123 and the copper foil 128 can be suppressed. . Therefore, since the insulating member 126 is interposed, the region of the non-facing portion 123 into which lithium ions are inserted when the battery 101 is charged can be eliminated, and a decrease in battery capacity can be suppressed.

次に、本変形形態1にかかる電池101の製造方法について説明する。
まず、負電極板120の銅箔128の主面128F上に絶縁部材126を塗布により形成した。具体的には、銅箔128の主面128F上のうち、負極活物質層121の非対向部123,123が形成される位置(図8参照)に、絶縁部材126をなすポリプロピレンを矩形環状に塗布し、乾燥させた。
Next, a method for manufacturing the battery 101 according to the first modification will be described.
First, the insulating member 126 was formed on the main surface 128F of the copper foil 128 of the negative electrode plate 120 by coating. Specifically, on the main surface 128F of the copper foil 128, the polypropylene forming the insulating member 126 is formed in a rectangular ring shape at a position where the non-facing portions 123, 123 of the negative electrode active material layer 121 are formed (see FIG. 8). It was applied and dried.

次いで、絶縁部材126を塗布した銅箔128上に、実施形態1と同様のペースト21Pを塗布した。具体的には、銅箔128に塗布した絶縁部材126の表面上、及び、銅箔128のうち、絶縁部材126に囲まれた内側に露出した主面上に、塗布後のペースト21Pの表面が平坦かつ銅箔128に平行になるよう、ペースト21Pを塗布した。   Next, the same paste 21P as that of the first embodiment was applied on the copper foil 128 to which the insulating member 126 was applied. Specifically, the surface of the paste 21P after application is formed on the surface of the insulating member 126 applied to the copper foil 128 and on the main surface of the copper foil 128 exposed on the inner side surrounded by the insulating member 126. The paste 21P was applied so as to be flat and parallel to the copper foil 128.

銅箔128上に塗布したペースト21Pを乾燥させた後、銅箔128の他方の主面128Fについても同様に絶縁部材126及びペースト21Pを塗布し、乾燥させた。
その後、図示しないロールプレスで高密度化して、負極活物質層121と、この負極活物質層121のうち、セパレータ150を介して正電極板130と対向させた際に非対向部123となる部位、及び、銅箔128の間に介在する絶縁部材126とを有する負電極板120を作製した(図8参照)。
After the paste 21P applied on the copper foil 128 was dried, the insulating member 126 and the paste 21P were similarly applied to the other main surface 128F of the copper foil 128 and dried.
Thereafter, the density is increased by a roll press (not shown), and a portion of the negative electrode active material layer 121 and the negative electrode active material layer 121 that becomes the non-opposing portion 123 when facing the positive electrode plate 130 via the separator 150. And the negative electrode plate 120 which has the insulating member 126 interposed between the copper foil 128 was produced (refer FIG. 8).

一方、結着材を溶解したNMP中に正極活物質粒子37及び導電材をそれぞれ投入し混練してできたペースト(図示しない)を、アルミ箔138に塗布した。塗布後、アルミ箔138上のペーストを乾燥させた。アルミ箔138の裏側についても、同様にペーストを塗布し、乾燥させた。その後、図示しないロールプレスで、アルミ箔138の両主面上で乾燥させたペーストを圧縮した正電極板130を作製した(図7参照)。   On the other hand, a paste (not shown) formed by adding and kneading the positive electrode active material particles 37 and the conductive material into NMP in which the binder was dissolved was applied to the aluminum foil 138. After application, the paste on the aluminum foil 138 was dried. The paste was similarly applied to the back side of the aluminum foil 138 and dried. Then, the positive electrode board 130 which compressed the paste dried on both the main surfaces of the aluminum foil 138 with the roll press which is not shown in figure was produced (refer FIG. 7).

上述のように作製した負電極板120と正電極板130との間に、セパレータ150を介在させて積層し、発電要素110とする。具体的には、負極活物質層121の対向部122に、セパレータ150を介して正極活物質層131が対向するように、負電極板120、セパレータ150、正電極板130、セパレータ150の順に繰り返し積層する。
さらに、積層方向の最外側に位置する負電極板120のうち、外側に露出している負極活物質層121の外側に、セパレータ150を介して、アルミ箔138の一方の主面にのみ正極活物質層131を形成した正電極板(図示しない)を配置、積層する。一方、積層方向の他方の最外側に位置するセパレータ150の外側に、銅箔128の一方の主面にのみ負極活物質層121を形成した負電極板(図示しない)を配置、積層する。
これにより、複数の負電極板120の全てにおいて、負極活物質層121の対向部122に、セパレータ150を介して正極活物質層131が対向する積層型の発電要素110ができあがる(図6参照)。
The negative electrode plate 120 and the positive electrode plate 130 manufactured as described above are laminated with the separator 150 interposed therebetween to form the power generation element 110. Specifically, the negative electrode plate 120, the separator 150, the positive electrode plate 130, and the separator 150 are repeated in this order so that the positive electrode active material layer 131 faces the facing portion 122 of the negative electrode active material layer 121 through the separator 150. Laminate.
Further, of the negative electrode plate 120 located on the outermost side in the stacking direction, the positive electrode active material is only formed on one main surface of the aluminum foil 138 through the separator 150 outside the negative electrode active material layer 121 exposed to the outside. A positive electrode plate (not shown) on which the material layer 131 is formed is disposed and laminated. On the other hand, a negative electrode plate (not shown) in which the negative electrode active material layer 121 is formed only on one main surface of the copper foil 128 is disposed and laminated outside the separator 150 located on the other outermost side in the lamination direction.
As a result, in all of the plurality of negative electrode plates 120, the stacked power generation element 110 is formed in which the positive electrode active material layer 131 is opposed to the facing portion 122 of the negative electrode active material layer 121 via the separator 150 (see FIG. 6). .

その後は、負電極板120(銅箔128)及び正電極板130(アルミ箔138)にそれぞれ負極集電部材92及び正極集電部材91を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池101が完成する(図6参照)。   Thereafter, the negative electrode current collecting member 92 and the positive electrode current collecting member 91 are welded to the negative electrode plate 120 (copper foil 128) and the positive electrode plate 130 (aluminum foil 138), respectively, inserted into the battery case body 81, and the electrolysis described above. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 101 is completed (see FIG. 6).

(実施形態2)
本実施形態2にかかる車両200は、前述した電池1,101を複数含むバッテリパック210を搭載したものである。具体的には、図9に示すように、車両200は、エンジン240、フロントモータ220及びリアモータ230を併用して駆動するハイブリッド自動車である。この車両200は、車体290、エンジン240、これに取り付けられたフロントモータ220、リアモータ230、ケーブル250、インバータ260、及び、矩形箱形状のバッテリパック210を有している。このうちバッテリパック210は、前述した電池1,101を複数収容してなる。
(Embodiment 2)
A vehicle 200 according to the second embodiment is equipped with a battery pack 210 including a plurality of the batteries 1 and 101 described above. Specifically, as shown in FIG. 9, vehicle 200 is a hybrid vehicle that is driven by using engine 240, front motor 220, and rear motor 230 in combination. The vehicle 200 includes a vehicle body 290, an engine 240, a front motor 220, a rear motor 230, a cable 250, an inverter 260, and a battery pack 210 having a rectangular box shape. Among these, the battery pack 210 contains a plurality of the above-described batteries 1 and 101.

本実施形態2にかかる車両200は、電池容量の低下を抑制した電池1,101を搭載しているので、安定した性能の動力源を有する車両200とすることができる。   Since the vehicle 200 according to the second embodiment is equipped with the batteries 1 and 101 that suppress the decrease in battery capacity, the vehicle 200 having a power source with stable performance can be obtained.

(実施形態3)
また、本実施形態3のハンマードリル300は、前述した電池1,101を含むバッテリパック310を搭載したものであり、図10に示すように、バッテリパック310、本体320を有する電池搭載機器である。なお、バッテリパック310はハンマードリル300の本体320のうち底部321に可能に収容されている。
(Embodiment 3)
Further, the hammer drill 300 of the third embodiment is equipped with the battery pack 310 including the batteries 1 and 101 described above, and is a battery-equipped device having the battery pack 310 and the main body 320 as shown in FIG. . Note that the battery pack 310 is accommodated in the bottom portion 321 of the main body 320 of the hammer drill 300.

本実施形態3にかかるハンマードリル300は、電池容量の低下を抑制した電池1,101を搭載しているので、安定した性能の駆動エネルギ源を有する電池搭載機器とすることができる。   Since the hammer drill 300 according to the third embodiment is equipped with the batteries 1 and 101 in which the decrease in battery capacity is suppressed, it can be a battery-equipped device having a drive energy source with stable performance.

以上において、本発明を実施形態1〜3及び変形形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,変形形態1では、ポリプロピレン製の絶縁部材を用いたが、例えば、ポリエチレン等のポリオレフィン系で、絶縁性で透孔を有さない中実の樹脂や、酸化アルミニウム等の金属酸化物としても良い。また、実施形態1では、非対向部23のうち、第1非対向部24にのみ絶縁部材を介在させたが、例えば、第1非対向部24と共に、第2非対向部25についても絶縁部材を介在させても良い。この場合には、電池の充電の際にリチウムイオンが挿入される非対向部23の領域をなくすことができる。
In the above, the present invention has been described with reference to the first to third embodiments and the first modified embodiment, but the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, you can.
For example, in Embodiment 1 and Modification 1, an insulating member made of polypropylene is used. However, for example, a polyolefin resin such as polyethylene, a solid resin that does not have through holes, and a metal such as aluminum oxide. It may be an oxide. In the first embodiment, the insulating member is interposed only in the first non-facing portion 24 of the non-facing portion 23. For example, the insulating member is also used for the second non-facing portion 25 together with the first non-facing portion 24. May be interposed. In this case, the region of the non-facing portion 23 into which lithium ions are inserted when the battery is charged can be eliminated.

1,101 電池(リチウムイオン二次電池)
10,110 発電要素(捲回型発電要素)
20,120 負電極板
21,121 負極活物質層
22,122 対向部
23,123 非対向部
24 第1非対向部(幅方向端側非対向部)
26,126 絶縁部材
27 負極活物質粒子
28,128 銅箔(負極集電板)
30,130 正電極板
31,131 正極活物質層
37 正極活物質粒子
38,138 アルミ箔(正極集電板)
50 セパレータ
200 車両
300 ハンマードリル(電池搭載機器)
DA 長手方向
DB 幅方向
1,101 battery (lithium ion secondary battery)
10,110 Power generation element (winding power generation element)
20, 120 Negative electrode plates 21, 121 Negative electrode active material layers 22, 122 Opposing portions 23, 123 Non-opposing portions 24 First non-opposing portions (width direction end side non-opposing portions)
26, 126 Insulating member 27 Negative electrode active material particles 28, 128 Copper foil (negative electrode current collector plate)
30, 130 Positive electrode plates 31, 131 Positive electrode active material layer 37 Positive electrode active material particles 38, 138 Aluminum foil (positive electrode current collector plate)
50 Separator 200 Vehicle 300 Hammer drill (Battery-equipped equipment)
DA Longitudinal direction DB Width direction

Claims (4)

導電性を有する正極集電板、及び、正極活物質粒子を含み上記正極集電板上に配置された正極活物質層を有する正電極板と、
導電性を有する負極集電板、及び、負極活物質粒子を含み上記負極集電板上に配置された負極活物質層を有する負電極板と、
上記正電極板と上記負電極板との間に介在してなるセパレータと、を備え、
上記セパレータを介して、上記正極活物質層と上記負極活物質層とが対向する
リチウムイオン二次電池であって、
上記負極活物質層は、
上記セパレータを介して、上記正極活物質層と対向する対向部と、
上記セパレータを介して対向する上記正極活物質層が存在しない非対向部と、からなり、
上記負電極板は、
上記負極活物質層の上記非対向部と上記負極集電板との間の少なくとも一部に介在する絶縁性の絶縁部材を有する
リチウムイオン二次電池。
A positive electrode current collector plate having conductivity, and a positive electrode plate having a positive electrode active material layer including positive electrode active material particles and disposed on the positive electrode current collector plate;
A negative electrode current collector plate having conductivity, and a negative electrode plate having a negative electrode active material layer including negative electrode active material particles and disposed on the negative electrode current collector plate;
A separator formed between the positive electrode plate and the negative electrode plate,
A lithium ion secondary battery in which the positive electrode active material layer and the negative electrode active material layer face each other through the separator,
The negative electrode active material layer is
A facing portion facing the positive electrode active material layer via the separator;
A non-facing portion where the positive electrode active material layer facing through the separator does not exist,
The negative electrode plate is
The lithium ion secondary battery which has an insulating insulating member interposed in at least one part between the said non-opposing part of the said negative electrode active material layer, and the said negative electrode current collecting plate.
請求項1に記載のリチウムイオン二次電池であって、
いずれも長手方向に延びる帯状の前記正電極板、前記負電極板及び前記セパレータは、
上記長手方向に捲回されて捲回型発電要素をなし、
上記長手方向に延びる帯状の前記負極活物質層のうち、前記非対向部は、
上記長手方向と直交する幅方向の両端側にそれぞれ位置する幅方向端側非対向部を含み、
前記絶縁部材は、
上記長手方向に延びる帯状で、上記幅方向端側非対向部と前記負極集電板との間に介在してなる
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
The strip-like positive electrode plate, the negative electrode plate, and the separator, all extending in the longitudinal direction,
Wound in the longitudinal direction to form a wound power generation element,
Of the strip-shaped negative electrode active material layer extending in the longitudinal direction, the non-facing portion is
Including width direction end side non-opposing portions respectively positioned on both ends of the width direction orthogonal to the longitudinal direction,
The insulating member is
A lithium ion secondary battery having a strip shape extending in the longitudinal direction and interposed between the width direction end side non-opposing portion and the negative electrode current collector plate.
請求項1又は請求項2に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両。 A vehicle equipped with the lithium ion secondary battery according to claim 1 or 2 and using electric energy stored in the lithium ion secondary battery as a whole or a part of a power source. 請求項1又は請求項2に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを駆動エネルギ源の全部又は一部に使用する電池搭載機器。 A battery-equipped device in which the lithium ion secondary battery according to claim 1 or 2 is mounted and electric energy stored in the lithium ion secondary battery is used for all or a part of a drive energy source.
JP2009230879A 2009-10-02 2009-10-02 Lithium ion secondary battery, vehicle and battery-equipped equipment Active JP5381588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230879A JP5381588B2 (en) 2009-10-02 2009-10-02 Lithium ion secondary battery, vehicle and battery-equipped equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230879A JP5381588B2 (en) 2009-10-02 2009-10-02 Lithium ion secondary battery, vehicle and battery-equipped equipment

Publications (2)

Publication Number Publication Date
JP2011081920A JP2011081920A (en) 2011-04-21
JP5381588B2 true JP5381588B2 (en) 2014-01-08

Family

ID=44075793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230879A Active JP5381588B2 (en) 2009-10-02 2009-10-02 Lithium ion secondary battery, vehicle and battery-equipped equipment

Country Status (1)

Country Link
JP (1) JP5381588B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539069B2 (en) * 2015-03-09 2019-07-03 東レエンジニアリング株式会社 Coating device
JP7281944B2 (en) 2019-03-29 2023-05-26 株式会社エンビジョンAescジャパン Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and manufacturing method thereof
JP7372045B2 (en) 2019-03-29 2023-10-31 株式会社Aescジャパン Positive electrode for lithium ion secondary batteries, positive electrode sheet for lithium ion secondary batteries, and manufacturing method thereof
JP7104886B2 (en) * 2019-08-05 2022-07-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
EP4362213A1 (en) * 2021-06-23 2024-05-01 Ningde Amperex Technology Ltd. Electrochemical device and electronic device
WO2022266894A1 (en) * 2021-06-23 2022-12-29 宁德新能源科技有限公司 Electrochemical device and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154534A (en) * 1997-11-19 1999-06-08 Asahi Chem Ind Co Ltd Lithium ion secondary battery element
JP4451654B2 (en) * 2003-12-26 2010-04-14 パナソニック株式会社 Lithium secondary battery
JP4382557B2 (en) * 2004-03-30 2009-12-16 日立マクセル株式会社 Non-aqueous secondary battery
US7638230B2 (en) * 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
JP2008041581A (en) * 2006-08-10 2008-02-21 Hitachi Maxell Ltd Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
KR20090098817A (en) * 2007-01-16 2009-09-17 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
JP5118905B2 (en) * 2007-07-06 2013-01-16 トヨタ自動車株式会社 Electrode active material, electrode, non-aqueous electrolyte secondary battery, vehicle, battery-mounted device, and method for producing electrode active material
JP2009163942A (en) * 2007-12-28 2009-07-23 Panasonic Corp Nonaqueous secondary battery, and its manufacturing method thereof
JP2009199960A (en) * 2008-02-25 2009-09-03 Nec Tokin Corp Lithium-ion battery

Also Published As

Publication number Publication date
JP2011081920A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
US9293785B2 (en) Lithium ion secondary battery, vehicle, and battery mounting device
KR101499471B1 (en) Method for Manufacturing a secondary Battery and the secondary Battery Manufactured Thereby
KR102411957B1 (en) A method for manufacturing an electrode stack for a battery cell, and a battery cell
KR101456901B1 (en) Device for Removing Gas from Battery Cell
CN112864546B (en) Non-aqueous electrolyte secondary battery
JP5381588B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP2011054555A (en) Electrode assembly, and rechargeable battery with the same
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
JP6460418B2 (en) Secondary battery
CN112909345B (en) Secondary battery and method for manufacturing secondary battery
CN112825352A (en) Method for prelithiating lithium ion batteries
JP5304626B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP5343808B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP7209660B2 (en) BATTERY MANUFACTURING METHOD AND BATTERY
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
JP7212845B2 (en) secondary battery
JP6682203B2 (en) Secondary battery manufacturing method
JP2011124058A (en) Lithium-ion secondary battery, vehicle and battery-equipped apparatus with the battery
JP2011081973A (en) Lithium ion secondary battery, vehicle, and battery mounting equipment
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
JP2022044958A (en) battery
JP2017098207A (en) Secondary battery having electrode body
WO2018131398A1 (en) Secondary cell
JP6681017B2 (en) Secondary battery having electrode body
WO2018131377A1 (en) Secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151