JP2016018675A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2016018675A
JP2016018675A JP2014140828A JP2014140828A JP2016018675A JP 2016018675 A JP2016018675 A JP 2016018675A JP 2014140828 A JP2014140828 A JP 2014140828A JP 2014140828 A JP2014140828 A JP 2014140828A JP 2016018675 A JP2016018675 A JP 2016018675A
Authority
JP
Japan
Prior art keywords
bus bar
external terminal
metal member
secondary battery
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014140828A
Other languages
Japanese (ja)
Other versions
JP6363893B2 (en
Inventor
松本 洋
Hiroshi Matsumoto
洋 松本
勇人 小口
Yuto Oguchi
勇人 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014140828A priority Critical patent/JP6363893B2/en
Publication of JP2016018675A publication Critical patent/JP2016018675A/en
Application granted granted Critical
Publication of JP6363893B2 publication Critical patent/JP6363893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To facilitate welding of a bus bar and enhance the joint strength and the electrical characteristic between a metal member and an external terminal to which the bus bar is joined as compared with prior arts in secondary batteries having external terminals of a positive electrode and a negative electrode formed of different materials, the second batteries being connected to each other in series by the bus bar formed of the same kind of one of the external terminals.SOLUTION: A secondary battery 100 is formed of a material having excellent weldability to the material of one external terminal 20A of external terminals 20A, 20B of positive and negative electrodes. The secondary battery 100 has a metal member 21 which is ultrasonically press-fitted to the other external terminal 20B of the external terminals 20a, 20B of the positive and negative electrodes, and has a bus bar joint face 21a to which the bus bar B is welded.SELECTED DRAWING: Figure 1

Description

本発明は、二次電池に係り、例えば車両等に搭載される角形二次電池に関する。   The present invention relates to a secondary battery, for example, a prismatic secondary battery mounted on a vehicle or the like.

従来から、例えばハイブリッド方式の電気自動車や純粋な電気自動車等の動力源として、容量の大きな二次電池の開発が進められている。このような二次電池のうち、特に角形のリチウムイオン二次電池は、エネルギー密度の高い二次電池として注目されている。   2. Description of the Related Art Conventionally, a secondary battery having a large capacity has been developed as a power source for, for example, a hybrid electric vehicle or a pure electric vehicle. Among such secondary batteries, a rectangular lithium ion secondary battery is attracting attention as a secondary battery having a high energy density.

角形のリチウムイオン二次電池は、例えば、以下のように製作されている。まず、正極箔に正極活物質を塗布した正電極、負極箔に負極活物質を塗布した負電極、及びこれらを絶縁するセパレータを重ね合わせて捲回し、扁平形状の蓄電要素を製作する。次に、蓄電要素を、電池蓋に設けられた正極外部端子及び負極外部端子に電気的に接続し、電池缶に収容して、電池缶の開口部を電池蓋で溶接封止する。そして、電池蓋に設けられた注液孔から電解液を注液し、注液孔に注液栓を挿入してレーザ溶接で溶接封止する。   The prismatic lithium ion secondary battery is manufactured, for example, as follows. First, a positive electrode in which a positive electrode active material is applied to a positive electrode foil, a negative electrode in which a negative electrode active material is applied to a negative electrode foil, and a separator that insulates them are overlapped and wound to produce a flat storage element. Next, the power storage element is electrically connected to the positive electrode external terminal and the negative electrode external terminal provided on the battery lid, accommodated in the battery can, and the opening of the battery can is welded and sealed with the battery lid. Then, an electrolytic solution is injected from a liquid injection hole provided in the battery lid, a liquid injection stopper is inserted into the liquid injection hole, and welding sealing is performed by laser welding.

前記した角形のリチウムイオン二次電池を複数配列し、各二次電池の外部端子にバスバーを溶接して複数の二次電池を直列又は並列に接続することで、組電池が製作される。ここで、二次電池の正極外部端子の材料と負極外部端子の材料が異なる場合、一方の外部端子とバスバーの溶接が困難になることがある。例えば、正極外部端子の材料がアルミニウムであり、負極外部端子の材料が銅である場合に、アルミニウム製のバスバーを使用すると、負極外部端子との溶接が困難になり、銅製のバスバーを使用すると、正極外部端子との溶接が困難になる。   A plurality of the above-described prismatic lithium ion secondary batteries are arranged, a bus bar is welded to an external terminal of each secondary battery, and the plurality of secondary batteries are connected in series or in parallel to produce an assembled battery. Here, when the material of the positive electrode external terminal and the material of the negative electrode external terminal of the secondary battery are different, it may be difficult to weld the one external terminal to the bus bar. For example, when the material of the positive electrode external terminal is aluminum and the material of the negative electrode external terminal is copper, if an aluminum bus bar is used, welding with the negative electrode external terminal becomes difficult, and if a copper bus bar is used, Welding with the positive external terminal becomes difficult.

このような問題に対し、蓄電要素の正極に接続される正極接続端子と、蓄電要素の負極に接続される負極接続端子とが異種金属からなる二次電池であって、正極接続端子と負極接続端子のいずれか一方の接続端子に溶接接合される中間部材と、正極接続端子と負極接続端子のいずれか他方の接続端子と同種金属からなり中間部材に拡散接合される外部端子を有することを特徴とする二次電池が知られている(例えば、下記特許文献1を参照)。   For such a problem, a secondary battery in which a positive electrode connection terminal connected to the positive electrode of the electricity storage element and a negative electrode connection terminal connected to the negative electrode of the electricity storage element are made of different metals, the positive electrode connection terminal and the negative electrode connection An intermediate member welded to one of the connection terminals of the terminal, and an external terminal made of the same metal as the other connection terminal of the positive electrode connection terminal and the negative electrode connection terminal and diffused to the intermediate member Is known (for example, see Patent Document 1 below).

特許文献1では、例えば、アルミニウムの金属板である外部端子と、ニッケルの金属板である中間部材とを重ねて圧延して拡散接合させた圧延クラッド材を用いている。そして、圧延クラッド材のニッケル製の中間部材と、銅製の負極接続端子とを重ねて、中間部材の側端面と負極接続端子の側端面との境界部分にレーザ光を照射して溶接接合している。このような二次電池によれば、ろう付け及びかしめによる接続と比べてバスバーの接続抵抗を小さくし、かつ、剛性の高い端子構造とすることができる。   In Patent Document 1, for example, a rolled clad material is used in which an external terminal, which is an aluminum metal plate, and an intermediate member, which is a nickel metal plate, are rolled and diffusion bonded together. Then, the nickel intermediate member of the rolled clad material and the copper negative electrode connection terminal are overlapped, and the boundary portion between the side end surface of the intermediate member and the side end surface of the negative electrode connection terminal is irradiated with laser light and welded. Yes. According to such a secondary battery, it is possible to reduce the connection resistance of the bus bar as compared to the connection by brazing and caulking and to obtain a highly rigid terminal structure.

国際公開第2012/169055号International Publication No. 2012/169055

前記した異なる材料からなる正極及び負極の外部端子を備えた複数の二次電池を直列に接続する際には、バスバーの溶接を容易にするだけでなく、バスバーに接合される部材と外部端子との間の接合強度及び電気的特性を向上させることが求められる。しかし、特許文献1に記載された二次電池では、比較的体積の少ない圧延クラッド材の中間部材の側端面と、負極接続端子の側端面との境界部分の溶接部によって、接合強度及び電気的特性が左右される。そのため、圧延クラッド材と負極接続端子との間の接合強度及び電気的特性を向上させることは困難である。   When connecting a plurality of secondary batteries having positive and negative external terminals made of different materials as described above in series, not only facilitate welding of the bus bar, but also a member bonded to the bus bar and the external terminal, It is required to improve the bonding strength and electrical characteristics between the two. However, in the secondary battery described in Patent Document 1, the bonding strength and electrical properties are reduced by the welded portion at the boundary between the side end surface of the intermediate member of the rolled clad material having a relatively small volume and the side end surface of the negative electrode connection terminal. Characteristics are affected. Therefore, it is difficult to improve the bonding strength and electrical characteristics between the rolled clad material and the negative electrode connection terminal.

本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、異なる材料からなる正極及び負極の外部端子を備え、該正極及び負極の外部端子のうち一方の外部端子と同種の材料からなるバスバーによって直列に接続される二次電池において、バスバーの溶接を容易にしつつ、バスバーが接合される金属部材と外部端子との間の接合強度及び電気的特性を従来よりも向上させることができる二次電池を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to provide positive and negative external terminals made of different materials, the same kind as one of the external terminals of the positive and negative electrodes. In the secondary battery connected in series by the bus bar made of the above material, the welding strength of the metal member to which the bus bar is joined and the external terminal are improved as compared with the conventional battery while facilitating the welding of the bus bar. It is in providing the secondary battery which can do.

前記目的を達成すべく、本発明の二次電池は、異なる材料からなる正極及び負極の外部端子を備え、該正極及び負極の外部端子のうち一方の外部端子と同種の材料からなるバスバーによって直列に接続される二次電池であって、前記一方の外部端子の材料に対する溶接性に優れた材料からなり、前記正極及び負極の外部端子のうち他方の外部端子に超音波圧接されると共に、前記バスバーが溶接されるバスバー接合面を有する金属部材を備えることを特徴とする。   In order to achieve the above object, the secondary battery of the present invention includes positive and negative external terminals made of different materials, and is connected in series by a bus bar made of the same material as one of the external terminals of the positive and negative electrodes. A secondary battery connected to the first external terminal made of a material excellent in weldability to the material of the one external terminal, and ultrasonically pressed to the other external terminal of the positive and negative external terminals, A metal member having a bus bar joint surface to which the bus bar is welded is provided.

本発明の二次電池によれば、複数の二次電池をバスバーによって直列に接続する際に、正極及び負極の外部端子のうち一方の外部端子の材料と同種の材料からなるバスバーの一端を、当該一方の外部端子に対して容易かつ良好に溶接することができる。また、当該バスバーの他端を、当該一方の外部端子の材料と同種の材料に対する溶接性に優れた材料からなり、正極及び負極の外部端子のうち他方の外部端子に超音波圧接された金属部材のバスバー接合面に対して、容易かつ良好に溶接することができる。また、当該他方の外部端子と金属部材とは、超音波圧接によって相互の接合面の酸化被膜等が除去され、拡散による金属原子の移動が生じて拡散接合され、固層接合によって強固に接合されることで、相互間の接合強度及び電気的特性が向上する。   According to the secondary battery of the present invention, when a plurality of secondary batteries are connected in series by the bus bar, one end of the bus bar made of the same kind of material as the material of one of the external terminals of the positive electrode and the negative electrode, It is possible to easily and satisfactorily weld the one external terminal. Further, the other end of the bus bar is made of a material excellent in weldability to the same type of material as that of the one external terminal, and is a metal member that is ultrasonically pressed to the other external terminal of the positive and negative external terminals. It can be easily and satisfactorily welded to the bus bar joint surface. In addition, the other external terminal and the metal member are bonded to each other by removing the oxide film or the like on the bonding surface by ultrasonic pressure welding, causing migration of metal atoms by diffusion, and being firmly bonded by solid-layer bonding. As a result, the bonding strength and electrical characteristics between them are improved.

したがって、本発明の二次電池によれば、異なる材料からなる正極及び負極の外部端子を備えた二次電池を直列に接続する際に、バスバーの溶接を容易にしつつ、バスバーが接合される金属部材と外部端子との間の接合強度及び電気的特性を従来よりも向上させることができる。前記した以外の課題、構成及び効果は、以下の発明を実施するための形態における説明によって明らかにされる。   Therefore, according to the secondary battery of the present invention, when connecting secondary batteries having positive and negative external terminals made of different materials in series, the bus bar is joined while facilitating welding of the bus bar. The bonding strength and electrical characteristics between the member and the external terminal can be improved as compared with the conventional case. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments for carrying out the invention.

本発明の実施形態1に係る二つの二次電池を示す外観斜視図。1 is an external perspective view showing two secondary batteries according to Embodiment 1 of the present invention. 図1に示す二次電池の内部構造を示す分解斜視図。The disassembled perspective view which shows the internal structure of the secondary battery shown in FIG. 図2に示す捲回体の一部を展開した分解斜視図。The disassembled perspective view which expanded a part of winding body shown in FIG. 外部端子に対して金属部材を接合する工程を示す工程図。Process drawing which shows the process of joining a metal member with respect to an external terminal. 外部端子に対して金属部材を接合する工程を示す工程図。Process drawing which shows the process of joining a metal member with respect to an external terminal. 外部端子に対して金属部材を接合する工程を示す工程図。Process drawing which shows the process of joining a metal member with respect to an external terminal. 金属部材にバスバー接合面を形成する工程を示す工程図。Process drawing which shows the process of forming a bus-bar joining surface in a metal member. 金属部材にバスバーを溶接する工程を示す工程図。Process drawing which shows the process of welding a bus bar to a metal member. 金属部材にバスバーが溶接された状態を示す断面図。Sectional drawing which shows the state by which the bus bar was welded to the metal member. 本発明の実施形態2に係る二次電池の外部端子及び金属部材を示す断面図。Sectional drawing which shows the external terminal and metal member of a secondary battery which concern on Embodiment 2 of this invention. 図7Aに示す金属部材にバスバーが溶接された状態を示す断面図。Sectional drawing which shows the state by which the bus-bar was welded to the metal member shown to FIG. 7A. 実施形態3に係る二次電池を示す外観斜視図。FIG. 6 is an external perspective view showing a secondary battery according to Embodiment 3.

(実施形態1)
以下、図面を参照して本発明の二次電池の実施形態1について説明する。
(Embodiment 1)
Hereinafter, Embodiment 1 of the secondary battery of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態1に係る二つの二次電池100を示す外観斜視図である。   FIG. 1 is an external perspective view showing two secondary batteries 100 according to Embodiment 1 of the present invention.

二次電池100は、例えば、アルミニウム又はアルミニウム合金等の金属材料によって製作された矩形箱形の電池容器10を備える角形二次電池である。電池容器10は、上部に開口を有する扁平な有底角筒状の電池缶11と、電池缶11の開口を封止する長方形の板状の電池蓋12とを有している。電池缶11は、例えば、前記の金属材料に深絞り加工を施すことによって扁平な有底角筒状に形成されている。   The secondary battery 100 is a rectangular secondary battery including a rectangular box-shaped battery container 10 made of a metal material such as aluminum or an aluminum alloy, for example. The battery container 10 includes a flat bottomed rectangular tube-shaped battery can 11 having an opening at the top, and a rectangular plate-shaped battery lid 12 that seals the opening of the battery can 11. The battery can 11 is formed in a flat bottomed rectangular tube shape, for example, by subjecting the metal material to deep drawing.

電池容器10の幅方向すなわち電池蓋12の長手方向の両端には、電池容器10の外側で電池蓋12の上面に、異なる材料からなる正極及び負極の外部端子20A,20Bが設けられている。外部端子20A,20Bと電池蓋12との間には、絶縁部材としてのガスケット13が配置され、外部端子20A,20Bが電池蓋12に対して電気的に絶縁されている。   Positive and negative external terminals 20A and 20B made of different materials are provided on the upper surface of the battery lid 12 outside the battery container 10 at both ends in the width direction of the battery container 10, that is, in the longitudinal direction of the battery lid 12. A gasket 13 as an insulating member is disposed between the external terminals 20A and 20B and the battery cover 12, and the external terminals 20A and 20B are electrically insulated from the battery cover 12.

正極の外部端子20Aは、例えばアルミニウム又はアルミニウム合金によって製作され、負極の外部端子20Bは、例えば銅又は銅合金によって製作されている。正極及び負極の外部端子20A,20Bは、それぞれ、概ね円柱状に形成されている。なお、正極及び負極の外部端子20A,20Bの形状は、円柱状に限られず、例えば、概ね直方体形状のブロック状、又は矩形の板状に形成してもよい。   The positive external terminal 20A is made of, for example, aluminum or an aluminum alloy, and the negative external terminal 20B is made of, for example, copper or a copper alloy. The positive and negative external terminals 20A and 20B are each formed in a substantially cylindrical shape. Note that the shapes of the positive and negative external terminals 20A and 20B are not limited to a cylindrical shape, and may be formed, for example, in a substantially rectangular parallelepiped block shape or a rectangular plate shape.

二次電池100は、正極及び負極の20A,20Bのうち、一方の外部端子20Aの材料に対する溶接性に優れた材料からなり、他方の外部端子20Bに超音波圧接された金属部材21を備えている。本実施形態において、金属部材21は、例えば、厚さが数mm程度の金属製の板状の部材であり、正極の外部端子20Aの材料に対する溶接性に優れた材料からなり、負極の外部端子20Bの上面に超音波圧接されている。   The secondary battery 100 includes a metal member 21 made of a material excellent in weldability to the material of one of the external terminals 20A among the positive and negative electrodes 20A and 20B and ultrasonically pressed to the other external terminal 20B. Yes. In the present embodiment, the metal member 21 is, for example, a metal plate-like member having a thickness of about several millimeters, and is made of a material excellent in weldability to the material of the positive external terminal 20A. Ultrasonic pressure contact is made on the upper surface of 20B.

ここで、一方の材料に対する他方の材料の溶接性とは、一方の材料と他方の材料とを適切な溶接方法によって溶接する際に、良好な溶接を行うことができる材料の能力を表すものである。本実施形態では、正極の外部端子20Aの材料、例えば、アルミニウム又はアルミニウム合金に溶接した時に、要求する接合強度及び電気的特性が得られる材料、例えば、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金等が、正極の外部端子20Aの材料に対する溶接性に優れた材料である。   Here, the weldability of the other material to one material represents the ability of the material to perform good welding when welding one material and the other material by an appropriate welding method. is there. In the present embodiment, the material of the positive external terminal 20A, for example, a material that can obtain the required bonding strength and electrical characteristics when welded to aluminum or an aluminum alloy, such as aluminum, aluminum alloy, nickel, nickel alloy, etc. The material is excellent in weldability to the material of the positive external terminal 20A.

すなわち、金属部材21の材料として、正極の外部端子20Aの材料に対する溶接性に優れた同種の金属、例えばアルミニウム又はアルミニウム合金、或いは異種の金属、例えばニッケル又はニッケル合金等を用いることができる。なお、ニッケル又はニッケル合金は、負極の外部端子20Bの材料である銅又は銅合金に対する溶接性にも優れている。本実施形態の二次電池100において、金属部材21は、正極及び負極の外部端子20A,20Bのうち、一方の正極の外部端子20Aの材料と同種の金属、すなわちアルミニウム又はアルミニウム合金によって製作されている。   That is, as the material of the metal member 21, the same kind of metal excellent in weldability to the material of the positive electrode external terminal 20A, such as aluminum or an aluminum alloy, or a different kind of metal, such as nickel or a nickel alloy, can be used. In addition, nickel or nickel alloy is excellent also in the weldability with respect to the copper or copper alloy which is the material of the external terminal 20B of a negative electrode. In the secondary battery 100 of the present embodiment, the metal member 21 is made of the same type of metal as the material of the positive electrode external terminal 20A among the positive electrode and negative electrode external terminals 20A and 20B, that is, aluminum or an aluminum alloy. Yes.

また、超音波圧接によって、金属部材21と外部端子20Bとが、それらの接触界面で拡散接合され、接合界面に金属部材21及び外部端子20Bの材料とは組成が異なる接合層CL(図4D参照)が形成される。接合層CLにおいては、接合される各部材の材料が、例えば、塑性流動によって相互に入り込んだ状態になる。また、超音波圧接によって形成される接合層CLの厚さは、例えば、0.1μm〜数μm、又は、数μm〜数十μm程度である。これに対し、例えば抵抗溶接等、その他の溶接方法によって接合界面に形成される接合層の厚さは、例えば、0.1mm〜数mm程度である。したがって、金属部材21と外部端子20Bとが超音波圧接されたか否かは、例えば、両者の接合界面近傍の断面を走査型電子顕微鏡等によって撮影し、形成された接合層CLの形態、組成、厚さ等を測定することで判別することができる。   Also, the metal member 21 and the external terminal 20B are diffusion-bonded at the contact interface by ultrasonic pressure welding, and the bonding layer CL (see FIG. 4D) has a different composition from the material of the metal member 21 and the external terminal 20B at the bond interface. ) Is formed. In the bonding layer CL, the materials of the members to be bonded are in a state of entering each other by plastic flow, for example. The thickness of the bonding layer CL formed by ultrasonic pressure welding is, for example, about 0.1 μm to several μm, or about several μm to several tens of μm. On the other hand, the thickness of the joining layer formed at the joining interface by other welding methods such as resistance welding is, for example, about 0.1 mm to several mm. Therefore, whether or not the metal member 21 and the external terminal 20B are ultrasonically welded is determined by, for example, photographing the cross section in the vicinity of the joint interface between them with a scanning electron microscope or the like, and the form, composition, It can be determined by measuring the thickness or the like.

金属部材21は、隣接する二次電池100の外部端子20A,20Bを接続するバスバーBを溶接可能に平滑化されたバスバー接合面21aを有している。電池蓋12の上面からバスバー接合面21aまでの高さは、電池蓋12の上面から正極の外部端子20Aの上面までの高さと等しくなっている。すなわち、電池蓋12の上面に垂直な高さ方向において、電池蓋12の上面から負極の外部端子20Bの上面までの高さは、電池蓋12の上面から正極の外部端子20Aの上面までの高さよりも、金属部材21の厚さの分だけ低くなっている。   The metal member 21 has a bus bar joint surface 21a that is smoothened so that the bus bar B connecting the external terminals 20A and 20B of the adjacent secondary battery 100 can be welded. The height from the upper surface of the battery lid 12 to the bus bar joint surface 21a is equal to the height from the upper surface of the battery lid 12 to the upper surface of the positive external terminal 20A. That is, in the height direction perpendicular to the upper surface of the battery cover 12, the height from the upper surface of the battery cover 12 to the upper surface of the negative external terminal 20B is the height from the upper surface of the battery cover 12 to the upper surface of the positive external terminal 20A. It is lower than the thickness by the thickness of the metal member 21.

詳細は後述するが、板状の金属部材21の下面を外部端子20Bの上面に超音波圧接すると、外部端子20Bに接合される金属部材21の下面と反対側の上面には、例えば、数百μm程度の凹凸が形成される。その後、金属部材21の上面に、例えば、切削加工処理、研磨加工処理、又は溶融加工処理等、凹凸を平滑化して表面粗さを低減する表面処理を施すことで、バスバー接合面21aが設けられている。バスバーBの溶接を良好に行う観点から、バスバー接合面21aの表面粗さは、例えば、算術平均粗さRaで、好ましくは6.3μm以下、より好ましくは3.5μm以下、さらに好ましくは1.0μm以下である。   Although details will be described later, when the lower surface of the plate-shaped metal member 21 is ultrasonically pressed to the upper surface of the external terminal 20B, several hundreds of the upper surface opposite to the lower surface of the metal member 21 to be joined to the external terminal 20B, for example, Unevenness of about μm is formed. Thereafter, the bus bar joint surface 21a is provided on the upper surface of the metal member 21 by performing a surface treatment that smoothes the unevenness and reduces the surface roughness, such as a cutting process, a polishing process, or a melt process. ing. From the viewpoint of good welding of the bus bar B, the surface roughness of the bus bar joint surface 21a is, for example, an arithmetic average roughness Ra, preferably 6.3 μm or less, more preferably 3.5 μm or less, and still more preferably 1. 0 μm or less.

また、一方の外部端子20Aの上面と金属部材21のバスバー接合面21aとに溶接されるバスバーBは、一方の外部端子20Aの材料と同種の材料によって製作されている。すなわち、本実施形態において、バスバーBは、正極の外部端子20Aの材料と同種の材料、例えば、アルミニウム又はアルミニウム合金によって製作され、金属部材21と同等の厚さを有する長方形の板状の部材である。   The bus bar B welded to the upper surface of the one external terminal 20A and the bus bar joint surface 21a of the metal member 21 is made of the same material as the material of the one external terminal 20A. That is, in the present embodiment, the bus bar B is a rectangular plate-like member that is made of the same material as the material of the positive external terminal 20A, for example, aluminum or an aluminum alloy and has a thickness equivalent to that of the metal member 21. is there.

電池蓋12の正極及び負極の外部端子20A,20Bの間には、ガス排出弁14と注液口15とが設けられている。ガス排出弁14は、例えばプレス加工によって電池蓋12を薄肉化することによって設けられ、さらに開裂溝14aが形成されている。ガス排出弁14は、例えば過充電によって電池容器10の内圧が所定値を超えて上昇すると、開裂溝14aが開裂して開放され、電池容器10の内部のガス等を放出して内圧を低下させる。注液口15は、電池容器10の内部に電解液を注入するのに用いられ、例えばレーザ溶接によって注液栓16bが溶接されて封止されている。   Between the positive and negative external terminals 20A and 20B of the battery lid 12, a gas discharge valve 14 and a liquid injection port 15 are provided. The gas discharge valve 14 is provided, for example, by thinning the battery cover 12 by press working, and further, a cleavage groove 14a is formed. When the internal pressure of the battery container 10 rises above a predetermined value due to, for example, overcharging, the gas discharge valve 14 opens the cleavage groove 14a and releases the gas inside the battery container 10 to reduce the internal pressure. . The liquid injection port 15 is used to inject an electrolytic solution into the battery container 10 and is sealed by welding a liquid injection plug 16b by laser welding, for example.

例えば、組電池を構成するために、複数の二次電池100をバスバーによって直列に接続する際には、二次電池100を厚さ方向に積層させ、互いに隣接する二次電池100の正極及び負極の外部端子20A,20Bの位置を交互に180°反転させて配置する。そして、隣接する一方の二次電池100の正極の外部端子20Aと、他方の二次電池100の負極の外部端子20Bとを、バスバーBによって接続する。これを二次電池100の積層方向に繰り返すことで、厚さ方向に積層された複数の二次電池100が直列に接続される。ここで、バスバーBは、一端が正極の外部端子20Aの上面に溶接によって接合され、他端が負極の外部端子20Bの上面に超音波圧接された金属部材21に溶接によって接合される。   For example, when a plurality of secondary batteries 100 are connected in series by a bus bar to form an assembled battery, the secondary batteries 100 are stacked in the thickness direction, and the positive and negative electrodes of the secondary batteries 100 adjacent to each other. The positions of the external terminals 20A and 20B are alternately reversed by 180 °. Then, the positive external terminal 20A of one adjacent secondary battery 100 and the negative external terminal 20B of the other secondary battery 100 are connected by a bus bar B. By repeating this in the stacking direction of the secondary batteries 100, a plurality of secondary batteries 100 stacked in the thickness direction are connected in series. Here, the bus bar B has one end joined to the upper surface of the positive external terminal 20A by welding and the other end joined to the metal member 21 ultrasonically welded to the upper surface of the negative external terminal 20B by welding.

図2は、図1に示す二次電池100の内部構造を示す分解斜視図である。   FIG. 2 is an exploded perspective view showing the internal structure of the secondary battery 100 shown in FIG.

電池缶11は、高さ方向の上端が開放され、上部に開口部11aを有する有底角筒状の略直方体形状の容器である。電池缶11は、高さ方向の下端を閉塞する底面11bと、厚さ方向に対向する面積の大きい一対の広側面11cと、幅方向に対向する面積の小さい一対の狭側面11dとを有している。   The battery can 11 is a bottomed rectangular tube-shaped, substantially rectangular parallelepiped container having an open upper end in the height direction and an opening 11a at the top. The battery can 11 has a bottom surface 11b that closes the lower end in the height direction, a pair of large side surfaces 11c that face each other in the thickness direction, and a pair of narrow side surfaces 11d that face each other in the width direction. ing.

電池蓋12の長手方向の両端で、電池容器10の内側となる電池蓋12の下面には、絶縁部材17を介して正極及び負極の集電板30A、30Bが固定されている。正極の集電板30Aは、例えば、アルミニウム又はアルミニウム合金によって製作され、負極の集電板30Bは、例えば、銅又は銅合金によって製作されている。集電板30A、30Bは、それぞれ、電池蓋12に概ね平行な板状の基部31と、基部31から電池缶11の底面11bに向けて延びる板状の端子部32と、を有している。   Positive and negative current collecting plates 30 </ b> A and 30 </ b> B are fixed to the lower surface of the battery lid 12 inside the battery container 10 at both ends in the longitudinal direction of the battery lid 12 via insulating members 17. The positive current collecting plate 30A is made of, for example, aluminum or an aluminum alloy, and the negative current collecting plate 30B is made of, for example, copper or a copper alloy. The current collecting plates 30 </ b> A and 30 </ b> B each include a plate-like base portion 31 that is substantially parallel to the battery lid 12 and a plate-like terminal portion 32 that extends from the base portion 31 toward the bottom surface 11 b of the battery can 11. .

外部端子20A,20Bは、概ね円柱形状に形成された部分の下面から電池蓋12の上面に対して垂直に延びる柱状の接続部22を有している。外部端子20A,20Bのそれぞれの接続部22は、例えば円柱状に形成され、電池蓋12と、その上下に配置されたガスケット13及び絶縁部材17と、集電板30A,30Bのそれぞれの基部31に形成された貫通孔を貫通している。ガスケット13及び絶縁部材17は、例えば、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材料によって製作されている。   The external terminals 20 </ b> A and 20 </ b> B have a columnar connection portion 22 that extends perpendicularly to the upper surface of the battery lid 12 from the lower surface of the portion formed in a substantially cylindrical shape. Each connection part 22 of the external terminals 20A and 20B is formed in, for example, a cylindrical shape, and the battery cover 12, the gasket 13 and the insulating member 17 disposed above and below the base part 31 of each of the current collector plates 30A and 30B. It penetrates the through hole formed. The gasket 13 and the insulating member 17 are made of an insulating resin material such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.

前記各部材の貫通孔を貫通した接続部22は、基部31の下面で先端部が塑性変形させられて拡径され、かしめ部が形成される。これにより、正負の外部端子20A,20Bのそれぞれが正負の集電板30A,30Bのそれぞれに電気的に導通し、これらの各部材がガスケット13及び絶縁部材17によって電池蓋12から電気的に絶縁された状態で、電池蓋12に一体的に固定される。   The connecting portion 22 penetrating through the through hole of each member is expanded in diameter by plastic deformation of the tip portion on the lower surface of the base portion 31 to form a caulking portion. Accordingly, the positive and negative external terminals 20A and 20B are electrically connected to the positive and negative current collector plates 30A and 30B, respectively, and these members are electrically insulated from the battery lid 12 by the gasket 13 and the insulating member 17. In this state, the battery lid 12 is integrally fixed.

正負の集電板30A、30Bのそれぞれの端子部32は、電池容器10の厚さ方向における基部31の一側から、電池缶11の最大面積の広側面11cに沿って電池缶11の底面11bに向けて延びる板状に形成されている。正負の集電板30A、30Bのそれぞれの端子部32は、後述する捲回体40の捲回軸A方向において、基部31の外側の端部から下方に延びて、捲回体40の端部の集電板接合部41d、42dにそれぞれ接合されている。これにより、正極の集電板30Aが、捲回体40の捲回軸A方向の一方の端部で正電極41(図3参照)に電気的に接続され、負極の集電板30Bが、捲回体40の捲回軸A方向の他方の端部で負電極42(図3参照)に電気的に接続されている。   The terminal portions 32 of the positive and negative current collecting plates 30 </ b> A and 30 </ b> B extend from one side of the base portion 31 in the thickness direction of the battery case 10 to the bottom surface 11 b of the battery can 11 along the wide side surface 11 c of the maximum area of the battery can 11. It is formed in the plate shape extended toward. The terminal portions 32 of the positive and negative current collector plates 30A and 30B extend downward from the outer end portion of the base portion 31 in the winding axis A direction of the winding body 40, which will be described later, and are end portions of the winding body 40. Are joined to current collector plate joining portions 41d and 42d. Thereby, the positive current collector 30A is electrically connected to the positive electrode 41 (see FIG. 3) at one end in the winding axis A direction of the wound body 40, and the negative current collector 30B is The other end of the wound body 40 in the winding axis A direction is electrically connected to the negative electrode 42 (see FIG. 3).

捲回体40は、正負の集電板30A、30Bのそれぞれの端子部32に接合されることで、正負の集電板30A、30B及び絶縁部材17,17を介して電池蓋12に固定されている。また、正負の外部端子20A,20B、ガスケット13、絶縁部材17、集電板30A、30B、及び捲回体40が電池蓋12に組み付けられることで、蓋組立体50が製作される。   The wound body 40 is fixed to the battery lid 12 via the positive and negative current collector plates 30A and 30B and the insulating members 17 and 17 by being joined to the terminal portions 32 of the positive and negative current collector plates 30A and 30B. ing. Further, the positive and negative external terminals 20A and 20B, the gasket 13, the insulating member 17, the current collector plates 30A and 30B, and the wound body 40 are assembled to the battery lid 12, whereby the lid assembly 50 is manufactured.

電池缶11と捲回体40との間には、捲回体40を覆う絶縁ケース60が配置される。絶縁ケース60は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン(PFA)、ポリフェニレンサルファイド(PPS)等の絶縁性を有する樹脂材料によって製作されている。   An insulating case 60 that covers the wound body 40 is disposed between the battery can 11 and the wound body 40. The insulating case 60 is an insulating resin such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), tetrafluoroethylene (PFA), polyphenylene sulfide (PPS), etc. It is made of materials.

二次電池100の製造時には、蓋組立体50を構成する捲回体40及び集電板30A,30Bの周囲を覆うように絶縁ケース60が配置される。そして、蓋組立体50は、捲回体40及び集電板30A,30Bの周囲が絶縁ケース60によって覆われた状態で、捲回体40の下方側の湾曲部40bから、電池缶11の開口部11aに挿入される。これにより、捲回体40及び集電板30A,30Bは、電池缶11との間に絶縁ケース60が配置され、電池缶11と電気的に絶縁された状態で、電池容器10に収容される。   At the time of manufacturing the secondary battery 100, the insulating case 60 is arranged so as to cover the periphery of the wound body 40 and the current collector plates 30A and 30B constituting the lid assembly 50. The lid assembly 50 opens the battery can 11 from the curved portion 40b on the lower side of the winding body 40 in a state where the periphery of the winding body 40 and the current collector plates 30A and 30B are covered by the insulating case 60. It is inserted into the part 11a. Thus, the wound body 40 and the current collector plates 30 </ b> A and 30 </ b> B are accommodated in the battery container 10 in a state where the insulating case 60 is disposed between the wound body 40 and the current collector plate 30 </ b> A, 30 </ b> B and is electrically insulated from the battery can 11. .

捲回体40は、捲回軸A方向の両側に電池缶11の狭側面11dが位置し、捲回軸A方向が電池缶11の底面11b及び広側面11cに略平行に沿うように、電池缶11内に収容される。これにより、蓄電要素である捲回体40は、一方の湾曲部40bが電池蓋12に対向し、他方の湾曲部40bが電池缶11の底面11bに対向し、平坦部40aが広側面11cに対向した状態になる。   The wound body 40 is configured so that the narrow side surface 11d of the battery can 11 is positioned on both sides in the winding axis A direction, and the winding axis A direction is substantially parallel to the bottom surface 11b and the wide side surface 11c of the battery can 11. Housed in a can 11. Thereby, the winding body 40 which is an electrical storage element has one curved portion 40b facing the battery lid 12, the other curved portion 40b facing the bottom surface 11b of the battery can 11, and the flat portion 40a facing the wide side surface 11c. It will be in the opposite state.

そして、電池蓋12によって電池缶11の開口部11aを閉塞した状態で、例えば、レーザ溶接によって電池蓋12の全周を電池缶11の開口部11aに接合する。これにより、電池缶11の開口部11aが電池蓋12によって密閉封止され、電池缶11と電池蓋12からなる電池容器10が形成される。   Then, with the battery lid 12 closing the opening 11 a of the battery can 11, for example, the entire circumference of the battery lid 12 is joined to the opening 11 a of the battery can 11 by laser welding. Thereby, the opening 11 a of the battery can 11 is hermetically sealed by the battery lid 12, and the battery container 10 including the battery can 11 and the battery lid 12 is formed.

その後、電池蓋12の注液口15を介して電池容器10の内部に非水電解液を注入し、注液口15にシール材16aを挿入して圧入し、例えば、レーザ溶接によって注液栓16bを注液口15に接合して封止することで、電池容器10が密閉されている。電池容器10の内部に注入する非水電解液としては、例えば、エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中に、6フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いることができる。 Thereafter, a nonaqueous electrolytic solution is injected into the battery container 10 through the injection port 15 of the battery lid 12, and a sealing material 16a is inserted into the injection port 15 and press-fitted. For example, the injection plug is formed by laser welding. The battery container 10 is hermetically sealed by joining 16b to the liquid injection port 15 and sealing. Examples of the non-aqueous electrolyte injected into the battery container 10 include lithium hexafluorophosphate (LiPF 6 ) in a mixed solution in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2. Can be used at a concentration of 1 mol / liter.

図3は、図2に示す捲回体40の一部を展開した分解斜視図である。なお、図3では、図2に示す集電板接合部41d,42dを捲回体40に形成する前の状態を示している。   FIG. 3 is an exploded perspective view in which a part of the wound body 40 shown in FIG. 2 is developed. In addition, in FIG. 3, the state before forming the current collector plate junction parts 41d and 42d shown in FIG.

捲回体40は、セパレータ43,44を介在させて積層させた正負の電極41,42を捲回軸Aに平行な軸心の周りに捲回して扁平形状に成形した捲回電極群である。捲回体40は、電池缶11の広側面11cに対向する平坦部40aと、電池蓋12及び電池缶11の底面11bに対向する湾曲部40bとを有する扁平形状に成形されている。平坦部40aは、電極41、42とセパレータ43、44が平坦に積層された部分であり、湾曲部40bは、電極41、42とセパレータ43、44が半円筒状に湾曲して積層された部分である。   The wound body 40 is a wound electrode group in which positive and negative electrodes 41 and 42 stacked with separators 43 and 44 interposed therebetween are wound around an axis parallel to the winding axis A and formed into a flat shape. . The wound body 40 is formed into a flat shape having a flat portion 40 a facing the wide side surface 11 c of the battery can 11 and a curved portion 40 b facing the battery lid 12 and the bottom surface 11 b of the battery can 11. The flat portion 40a is a portion where the electrodes 41, 42 and the separators 43, 44 are laminated flat, and the curved portion 40b is a portion where the electrodes 41, 42 and the separators 43, 44 are bent and laminated in a semi-cylindrical shape. It is.

セパレータ43、44は、正電極41と負電極42との間を絶縁すると共に、捲回体40の最外周に捲回された負電極42の外周にもセパレータ44が捲回されている。セパレータ43,44は、例えば多孔質のポリエチレン樹脂によって製作されている。   The separators 43 and 44 insulate the positive electrode 41 and the negative electrode 42, and the separator 44 is wound around the outer periphery of the negative electrode 42 wound around the outermost periphery of the wound body 40. The separators 43 and 44 are made of, for example, porous polyethylene resin.

正電極41は、正極集電体である正極金属箔41aと、正極金属箔41aの両面に塗布された正極活物質合剤からなる正極合剤層41bとを有している。長尺帯状の正電極41の幅方向の一側は、正極合剤層41bが形成されず、正極金属箔41aが露出した箔露出部41cとされている。正電極41は、箔露出部41cが負電極42の箔露出部42cと捲回軸A方向の反対側に配置されて、捲回軸Aの周りに捲回されている。   The positive electrode 41 includes a positive electrode metal foil 41a that is a positive electrode current collector, and a positive electrode mixture layer 41b made of a positive electrode active material mixture applied to both surfaces of the positive electrode metal foil 41a. One side in the width direction of the long belt-like positive electrode 41 is a foil exposed portion 41c in which the positive electrode mixture layer 41b is not formed and the positive electrode metal foil 41a is exposed. The positive electrode 41 is wound around the winding axis A such that the foil exposed portion 41 c is arranged on the opposite side of the winding axis A direction of the foil exposed portion 42 c of the negative electrode 42.

正電極41を製作するには、例えば、正極活物質に導電材、結着剤及び分散溶媒を添加して混練した正極活物質合剤を、幅方向の一側を除く正極金属箔41aの両面に塗布し、乾燥、プレス、裁断する。正極金属箔41aとしては、例えば、厚さ約20μm〜30μm程度のアルミニウム箔を用いることができる。正極金属箔41aの厚みを含まない正極合剤層41bの厚さは、例えば、約90μmである。   In order to manufacture the positive electrode 41, for example, a positive electrode active material mixture obtained by adding and kneading a conductive material, a binder, and a dispersion solvent to a positive electrode active material is mixed on both surfaces of the positive electrode metal foil 41a except for one side in the width direction. Apply, dry, press and cut. As the positive electrode metal foil 41a, for example, an aluminum foil having a thickness of about 20 μm to 30 μm can be used. The thickness of the positive electrode mixture layer 41b not including the thickness of the positive electrode metal foil 41a is, for example, about 90 μm.

正極活物質合剤の材料としては、例えば、正極活物質として100重量部のマンガン酸リチウム(化学式LiMn)を、導電材として10重量部の鱗片状黒鉛を、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を、分散溶媒としてN−メチルピロリドン(以下、NMPという。)を、それぞれ用いることができる。 As a material of the positive electrode active material mixture, for example, 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) is used as the positive electrode active material, 10 parts by weight of flaky graphite as the conductive material, and 10% by weight as the binder. Part of polyvinylidene fluoride (hereinafter referred to as PVDF) and N-methylpyrrolidone (hereinafter referred to as NMP) can be used as a dispersion solvent.

正極活物質は、前記したマンガン酸リチウムに限定されず、例えば、スピネル結晶構造を有する他のマンガン酸リチウム、一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物を用いてもよい。また、正極活物質として、層状結晶構造を有するコバルト酸リチウムやチタン酸リチウム、及びこれらの一部を金属元素で置換又はドープしたリチウム−金属複合酸化物を用いてもよい。   The positive electrode active material is not limited to the above-described lithium manganate. For example, another lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element may be used. Further, as the positive electrode active material, lithium cobaltate or lithium titanate having a layered crystal structure, and a lithium-metal composite oxide obtained by substituting or doping a part thereof with a metal element may be used.

負電極42は、負極集電体である負極金属箔42aと、負極金属箔42aの両面に塗布された負極活物質合剤からなる負極合剤層42bとを有している。長尺帯状の負電極42の幅方向の一側は、負極合剤層42bが形成されず、負極金属箔42aが露出した箔露出部42cとされている。負電極42は、その箔露出部42cが正電極41の箔露出部41cと捲回軸A方向の反対側に配置されて、捲回軸A周りに捲回されている。   The negative electrode 42 includes a negative electrode metal foil 42a that is a negative electrode current collector, and a negative electrode mixture layer 42b made of a negative electrode active material mixture applied to both surfaces of the negative electrode metal foil 42a. One side in the width direction of the long strip-like negative electrode 42 is a foil exposed portion 42c where the negative electrode mixture layer 42b is not formed and the negative electrode metal foil 42a is exposed. The negative electrode 42 is wound around the winding axis A such that the foil exposed portion 42c is arranged on the opposite side of the winding axis A direction of the foil exposed portion 41c of the positive electrode 41.

負電極42を製作するには、例えば、負極活物質に結着剤及び分散溶媒を添加して混練した負極活物質合剤を、幅方向の一側を除く負極金属箔42aの両面に塗布し、乾燥、プレス、裁断する。負極金属箔42aとしては、例えば、厚さ約10μm〜20μm程度の銅箔を用いることができる。負極金属箔42aの厚みを含まない負極合剤層42bの厚さは、例えば、約70μmである。   In order to manufacture the negative electrode 42, for example, a negative electrode active material mixture kneaded by adding a binder and a dispersion solvent to the negative electrode active material is applied to both surfaces of the negative electrode metal foil 42a except for one side in the width direction. , Dry, press, cut. As the negative electrode metal foil 42a, for example, a copper foil having a thickness of about 10 μm to 20 μm can be used. The thickness of the negative electrode mixture layer 42b not including the thickness of the negative electrode metal foil 42a is, for example, about 70 μm.

負極活物質合剤の材料としては、例えば、負極活物質として100重量部の非晶質炭素粉末を、結着剤として10重量部のPVDFを、分散溶媒としてNMPをそれぞれ用いることができる。負極活物質は、前記した非晶質炭素に限定されず、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi等)、又はそれらの複合材料を用いてもよい。負極活物質の粒子形状についても特に限定されず、鱗片状、球状、繊維状又は塊状等の粒子形状を適宜選択することができる。 As a material for the negative electrode active material mixture, for example, 100 parts by weight of amorphous carbon powder as the negative electrode active material, 10 parts by weight of PVDF as the binder, and NMP as the dispersion solvent can be used. The negative electrode active material is not limited to the above-mentioned amorphous carbon, and natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, and compounds such as Si and Sn (for example, , SiO, TiSi 2 or the like), or a composite material thereof. The particle shape of the negative electrode active material is not particularly limited, and a particle shape such as a scale shape, a spherical shape, a fiber shape, or a lump shape can be appropriately selected.

なお、前記した正極及び負極の合剤層41b,42bに用いる結着材は、PVDFに限定されない。前記した結着材として、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体及びこれらの混合体などを用いてもよい。   The binder used for the positive electrode and negative electrode mixture layers 41b and 42b is not limited to PVDF. Examples of the binder include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, and vinyl fluoride. Polymers such as vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof may be used.

捲回体40は、捲回軸A方向の両端で積層した正負の電極41,42の箔露出部41c,42cがそれぞれ束ねられ、図2に示すように、正負の集電板接合部41d,42dが形成される。そして、例えば、超音波圧接によって、正負の集電板接合部41d,42dに、それぞれ正負の集電板30A,30Bが接合されることで、正負の電極41,42が、それぞれ正負の集電板30A,30Bを介して、それぞれ正負の外部端子20A,20Bに接続される。   In the wound body 40, foil exposed portions 41c and 42c of positive and negative electrodes 41 and 42 stacked at both ends in the winding axis A direction are bundled, respectively, and as shown in FIG. 42d is formed. Then, for example, the positive and negative current collector plates 30A and 30B are joined to the positive and negative current collector plate joint portions 41d and 42d by ultrasonic pressure welding, respectively, so that the positive and negative electrodes 41 and 42 become positive and negative current collectors, respectively. The plates are connected to positive and negative external terminals 20A and 20B through the plates 30A and 30B, respectively.

以上の構成に基づき、本実施形態の二次電池100は、例えば、外部の発電装置等から供給された電力を、外部端子20A,20B及び集電板30A,30Bを介して捲回体40の正負の電極41,42の合剤層41b,42b間に蓄積することで充電される。また、二次電池100は、捲回体40の正負の電極41,42の合剤層41b,42b間に充電した電力を、集電板30A,30B及び外部端子20A,20Bを介して、モータ等、電力を消費する外部負荷に電力を供給する。   Based on the above configuration, the secondary battery 100 according to the present embodiment, for example, supplies power supplied from an external power generator or the like to the winding body 40 via the external terminals 20A and 20B and the current collector plates 30A and 30B. Charging is performed by accumulating between the mixture layers 41 b and 42 b of the positive and negative electrodes 41 and 42. Further, the secondary battery 100 is configured such that the electric power charged between the mixture layers 41b and 42b of the positive and negative electrodes 41 and 42 of the wound body 40 is supplied to the motor via the current collector plates 30A and 30B and the external terminals 20A and 20B. For example, power is supplied to an external load that consumes power.

以下、前記した本実施形態の二次電池100が備える正極及び負極の外部端子20A,20Bのうち、一方の負極の外部端子20Bに対して金属部材21を接合する工程について説明する。   Hereinafter, the process of joining the metal member 21 to the negative external terminal 20B of the positive and negative external terminals 20A and 20B included in the secondary battery 100 of the present embodiment will be described.

図4Aから図4Cは、超音波圧接によって負極の外部端子20Bに対して金属部材21を接合する工程を示す工程図である。図4Dは、負極の外部端子20Bに超音波圧接によって接合された金属部材21にバスバー接合面21aを形成する工程を示す工程図である。金属部材21を負極の外部端子20Bに接合する工程、及び、金属部材21にバスバー接合面21aを形成する工程は、例えば、前記した電池蓋12に負極の外部端子20Bを固定する工程の前に行われる。   4A to 4C are process diagrams showing a process of joining the metal member 21 to the negative external terminal 20B by ultrasonic pressure welding. FIG. 4D is a process diagram illustrating a process of forming the bus bar joint surface 21a on the metal member 21 joined to the negative external terminal 20B by ultrasonic pressure welding. The step of bonding the metal member 21 to the negative electrode external terminal 20B and the step of forming the bus bar bonding surface 21a on the metal member 21 are performed, for example, before the step of fixing the negative electrode external terminal 20B to the battery lid 12 described above. Done.

超音波圧接によって負極の外部端子20Bに対して金属部材21を接合する際には、まず、図4Aに示すように、外部端子20Bの側方からアンビルAnを当接させて、外部端子20Bを固定する。アンビルAnは、外部端子20Bの側面に当接する面が平坦であってもよいが、円筒状の外部端子20Bの側面に適合する半円筒状の曲面を有する一対のアンビルAnを用いてもよい。外部端子20Bは、一対のアンビルAnでホーンHを振動させる方向の両側から挟み込んで固定することができる。なお、外部端子20Bが略直方体のブロック形状である場合には、外部端子20Bの互いに垂直な二つの側面にそれぞれ垂直な二方向から、二対のアンビルAnで外部端子20Bを挟み込んで固定してもよい。   When joining the metal member 21 to the negative electrode external terminal 20B by ultrasonic pressure welding, first, as shown in FIG. 4A, the anvil An is brought into contact from the side of the external terminal 20B, and the external terminal 20B is attached. Fix it. The anvil An may have a flat surface that contacts the side surface of the external terminal 20B, but a pair of anvil Ans having a semi-cylindrical curved surface that matches the side surface of the cylindrical external terminal 20B may be used. The external terminal 20B can be fixed by being sandwiched from both sides in the direction in which the horn H is vibrated by a pair of anvils An. When the external terminal 20B has a substantially rectangular parallelepiped block shape, the external terminal 20B is sandwiched and fixed by two pairs of anvils An from the two directions perpendicular to the two mutually perpendicular side surfaces of the external terminal 20B. Also good.

次に、アンビルAnによって固定された外部端子20Bの上面に金属部材21を載置する。そして、金属部材21の上面にホーンHの凹凸Haを押し当て、ホーンHによって金属部材21を外部端子20Bに向けて加圧した状態で、金属部材21の下面と外部端子20Bの上面とを接触させる。これにより、金属部材21の上面が塑性変形してホーンHの凹凸Haが食い込んだ状態になる。   Next, the metal member 21 is placed on the upper surface of the external terminal 20B fixed by the anvil An. And the unevenness | corrugation Ha of the horn H is pressed on the upper surface of the metal member 21, and the lower surface of the metal member 21 and the upper surface of the external terminal 20B are contacted in a state where the metal member 21 is pressed toward the external terminal 20B by the horn H. Let Thereby, the upper surface of the metal member 21 is plastically deformed, and the unevenness Ha of the horn H is in a state of being bitten.

次に、図4Bに示すように、ホーンHを超音波振動させて金属部材21と外部端子20Bとの超音波圧接を行う。具体的には、ホーンHによって金属部材21を外部端子20Bに向けて加圧して、金属部材21の下面と外部端子20Bの上面とを所定の面圧で接触させた状態で、両部材の接触界面に沿ってホーンHを超音波振動させる。ここで、ホーンHの超音波振動の周波数は、例えば約20kHz又はそれ以上である。   Next, as shown in FIG. 4B, the horn H is ultrasonically vibrated to perform ultrasonic pressure contact between the metal member 21 and the external terminal 20B. Specifically, the metal member 21 is pressed toward the external terminal 20B by the horn H, and the lower surface of the metal member 21 and the upper surface of the external terminal 20B are brought into contact with each other at a predetermined surface pressure. The horn H is vibrated ultrasonically along the interface. Here, the frequency of the ultrasonic vibration of the horn H is, for example, about 20 kHz or more.

超音波圧接では、例えば、接触界面である金属部材21の下面と外部端子20Bの上面との摩擦によって、両部材の酸化被膜や汚れが除去され、両部材の材料間で金属原子の拡散が生じ、拡散接合によって両部材が固相接合される。なお、超音波圧接において、負極の外部端子20Bの材料の焼きなまし温度以上になる接合条件とし、負極の外部端子20Bの残留応力を除去するようにしてもよい。   In ultrasonic pressure welding, for example, the oxide film and dirt on both members are removed by friction between the lower surface of the metal member 21 that is the contact interface and the upper surface of the external terminal 20B, and diffusion of metal atoms occurs between the materials of both members. Both members are solid-phase bonded by diffusion bonding. Note that, in ultrasonic pressure welding, the residual stress of the negative electrode external terminal 20B may be removed by setting the bonding condition to be equal to or higher than the annealing temperature of the material of the negative electrode external terminal 20B.

超音波圧接によって、図4Cに示すように、金属部材21と外部端子20Bとの接触界面の全体に亘って接合層CLが形成され、金属部材21と外部端子20Bとが強固かつ緻密に接合される。一方、接合層CLと反対側の金属部材21の上面には、ホーンHの凹凸Haに対応する凹凸21bが形成される。この凹凸21bによる金属部材21の上面の算術平均粗さRaは、例えば、数百μm程度である。このような凹凸21bを有する金属部材21の上面にバスバーBを良好に溶接するのは困難であり、金属部材21とバスバーとの間の十分な接合強度及び電気的特性を確保するのは困難である。   By ultrasonic welding, as shown in FIG. 4C, a bonding layer CL is formed over the entire contact interface between the metal member 21 and the external terminal 20B, and the metal member 21 and the external terminal 20B are bonded firmly and densely. The On the other hand, the unevenness 21b corresponding to the unevenness Ha of the horn H is formed on the upper surface of the metal member 21 opposite to the bonding layer CL. The arithmetic average roughness Ra of the upper surface of the metal member 21 due to the unevenness 21b is, for example, about several hundred μm. It is difficult to satisfactorily weld the bus bar B to the upper surface of the metal member 21 having such irregularities 21b, and it is difficult to ensure sufficient bonding strength and electrical characteristics between the metal member 21 and the bus bar. is there.

そのため、本実施形態では、図4Dに示すように、例えば、金属部材21の上面全体に、表面粗さを低減するための表面加工処理を施して、バスバー接合面21aを形成する。ここで、表面粗さを低減するための表面加工処理としては、例えば、切削加工処理、研磨加工処理、溶融加工処理等を行うことができる。なお、バスバーBが溶接されない金属部材21の側面には、表面加工処理を施さなくてもよい。   Therefore, in this embodiment, as shown in FIG. 4D, for example, the entire upper surface of the metal member 21 is subjected to surface processing for reducing the surface roughness to form the bus bar joint surface 21a. Here, as the surface processing for reducing the surface roughness, for example, cutting processing, polishing processing, melting processing, or the like can be performed. The side surface of the metal member 21 to which the bus bar B is not welded may not be subjected to surface processing.

以下、本実施形態の二次電池100の作用について説明する。   Hereinafter, the operation of the secondary battery 100 of the present embodiment will be described.

図5は、二次電池100の正極の外部端子20Aと、負極の外部端子20Bに超音波圧接された金属部材21とに、それぞれバスバーB,Bを溶接する工程を示す工程図である。図6は、金属部材21にバスバーBが溶接された状態を示す外部端子20B、金属部材21、及びバスバーBの断面図である。   FIG. 5 is a process diagram showing a process of welding the bus bars B and B to the positive external terminal 20A of the secondary battery 100 and the metal member 21 ultrasonically welded to the negative external terminal 20B. FIG. 6 is a cross-sectional view of the external terminal 20 </ b> B, the metal member 21, and the bus bar B showing a state in which the bus bar B is welded to the metal member 21.

例えば、複数の二次電池100を直列に接続して組電池を構成する際には、図1及び図5に示すように、厚さ方向に互いに隣接する一方の二次電池100の正極の外部端子20Aと、他方の二次電池100の負極の外部端子20Bとを、バスバーBによって接続する。ここで、本実施形態の二次電池100では、正極及び負極の外部端子20A,20Bは、異なる材料からなり、バスバーBは、正極の外部端子20Aと同種の材料からなっている。具体的には、正極の外部端子20A及びバスバーBの材料は、アルミニウム又はアルミニウム合金であり、負極の外部端子20Bの材料は、銅又は銅合金である。   For example, when a plurality of secondary batteries 100 are connected in series to form an assembled battery, as shown in FIGS. 1 and 5, the external side of the positive electrode of one secondary battery 100 adjacent to each other in the thickness direction is used. The terminal 20A and the negative external terminal 20B of the other secondary battery 100 are connected by a bus bar B. Here, in the secondary battery 100 of the present embodiment, the positive and negative external terminals 20A and 20B are made of different materials, and the bus bar B is made of the same material as the positive external terminal 20A. Specifically, the material of the positive external terminal 20A and the bus bar B is aluminum or an aluminum alloy, and the material of the negative external terminal 20B is copper or a copper alloy.

そのため、バスバーBを正極及び負極の外部端子20A,20Bに溶接した場合、正極の外部端子20AとバスバーBとの溶接は、溶接性に優れ、良好な溶接が可能な同種の金属の溶接となり、十分な接合強度及び電気的特性を得ることができる。しかし、負極の外部端子20BとバスバーBとの溶接は、溶接性に劣り、良好な溶接が困難な異種の金属、ここでは、銅又は銅合金と、アルミニウム又はアルミニウム合金との溶接となり、十分な接合強度及び電気的特性を得ることが困難である。   Therefore, when the bus bar B is welded to the positive and negative external terminals 20A, 20B, the welding of the positive external terminal 20A and the bus bar B is a weld of the same kind of metal that has excellent weldability and is capable of good welding. Sufficient bonding strength and electrical characteristics can be obtained. However, welding of the negative electrode external terminal 20B and the bus bar B results in welding of a dissimilar metal that is inferior in weldability and difficult to weld well, here, copper or a copper alloy and aluminum or an aluminum alloy. It is difficult to obtain bonding strength and electrical characteristics.

これに対し、本実施形態の二次電池100は、一方の外部端子20Aの材料に対する溶接性に優れた材料からなり、他方の外部端子20Bに超音波圧接されると共に、バスバーBが溶接されるバスバー接合面21aを有する金属部材21を備えている。   On the other hand, the secondary battery 100 of the present embodiment is made of a material excellent in weldability to the material of one external terminal 20A, and is ultrasonically pressed to the other external terminal 20B and the bus bar B is welded. A metal member 21 having a bus bar joint surface 21a is provided.

そのため、バスバーBの一端を、一方の二次電池100の正極の外部端子20Aに溶接し、バスバーBの他端を、他方の二次電池100の金属部材21に溶接することで、バスバーBの両端を、バスバーBの材料との溶接性に優れた材料に対して溶接することができる。したがって、バスバーBの溶接を容易かつ良好に行うことができ、バスバーBと一方の二次電池100の正極の外部端子20Aとの間、及び、バスバーBと他方の二次電池100の金属部材21との間で、良好な接合強度及び電気的特性が得られる。   Therefore, one end of the bus bar B is welded to the positive external terminal 20A of one secondary battery 100, and the other end of the bus bar B is welded to the metal member 21 of the other secondary battery 100. Both ends can be welded to a material excellent in weldability with the material of the bus bar B. Therefore, the bus bar B can be easily and satisfactorily welded, and the metal member 21 between the bus bar B and the positive external terminal 20A of one secondary battery 100 and between the bus bar B and the other secondary battery 100. In this case, good bonding strength and electrical characteristics can be obtained.

バスバーBを金属部材21に溶接することで、バスバーBが金属部材21を介して他方の二次電池100の負極の外部端子20Bに接続される。そして、バスバーB及び金属部材21を介して、一方の二次電池100の正極の外部端子20Aと、他方の二次電池100の負極の外部端子20Bとが接続される。バスバーBと金属部材21との溶接方法としては、例えば、レーザ溶接、電子ビーム溶接、抵抗溶接、アーク溶接等を適用することができる。バスバーBと金属部材21との溶接方式としては、例えば、重ね合わせ溶接、突き合せ溶接、すみ肉溶接等を適用することができる。   By welding the bus bar B to the metal member 21, the bus bar B is connected to the negative external terminal 20 </ b> B of the other secondary battery 100 through the metal member 21. Then, via the bus bar B and the metal member 21, the positive external terminal 20A of one secondary battery 100 and the negative external terminal 20B of the other secondary battery 100 are connected. As a welding method between the bus bar B and the metal member 21, for example, laser welding, electron beam welding, resistance welding, arc welding, or the like can be applied. As a welding method between the bus bar B and the metal member 21, for example, lap welding, butt welding, fillet welding, or the like can be applied.

ここで、金属部材21は、負極の外部端子20Bに対して超音波圧接され、接触界面の全体に亘って拡散接合によって強固に接合されている。そのため、前記した特許文献1に記載された圧延クラッド材の中間部材の側端面と、負極接続端子の側端面との境界部分の溶接と比較して、金属部材21と負極の外部端子20Bとを、より広い面積で強固に接合することができる。したがって、金属部材21と負極の外部端子20Bとの間の接合強度及び電気的特性を向上させることができる。   Here, the metal member 21 is ultrasonically pressed against the negative external terminal 20B, and is firmly bonded by diffusion bonding over the entire contact interface. Therefore, the metal member 21 and the negative external terminal 20B are compared with the welding of the boundary portion between the side end surface of the intermediate member of the rolled clad material described in Patent Document 1 and the side end surface of the negative electrode connection terminal. , It can be firmly bonded in a wider area. Accordingly, the bonding strength and electrical characteristics between the metal member 21 and the negative external terminal 20B can be improved.

図6に示すように、例えば、レーザ溶接を適用し、重ね合わせ溶接によってバスバーBを金属部材21に溶接する際には、溶接金属Wの下端が負極の外部端子20Bの上面又は接合層CLに達しないようにすることが好ましい。すなわち、金属部材21の溶込み深さdが金属部材の厚さTよりも浅くなるように、溶接条件を設定することが好ましい。これにより、銅又は銅合金からなる負極の外部端子20Bの溶接時の溶融を防止し、金属部材21と負極の外部端子20Bとの間の拡散接合による接合層CLの損傷を防止することができる。したがって、金属部材21と負極の外部端子20Bとの接合強度の低下が防止され、金属部材21と負極の外部端子20Bとの間で、良好な接合強度及び電気的特性が得られる。   As shown in FIG. 6, for example, when laser welding is applied and the bus bar B is welded to the metal member 21 by lap welding, the lower end of the weld metal W is applied to the upper surface of the negative external terminal 20B or the bonding layer CL. It is preferable not to reach it. That is, it is preferable to set the welding conditions so that the penetration depth d of the metal member 21 is shallower than the thickness T of the metal member. Thereby, melting at the time of welding of the negative external terminal 20B made of copper or copper alloy can be prevented, and damage to the bonding layer CL due to diffusion bonding between the metal member 21 and the negative external terminal 20B can be prevented. . Accordingly, a decrease in bonding strength between the metal member 21 and the negative external terminal 20B is prevented, and good bonding strength and electrical characteristics can be obtained between the metal member 21 and the negative external terminal 20B.

また、金属部材21は、バスバーBが溶接されるバスバー接合面21aを有している。そのため、超音波圧接のホーンHによって金属部材21に形成された凹凸21bにバスバーBを溶接する場合と異なり、バスバーBの下面をバスバー接合面21aに密着させ、バスバーBと金属部材21との良好な溶接を行うことができる。これにより、超音波圧接によって凹凸21bが形成される金属部材21と、バスバーBとの間の接合強度及び電気的特性を向上させることができる。   The metal member 21 has a bus bar joint surface 21a to which the bus bar B is welded. Therefore, unlike the case where the bus bar B is welded to the unevenness 21b formed on the metal member 21 by the ultrasonic welding horn H, the lower surface of the bus bar B is brought into close contact with the bus bar joining surface 21a, and the bus bar B and the metal member 21 are good. Welding can be performed. Thereby, the joining strength and the electrical property between the metal member 21 in which the unevenness 21b is formed by the ultrasonic pressure welding and the bus bar B can be improved.

また、金属部材21は、一方の外部端子20Aの材料と同種の材料からなっている。そのため、金属部材21の材料として、一方の外部端子20Aの材料との溶接性に優れた異種の材料、例えば、ニッケル又はニッケル合金を用いる場合と比較して、一方の外部端子20Aの材料に対する金属部材21の溶接性をさらに向上させることができる。したがって、一方の外部端子20Aの材料と同種の金属からなるバスバーBに対する金属部材21の溶接性をさらに向上させ、金属部材21とバスバーBとの間の接合強度及び電気的特性をさらに向上させることができる。   The metal member 21 is made of the same material as that of the one external terminal 20A. Therefore, as a material of the metal member 21, compared to a case of using a different kind of material excellent in weldability with the material of the one external terminal 20A, for example, nickel or a nickel alloy, the metal for the material of the one external terminal 20A The weldability of the member 21 can be further improved. Therefore, the weldability of the metal member 21 to the bus bar B made of the same kind of metal as the material of the one external terminal 20A is further improved, and the bonding strength and electrical characteristics between the metal member 21 and the bus bar B are further improved. Can do.

また、本実施形態において、一方の外部端子20Aの材料は、アルミニウム又はアルミニウム合金であり、金属部材21が超音波圧接される他方の外部端子20Bの材料は、銅又は銅合金である。したがって、一方の外部端子20Aの材料と同種のアルミニウム又はアルミニウム合金からなるバスバーBと、銅又は銅合金からなる他方の外部端子20Bとの溶接を回避し、バスバーBと同種のアルミニウム又はアルミニウム合金からなる金属部材21に対してバスバーBを溶接することができる。よって、金属部材21とバスバーBとの間で、容易かつ良好に溶接を行うことができ、接合強度及び電気的特性を向上させることができる。   In the present embodiment, the material of one external terminal 20A is aluminum or an aluminum alloy, and the material of the other external terminal 20B to which the metal member 21 is ultrasonically welded is copper or a copper alloy. Therefore, welding between the bus bar B made of the same kind of aluminum or aluminum alloy as the material of the one external terminal 20A and the other external terminal 20B made of copper or copper alloy is avoided, and the same kind of aluminum or aluminum alloy as the bus bar B is used. The bus bar B can be welded to the metal member 21 to be formed. Therefore, welding can be easily and satisfactorily performed between the metal member 21 and the bus bar B, and the bonding strength and electrical characteristics can be improved.

また、金属部材21のバスバー接合面21aの算術平均粗さRaは、6.3μm以下とされている。これにより、バスバー接合面21aとバスバーBとをより確実に密着させ、バスバー接合面21aとバスバーBとの間の溶接の信頼性を向上させることができる。なお、バスバー接合面21aの算術平均粗さRaが、例えば3.5μm以下であれば、より溶接の信頼性を向上させることができ、例えば1.0μm以下であれば、さらに溶接の信頼性を向上させることができる。また、バスバー接合面21aに対向するバスバーBの下面の表面粗さは、バスバー接合面21aと同等であることが好ましい。   Further, the arithmetic average roughness Ra of the bus bar joint surface 21a of the metal member 21 is set to 6.3 μm or less. As a result, the bus bar joint surface 21a and the bus bar B can be more closely adhered to each other, and the reliability of welding between the bus bar joint surface 21a and the bus bar B can be improved. In addition, if the arithmetic average roughness Ra of the bus bar joint surface 21a is, for example, 3.5 μm or less, the reliability of welding can be further improved. For example, if the arithmetic average roughness Ra is 1.0 μm or less, the reliability of welding is further improved. Can be improved. Moreover, it is preferable that the surface roughness of the lower surface of the bus bar B facing the bus bar bonding surface 21a is equal to that of the bus bar bonding surface 21a.

以上説明したように、本実施形態によれば、異なる材料からなる正極及び負極の外部端子20A,20Bを備え、バスバーBによって直列に接続される二次電池100において、バスバーBの溶接を容易にしつつ、バスバーBが接合される金属部材21と外部端子20Bとの間の接合強度及び電気的特性を従来よりも向上させることができる。   As described above, according to this embodiment, in the secondary battery 100 including the positive and negative external terminals 20A and 20B made of different materials and connected in series by the bus bar B, the bus bar B can be easily welded. On the other hand, the bonding strength and electrical characteristics between the metal member 21 to which the bus bar B is bonded and the external terminal 20B can be improved as compared with the conventional case.

(実施形態2)
以下、本発明の二次電池の実施形態2について、図1から図4Cまでを援用し、図7A及び図7Bを用いて説明する。
(Embodiment 2)
Hereinafter, Embodiment 2 of the secondary battery of the present invention will be described with reference to FIGS. 7A and 7B with reference to FIGS. 1 to 4C.

図7Aは、本実施形態の二次電池の負極の外部端子20B、金属部材21Aを示す拡大断面図である。図7Bは、図7Aに示す金属部材21AにバスバーB1を溶接した状態を示す拡大断面図である。   FIG. 7A is an enlarged cross-sectional view showing a negative electrode external terminal 20B and a metal member 21A of the secondary battery of the present embodiment. FIG. 7B is an enlarged cross-sectional view showing a state where the bus bar B1 is welded to the metal member 21A shown in FIG. 7A.

本実施形態の二次電池は、金属部材21Aの上面の一部にバスバー接合面21aが形成されている点で、前述の実施形態1で説明した二次電池100と異なっている。本実施形態の二次電池のその他の点は、実施形態1の二次電池100と同一であるので、同一の部分には、同一の符号を付して、説明は省略する。   The secondary battery of the present embodiment is different from the secondary battery 100 described in the first embodiment in that a bus bar joining surface 21a is formed on a part of the upper surface of the metal member 21A. Since the other points of the secondary battery of the present embodiment are the same as those of the secondary battery 100 of the first embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、図4Cに示すように、金属部材21Aを負極の外部端子20Bに超音波圧接によって接合した後、凹凸21bが形成された金属部材21Aの上面の一部に、前記した表面粗さを低減する表面加工処理を施す。これにより、図7Aに示すように、金属部材21Aの上面の一部に、バスバー接合面21aが形成されている。すなわち、本実施形態において、バスバー接合面21aは、超音波圧接によって凹凸が形成された金属部材21Aの表面の一部に形成された平滑面である。バスバー接合面21aは、例えば、金属部材21Aの上面の中央部に形成することができる。   In this embodiment, as shown in FIG. 4C, after the metal member 21A is joined to the negative external terminal 20B by ultrasonic pressure welding, the surface roughness described above is formed on a part of the upper surface of the metal member 21A on which the unevenness 21b is formed. Surface treatment is performed to reduce the thickness. Accordingly, as shown in FIG. 7A, a bus bar joining surface 21a is formed on a part of the upper surface of the metal member 21A. That is, in the present embodiment, the bus bar joint surface 21a is a smooth surface formed on a part of the surface of the metal member 21A on which irregularities are formed by ultrasonic pressure welding. The bus bar joint surface 21a can be formed, for example, at the center of the upper surface of the metal member 21A.

このように、凹凸21bが形成された金属部材21Aの上面の一部に、バスバー接合面21aを形成する場合には、金属部材21Aの上面に対向するバスバーB1の下面に、金属部材21Aの上面に向けて突出する凸部Baを設ける。凸部Baは、金属部材21のバスバー接合面21aの形成位置に対応する位置、例えば、バスバーB1の端部の幅方向中央部に設けられる。凸部Baの下面は、バスバーBを金属部材21Aに溶接する際に、バスバー接合面21aに接合される溶接面である。ここで、バスバーB1の下面からの凸部Ba下面までの高さh1、すなわち凸部Baの突出量は、金属部材21のバスバー接合面21aから凹凸21bの凸部の頂点までの最大高さh2よりも大きくする。   As described above, when the bus bar joining surface 21a is formed on a part of the upper surface of the metal member 21A on which the unevenness 21b is formed, the upper surface of the metal member 21A is disposed on the lower surface of the bus bar B1 facing the upper surface of the metal member 21A. Convex part Ba which protrudes toward is provided. The convex portion Ba is provided at a position corresponding to the formation position of the bus bar joint surface 21a of the metal member 21, for example, at the center in the width direction of the end portion of the bus bar B1. The lower surface of the convex portion Ba is a welding surface joined to the bus bar joining surface 21a when the bus bar B is welded to the metal member 21A. Here, the height h1 from the lower surface of the bus bar B1 to the lower surface of the convex portion Ba, that is, the protruding amount of the convex portion Ba is the maximum height h2 from the bus bar joint surface 21a of the metal member 21 to the apex of the convex portion of the concave and convex portion 21b. Larger than.

これにより、図7Bに示すように、金属部材21Aのバスバー接合面21aに、バスバーB1の凸部Baを接触させて、バスバーB1を金属部材21Aに溶接するときに、金属部材21Aの上面の凹凸21bがバスバーB1の下面に干渉することを確実に回避することができる。したがって、金属部材21Aの上面に形成するバスバー接合面21aの範囲を最小限にしつつ、バスバーB1を金属部材21Aに良好に溶接することができる。よって、本実施形態の二次電池によれば、前述の実施形態1の二次電池100と同様の効果が得られるだけでなく、バスバー接合面21aの形成を容易にして生産性を向上させることができる。   7B, when the bus bar B1 is welded to the metal member 21A by bringing the convex portion Ba of the bus bar B1 into contact with the bus bar joint surface 21a of the metal member 21A, unevenness on the upper surface of the metal member 21A is achieved. It can be reliably avoided that 21b interferes with the lower surface of the bus bar B1. Therefore, it is possible to satisfactorily weld the bus bar B1 to the metal member 21A while minimizing the range of the bus bar joint surface 21a formed on the upper surface of the metal member 21A. Therefore, according to the secondary battery of the present embodiment, not only the same effect as the secondary battery 100 of the first embodiment described above can be obtained, but also the formation of the bus bar joint surface 21a can be facilitated to improve the productivity. Can do.

(実施形態3)
以下、本発明の二次電池の実施形態3について、図1から図6までを援用し、図8を用いて説明する。図8は、本実施形態の二次電池100Aを示す斜視図である。
(Embodiment 3)
Hereinafter, Embodiment 3 of the secondary battery of the present invention will be described with reference to FIGS. FIG. 8 is a perspective view showing the secondary battery 100A of the present embodiment.

本実施形態の二次電池100Aは、金属部材21Bが、正極及び負極の外部端子20A,20Bのうち、一方の負極の外部端子20Bの材料に対する溶接性に優れた材料からなり、他方の正極の外部端子20Aに超音波圧接されている点で、前述の実施形態1の二次電池100と異なっている。また、バスバーB2は、一方の負極の外部端子20Bの材料に対する溶接性に優れた材料からなっている。本実施形態の二次電池100Aのその他の点は、前述の実施形態1の二次電池100と同一であるので、同一の部分には同一の符号を付して、説明は省略する。   In the secondary battery 100A of the present embodiment, the metal member 21B is made of a material excellent in weldability with respect to the material of the external terminal 20B of one negative electrode among the external terminals 20A and 20B of the positive electrode and the negative electrode. The secondary battery 100 is different from the secondary battery 100 of the first embodiment in that it is ultrasonically pressed to the external terminal 20A. The bus bar B2 is made of a material excellent in weldability to the material of the external terminal 20B of one negative electrode. Since the other points of the secondary battery 100A of the present embodiment are the same as those of the secondary battery 100 of the first embodiment described above, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の二次電池100Aは、一方の負極の外部端子20Bの材料が、銅又は銅合金であり、他方の正極の外部端子20Aの材料が、アルミニウム又はアルミニウム合金である。そして、金属部材21B及びバスバーB2は、一方の負極の外部端子20Bの材料と同種の銅又は銅合金からなっている。   In the secondary battery 100A of the present embodiment, the material of one negative external terminal 20B is copper or a copper alloy, and the other positive electrode external terminal 20A is aluminum or an aluminum alloy. The metal member 21B and the bus bar B2 are made of the same kind of copper or copper alloy as the material of the external terminal 20B of one negative electrode.

これにより、複数の二次電池100Aを直列に接続して組電池を構成する際に、バスバーB2の一端を、一方の二次電池100Aの負極の外部端子20Bに溶接し、バスバーB2の他端を、他方の二次電池100Aの金属部材21Bに溶接することで、バスバーB2の両端を、バスバーB2の材料との溶接性に優れた材料に対して溶接することができる。   Thus, when a plurality of secondary batteries 100A are connected in series to form an assembled battery, one end of the bus bar B2 is welded to the external terminal 20B of the negative electrode of the one secondary battery 100A, and the other end of the bus bar B2 Are welded to the metal member 21B of the other secondary battery 100A, so that both ends of the bus bar B2 can be welded to a material excellent in weldability with the material of the bus bar B2.

また、前述の実施形態1の二次電池100と同様に、積層方向に隣接する一方の二次電池100Aの負極の外部端子20BにバスバーB2の一端を溶接し、他方の二次電池100Aの金属部材21BにバスバーB2を溶接することで、バスバーB2が金属部材21Bを介して他方の二次電池100Aの正極の外部端子20Aに接続される。そして、バスバーB2及び金属部材21Bを介して、一方の二次電池100Aの負極の外部端子20Bと、他方の二次電池100Aの正極の外部端子20Aとが接続される。   Similarly to the secondary battery 100 of Embodiment 1 described above, one end of the bus bar B2 is welded to the negative external terminal 20B of one secondary battery 100A adjacent in the stacking direction, and the metal of the other secondary battery 100A is welded. By welding the bus bar B2 to the member 21B, the bus bar B2 is connected to the positive external terminal 20A of the other secondary battery 100A through the metal member 21B. Then, the negative external terminal 20B of one secondary battery 100A and the positive external terminal 20A of the other secondary battery 100A are connected via the bus bar B2 and the metal member 21B.

また、前述の実施形態1の二次電池100と同様に、金属部材21Bは、正極の外部端子20Aに対して超音波圧接され、接触界面の全体に亘って拡散接合によって強固に接合されている。また、前述の実施形態1の二次電池100と同様に、金属部材21Bは、バスバー接合面21aを有している。   Similarly to the secondary battery 100 of the first embodiment, the metal member 21B is ultrasonically pressed against the external terminal 20A of the positive electrode and is firmly bonded by diffusion bonding over the entire contact interface. . Similarly to the secondary battery 100 of the first embodiment, the metal member 21B has a bus bar joint surface 21a.

したがって、本実施形態の二次電池100Aによれば、前述の実施形態1の二次電池100と同様に、異なる材料からなる正極及び負極の外部端子20A,20Bを備え、バスバーB2によって直列に接続される二次電池100Aにおいて、バスバーB2の溶接を容易にしつつ、バスバーB2が接合される金属部材21Bと外部端子20Aとの間の接合強度及び電気的特性を従来よりも向上させることができる。また、銅又は銅合金製のバスバーを用いることで、複数の二次電池100A間の電気抵抗をより低減することができる。   Therefore, according to the secondary battery 100A of the present embodiment, like the secondary battery 100 of the first embodiment, the positive and negative external terminals 20A and 20B made of different materials are provided and connected in series by the bus bar B2. In the secondary battery 100A, the welding strength and electrical characteristics between the metal member 21B to which the bus bar B2 is joined and the external terminal 20A can be improved as compared with the related art while facilitating the welding of the bus bar B2. In addition, by using a copper or copper alloy bus bar, the electrical resistance between the plurality of secondary batteries 100A can be further reduced.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

例えば、金属部材の材料は、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金に限定されず、正極及び負極の外部端子の材料に合わせて適宜変更することができる。また、バスバーの材料も、同様に、アルミニウム、アルミニウム合金、銅、銅合金、に限定されず、正極及び負極の外部端子の材料および金属部材の材料に合わせて適宜変更することができる。   For example, the material of the metal member is not limited to aluminum, an aluminum alloy, copper, a copper alloy, nickel, or a nickel alloy, and can be appropriately changed according to the materials of the external terminals of the positive electrode and the negative electrode. Similarly, the material of the bus bar is not limited to aluminum, an aluminum alloy, copper, or a copper alloy, and can be appropriately changed according to the material of the external terminal of the positive electrode and the negative electrode and the material of the metal member.

20A 正極の外部端子、20B 負極の外部端子、21 金属部材、21a バスバー接合面、21b 凹凸、100,100A 二次電池、B,B1,B2 バスバー、 20A positive external terminal, 20B negative external terminal, 21 metal member, 21a bus bar joint surface, 21b uneven, 100, 100A secondary battery, B, B1, B2 bus bar,

Claims (6)

異なる材料からなる正極及び負極の外部端子を備え、該正極及び負極の外部端子のうち一方の外部端子と同種の材料からなるバスバーによって直列に接続される二次電池であって、
前記一方の外部端子の材料に対する溶接性に優れた材料からなり、前記正極及び負極の外部端子のうち他方の外部端子に超音波圧接されると共に、前記バスバーが溶接されるバスバー接合面を有する金属部材を備えることを特徴とする二次電池。
A secondary battery comprising positive and negative external terminals made of different materials, connected in series by a bus bar made of the same kind of material as one of the external terminals of the positive and negative electrodes,
A metal made of a material excellent in weldability to the material of the one external terminal, and having a bus bar joint surface to which the bus bar is welded while being ultrasonically pressed to the other external terminal of the positive electrode and the negative electrode A secondary battery comprising a member.
前記金属部材は、前記一方の外部端子の材料と同種の材料からなることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the metal member is made of the same material as the material of the one external terminal. 前記一方の外部端子の材料は、アルミニウム又はアルミニウム合金であり、
前記他方の外部端子の材料は、銅又は銅合金であることを特徴とする請求項2に記載の二次電池。
The material of the one external terminal is aluminum or an aluminum alloy,
The secondary battery according to claim 2, wherein the material of the other external terminal is copper or a copper alloy.
前記一方の外部端子の材料は、銅又は銅合金であり、
前記他方の外部端子の材料は、アルミニウム又はアルミニウム合金であることを特徴とする請求項2に記載の二次電池。
The material of the one external terminal is copper or a copper alloy,
The secondary battery according to claim 2, wherein the material of the other external terminal is aluminum or an aluminum alloy.
前記バスバー接合面の算術平均粗さRaは、6.3μm以下であることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the arithmetic average roughness Ra of the bus bar joint surface is 6.3 μm or less. 前記バスバー接合面は、前記超音波圧接によって凹凸が形成された前記金属部材の表面の一部に形成された平滑面であることを特徴とする請求項1から5のいずれか一項に記載の二次電池。   The said bus-bar joining surface is a smooth surface formed in a part of surface of the said metal member in which the unevenness | corrugation was formed by the said ultrasonic pressure welding, The Claim 1 characterized by the above-mentioned. Secondary battery.
JP2014140828A 2014-07-08 2014-07-08 Secondary battery Active JP6363893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014140828A JP6363893B2 (en) 2014-07-08 2014-07-08 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014140828A JP6363893B2 (en) 2014-07-08 2014-07-08 Secondary battery

Publications (2)

Publication Number Publication Date
JP2016018675A true JP2016018675A (en) 2016-02-01
JP6363893B2 JP6363893B2 (en) 2018-07-25

Family

ID=55233761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014140828A Active JP6363893B2 (en) 2014-07-08 2014-07-08 Secondary battery

Country Status (1)

Country Link
JP (1) JP6363893B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142926A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Battery module and method for manufacturing same
JP2019133857A (en) * 2018-01-31 2019-08-08 日東精工株式会社 Manufacturing method of external terminal for battery
WO2021225035A1 (en) * 2020-05-08 2021-11-11 株式会社Gsユアサ Electricity storage device and method for manufacturing electricity storage device
JP2022007367A (en) * 2020-06-26 2022-01-13 プライムアースEvエナジー株式会社 Manufacturing method of lithium ion secondary cell, lithium ion secondary cell, and battery pack of lithium ion secondary cells
CN114204219A (en) * 2020-09-17 2022-03-18 泰星能源解决方案有限公司 Secondary battery, terminal for secondary battery, and method for manufacturing terminal for secondary battery
CN114204185A (en) * 2020-09-17 2022-03-18 泰星能源解决方案有限公司 Terminal for secondary battery and method for manufacturing terminal for secondary battery
EP3972043A1 (en) 2020-09-17 2022-03-23 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
CN114765297A (en) * 2021-01-13 2022-07-19 泰星能源解决方案有限公司 Terminal member and secondary battery
EP4033596A1 (en) 2021-01-21 2022-07-27 Prime Planet Energy & Solutions, Inc. Terminal component, secondary battery, and battery pack
EP4040592A1 (en) 2021-02-08 2022-08-10 Prime Planet Energy & Solutions, Inc. Terminal component, secondary battery and battery pack provided therewith, and method for manufacturing terminal component
EP4057439A1 (en) 2021-03-11 2022-09-14 Prime Planet Energy & Solutions, Inc. Terminal component and electricity storage device
JP2023024044A (en) * 2021-08-06 2023-02-16 プライムプラネットエナジー&ソリューションズ株式会社 Terminal component and secondary battery and battery pack including the same
US11710880B2 (en) 2020-09-17 2023-07-25 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
WO2024014263A1 (en) * 2022-07-14 2024-01-18 住友電装株式会社 Ultrasonically joined body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134233A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Battery terminal structure
JP2011124024A (en) * 2009-12-08 2011-06-23 Hitachi Vehicle Energy Ltd Battery pack and electric cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134233A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Battery terminal structure
JP2011124024A (en) * 2009-12-08 2011-06-23 Hitachi Vehicle Energy Ltd Battery pack and electric cell

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226247A (en) * 2017-01-31 2019-09-10 松下知识产权经营株式会社 Battery module and its manufacturing method
JPWO2018142926A1 (en) * 2017-01-31 2019-11-14 パナソニックIpマネジメント株式会社 Battery module and manufacturing method thereof
WO2018142926A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Battery module and method for manufacturing same
JP7081929B2 (en) 2018-01-31 2022-06-07 日東精工株式会社 Manufacturing method of external terminal for battery
JP2019133857A (en) * 2018-01-31 2019-08-08 日東精工株式会社 Manufacturing method of external terminal for battery
WO2021225035A1 (en) * 2020-05-08 2021-11-11 株式会社Gsユアサ Electricity storage device and method for manufacturing electricity storage device
JP2022007367A (en) * 2020-06-26 2022-01-13 プライムアースEvエナジー株式会社 Manufacturing method of lithium ion secondary cell, lithium ion secondary cell, and battery pack of lithium ion secondary cells
JP7343449B2 (en) 2020-06-26 2023-09-12 プライムアースEvエナジー株式会社 Lithium ion secondary battery manufacturing method, lithium ion secondary battery, assembled battery of lithium ion secondary battery
KR20220037366A (en) 2020-09-17 2022-03-24 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Terminal for secondary battery and secondary battery provided with the terminal
EP3972043A1 (en) 2020-09-17 2022-03-23 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
KR20220037371A (en) 2020-09-17 2022-03-24 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Secondary battery and terminal for secondary battery and manufacturing method thereof
JP2022049728A (en) * 2020-09-17 2022-03-30 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery, secondary battery terminal, and method of manufacturing secondary battery terminal
EP3972044A1 (en) 2020-09-17 2022-03-23 Prime Planet Energy & Solutions, Inc. Secondary battery and terminal for secondary battery and manufacturing method thereof
CN114204185A (en) * 2020-09-17 2022-03-18 泰星能源解决方案有限公司 Terminal for secondary battery and method for manufacturing terminal for secondary battery
CN114204219A (en) * 2020-09-17 2022-03-18 泰星能源解决方案有限公司 Secondary battery, terminal for secondary battery, and method for manufacturing terminal for secondary battery
US11710880B2 (en) 2020-09-17 2023-07-25 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
JP7304329B2 (en) 2020-09-17 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY AND SECONDARY BATTERY TERMINAL AND METHOD OF MANUFACTURING SAME
JP7304371B2 (en) 2021-01-13 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Terminal parts and secondary batteries
CN114765297A (en) * 2021-01-13 2022-07-19 泰星能源解决方案有限公司 Terminal member and secondary battery
JP2022108665A (en) * 2021-01-13 2022-07-26 プライムプラネットエナジー&ソリューションズ株式会社 Terminal component and secondary battery
US11942663B2 (en) 2021-01-13 2024-03-26 Prime Planet Energy & Solutions, Inc. Terminal component and secondary battery
EP4033596A1 (en) 2021-01-21 2022-07-27 Prime Planet Energy & Solutions, Inc. Terminal component, secondary battery, and battery pack
CN114824683A (en) * 2021-01-21 2022-07-29 泰星能源解决方案有限公司 Terminal member, secondary battery, and battery pack
KR20220106060A (en) 2021-01-21 2022-07-28 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Terminal component, secondary battery, and battery pack
CN114824683B (en) * 2021-01-21 2024-04-16 泰星能源解决方案有限公司 Terminal member, secondary battery, and battery pack
KR20220114486A (en) 2021-02-08 2022-08-17 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Terminal component, secondary battery and battery pack provided therewith, and method for manufacturing terminal component
EP4040592A1 (en) 2021-02-08 2022-08-10 Prime Planet Energy & Solutions, Inc. Terminal component, secondary battery and battery pack provided therewith, and method for manufacturing terminal component
KR20220127753A (en) 2021-03-11 2022-09-20 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Terminal component and electricity storage device
JP2022139371A (en) * 2021-03-11 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Terminal component and electricity storage device
EP4057439A1 (en) 2021-03-11 2022-09-14 Prime Planet Energy & Solutions, Inc. Terminal component and electricity storage device
JP7328270B2 (en) 2021-03-11 2023-08-16 プライムプラネットエナジー&ソリューションズ株式会社 Terminal parts and power storage devices
JP2023024044A (en) * 2021-08-06 2023-02-16 プライムプラネットエナジー&ソリューションズ株式会社 Terminal component and secondary battery and battery pack including the same
JP7426356B2 (en) 2021-08-06 2024-02-01 プライムプラネットエナジー&ソリューションズ株式会社 Terminal parts and secondary batteries and assembled batteries equipped with the terminal parts
WO2024014263A1 (en) * 2022-07-14 2024-01-18 住友電装株式会社 Ultrasonically joined body

Also Published As

Publication number Publication date
JP6363893B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6363893B2 (en) Secondary battery
JP6214758B2 (en) Prismatic secondary battery
KR101675623B1 (en) Secondary Battery and Manufacturing Method Thereof
US10026933B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP6328271B2 (en) Prismatic secondary battery
JP6446239B2 (en) Secondary battery
JP6423250B2 (en) Secondary battery
JPWO2018159197A1 (en) Secondary battery
JP2018125110A (en) Secondary battery
JP2012004079A (en) Secondary battery
JP6186449B2 (en) Assembled battery
JP6868704B2 (en) Secondary battery
JP6207950B2 (en) Square secondary battery and battery pack
JP2013222517A (en) Square secondary battery
JP6562726B2 (en) Rectangular secondary battery and manufacturing method thereof
JP6752691B2 (en) Rechargeable battery
JP2016110787A (en) Square secondary battery
JP6235422B2 (en) Secondary battery
JP2016143618A (en) Rectangular secondary battery
JP2017134957A (en) Square secondary battery
JP2015204236A (en) Secondary battery and battery module
JP2020035641A (en) Secondary battery
JP6978500B2 (en) Secondary battery
JP6360305B2 (en) Prismatic secondary battery
JP6892338B2 (en) Power storage device and manufacturing method of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R150 Certificate of patent or registration of utility model

Ref document number: 6363893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250