JP5548839B2 - Preventive or therapeutic agent for hearing loss or tinnitus - Google Patents

Preventive or therapeutic agent for hearing loss or tinnitus Download PDF

Info

Publication number
JP5548839B2
JP5548839B2 JP2009185334A JP2009185334A JP5548839B2 JP 5548839 B2 JP5548839 B2 JP 5548839B2 JP 2009185334 A JP2009185334 A JP 2009185334A JP 2009185334 A JP2009185334 A JP 2009185334A JP 5548839 B2 JP5548839 B2 JP 5548839B2
Authority
JP
Japan
Prior art keywords
extract
hearing loss
noise
khz
butylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009185334A
Other languages
Japanese (ja)
Other versions
JP2011037738A (en
Inventor
昌志 加藤
信孝 大神
みちる 伊田
暢彦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2009185334A priority Critical patent/JP5548839B2/en
Publication of JP2011037738A publication Critical patent/JP2011037738A/en
Application granted granted Critical
Publication of JP5548839B2 publication Critical patent/JP5548839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は難聴及び耳鳴りの治予・防療に有効な手段に関する。詳しくは、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療剤及びその用途に関する。また、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療に有効な物質のスクリーニング方法に関する。   The present invention relates to an effective means for the treatment and prevention of hearing loss and tinnitus. More specifically, the present invention relates to a preventive / therapeutic agent for age-related hearing loss or noise-induced hearing loss or tinnitus and its use. The present invention also relates to a screening method for a substance effective for the prevention / treatment of age-related hearing loss, noise-induced hearing loss, or tinnitus.

工場などでの騒音、あるいは最近ではポータブルミュージックプレイヤーなどの普及に伴い、若者のみならず幅広い年齢層で大音量の環境に曝露される機会が増えている。このような環境ストレスは、騒音性・加齢性難聴の発症を促進することが指摘されており産業労働衛生上の観点からも大変な問題となっている。聴力の低下は、深刻なコミュニケーション能力の低下につながる可能性があり、超高齢化社会を迎えつつある昨今、その脅威(即ち騒音)から身を守ることは大変重要である。加齢性難聴、騒音性難聴ともに感音性難聴であり、内耳の有毛細胞の脱落およびそれに基づく神経線維の変性、らせん神経節細胞の脱落等により生じる。よって治療は大変困難であり、現在新しい治療法の開発が急がれている。さらに、加齢性難聴、騒音性難聴といった感音性難聴は、耳鳴の主たる原因となっている。ゆえに、加齢性難聴や騒音性難聴を予防・治療することができれば、耳鳴も予防・治療できると考えられる。   With the spread of noise in factories and recently, portable music players, etc., there are increasing opportunities to be exposed to loud environments not only for young people but also for a wide range of ages. Such environmental stress has been pointed out to promote the onset of noise and age-related hearing loss, and is a serious problem from the viewpoint of industrial occupational health. A decrease in hearing ability may lead to a serious decrease in communication ability, and it is very important to protect yourself from the threat (ie, noise) in the current aging society. Both age-related hearing loss and noise-induced hearing loss are sensorineural hearing loss, and are caused by loss of hair cells in the inner ear, degeneration of nerve fibers based on the loss, and loss of spiral ganglion cells. Therefore, treatment is very difficult, and development of a new treatment method is urgently required. Furthermore, sensorineural hearing loss such as age-related hearing loss and noise-related hearing loss is a major cause of tinnitus. Therefore, if it is possible to prevent and treat age-related deafness and noise-induced hearing loss, tinnitus can be prevented and treated.

Puffenberger EG et al., cell 79(7):1257-1266 (1994)Puffenberger EG et al., Cell 79 (7): 1257-1266 (1994) Matsushima Y et al., Mamm Genome 13(1):30-35 (2002)Matsushima Y et al., Mamm Genome 13 (1): 30-35 (2002) Gariepy CE et al., J Clin Invest 102(6):1092-1101 (1998)Gariepy CE et al., J Clin Invest 102 (6): 1092-1101 (1998) Kapur RP et al., Neuron 7(5):717-727 (1991)Kapur RP et al., Neuron 7 (5): 717-727 (1991) Trigueiros-Cunha N et al., Eur J Neurosci 18(9):2653-2662 (2003)Trigueiros-Cunha N et al., Eur J Neurosci 18 (9): 2653-2662 (2003) Legan PK et al., Neuron 28(1):273-285 (2000)Legan PK et al., Neuron 28 (1): 273-285 (2000) Vazquez AE et al., Hear Res 194(1-2):87-96 (2004)Vazquez AE et al., Hear Res 194 (1-2): 87-96 (2004)

以上の背景の下、本発明の課題は、加齢性難聴や騒音性難聴、或いは耳鳴りの予防・治療に有効な手段を提供することにある。   In view of the above background, an object of the present invention is to provide an effective means for preventing / treating age-related hearing loss, noise-induced hearing loss, or tinnitus.

上記課題を解決すべく本発明者らは、エンドセリンレセプターB(Ednrb)に着目した。Ednrbは、Gタンパク質受容体の一つであり、腸管神経節や色素細胞に発現している。内耳には色素細胞である中間細胞が存在しており、内リンパ液の高K+濃度を維持して、有毛細胞にK+が取り込まれて蝸牛マイクロフォン電位を増幅し、聴力を発揮するのに重要な役割を担っている。Ednrbノックアウトマウスは中間細胞を欠損しており、巨大結腸症と難聴を発症するWaardenberg-Shar症候群のモデルとして知られている。自然発症によるEdnrbの変異マウスであるpiebald-lethalのホモ個体は、白斑、巨大結腸症を呈し、神経堤に由来する腸管神経節細胞の欠損により一ヶ月ほどで死亡する(非特許文献1)。また、同様にEdnrbの変異マウスであるWS4マウスは、先天性難聴を発症することが報告されている(非特許文献2)。しかし、神経系におけるEdnrbの過剰発現が聴力に与える影響については全く報告がない。本発明者らは、聴力の制御にEdnrbが関与しているのではないかと考え、種々の検討を行うことにした。まず、ドーパミンβヒドロキシラーゼプロモーター下でEdnrbを強制発現するDbh/Ednrbトランスジェニックマウス(Ednrb-Tgについては非特許文献3を参照)を用いた試験系を構築した。ドーパミンβヒドロキシラーゼは、神経伝達物質であるドーパミンをノルアドレナリンに変換する酵素である。ノルアドレナリンはノルアドレナリン作動性ニューロンから放出されるシナプス伝達物質であることから、ドーパミンβヒドロキシダーゼは神経内分泌系細胞と同様に、ノルアドレナリン/アドレナリン作動性ニューロンのシナプス小胞に存在し、特異的なマーカーとして知られている。ヒトDbHプロモーター(5.8 kb)の下流にnlacZを繋いだマウスDbH-nlacZは神経提にlacZを発現し、その後、腸管神経系で持続的な発現が見られる(非特許文献4)。さらに、内在性DbHは末梢神経、内耳では、蓋膜に発現している(非特許文献5)。 In order to solve the above problems, the present inventors have focused on endothelin receptor B (Ednrb). Ednrb is one of the G protein receptors and is expressed in intestinal ganglia and pigment cells. The inner ear has pigment cells, which are intermediate cells that maintain the high K + concentration of the inner lymph fluid, and K + is taken up by hair cells to amplify the cochlear microphone potential and exert hearing. It plays an important role. Ednrb knockout mice lack intermediate cells and are known as models of Waardenberg-Shar syndrome that develop megacolon and hearing loss. A homozygous individual of piebald-lethal which is a mutant mouse of Ednrb due to spontaneous onset presents vitiligo and megacolon, and dies in about one month due to a deficiency of intestinal ganglion cells derived from the neural crest (Non-patent Document 1). Similarly, it has been reported that WS4 mouse, which is a mutant mouse of Ednrb, develops congenital hearing loss (Non-patent Document 2). However, there is no report on the effect of overexpression of Ednrb in the nervous system on hearing. The present inventors thought that Ednrb might be involved in hearing control and decided to conduct various studies. First, a test system using a Dbh / Ednrb transgenic mouse (see Non-Patent Document 3 for Ednrb-Tg) forcibly expressing Ednrb under the dopamine β hydroxylase promoter was constructed. Dopamine β hydroxylase is an enzyme that converts dopamine, a neurotransmitter, into noradrenaline. Since noradrenaline is a synaptic transmitter released from noradrenergic neurons, dopamine β-hydroxydase is present in synaptic vesicles of noradrenergic / adrenergic neurons, as a specific marker, as well as neuroendocrine cells. Are known. Mouse DbH-nlacZ, in which nlacZ is linked downstream of the human DbH promoter (5.8 kb), expresses lacZ in the nerve probe, and thereafter, sustained expression is observed in the enteric nervous system (Non-patent Document 4). Furthermore, endogenous DbH is expressed in the cap membrane in the peripheral nerve and inner ear (Non-patent Document 5).

検討の結果、Dbh/Ednrb-Tgマウスでは内耳の蓋膜においてEdnrbの発現を認めるとともに、当該マウスが騒音性難聴に抵抗性を示した。蓋膜は聴力に重要な役割を果たしており、蓋膜に特異的に発現するα-tectorinをノックアウトしたマウスは蓋膜が消失し、聴力が低下する(非特許文献6)。この結果は、内耳の蓋膜におけるEdnrbの高発現が騒音性難聴の予防に有効であることを示唆する。一方で本発明者らは、独自のスクリーニング系を構築し、Ednrbの発現を上昇させる物質を細胞レベルでスクリーニングした。スクリーニングの結果、62種類のエキスと265種類の化合物を同定した。続いて、その中の一つであるルテオリン(Lutelion)を例として、難聴に対する効果を検討することにした。その際、野生型マウスを用いた新規な評価システムを用いた。マウスを用いた騒音性難聴の実験は永久的難聴を引き起こすものが多く、日常生活でさらされる騒音レベルで引き起こされる一過性難聴のモデルは非常に少ない。また、既報の一過性難聴モデルでは、回復までの時間が短すぎて(非特許文献7)測定のタイミングが難しい。そこで、野生型マウスC57BL/6を用いて、70-100dB、5-60分間の騒音を与えて、翌日に聴力が回復することを確認し、一過性騒音性難聴を誘導できる評価システムとした。当該評価システムによる検討の結果、ルテオリンを投与したマウスは騒音耐性を示した。即ち、ルテオリンに騒音性難聴に対する予防効果を認めた。また、ルテオリンを投与したマウスでは、Dbh/Ednrb-Tgマウスと同様に、内耳の蓋膜におけるEdnrbの発現が見られた。更に検討を進めた結果、ルテオリンは騒音性難聴のみならず加齢性難聴に対しても有効であることが判明した。   As a result of the examination, in Dbh / Ednrb-Tg mice, expression of Ednrb was observed in the cap of the inner ear, and the mice were resistant to noise-induced hearing loss. The cap membrane plays an important role in hearing, and in mice knocking out α-tectorin specifically expressed in the cap membrane, the cap membrane disappears and the hearing is reduced (Non-patent Document 6). This result suggests that high expression of Ednrb in the cap of the inner ear is effective in preventing noise-induced hearing loss. On the other hand, the present inventors constructed an original screening system and screened a substance that increases the expression of Ednrb at the cellular level. As a result of screening, 62 types of extracts and 265 types of compounds were identified. Next, we decided to examine the effect on hearing loss by taking Lutelion as an example. At that time, a novel evaluation system using wild-type mice was used. Much noise-induced hearing loss experiments using mice often cause permanent hearing loss, and very few models of transient hearing loss are caused by the noise level exposed in daily life. Further, in the previously reported transient hearing loss model, the time to recovery is too short (Non-Patent Document 7), and the measurement timing is difficult. Therefore, we used wild-type mouse C57BL / 6 to give 70-100 dB of noise for 5-60 minutes, and confirmed that hearing was restored the next day, and made an evaluation system capable of inducing transient noise-induced hearing loss. . As a result of the examination by the evaluation system, mice administered with luteolin showed noise tolerance. That is, luteolin was found to have a preventive effect on noise-induced hearing loss. In addition, in mice administered with luteolin, Ednrb expression was observed in the cap of the inner ear, as in Dbh / Ednrb-Tg mice. As a result of further investigation, it was found that luteolin is effective not only for noise-induced hearing loss but also for age-related hearing loss.

一方、ヒトの聴力を指標にした新規な試験法を設計しルテオリンの効果を調べたところ、ルテオリンが騒音性難聴に有効であることが実証された。また、難聴に関する評価系として当該試験法が有効であり且つその利用価値の高いことが示された。更なる検討の結果、ルテオリンに耳鳴り軽減効果も認めた。   On the other hand, when a new test method using human hearing as an index was designed and the effect of luteolin was examined, it was proved that luteolin was effective for noise-induced hearing loss. It was also shown that the test method is effective as an evaluation system for hearing loss and has high utility value. As a result of further studies, luteolin was also found to reduce tinnitus.

以上の一連の検討によって、内耳の蓋膜においてEdnrbの発現を促すことによって加齢性難聴、騒音性難聴及び耳鳴りを予防・治療できることが示唆された。換言すれば、Ednrbの発現上昇作用を示す物質が加齢性難聴、騒音性難聴及び耳鳴りの予防・治療に有効であるとの知見が得られた。また、これらの疾病ないし病態の予防・治療に有効な物質を見出すために有用な評価系を創出することに成功した。更なる検討の結果、加齢性難聴若しくは騒音性難聴又は耳鳴りの検知/予知に有用な方法及びシステムを創出することに成功した。
[1]エンドセリン受容体Bの発現を上昇させる物質を含む、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療剤。
[2]前記物質が、アボガドエキス、アマチャエキス、アルニカエキス、アセンヤクエキス、エンメイソウエキス、オウゴンエキス、オレンジエキス、海藻エキス、カッコンエキス、カミツレエキス、クララエキス、クロレラエキス、ゲンチアナエキス、コンフリーエキス、サクラエキス、サンザシエキス、セイヨウニワトコエキス、セイヨウノコギリソウエキス、ゼニアオイエキス、ダイズエキス、タイムエキス、ウーロン茶エキス、トウヒエキス、ニームエキス、オタネニンジンエキス、ヒオウギエキス、ビルベリーエキス、ビワエキス、ブドウエキス、ペパーミントエキス、ボタンピエキス、メリッサエキス、ヤグルマギクエキス、ユズエキス、ルイボスエキス、レモングラスエキス、レンゲソウエキス、ローズマリーエキス、ローマカミツレエキス、ワイルドタイムエキス、サルビアエキス、バラエキス、ラベンダーエキス、キトサンエキス、絹エキス、牛乳エキス、グルタミン酸エキス、酵母エキス、豚血液エキス、豚胎盤エキス、豚皮膚エキス、ローヤルゼリーエキス、シソの実エキス、ツキミソウエキス、ハマナスエキス、オウバクエキス、バオバブエキス、オクラエキス、キャンドルツリーエキス、ホウセンカエキス、アーモンドエキス及びライチエキスからなる群より選択されるいずれかのエキス、又は図6〜30に示す265種の化合物からなる群より選択されるいずれかの化合物である、[1]に記載の予防・治療剤。
[3]前記物質がルテオリンである、[1]に記載の予防・治療剤。
[4][1]〜[3]のいずれか一項に記載の予防剤を含有する、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療用組成物。
[5]医薬又は食品である、[4]に記載の予防・治療用組成物。
[6][1]〜[3]のいずれか一項に記載の予防・治療剤又は請求項4若しくは5に記載の予防・治療用組成物を対象に投与することを特徴とする、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療法。
[7]マウスに対して70-100dB、5-60分間の騒音負荷を与えることを特徴とする、一過性騒音性難聴モデルマウスの作製法。
[8]以下のステップ(1)〜(4)を含む、騒音性難聴又は耳鳴りの予防・治療に有効な物質のスクリーニング法:
(1)複数匹のマウスを用意し、試験群と対照群に分けるステップ;
(2)試験群に被験物質を投与するステップ;
(3)ステップ(2)後の試験群について、80〜112dB、5〜60分間の騒音負荷前後に8 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベルを決定するステップ;
(4)ステップ(3)で決定した聴力低下レベルと、被験物質を投与しないこと以外、試験群と同様の処置を施した対照群について決定した聴力低下レベルとを比較し、比較結果に基づき被験物質の有効性を判定するステップ。
[9]前記騒音負荷が82dB、10分間の騒音負荷である、[8]に記載のスクリーニング法。
[10]以下のステップ(1)〜(3)を含む、騒音性難聴又は耳鳴りの予防・治療に有効な物質のスクリーニング法:
(1)騒音負荷前後において被験者の1 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベルを決定するステップ;
(2)被験者に被験物質を投与するステップ;
(3)ステップ(2)の後、ステップ(1)での騒音負荷と同一の騒音負荷の前後において前記被験者の1 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベルを決定するステップ;
(4)ステップ(1)で決定した聴力低下レベルと、ステップ(3)で決定した聴力低下レベルとを比較し、比較結果に基づき被験物質の有効性を判定するステップ。
[11]前記騒音負荷が75〜95dB、10分間の騒音負荷の騒音負荷である、[10]に記載のスクリーニング法。
[12]8 kHz〜20 kHzの音域の音を発生可能な音発生装置と、音域制御装置と、音量制御装置と、外部出力装置とを含む、加齢性難聴若しくは騒音性難聴又は耳鳴りの検知又は予知用システム。
[13]更に、検出用電極と、検出用電極からの信号を増幅する増幅装置と、増幅された信号を解析する解析装置とを含む、[12]に記載の検知又は予知システム。
[14]8 kHz〜20 kHzの音域の音を発生可能な音発生装置と、音域制御装置と、音量制御装置と、外部出力装置とを含む、加齢性難聴若しくは騒音性難聴又は耳鳴りの検知又は予知用システムの作動方法であって、
音域制御装置と音量制御装置による制御を受けて音発生装置が8 kHz〜20 kHzの音域の音を発生する工程と、発生した音を外部出力装置が出力する工程とを含む作動方法。
[15]8 kHz〜20 kHzの音域の音を発生可能な音発生装置と、音域制御装置と、音量制御装置と、外部出力装置と、検出用電極と、検出用電極からの信号を増幅する増幅装置と、増幅された信号を解析する解析装置とを含む、加齢性難聴若しくは騒音性難聴又は耳鳴りの検知又は予知用システムの作動方法であって、
音域制御装置と音量制御装置による制御を受けて音発生装置が8 kHz〜20 kHzの音域の音を発生する工程と、発生した音を外部出力装置が出力する工程と、検出用電極が検出した脳波信号を増幅装置が増幅する工程と、増幅された脳波信号を解析装置が解析する工程とを含む作動方法。
[16]被検者の8 kHz〜20 kHzの聴力を測定することを特徴とする、加齢性難聴若しくは騒音性難聴又は耳鳴りの検知又は予知法。
The above series of studies suggested that age-related deafness, noise-induced hearing loss, and tinnitus can be prevented and treated by promoting the expression of Ednrb in the cap of the inner ear. In other words, it was found that a substance having an action of increasing the expression of Ednrb is effective in preventing / treating age-related hearing loss, noise-induced hearing loss, and tinnitus. In addition, we have succeeded in creating an evaluation system useful for finding substances effective for the prevention and treatment of these diseases and conditions. As a result of further studies, the present inventors have succeeded in creating a method and system useful for detecting / predicting age-related hearing loss or noise-induced hearing loss or tinnitus.
[1] A prophylactic / therapeutic agent for age-related hearing loss, noise-induced hearing loss, or tinnitus, comprising a substance that increases the expression of endothelin receptor B.
[2] The substance is an avocado extract, an amacha extract, an arnica extract, an Acacia catechu extract, an enamel extract, an orange extract, an orange extract, a seaweed extract, a cuckoo extract, a chamomile extract, a clara extract, a chlorella extract, a gentian extract, a comfrey Extract, cherry extract, hawthorn extract, elderberry extract, yarrow extract, mallow extract, soybean extract, thyme extract, oolong tea extract, spruce extract, neem extract, ginseng extract, holly extract, bilberry extract, loquat extract, grape extract, peppermint extract, Button pi extract, Melissa extract, cornflower extract, Yuzu extract, rooibos extract, lemongrass extract, forsythia extract, rosemary extract, Rome Mitsuru extract, wild thyme extract, salvia extract, rose extract, lavender extract, chitosan extract, silk extract, milk extract, glutamic acid extract, yeast extract, pig blood extract, pig placenta extract, pig skin extract, royal jelly extract, perilla seed extract, primrose From any one of the extracts selected from the group consisting of extract, hermanus extract, buckwheat extract, baobab extract, okra extract, candle tree extract, spinach extract, almond extract and lychee extract, or 265 compounds shown in FIGS. The prophylactic / therapeutic agent according to [1], which is any compound selected from the group consisting of:
[3] The prophylactic / therapeutic agent according to [1], wherein the substance is luteolin.
[4] A composition for preventing / treating age-related hearing loss or noise-induced hearing loss or tinnitus, comprising the preventive agent according to any one of [1] to [3].
[5] The composition for prevention / treatment according to [4], which is a medicine or food.
[6] Aging characterized by administering the prophylactic / therapeutic agent according to any one of [1] to [3] or the prophylactic / therapeutic composition according to claim 4 or 5 to a subject. Prevention / treatment of deafness or noise-induced hearing loss or tinnitus.
[7] A method for producing a transient noise-induced hearing loss model mouse, characterized by applying a noise load of 70-100 dB for 5-60 minutes to a mouse.
[8] A screening method for a substance effective for prevention / treatment of noise-induced hearing loss or tinnitus, including the following steps (1) to (4):
(1) preparing a plurality of mice and dividing them into a test group and a control group;
(2) administering a test substance to the test group;
(3) A step of measuring a hearing loss of 8 kHz to 20 kHz before and after a noise load of 80 to 112 dB for 5 to 60 minutes and determining a hearing reduction level due to the noise load for the test group after step (2);
(4) Compare the hearing loss level determined in step (3) with the hearing loss level determined for the control group treated in the same way as the test group, except that the test substance is not administered. Determining the effectiveness of the substance.
[9] The screening method according to [8], wherein the noise load is 82 dB and a noise load for 10 minutes.
[10] A screening method for a substance effective for prevention / treatment of noise-induced hearing loss or tinnitus, including the following steps (1) to (3):
(1) measuring the hearing ability of the subject between 1 kHz and 20 kHz before and after the noise load, and determining the level of hearing loss due to the noise load;
(2) administering a test substance to a subject;
(3) After step (2), measuring the hearing ability of the subject from 1 kHz to 20 kHz before and after the same noise load as the noise load in step (1), and determining a hearing reduction level due to the noise load ;
(4) A step of comparing the hearing loss level determined in step (1) with the hearing loss level determined in step (3) and determining the effectiveness of the test substance based on the comparison result.
[11] The screening method according to [10], wherein the noise load is 75 to 95 dB and a noise load of 10 minutes.
[12] Detection of age-related deafness or noise-related deafness or tinnitus, including a sound generator capable of generating sounds in the range of 8 kHz to 20 kHz, a sound range controller, a volume controller, and an external output device Or a prediction system.
[13] The detection or prediction system according to [12], further including a detection electrode, an amplification device that amplifies a signal from the detection electrode, and an analysis device that analyzes the amplified signal.
[14] Detection of age-related deafness or noise-related deafness or tinnitus, including a sound generator capable of generating sounds in the range of 8 kHz to 20 kHz, a sound range control device, a volume control device, and an external output device Or a method of operating a prediction system comprising:
An operation method comprising: a step in which a sound generation device generates a sound in a range of 8 kHz to 20 kHz under control of a sound range control device and a volume control device; and a step in which an external output device outputs the generated sound.
[15] A sound generator capable of generating sound in the range of 8 kHz to 20 kHz, a range controller, a volume controller, an external output device, a detection electrode, and a signal from the detection electrode are amplified. A method for operating a system for detecting or predicting age-related hearing loss or noise-induced hearing loss or tinnitus, comprising an amplification device and an analysis device for analyzing the amplified signal,
Under the control of the sound range control device and the sound volume control device, the sound generating device generates a sound in the range of 8 kHz to 20 kHz, the step of outputting the generated sound by the external output device, and the detection electrode detects An operation method comprising the steps of an amplifying device for amplifying an electroencephalogram signal, and an analyzing device for analyzing the amplified electroencephalogram signal.
[16] A method for detecting or predicting age-related deafness or noise-induced deafness or tinnitus, wherein the hearing ability of a subject is measured from 8 kHz to 20 kHz.

Ednrb-Tgの騒音性難聴抵抗性。(a-d) 7ヶ月齢のDbh/Ednrb-Tgマウス(c,d)と野生型マウス(a,b)の内耳におけるEdnrbの免疫組織染色。Dbh/Ednrb-Tgマウスでは、蓋膜(矢印)にEdnrbの発現が見られる(d)。(e)7ヶ月齢のDbh/Ednrb-Tgマウス(n=4)および野生型マウス(n=4)の騒音を与える前のABR閾値。4kHz, 12kHzにおいて大きな差は認められない。(f、4kHzについてはデータ示さず)。7ヶ月齢のDbh/Ednrb-Tgマウスおよび野生型マウスに、82dB、10分間騒音を与えて一過性難聴を誘導した。騒音暴露前後のABR閾値変化を示した。4kHz, 12kHzにおいて、Dbh/Ednrb-Tgマウスは野生型(WT)と比較して騒音前後の閾値変化が小さい。(4kHzについてはデータ示さず。Mann-Whitney U test, p<0.01)Ednrb-Tg noise resistance deafness. (a-d) Immunohistochemical staining of Ednrb in the inner ear of 7 month old Dbh / Ednrb-Tg mice (c, d) and wild type mice (a, b). In Dbh / Ednrb-Tg mice, expression of Ednrb is observed in the cap membrane (arrow) (d). (E) ABR threshold before noise of 7 month old Dbh / Ednrb-Tg mice (n = 4) and wild type mice (n = 4). There is no significant difference between 4kHz and 12kHz. (Data not shown for f and 4 kHz). 7-month-old Dbh / Ednrb-Tg mice and wild-type mice were subjected to transient deafness by giving a noise of 82 dB for 10 minutes. ABR threshold change before and after noise exposure was shown. At 4 kHz and 12 kHz, Dbh / Ednrb-Tg mice have a small threshold change before and after noise compared to wild type (WT). (Data not shown for 4 kHz. Mann-Whitney U test, p <0.01) ルテオリン(luteolin)による騒音性難聴抵抗性。(a-d)5ヶ月齢のルテオリン投与群(a,b)およびコントロール群(c,d)の内耳におけるEdnrbの免疫組織染色。ルテオリン投与群では、蓋膜(矢印)にEdnrbの発現がみられる(d)。(e)5ヶ月齢のC57BL/6マウスにルテオリン溶液(2.5mg/ml)を1ヶ月間自由飲水させた。82dB、10分間騒音を暴露し、ノイズ暴露前後の12kHzにおけるABR閾値変化を測定した。ルテオリン投与群(7.5, n=9)はコントロール群(17.5, n=8)と比較して閾値変化が少ない。(Mann-Whitney U test, p<0.05)Noise-induced hearing loss resistance due to luteolin. (A-d) Immunohistochemical staining of Ednrb in the inner ear of 5-month-old luteolin-administered group (a, b) and control group (c, d). In the luteolin administration group, expression of Ednrb is observed in the cap membrane (arrow) (d). (E) A 5-month-old C57BL / 6 mouse was allowed to freely drink a luteolin solution (2.5 mg / ml) for 1 month. The noise was exposed at 82dB for 10 minutes, and the ABR threshold change at 12kHz before and after the noise exposure was measured. The luteolin-administered group (7.5, n = 9) has less threshold change than the control group (17.5, n = 8). (Mann-Whitney U test, p <0.05) ルテオリンによる加齢性難聴抵抗性。(a)実験のスキーム。5ヶ月齢のC57BL/6マウスのABRを測定し、ルテオリン溶液(2.5mg/ml)を2ヶ月間自由飲水させABRを測定した。(b)4kHz, 12kHzにおけるABR閾値変化。コントロール群(ctrl, n=8)と比較して、ルテオリン投与群(#521, n=8)は閾値変化が抑えられた。(Mann-Whitney U test, p<0.01)Age-related deafness resistance by luteolin. (A) Experimental scheme. ABR of 5-month-old C57BL / 6 mice was measured, and ABR was measured by drinking luteolin solution (2.5 mg / ml) freely for 2 months. (B) ABR threshold change at 4kHz and 12kHz. Compared with the control group (ctrl, n = 8), the threshold change was suppressed in the luteolin-administered group (# 521, n = 8). (Mann-Whitney U test, p <0.01) ヒトの加齢性難聴の検出。20代(n=20)、30代(n=10)、40代(n=3)について、1kHz, 4kHz, 8kHz, 12kHzにおける聴力の測定を行った。通常の聴力検査では行わない高周波数である12kHzにおいて、40代では聴力の低下が見られた。(Mann-Whitney U test, p<0.05)Detection of human age-related deafness. For 20s (n = 20), 30s (n = 10), and 40s (n = 3), hearing was measured at 1kHz, 4kHz, 8kHz and 12kHz. At the high frequency of 12 kHz, which is not performed by normal hearing tests, hearing loss was observed in the 40s. (Mann-Whitney U test, p <0.05) ヒトの騒音性難聴の検出。20-22歳を対象に、普段週3日以下しかポータブルミュージックプレイヤーを使用していない人(n=10)、毎日1時間以上MP3プレイヤーを使用している人(n=15)の2群について、75-80dBの音楽を10分間被験者に聞いてもらい、その前後での聴力の閾値変化について測定した。1時間以上ポータブルミュージックプレイヤーを使用している人では、12kHzにおいて大きな聴力閾値変化が見られた。(Mann-Whitney U test, p<0.01)Detection of human noise-induced hearing loss. 2 groups of people aged 20-22 who usually use a portable music player for less than 3 days a week (n = 10) and who use an MP3 player for more than 1 hour every day (n = 15) The subjects listened to 75-80dB of music for 10 minutes, and the change in threshold of hearing was measured before and after that. For those who have used a portable music player for over an hour, there was a large change in the hearing threshold at 12 kHz. (Mann-Whitney U test, p <0.01) エンドセリン受容体Bの発現上昇作用を認めた化合物一覧。A list of compounds that have been shown to increase endothelin receptor B expression. 図6の続き。Continuation of FIG. 図7の続き。Continuation of FIG. 図8の続き。Continuation of FIG. 図9の続き。Continuation of FIG. 図10の続き。Continuation of FIG. 図11の続き。Continuation of FIG. 図12の続き。Continuation of FIG. 図13の続き。Continuation of FIG. 図14の続き。Continuation of FIG. 図15の続き。Continuation of FIG. 図16の続き。Continuation of FIG. 図17の続き。FIG. 17 is a continuation of FIG. 図18の続き。Continuation of FIG. 図19の続き。Continuation of FIG. 図20の続き。Continuation of FIG. 図21の続き。Continuation of FIG. 図22の続き。Continuation of FIG. 図23の続き。FIG. 23 is a continuation of FIG. 図24の続き。Continuation of FIG. 図25の続き。Continuation of FIG. 図26の続き。FIG. 26 is a continuation of FIG. 図27の続き。Continuation of FIG. 図28の続き。FIG. 28 is a continuation of FIG. 図29の続き。Continuation of FIG. 加齢性難聴若しくは騒音性難聴又は耳鳴りの検知/予知システムの一例。An example of a detection / prediction system for age-related hearing loss or noise-induced hearing loss or tinnitus.

(加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療剤)
聴力に重要な役割を果たす内耳色素細胞にエンドセリン受容体Bを強制発現させたトランスジェニックマウスが騒音性難聴に対して抵抗性を示した事実、エンドセリン受容体Bの発現を促進するルテオリンを投与したマウスが騒音耐性を示した事実、さらには加齢性難聴、騒音性難聴といった感音性難聴が耳鳴の主たる原因になっているという事実に基づき、本発明の第1の局面は、エンドセリン受容体Bの発現を上昇させる物質(以下、「Ednrb発現上昇物質」ともいう)を含む、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療剤を提供する。
(Preventive / therapeutic agent for age-related hearing loss or noise-induced hearing loss or tinnitus)
The fact that transgenic mice forcibly expressing endothelin receptor B in inner ear pigment cells, which play an important role in hearing, showed resistance to noise-induced hearing loss. Luteolin, which promotes expression of endothelin receptor B, was administered. The first aspect of the present invention is based on the fact that mice show noise tolerance, and that the sensory deafness such as age-related hearing loss and noise-induced hearing loss is the main cause of tinnitus. Provided is a prophylactic / therapeutic agent for age-related hearing loss or noise-induced hearing loss or tinnitus, which contains a substance that increases the expression of B (hereinafter also referred to as “Ednrb expression increasing substance”).

「エンドセリン受容体B」(GeneID: 1910, Entrez Gene, NCBI)とは、Gタンパク質共役受容体ファミリーに属する分子である。エンドセリン受容体Bとして公共のデータベースに登録されているアミノ酸配列を添付の配列表に配列番号1(DEFINITION: endothelin receptor type B [Homo sapiens]. ACCESSION: AAP32295, Entrez Protein, NCBI)及び配列番号3(DEFINITION: endothelin receptor type B. ACCESSION: AAA52342, Entrez Protein, NCBI)で示す。また、配列番号1のアミノ酸配列に対応するmRNAの配列を配列番号2(DEFINITION: Homo sapiens endothelin receptor type B (EDNRB) mRNA, complete cds. ACCESSION: AY275463, Entrez Nucleotide, NCBI)で、配列番号3のアミノ酸配列に対応するmRNAの配列を配列番号4(DEFINITION: Homo sapiens endothelin receptor type B (EDNRB) mRNA, complete cds. ACCESSION: L06623, Entrez Nucleotide, NCBI)でそれぞれ示す。   “Endothelin receptor B” (GeneID: 1910, Entrez Gene, NCBI) is a molecule belonging to the G protein-coupled receptor family. The amino acid sequence registered in the public database as endothelin receptor B is shown in the attached sequence listing as SEQ ID NO: 1 (DEFINITION: endothelin receptor type B [Homo sapiens]. ACCESSION: AAP32295, Entrez Protein, NCBI) and SEQ ID NO: 3 ( DEFINITION: endothelin receptor type B. ACCESSION: AAA52342, Entrez Protein, NCBI). In addition, the mRNA sequence corresponding to the amino acid sequence of SEQ ID NO: 1 is SEQ ID NO: 2 (DEFINITION: Homo sapiens endothelin receptor type B (EDNRB) mRNA, complete cds. ACCESSION: AY275463, Entrez Nucleotide, NCBI). The mRNA sequence corresponding to the amino acid sequence is represented by SEQ ID NO: 4 (DEFINITION: Homo sapiens endothelin receptor type B (EDNRB) mRNA, complete cds. ACCESSION: L06623, Entrez Nucleotide, NCBI).

「エンドセリン受容体Bの発現を上昇させる物質(Ednrb発現上昇物質)」とは、直接的に又は間接的にエンドセリン受容体Bの発現を促す物質である。これに限られるものではないが、Ednrb発現上昇物質に該当するか否かは、後述の実施例に示した評価法(Ednrbプロモーターを用いたレポーターアッセイ)によって判定することができる。   The “substance that increases the expression of endothelin receptor B (Ednrb expression increasing substance)” is a substance that directly or indirectly promotes the expression of endothelin receptor B. Although not limited to this, it can be determined by the evaluation method (reporter assay using an Ednrb promoter) shown in the below-mentioned Example whether it corresponds to an Ednrb expression increasing substance.

「予防・治療剤」とは、標的の疾病ないし病態である加齢性難聴若しくは騒音性難聴又は耳鳴り(以下、これら三者をまとめて「標的疾病」という)に対する予防的及び/又は治療的効果を示す薬剤のことをいう。予防的効果の典型的なものは、標的疾病の発現(発症)を阻止ないし遅延することである。他方、治療的効果には、標的疾病の症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。後者(悪化の阻止ないし遅延)については、重症化を予防するという点において予防的効果の一つと捉えることができる。このように、予防的効果と治療的効果は一部において重複する概念であり、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。尚、標的疾病に対して何らかの予防的効果又は治療的効果を示す限り、標的疾病に対する予防・治療剤に該当する。   “Prophylactic / therapeutic agent” means preventive and / or therapeutic effect on target disease or pathological condition such as age-related hearing loss or noise-induced hearing loss or tinnitus (hereinafter these three are collectively referred to as “target disease”). Refers to drugs that exhibit A typical preventive effect is to prevent or delay the onset (onset) of the target disease. On the other hand, the therapeutic effect includes alleviating the symptoms of the target disease (lightening), preventing or delaying the worsening of symptoms. The latter (preventing or delaying deterioration) can be regarded as one of the preventive effects in terms of preventing aggravation. As described above, the preventive effect and the therapeutic effect are partially overlapping concepts, and it is difficult to clearly distinguish them from each other, and there is little practical benefit of doing so. In addition, as long as some preventive effect or therapeutic effect is shown with respect to a target disease, it corresponds to the preventive / therapeutic agent with respect to a target disease.

加齢性難聴とは、加齢によって引き起こされる感音難聴であり、老人性難聴とも呼ばれる。その原因は聴覚中枢や感覚細胞などの老化にあると考えられている。加齢性難聴はほとんど場合が両耳に起き、加齢とともに症状が悪化する。加齢性難聴では、めまいや耳鳴りをともなう場合も多い。他方、騒音性難聴とは騒音が原因で生ずる難聴である。騒音性難聴は騒音の下で長時間就業することにより起こる「職業性難聴」と、コンサートなどで大音量に曝されたことによって起こる「音響性難聴(音響外傷)」に大別される。多くの場合、耳鳴りを伴う。尚、特段の説明のない場合、本明細書では加齢性難聴と騒音性難聴を包括した用語として「難聴」を用いる。   Age-related deafness is sensorineural hearing loss caused by aging and is also called senile deafness. The cause is thought to be aging of the auditory center and sensory cells. Age-related hearing loss almost always occurs in both ears, and symptoms worsen with age. Age-related hearing loss often involves dizziness and tinnitus. On the other hand, noise-induced hearing loss is a hearing loss caused by noise. Noise-induced hearing loss is broadly divided into “professional hearing loss” caused by working for a long time under noise and “acoustic hearing loss (acoustic trauma)” caused by exposure to high volume at a concert or the like. Often accompanied by tinnitus. Unless otherwise specified, “deafness” is used in this specification as a term encompassing age-related hearing loss and noise-related hearing loss.

本発明の一態様では、Ednrb発現上昇物質として、アボガドエキス、アマチャエキス、アルニカエキス、アセンヤクエキス、エンメイソウエキス、オウゴンエキス、オレンジエキス、海藻エキス、カッコンエキス、カミツレエキス、クララエキス、クロレラエキス、ゲンチアナエキス、コンフリーエキス、サクラエキス、サンザシエキス、セイヨウニワトコエキス、セイヨウノコギリソウエキス、ゼニアオイエキス、ダイズエキス、タイムエキス、ウーロン茶エキス、トウヒ(ダイダイ)エキス、ニーム(インドセンダン)エキス、オタネニンジンエキス、ヒオウギ(ヤカン)エキス、ビルベリーエキス、ビワエキス、ブドウエキス、ペパーミントエキス、ボタンピ(ボタン)エキス、メリッサエキス、ヤグルマギクエキス、ユズエキス、ルイボスエキス、レモングラスエキス、レンゲソウエキス、ローズマリーエキス、ローマカミツレエキス、ワイルドタイムエキス、サルビアエキス、バラエキス、ラベンダーエキス、キトサンエキス、絹(セリシン)エキス、牛乳エキス、グルタミン酸エキス、酵母エキス、豚血液エキス、豚胎盤エキス、豚皮膚エキス、ローヤルゼリーエキス、シソの実エキス、ツキミソウエキス、ハマナスエキス、オウバクエキス、バオバブエキス、オクラエキス、キャンドルツリーエキス、ホウセンカエキス、アーモンドエキス及びライチエキスからなる群より選択されるいずれかのエキス、又は図6〜30に記載した265種の化合物からなる群より選択されるいずれかの化合物を用いる。これらの物質はEdnrbプロモーターを用いた独自のスクリーニング系によって本発明者らが見出したものである。   In one embodiment of the present invention, as an Ednrb expression-enhancing substance, an avocado extract, an amacha extract, an arnica extract, an Acacia catechu extract, an enamel extract, an orange extract, an orange extract, a seaweed extract, a cuckoo extract, a chamomile extract, a clara extract, a chlorella extract , Gentian extract, Comfrey extract, Sakura extract, Hawthorn extract, Elderberry extract, Achillea millefolium extract, Zeni mushroom extract, Soybean extract, Thyme extract, Oolong tea extract, Spruce (daidai) extract, Neem (Indian sendan) extract, Panax ginseng extract, Giant peony (Yakan) Extract, Bilberry Extract, Biwa Extract, Grape Extract, Peppermint Extract, Buttonpi (Button) Extract, Melissa Extract, Cornflower Extract, Yuzu Extract, Louis Extract, lemongrass extract, lotus extract, rosemary extract, roman chamomile extract, wild thyme extract, salvia extract, rose extract, lavender extract, chitosan extract, silk (sericin) extract, milk extract, glutamic acid extract, yeast extract, pork blood extract , Pork placenta extract, pork skin extract, royal jelly extract, perilla extract, camellia extract, hermanus extract, duckweed extract, baobab extract, okra extract, candle tree extract, spinach extract, almond extract and lychee extract Or any compound selected from the group consisting of 265 compounds described in FIGS. These substances have been found by the present inventors through an original screening system using the Ednrb promoter.

各エキスを得るために使用する抽出溶媒としては、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、イソブタノール等の低級アルコール若しくは含水低級アルコール、プロピレングリコール、1,3−ブチレングリコール等の多価アルコール若しくは含水多価アルコール、ジメチルスルフオキシド(DMSO)、アセトン、ジオキサン、メチルエチルケトン、アセトニトリル、酢酸エチルエステル、ブチルメチルケトン、ジエチルエーテル、フェノキシエタノール、ミリスチン酸オクチルドデシル、ポリソルベート80、ジクロルメタン、キシレン、トリクロルエチレン、四塩化炭素、ベンゼン、クロロホルム、トルエン等の有機溶媒、及び水を例示することができる。尚、含水低級アルコールとは、低級アルコールと水の混合液のことであり、好ましくは低級アルコール/水の比率が10/90〜90/10(V/V:体積比)、より好ましくは30/70〜80/20(V/V:体積比)のものである。同様に含水多価アルコールとは、多価アルコールと水の混合液のことであり、好ましくは多価アルコール/水の比率が10/90〜90/10(V/V:体積比)、より好ましくは30/70〜80/20(V/V:体積比)のものである。   The extraction solvent used to obtain each extract is a lower alcohol such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol or isobutanol or a hydrous lower alcohol, a polyhydric alcohol such as propylene glycol or 1,3-butylene glycol. Or water-containing polyhydric alcohol, dimethylsulfoxide (DMSO), acetone, dioxane, methyl ethyl ketone, acetonitrile, acetic acid ethyl ester, butyl methyl ketone, diethyl ether, phenoxyethanol, octyldodecyl myristate, polysorbate 80, dichloromethane, xylene, trichloroethylene, Examples thereof include organic solvents such as carbon tetrachloride, benzene, chloroform, and toluene, and water. The hydrous lower alcohol is a mixed solution of lower alcohol and water, preferably the lower alcohol / water ratio is 10/90 to 90/10 (V / V: volume ratio), more preferably 30 / 70 to 80/20 (V / V: volume ratio). Similarly, the water-containing polyhydric alcohol is a mixed liquid of polyhydric alcohol and water, preferably a polyhydric alcohol / water ratio of 10/90 to 90/10 (V / V: volume ratio), more preferably. Is 30 / 70-80 / 20 (V / V: volume ratio).

抽出操作は、冷浸、温浸、加熱還流、パーコレーション法などの常法で行うことができる。溶媒による抽出ではなく、例えば水蒸気蒸留法、超臨界抽出法によって生薬エキスを得ることにしてもよい。また、抽出物の分離精製は、活性炭処理、液−液分配、カラムクロマトグラフィー、液体クロマトグラフィーなどで行うことができる。   The extraction operation can be performed by conventional methods such as cold immersion, digestion, heating reflux, and percolation method. Instead of extraction with a solvent, for example, a crude drug extract may be obtained by a steam distillation method or a supercritical extraction method. The extract can be separated and purified by activated carbon treatment, liquid-liquid distribution, column chromatography, liquid chromatography, or the like.

以下、特に好ましい溶媒をエキス毎に列挙する。
アボガドエキス・・ブチレングリコール
アマチャエキス・・ブチレングリコール
アルニカエキス・・ブチレングリコール
アセンヤクエキス・・ブチレングリコール
エンメイソウエキス・・エタノール
オウゴンエキス・・ブチレングリコール
オレンジエキス・・プロピレングリコール
海藻エキス・・プロピレングリコール又はブチレングリコール
カッコンエキス・・ブチレングリコール又はエタノール
カミツレエキス・・エタノール又はミリスチン酸オクチルドデシル
クララエキス・・ブチレングリコール/エタノール混合溶液又はブチレングリコール
クロレラエキス・・ブチレングリコール
ゲンチアナエキス・・ブチレングリコール
コンフリーエキス・・ブチレングリコール
サクラエキス・・ブチレングリコール
サンザシエキス・・ブチレングリコール
セイヨウニワトコエキス・・ブチレングリコール
セイヨウノコギリソウエキス・・ブチレングリコール
ゼニアオイエキス・・ブチレングリコール
ダイズエキス・・ブチレングリコール又はエタノール
タイムエキス・・ブチレングリコール
ウーロン茶エキス・・エタノール
トウヒ(ダイダイ)エキス・・ブチレングリコール
ニーム(インドセンダン)エキス・・ブチレングリコール
オタネニンジンエキス・・ブチレングリコール
ヒオウギ(ヤカン)エキス・・ブチレングリコール/エタノール混合溶液
ビルベリーエキス・・ブチレングリコール
ビワエキス・・エタノール
ブドウエキス・・ブチレングリコール
ペパーミントエキス・・ブチレングリコール/ポリソルベート80/オレス-8リン酸Na混合溶液
ボタンピ(ボタン)エキス・・ブチレングリコール又はエタノール
メリッサエキス・・ブチレングリコール
ヤグルマギクエキス・・ブチレングリコール
ユズエキス・・エタノール
ルイボスエキス・・ブチレングリコール
レモングラスエキス・・ブチレングリコール
レンゲソウエキス・・ブチレングリコール/エタノール混合溶液
ローズマリーエキス・・ブチレングリコール
ローマカミツレエキス・・ブチレングリコール
ワイルドタイムエキス・・ブチレングリコール
サルビアエキス・・エタノール
バラエキス・・水
ラベンダーエキス・・エタノール又はブチレングリコール
キトサンエキス・・エタノール
絹(セリシン)エキス・・ブチレングリコール又はフェノキシエタノール/エタノール混合溶液
牛乳エキス・・エタノール
グルタミン酸エキス・・エタノール又はブチレングリコール
酵母エキス・・エタノール、ブチレングリコール又は水
豚血液エキス・・フェノキシエタノール
豚胎盤エキス・・ブチレングリコール
豚皮膚エキス・・ブチレングリコール
シソの実エキス・・ブチレングリコール
ツキミソウエキス・・ブチレングリコール
オウバクエキス・・ブチレングリコール
バオバブエキス・・フェノキシエタノール
オクラエキス・・水
キャンドルツリーエキス・・水/ブチレングリコール混合溶液
アーモンドエキス・・水
ライチエキス・・ブチレングリコール
In the following, particularly preferred solvents are listed for each extract.
Avocado extract / Butylene glycol Achacha extract / Butylene glycol Arnica extract / Butylene glycol Asenya extract / Butylene glycol Enmeiso extract / Ethanol Ogon extract / Butylene glycol Orange extract / Propylene glycol Seaweed extract / Propylene glycol or Butylene glycol Cuckon extract or Butylene glycol or ethanol Chamomile extract or ethanol or octyldodecyl myristate Clara extract or butylene glycol / ethanol mixed solution or butylene glycol Chlorella extract or Butylene glycol Gentianana extract or Butylene glycol Comfree extract Butylene glycol cherry extract, butylene glycol hawthorn extract, Butylene glycol Elderberry extract / Butylene glycol Achillea millefolium extract / Butylene glycol Xenopus extract / Butylene glycol Soybean extract / Butylene glycol or ethanol Thyme extract / Butylene glycol Oolong tea extract / Ethanol spruce (daidai) extract / Butylene glycol Neem (Indonesian) extract ・ Butylene glycol Panax Ginseng extract ・ Butylene glycol Butterberry extract ・ Butylene glycol / ethanol mixed solution Bilberry extract ・ Butylene glycol Biwa extract ・ Ethanol Grape extract ・ Butylene glycol Peppermint extract ・ Butylene glycol / Polysorbate 80 / Oles-8 phosphoric acid Na mixed solution Buttonpi ( Tan) extract, butylene glycol or ethanol Melissa extract, butylene glycol cornflower extract, butylene glycol yuzu extract, ethanol rooibos extract, butylene glycol lemongrass extract, butylene glycol lotus extract, butylene glycol / ethanol mixed solution rosemary Extract, Butylene Glycol Roman Chamomile Extract, Butylene Glycol Wild Time Extract, Butylene Glycol Salvia Extract, Ethanol Rose Extract, Water Lavender Extract, Ethanol or Butylene Glycol Chitosan Extract, Ethanol Silk (Sericin) Extract, Butylene Glycol Or phenoxyethanol / ethanol mixed solution Milk extract / ethanol Glutamate・ Ethanol or butylene glycol Yeast extract ・ Ethanol, butylene glycol or water Pig blood extract ・ Phenoxyethanol Pig placenta extract ・ Butylene glycol Pork skin extract ・ Butylene glycol Perilla extract ・ Butylene glycol Primula extract ・ Butylene Glycol Oat Extract, Butylene Glycol Baobab Extract, Phenoxyethanol Okra Extract, Water Candle Tree Extract, Water / Butylene Glycol Mixed Almond Extract, Water Lychee Extract, Butylene Glycol

好ましい一態様ではEdnrb発現上昇物質としてルテオリンを用いる。ルテオリンについては、後述の実施例の欄に示す通り、動物実験及びヒトを対象とした実験によって、難聴に対する優れた予防・治療効果、及び耳鳴りの軽減効果が確認されている。   In a preferred embodiment, luteolin is used as an Ednrb expression increasing substance. As for luteolin, as shown in the Examples section described later, an excellent preventive / therapeutic effect on hearing loss and an effect of reducing tinnitus have been confirmed by animal experiments and human experiments.

ルテオリン(3',4',5,7-テトラヒドロキシフラボン)は植物ポリフェノール成分であるフラボノイドの一種であり、シソ、春菊、ピーマン、ミント、ローズマリー、カモミールなどに多く含まれる。ルテオリンには種々の配糖体が存在する。ルテオリン配糖体を構成する糖成分は特に限定されない。糖の例を挙げるとグルコース、フコース、ガラクトースである。糖の結合位置はルテオリン分子の6-C、8-C、7-O等である。ルテオリン配糖体の具体例として6-C-フコシルルテオリン及び6-C-キノボシルルテオリン(Phytochemistry, 30, 3486, 1991を参照)を挙げることができる。   Luteolin (3 ', 4', 5,7-tetrahydroxyflavone) is a kind of flavonoid that is a plant polyphenol component, and is contained in a large amount in perilla, spring chrysanthemum, bell pepper, mint, rosemary, chamomile and the like. There are various glycosides in luteolin. The sugar component constituting the luteolin glycoside is not particularly limited. Examples of sugars are glucose, fucose and galactose. The sugar binding position is 6-C, 8-C, 7-O, etc. of the luteolin molecule. Specific examples of the luteolin glycoside include 6-C-fucosyl luteolin and 6-C-quinovosyl luteolin (see Phytochemistry, 30, 3486, 1991).

ルテオリンはサプリメントや化粧料の原料として広く利用されており、容易に入手可能である。公知の方法に従って抽出・精製したルテオリン又はルテオリン配糖体を用いることもできる。   Luteolin is widely used as a raw material for supplements and cosmetics, and is easily available. Luteolin or luteolin glycoside extracted and purified according to a known method can also be used.

(加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療用組成物)
本発明の第2の局面は本発明の予防・治療剤を含有する、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療用組成物を提供する。本発明の組成物の形態は特に限定されないが、好ましくは医薬又は食品である。尚、2種類以上の予防・治療剤を併用することにしてもよい。
(A composition for preventing / treating age-related hearing loss or noise-induced hearing loss or tinnitus)
The second aspect of the present invention provides a composition for preventing / treating age-related hearing loss, noise-induced hearing loss, or tinnitus, which contains the preventive / therapeutic agent of the present invention. Although the form of the composition of this invention is not specifically limited, Preferably it is a pharmaceutical or a foodstuff. Two or more kinds of prophylactic / therapeutic agents may be used in combination.

本発明の医薬組成物の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。   The pharmaceutical composition of the present invention can be formulated according to a conventional method. In the case of formulating, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspension agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like). As the excipient, lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used. As the disintegrant, starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As the suspending agent, glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used. As the soothing agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. As the stabilizer, propylene glycol, ascorbic acid or the like can be used. As preservatives, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used. As preservatives, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.

製剤化する場合の剤形も特に限定されず、例えば錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、及び座剤などとして本発明の医薬組成物を提供できる。本発明の医薬組成物には、期待される予防的・治療的効果を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の医薬組成物中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%〜約95重量%の範囲内で設定する。   There are no particular restrictions on the dosage form for formulation, and the pharmaceutical composition of the present invention is provided as, for example, tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories. it can. The pharmaceutical composition of the present invention contains an active ingredient in an amount necessary for obtaining the expected prophylactic / therapeutic effect (that is, a therapeutically effective amount). The amount of the active ingredient in the pharmaceutical composition of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, within the range of about 0.1% by weight to about 95% by weight so as to achieve a desired dose.

本発明の医薬組成物はその剤形に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、筋肉、又は腹腔内注射、経皮、経鼻、経粘膜など)によって対象に適用される。ここでの「対象」は特に限定されないが、好ましい対象はヒトである。   The pharmaceutical composition of the present invention is applied to a subject by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intramuscular or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) depending on the dosage form. The The “subject” here is not particularly limited, but a preferred subject is a human.

本発明の医薬組成物の投与量は、期待される予防的又治療的は効果が得られるように設定される。治療上有効な投与量の設定においては一般に症状、患者の年齢、性別、及び体重などが考慮される。尚、当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である投与スケジュールとしては例えば一日一回〜数回、二日に一回、或いは三日に一回などを採用できる。投与スケジュールの作成においては、患者の病状や有効成分の効果持続時間などを考慮することができる。   The dosage of the pharmaceutical composition of the present invention is set so as to obtain the expected prophylactic or therapeutic effect. In setting a therapeutically effective dose, symptoms, patient age, sex, weight, etc. are generally considered. A person skilled in the art can set an appropriate dose in consideration of these matters, for example, once to several times a day, once every two days, or once every three days. Times can be adopted. In preparing the administration schedule, the patient's medical condition and the duration of effect of the active ingredient can be taken into consideration.

上記の通り本発明の一態様は、本発明の予防・治療剤を含有する食品組成物である。本発明での「食品組成物」の例として一般食品(穀類、野菜、食肉、各種加工食品、菓子類、牛乳、茶飲料、清涼飲料水、アルコール飲料等)、栄養補助食品(サプリメント、栄養ドリンク等)、食品添加物、愛玩動物用食品、愛玩動物用栄養補助食品を挙げることができる。本発明の食品組成物の形状の例として、粉末、顆粒末、ガム状、タブレット、ペースト、液体を例示することができる。食品組成物の形態で提供することによって、本発明の有効成分を日常的に摂取したり、継続的に摂取したりすることが容易となる。   As described above, one embodiment of the present invention is a food composition containing the preventive / therapeutic agent of the present invention. Examples of “food composition” in the present invention include general foods (cereals, vegetables, meat, various processed foods, confectionery, milk, tea beverages, soft drinks, alcoholic beverages, etc.), dietary supplements (supplements, nutritional drinks) Etc.), food additives, foods for pets, nutritional supplements for pets. Examples of the shape of the food composition of the present invention include powders, granule powders, gums, tablets, pastes, and liquids. By providing in the form of a food composition, it becomes easy to ingest the active ingredient of the present invention on a daily basis or continuously.

本発明の食品組成物には、予防的又は治療的効果が期待できる量の有効成分が含有されることが好ましい。添加量は、それが使用される対象となる者の病状、健康状態、年齢、性別、体重などを考慮して定めることができる。   The food composition of the present invention preferably contains an active ingredient in an amount that can be expected to have a preventive or therapeutic effect. The amount added can be determined in consideration of the medical condition, health status, age, sex, weight, etc. of the person to whom it is used.

(動物モデルの作製法)
本発明の第4の局面は一過性騒音性難聴モデルマウスの作製法を提供する。本発明の作製法では、マウスに対して70〜100dB、5〜60分間の騒音負荷を与え、一過性騒音性難聴を誘導する。このようにして作製したマウスの場合、難聴からの回復までに要する時間が既報の動物モデルに比較して長い(1日〜2日)。このような特徴を示すことから、例えば難聴に有効な物質のスクリーニングに利用する実験動物としての利用価値が高い。
(Animal model production method)
The fourth aspect of the present invention provides a method for producing a transient noise-induced hearing loss model mouse. In the production method of the present invention, a noise load of 70 to 100 dB for 5 to 60 minutes is given to a mouse to induce transient noise-induced hearing loss. In the case of the mouse prepared as described above, the time required for recovery from hearing loss is longer than that of a previously reported animal model (1 to 2 days). Since it exhibits such characteristics, it has a high utility value as an experimental animal used for screening a substance effective for hearing loss, for example.

本発明の作製法に用いるマウスの種類や由来は特に限定されない。例えば野生型マウスC57BL/6、BALB/c、ICR等(いずれも日本エスエルシー等の業者から入手可能である)を用いることができる。騒音負荷の具体例は82dB、10分間の騒音負荷である。   The kind and origin of the mouse used for the production method of the present invention are not particularly limited. For example, wild-type mice C57BL / 6, BALB / c, ICR, etc. (all of which are available from vendors such as Japan SLC) can be used. A specific example of a noise load is a noise load of 82 dB for 10 minutes.

(動物モデルを用いたスクリーニング法)
本発明の第5の局面は動物モデルを用いて騒音性難聴又は耳鳴りの予防・治療に有効な物質をスクリーニングする方法(in vivoスクリーニング法)を提供する。当該スクリーニング法では上記の動物モデル(第4の局面)を利用する。具体的には以下のステップ(1)〜(4)を実施する。尚、特に言及しない事項(被験物質、騒音負荷、マウスの種類など)については、対応する既述の説明を援用する。
(1)複数匹のマウスを用意し、試験群と対照群に分けるステップ、
(2)試験群に被験物質を投与するステップ、
(3)ステップ(2)後の試験群について、80〜112dB、5〜60分間の騒音負荷前後に8 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベルを決定するステップ、
(4)ステップ(3)で決定した聴力低下レベルと、被験物質を投与しないこと以外、試験群と同様の処置を施した対照群について決定した聴力低下レベルとを比較し、比較結果に基づき被験物質の有効性を判定するステップ
(Screening method using animal model)
The fifth aspect of the present invention provides a method (in vivo screening method) for screening a substance effective for prevention / treatment of noise-induced hearing loss or tinnitus using an animal model. In the screening method, the above animal model (fourth aspect) is used. Specifically, the following steps (1) to (4) are performed. For matters not specifically mentioned (test substance, noise load, mouse type, etc.), the corresponding explanations described above are incorporated.
(1) preparing a plurality of mice and dividing them into a test group and a control group;
(2) administering a test substance to the test group;
(3) About the test group after step (2), measuring the hearing ability of 8 kHz to 20 kHz before and after noise loading of 80 to 112 dB, 5 to 60 minutes, and determining the level of hearing loss due to noise loading;
(4) Compare the hearing loss level determined in step (3) with the hearing loss level determined for the control group treated in the same way as the test group, except that the test substance is not administered. Step of determining the effectiveness of a substance

ステップ(1)では複数匹のマウスを用意し、試験群と対照群に分ける。試験群及び対照群に含まれる個体数は特に限定されない。一般に使用する個体数が多くなるほど信頼性の高い結果が得られるが、多数の個体を同時に取り扱うことは使用する個体の確保や操作(飼育を含む)の面で困難を伴う。そこで例えば各群に含まれる個体数を1〜50、好ましくは2〜30、さらに好ましくは3〜20とする。通常は試験群と対照群の個体数を等しくする。   In step (1), a plurality of mice are prepared and divided into a test group and a control group. The number of individuals included in the test group and the control group is not particularly limited. In general, as the number of individuals used increases, a more reliable result can be obtained. However, handling a large number of individuals at the same time is difficult in terms of securing and operating (including breeding) the individuals to be used. Therefore, for example, the number of individuals included in each group is 1 to 50, preferably 2 to 30, and more preferably 3 to 20. Normally, the test group and the control group should have the same number of individuals.

ステップ(2)では試験群に被験物質を投与する。被験物質の投与態様は特に限定されない。例えば被験物質を含む餌又は飲料水を用意し、これを摂取させる。或いは、被験物質又は被験物質を含む溶液を用意し、これを投与する。投与方法として経口投与、経鼻投与、経気管投与、静脈内、動脈内、皮下、筋肉内又は腹腔内注射を例示することができる。被験物質を複数回投与することにしてもよい。その場合には各回の投与量は同一であっても異なっていても良い。継続的に投与することにしてもよい。尚、対照群については被験物質を投与しないこと以外は同一の条件下で飼育する。   In step (2), the test substance is administered to the test group. The mode of administration of the test substance is not particularly limited. For example, food or drinking water containing the test substance is prepared and ingested. Alternatively, a test substance or a solution containing the test substance is prepared and administered. Examples of the administration method include oral administration, nasal administration, tracheal administration, intravenous, intraarterial, subcutaneous, intramuscular or intraperitoneal injection. The test substance may be administered multiple times. In that case, each dose may be the same or different. You may decide to administer continuously. The control group is reared under the same conditions except that the test substance is not administered.

ステップ(3)では試験群に騒音負荷を与えるとともに騒音負荷の前後に聴力を測定し、騒音負荷による聴力低下レベルを決定する。本発明では80〜112dB、5〜60分間の騒音負荷を採用する。好ましくは82dB、10分間の騒音負荷とする。一方、測定する聴力は8 kHz〜20 kHzの範囲である。好ましくは12kHz聴力を測定する。聴力低下レベルの決定には例えば聴性脳幹反応を利用できる。「聴性脳幹反応」とは、聴覚神経系を興奮させることによって得られる脳幹部での電位(脳幹の反応)である。所定の音刺激を与えた時の聴性脳幹反応(脳波)を解析することによって、聴力のレベルを再現性良く調べることができる。聴性脳幹反応を利用した検査法は難聴の判定に広く利用されている。聴性脳幹反応を利用した検査法の詳細については例えばABRハンドブック(加我君孝 編(金原出版))を参照することができる。聴性脳幹反応ではなく、純音聴力検査等を利用することにしてもよい。   In step (3), a noise load is applied to the test group and the hearing is measured before and after the noise load to determine the level of hearing loss due to the noise load. In the present invention, a noise load of 80 to 112 dB and 5 to 60 minutes is employed. Preferably, the noise load is 82 dB for 10 minutes. On the other hand, the measured hearing is in the range of 8 kHz to 20 kHz. Preferably 12 kHz hearing is measured. For example, an auditory brainstem reaction can be used to determine the hearing loss level. The “auditory brainstem reaction” is a potential in the brainstem (brainstem reaction) obtained by exciting the auditory nervous system. By analyzing the auditory brainstem response (electroencephalogram) when a predetermined sound stimulus is applied, the level of hearing ability can be examined with good reproducibility. Test methods using the auditory brainstem reaction are widely used to determine hearing loss. For details of the test method using the auditory brainstem reaction, refer to the ABR Handbook (Edited by Kimitaka Kaga (Kanehara Publishing)). Instead of the auditory brainstem reaction, a pure tone hearing test or the like may be used.

ステップ(4)では、試験群の聴力低下レベルと対照群の聴力低下レベルを用いて被験物質の有効性を判定する。詳しくは、ステップ(3)で決定した聴力低下レベル(即ち試験群の聴力低下レベル)と、被験物質を投与しないこと以外、試験群と同様の処置を施した対照群について決定した聴力低下レベルとを比較し被験物質が有効であるか否かを判定する。この際、「聴力低下レベルの小さいことが騒音性難聴又は耳鳴りの予防・治療に有効である」との指標を用いる。従って、対照群について決定した聴力低下レベルよりも、試験群の聴力低下レベルの方が小さいとき、即ち被験物質の投与によって聴力低下レベルに改善が認められたとき、騒音性難聴又は耳鳴りの予防・治療に被験物質が有効であると判定することになる。   In step (4), the effectiveness of the test substance is determined using the hearing loss level of the test group and the hearing loss level of the control group. Specifically, the hearing loss level determined in step (3) (ie, the hearing loss level of the test group) and the hearing loss level determined for the control group treated in the same manner as the test group, except that the test substance is not administered. To determine whether the test substance is effective. At this time, an indicator that “a small hearing loss level is effective for prevention / treatment of noise-induced hearing loss or tinnitus” is used. Therefore, when the hearing loss level of the test group is smaller than the hearing loss level determined for the control group, that is, when the hearing loss level is improved by administration of the test substance, prevention of noise-induced hearing loss or tinnitus It will be determined that the test substance is effective for treatment.

有効性を認めた複数の被験化合物を用いて再度ステップ(1)〜(4)を行い、有効性の高い物質の絞り込みを行うことにしてもよい。   Steps (1) to (4) may be performed again using a plurality of test compounds that have been confirmed to be effective to narrow down highly effective substances.

上記第3の局面のスクリーニング法によって選抜された物質をこの局面のスクリーニング法の被験物質とすることもできる。即ち、上記第3の局面のスクリーニング法を一次スクリーニングに利用し、この局面のスクリーニング法によって二次スクリーニングを行うことにしてもよい。このように段階的なスクリーニングを実施すれば一層効率的に目的の物質を見出すことが可能となる。   A substance selected by the screening method of the third aspect can be used as a test substance of the screening method of this aspect. That is, the screening method of the third aspect may be used for primary screening, and secondary screening may be performed by the screening method of this aspect. If the stepwise screening is carried out in this way, the target substance can be found more efficiently.

(被験者によるスクリーニング法)
本発明の第6の局面は被験者を用いて騒音性難聴又は耳鳴りの予防・治療に有効な物質をスクリーニングする方法(in vivoスクリーニング法)を提供する。この局面のスクリーニング法では以下のステップ(1)〜(4)を実施する。尚、特に言及しない事項については、上記第5の局面における対応する説明が援用される。
(1)騒音負荷前後に被験者の1 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベルを決定するステップ
(2)被験者に被験物質を投与するステップ
(3)ステップ(2)の後、ステップ(1)での騒音負荷と同一の騒音負荷前後に前記被験者の1 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベルを決定するステップ
(4)ステップ(1)で決定した聴力低下レベルと、ステップ(3)で決定した聴力低下レベルとを比較し、比較結果に基づき被験物質の有効性を判定するステップ
(Screening method by subjects)
The sixth aspect of the present invention provides a method (in vivo screening method) for screening a substance effective for prevention / treatment of noise-induced hearing loss or tinnitus using a subject. In the screening method of this aspect, the following steps (1) to (4) are performed. In addition, about the matter which is not mentioned especially, the corresponding description in the said 5th aspect is used.
(1) A step of measuring the hearing ability of the subject from 1 kHz to 20 kHz before and after the noise load, and determining the level of hearing loss due to the noise load.
(2) A step of administering a test substance to a subject
(3) After step (2), measuring the hearing ability of the subject from 1 kHz to 20 kHz before and after the same noise load as the noise load in step (1), and determining a hearing reduction level due to the noise load
(4) comparing the hearing loss level determined in step (1) with the hearing loss level determined in step (3), and determining the effectiveness of the test substance based on the comparison result

ステップ(1)では被験者に騒音負荷を与えるとともに、一過性難聴の検知に有効であることが本発明者らの検討によって明らかとなった周波数域である1 kHz〜20 kHzの聴力を騒音負荷の前後に測定する。そして、測定結果より、騒音負荷による聴力低下レベル(被験物質投与前の聴力低下レベル)を決定する。ここでの騒音負荷は一過性騒音性難聴が生ずるように、例えば75〜95dB、10分間の騒音負荷とする。好ましくは80dB、10分間の騒音負荷を採用する。一方、聴力の測定を行う周波数については、好ましくは12kHzとする。聴力低下レベルの決定には例えば聴性脳幹反応や純音聴力検査等を利用できる。   In step (1), the subject is given a noise load, and the hearing ability of 1 kHz to 20 kHz, which is a frequency range that has been clarified by the present inventors, is effective in detecting transient hearing loss. Measure before and after. Then, the level of hearing loss due to noise load (the level of hearing loss before administration of the test substance) is determined from the measurement result. The noise load here is, for example, 75 to 95 dB for 10 minutes so that transient noise-induced hearing loss occurs. Preferably, a noise load of 80 dB for 10 minutes is employed. On the other hand, the frequency at which hearing measurement is performed is preferably 12 kHz. For example, an auditory brainstem reaction or a pure tone hearing test can be used to determine the hearing loss level.

続くステップ(2)では被験者に被験物質を投与する。投与方法、投与回数、投与期間、投与間隔等は特に限定されない。例えば経口投与、経鼻投与、経気管投与、静脈内、動脈内、皮下、筋肉内又は腹腔内注射により被験物質を投与する。投与回数は例えば1回〜100回とする。投与期間は例えば1日〜3ヶ月とする。尚、経時的に以降のステップ(3)及び(4)を行い、その結果を用いて被験物質の有効性を判定することにしてもよい。   In the subsequent step (2), the test substance is administered to the subject. The administration method, the number of administrations, the administration period, the administration interval, etc. are not particularly limited. For example, the test substance is administered by oral administration, nasal administration, tracheal administration, intravenous, intraarterial, subcutaneous, intramuscular or intraperitoneal injection. The frequency of administration is, for example, 1 to 100 times. The administration period is, for example, 1 day to 3 months. Note that the following steps (3) and (4) may be performed over time, and the results may be used to determine the effectiveness of the test substance.

ステップ(3)では被験者に対して再び騒音負荷を与えるとともに、その前後に8 kHz〜20 kHzの聴力を測定し、騒音負荷による聴力低下レベル(被験物質投与後の聴力低下レベル)を決定する。ここでの騒音負荷は、ステップ(1)で採用した騒音負荷と同一とする。   In step (3), the test subject is again given a noise load, and the hearing ability of 8 kHz to 20 kHz is measured before and after that to determine the hearing reduction level (hearing reduction level after administration of the test substance) due to the noise load. The noise load here is the same as the noise load adopted in step (1).

次のステップ(4)では被験物質投与前後に決定した聴力低下レベルを用いて被験物質の有効性を判定する。詳しくは、被験物質投与前の聴力低下レベルと、被験物質投与後の聴力低下レベルとを比較し被験物質が有効であるか否かを判定する。この際、「聴力低下レベルの小さいことが騒音性難聴又は耳鳴りの予防・治療に有効である」との指標を用いる。従って、被験物質投与前の聴力低下レベルよりも、被験物質投与後の聴力低下レベルの方が小さいとき、即ち被験物質の投与前後において聴力低下レベルに改善が認められたとき、騒音性難聴又は耳鳴りの予防・治療に被験物質が有効であると判定することになる。   In the next step (4), the effectiveness of the test substance is determined using the hearing loss level determined before and after administration of the test substance. Specifically, the hearing loss level before administration of the test substance is compared with the hearing loss level after administration of the test substance to determine whether or not the test substance is effective. At this time, an indicator that “a small hearing loss level is effective for prevention / treatment of noise-induced hearing loss or tinnitus” is used. Therefore, when the hearing loss level after administration of the test substance is smaller than the hearing loss level before administration of the test substance, that is, when improvement in the hearing loss level is observed before and after administration of the test substance, noise-induced hearing loss or tinnitus It is determined that the test substance is effective for the prevention and treatment of

この局面のスクリーニング法においても、有効性を認めた複数の被験化合物を用いて再度ステップ(1)〜(4)を行い、有効性の高い物質の絞り込みを行うことにしてもよい。   Also in the screening method of this aspect, steps (1) to (4) may be performed again using a plurality of test compounds that have been confirmed to be effective to narrow down highly effective substances.

上記第3の局面のスクリーニング法によって選抜された物質をこの局面のスクリーニング法の被験物質とすることもできる。即ち、上記第3の局面のスクリーニング法を一次スクリーニングに利用し、この局面のスクリーニング法によって二次スクリーニングを行うことにしてもよい。同様に、上記第5の局面のスクリーニング法を一次スクリーニングに利用することにしてもよい。さらには、上記第3の局面のスクリーニング法及び第5の局面のスクリーニング法をそれぞれ一次スクリーニング及び二次スクリーニングに利用し、この局面のスクリーニング法によって三次スクリーニングを行うことにしてもよい。以上のように段階的なスクリーニングを実施すれば一層効率的に目的の物質を見出すことが可能となる。   A substance selected by the screening method of the third aspect can be used as a test substance of the screening method of this aspect. That is, the screening method of the third aspect may be used for primary screening, and secondary screening may be performed by the screening method of this aspect. Similarly, the screening method of the fifth aspect may be used for primary screening. Furthermore, the screening method of the third aspect and the screening method of the fifth aspect may be used for primary screening and secondary screening, respectively, and tertiary screening may be performed by the screening method of this aspect. As described above, if the stepwise screening is performed, the target substance can be found more efficiently.

(加齢性難聴若しくは騒音性難聴又は耳鳴りの検知/予知法)
本発明の更なる局面は加齢性難聴若しくは騒音性難聴又は耳鳴りを高感度で検知又は予知できる方法に関する。本発明者らの検討の結果、通常の聴力検査では測定されない8 kHz〜20 kHz(特に12 kHz)の聴力レベルを調べれば一過性の騒音性難聴を高感度で検知することができるとの知見が得られた。また、当該周波数域を測定すれば、加齢性難聴が進行し始めている兆候を高感度に検知することができることも判明した。これらの知見に基づき、本発明の検知/予知法は、対象の8 kHz〜20 kHz(好ましくは12 kHz)の聴力レベルを測定することを特徴とする。対象は好ましくはヒト(被検者)であるが、ヒト以外の哺乳動物(例えば、ペット動物や家畜)に適用することも可能である。ヒト以外の哺乳動物の例としてマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコを挙げることができる。尚、通常の純音聴力検査で測定可能な音域は125 Hz〜8 kHzであるので、これをそのまま利用して本発明を実施することはできない。別の言い方をすれば、本発明では通常の純音聴力検査とは明確に異なる測定が行われる。
(Detection / prediction of age-related hearing loss or noise-induced hearing loss or tinnitus)
A further aspect of the present invention relates to a method that can detect or predict age-related hearing loss or noise-induced hearing loss or tinnitus with high sensitivity. As a result of the study by the present inventors, transient noise-induced hearing loss can be detected with high sensitivity by examining the hearing level of 8 kHz to 20 kHz (especially 12 kHz) that is not measured by a normal hearing test. Knowledge was obtained. It has also been found that if the frequency range is measured, a sign that age-related hearing loss is beginning to progress can be detected with high sensitivity. Based on these findings, the detection / prediction method of the present invention is characterized by measuring the hearing level of a subject from 8 kHz to 20 kHz (preferably 12 kHz). The subject is preferably a human (subject), but can also be applied to mammals other than humans (for example, pet animals and domestic animals). Examples of mammals other than humans include mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats, sheep, dogs and cats. In addition, since the sound range measurable by the normal pure tone hearing test is 125 Hz to 8 kHz, the present invention cannot be carried out using this as it is. In other words, in the present invention, a measurement distinctly different from a normal pure tone hearing test is performed.

本発明の方法を騒音性難聴又は耳鳴りの予知に利用するのであれば、測定結果から聴力レベルの低下を認めた場合に「騒音性難聴又は耳鳴りを発症するおそれが高い」、或いは「騒音性難聴又は耳鳴りを発症する可能性がある」等と判定する。聴力レベルの低下の程度に応じて、騒音性難聴又は耳鳴りの発症可能性を段階的な指標(例えば発症可能性10%以下、10%〜30%、30%〜50%、50%〜80%)で示すことにしてもよい。   If the method of the present invention is used for the prediction of noise-induced hearing loss or tinnitus, if a decrease in the hearing level is recognized from the measurement results, “there is a high risk of developing noise-induced hearing loss or tinnitus” or “noise-induced hearing loss” Or, there is a possibility of developing tinnitus ". Depending on the degree of decrease in hearing level, the likelihood of developing noise-induced hearing loss or tinnitus is a gradual indicator (for example, 10% or less, 10% -30%, 30% -50%, 50% -80% ).

一方、本発明の方法を加齢性難聴の検知・評価に利用した場合には、聴力レベルの低下が著しいほど加齢性難聴の強い兆候があることを示すことになる。従って、加齢性難聴の現状を把握することに加え、将来の進行の予想をも可能となる。   On the other hand, when the method of the present invention is used for detection / evaluation of age-related deafness, it indicates that there is a strong sign of age-related deafness as the hearing level decreases significantly. Therefore, in addition to grasping the current state of age-related hearing loss, it is possible to predict future progress.

(加齢性難聴若しくは騒音性難聴又は耳鳴りの検知/予知システム)
本発明は更に、上記検知/予知法の実施に利用可能なシステム、即ち加齢性難聴若しくは騒音性難聴又は耳鳴りの検知/予知システムを提供する。本発明のシステムは8 kHz〜20 kHzの音域の音を発生可能な音発生装置と、音域制御装置と、音量制御装置と、外部出力装置とを含む(図31を参照)。音発生装置は8 kHz〜20 kHzの音域の音を発生できればよく、他の音域の音を発生できるものであってもよい。発生する音は典型的には純音であるが、語音或いは純音と語音の両方を発生可能に構成してもよい。音域制御装置は音発生装置が発生する音の音域(周波数)を制御する。同様に音量制御装置は音発生装置が発生する音の大きさを制御する。音域制御装置と音量制御装置を一つの装置として構成してもよい。外部出力装置は外部とのインターフェースであり、音発生装置が発生する音を外部に出力する。通常、ヘッドホン(例えば高音域対応高密閉型ヘッドホン)を外部出力装置として採用する。
(Aging / Noise Hearing Loss or Tinnitus Detection / Prediction System)
The present invention further provides a system that can be used to implement the detection / prediction method described above, that is, a detection / prediction system for age-related deafness or noise-induced hearing loss or tinnitus. The system of the present invention includes a sound generator capable of generating a sound in the range of 8 kHz to 20 kHz, a range controller, a volume controller, and an external output device (see FIG. 31). The sound generator only needs to be able to generate sound in the range of 8 kHz to 20 kHz, and may be capable of generating sound in other ranges. The generated sound is typically a pure tone, but may be configured to be able to generate a speech sound or both a pure sound and a speech sound. The sound range control device controls the sound range (frequency) of the sound generated by the sound generation device. Similarly, the volume control device controls the volume of sound generated by the sound generator. The range control device and the volume control device may be configured as one device. The external output device is an interface with the outside, and outputs the sound generated by the sound generator to the outside. Usually, headphones (for example, high-sound headphones for high sound range) are employed as the external output device.

以上の検知/予知システムは次のように作動する。まず、音域制御装置と音量制御装置による制御を受けて音発生装置が8 kHz〜20 kHzの音域の音を発生する。続いて、発生した音を外部出力装置が出力する。当該システムを利用して加齢性難聴若しくは騒音性難聴又は耳鳴りの検知/予知を行うためには、このようにして生ずる特定の音(8 kHz〜20 kHzの音域の音)に対する対象(ヒト又はヒト以外の哺乳動物)の反応を見ればよい。例えば、音を感得したときに特定の動作(例えば挙手、発声、首を縦に振る、スイッチを押す)をすることにしておき、当該動作の有無を指標として検知/予知を行う。ヒト以外の哺乳動物を対象とした場合にあっては、例えば挙動(吠える又は鳴くなど)又はその変化を指標として音を感得したか否かを判断することができる。   The above detection / prediction system operates as follows. First, under the control of the sound range control device and the sound volume control device, the sound generation device generates sound in the sound range of 8 kHz to 20 kHz. Subsequently, an external output device outputs the generated sound. In order to detect / predict age-related or noise-induced hearing loss or tinnitus using the system, the target (human or sound) of the specific sound thus generated (sound in the 8 kHz to 20 kHz range) is used. The reaction of mammals other than humans may be observed. For example, when a sound is sensed, a specific action (for example, raising hand, utterance, shaking head, pressing a switch) is performed, and detection / prediction is performed using the presence / absence of the action as an index. In the case of targeting mammals other than humans, for example, it can be determined whether or not a sound has been sensed using behavior (such as barking or crying) or a change thereof as an index.

一態様において本発明のシステムは、上記各装置に加えて、検出用電極と、検出用電極からの信号を増幅する増幅装置と、増幅された信号を解析する解析装置とを含む(図31を参照)。検出用電極は対象(好ましくはヒト)に装着されるものであり、記録電極、基準電極及び接地電極からなる。記録電極には脳波用電極、針電極、皿電極などを用いることができる。増幅装置は検出用電極からの脳波信号を増幅する装置であり、当該装置を備えることにより高感度の検出が可能となる。増幅された信号は解析装置によって解析される。例えばPC(パーソナルコンピュータ)を解析装置として利用できる。解析結果は例えばディスプレイに表示される。   In one aspect, the system of the present invention includes a detection electrode, an amplification device that amplifies a signal from the detection electrode, and an analysis device that analyzes the amplified signal in addition to the above devices (see FIG. 31). reference). The detection electrode is attached to a target (preferably a human) and includes a recording electrode, a reference electrode, and a ground electrode. An electroencephalogram electrode, a needle electrode, a dish electrode, or the like can be used as the recording electrode. The amplifying device is a device that amplifies the electroencephalogram signal from the detection electrode. By providing the device, high-sensitivity detection is possible. The amplified signal is analyzed by an analyzer. For example, a PC (personal computer) can be used as an analysis device. The analysis result is displayed on a display, for example.

当該態様の検知/予知システムは次のように作動する。まず、音域制御装置と音量制御装置による制御を受けて音発生装置が8 kHz〜20 kHzの音域の音を発生する。続いて、発生した音を外部出力装置が出力する。一方、検出用電極が検出した脳波信号を増幅装置が増幅する。続いて、増幅された脳波信号を解析装置が解析する。以上の一連の工程によって、加齢性難聴若しくは騒音性難聴又は耳鳴りの検知又は予知に有益な情報が解析結果として得られる。尚、この態様のシステムは、音を感得したことを表現することが困難な対象(例えば乳幼児やヒト以外の哺乳動物)に対する検査を実施する際に特に有用である。   The detection / prediction system of this aspect operates as follows. First, under the control of the sound range control device and the sound volume control device, the sound generation device generates sound in the sound range of 8 kHz to 20 kHz. Subsequently, an external output device outputs the generated sound. On the other hand, the amplification device amplifies the electroencephalogram signal detected by the detection electrode. Subsequently, the analysis device analyzes the amplified electroencephalogram signal. Through the series of steps described above, information useful for detection or prediction of age-related hearing loss, noise-induced hearing loss, or tinnitus is obtained as an analysis result. In addition, the system of this aspect is particularly useful when a test is performed on a subject (for example, an infant or a mammal other than a human) that is difficult to express that the sound has been sensed.

1.野生型マウスとDbh/Ednrb-TgマウスにおけるEdnrb発現部位
(1)方法
ドーパミンβヒドロキシラーゼプロモーター下でEdnrbを発現させたDbh/Ednrb-Tgマウスを既報の方法(Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M. J Clin Invest. 2000 Apr;105(7):925-33.JCI, 2000 Apr;105(7):925-33)に準じて作製した。簡単に説明すると、mouse Ednrbのコード領域をDbh-cDNA発現ベクターに組み込み、定法に沿ってトランスジェニックマウスを作製した。このようにして作製した7ヶ月齢のDbh/Ednrb-Tgマウスと野生型マウスの内耳におけるEdnrbの発現状態を、Ednrb抗体を用いた免疫組織染色により調べた。ブアン液を用いて還流固定を行い、内耳を摘出した。パラフィン切片を作製し、抗Ednrb抗体(ケミコン、1:2000)、Vectastain ABC Kit(ベクター)、Envision kit/HRP(DAB、ダコ)を用いて検出し、核をヘマトキシリンで染色した。
1. Ednrb expression sites in wild-type mice and Dbh / Ednrb-Tg mice (1) Method Dbh / Ednrb-Tg mice expressing Ednrb under the dopamine β-hydroxylase promoter have been reported (Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M. J Clin Invest. 2000 Apr; 105 (7): 925-33. JCI, 2000 Apr; 105 (7): 925-33). Briefly, the mouse Ednrb coding region was incorporated into a Dbh-cDNA expression vector, and a transgenic mouse was prepared according to a standard method. The expression state of Ednrb in the inner ears of 7-month-old Dbh / Ednrb-Tg mice and wild-type mice prepared in this manner was examined by immunohistochemical staining using Ednrb antibody. Reflux fixation was performed using a Bouin solution, and the inner ear was removed. Paraffin sections were prepared and detected using an anti-Ednrb antibody (Chemicon, 1: 2000), Vectastain ABC Kit (vector), Envision kit / HRP (DAB, DAKO), and the nucleus was stained with hematoxylin.

(2)結果
Dbh/Ednrb-Tgの内耳について、Ednrb抗体を用いた免疫組織染色を行ったところ、Dbh/Ednrb-Tgの内耳コルチ器の蓋膜(図1d、矢印)においてEdnrbの発現が見られたが、野生型では見られなかった(図1a−d)。
(2) Results
When immunohistochemical staining was performed on the inner ear of Dbh / Ednrb-Tg using Ednrb antibody, expression of Ednrb was observed in the cap of the inner ear corti of Dbh / Ednrb-Tg (FIG. 1d, arrow). It was not seen in the wild type (FIGS. 1a-d).

2.野生型マウスとDbh/Ednrb-Tgマウスにおける騒音抵抗性
(1)方法
マウスは麻酔をかけ、4kHz〜40kHzの聴力についてABRにより測定した。その後、82dBの騒音を10分間暴露し、直ちに4kHz〜40kHzの聴力をABRにより測定した。
2. Noise resistance in wild type mice and Dbh / Ednrb-Tg mice (1) Method The mice were anesthetized and the hearing ability of 4 kHz to 40 kHz was measured by ABR. Thereafter, 82 dB of noise was exposed for 10 minutes, and hearing at 4 kHz to 40 kHz was immediately measured by ABR.

(2)結果
ヒト(成人)の可聴域は20 Hz-20 kHzと言われているが、マウスの可聴域は2 kHz-50 kHzであり、聴性脳幹反応(ABR)を用いた脳波測定により、ヒト及びマウスの聴力は他覚的に測定できる(山内昭雄・鮎川武二共著:感覚の地図帳 p37、講談社)。Dbh/Ednrb-Tgマウスの聴力を測定したところ、7ヶ月齢のEdnrb-Tgマウスは野生型とほぼ同程度の聴力であったが(図1e)、82dBの騒音を10分間与えて一過性の騒音性難聴を誘導したところ、野生型と比較してEdnrb-Tgマウスの聴力は騒音抵抗性を示した(図1f)。この結果は、内耳のうち、蓋膜等のEdnrb発現を亢進させることにより、騒音性難聴に抵抗性を誘導できる可能性を示している。
(2) Results The audible range for humans (adults) is said to be 20 Hz-20 kHz, but the audible range for mice is 2 kHz-50 kHz. By electroencephalogram measurement using the auditory brainstem response (ABR), Hearing ability of humans and mice can be measured objectively (Akio Yamauchi and Takeji Kajikawa: Sensory map book p37, Kodansha). When the hearing of the Dbh / Ednrb-Tg mouse was measured, the 7-month-old Ednrb-Tg mouse had almost the same hearing as the wild type (Fig. 1e), but it was transient after giving a noise of 82dB for 10 minutes. When the noise-induced hearing loss was induced, the hearing ability of the Ednrb-Tg mice showed noise resistance compared to the wild type (FIG. 1f). This result shows the possibility that resistance to noise-induced hearing loss can be induced by enhancing the expression of Ednrb in the inner ear, such as the cap membrane.

3.試験管内におけるEdnrb発現調整物質のスクリーニング
(1)方法
プロモーターアッセイはDual-Luciferase Reporter Assay System(プロメガ)を使用した。
(i)Ednrbプロモーターを組み込んだホタルルシフェラーゼレポーターベクター、(ii)EF1α(内部標準として使用)のプロモーターを組み込んだウミシイタケルシフェラーゼレポーターベクターをLipofectamin LTXを用いて細胞にトランスフェクトした。翌日、トランスフェクトした細胞を96ウェルプレートに1x104細胞/穴で播きなおした。翌日、0.5% FBS含有培地に化合物を希釈し、細胞に添加した。24時間後、細胞をPBSで洗浄後、Pussive Lysate Bufferで細胞を溶解し、ルミノメーターでルシフェラーゼ活性を測定し、EF1α(内部標準)で標準化を行った。
3. Screening of Ednrb Expression Modulating Substance in Test Tube (1) Method For the promoter assay, Dual-Luciferase Reporter Assay System (Promega) was used.
Cells were transfected with (i) a firefly luciferase reporter vector incorporating an Ednrb promoter and (ii) a Renilla luciferase reporter vector incorporating an EF1α (used as an internal standard) promoter using Lipofectamin LTX. The next day, the transfected cells were replated at 1 × 10 4 cells / well in a 96-well plate. The next day, the compound was diluted in a medium containing 0.5% FBS and added to the cells. After 24 hours, the cells were washed with PBS, then lysed with a Pushy Lysate Buffer, luciferase activity was measured with a luminometer, and standardized with EF1α (internal standard).

(2)結果
難聴抵抗性薬剤の開発を目的とし、培養細胞を用いてEdnrbの発現を上昇させる化合物のスクリーニングを行った。ヒト細胞SK-Melを用いてEdnrbのプロモーター活性について、ヒトおよびマウスEdnrbの翻訳開始点上流1 kbのプロモーターを用いてその下流にルシフェラーゼの遺伝子を発現するベクターを構築し、ルシフェラーゼアッセイによるスクリーニング方法とした。スクリーニングの結果、以下に列挙する62種類のエキスと、265種類の化合物(図6〜30に各化合物の構造を示す)が選出された。
(スクリーニングで選出されたエキス一覧)
アボガドエキス(ブチレングリコールで抽出)、アマチャエキス(ブチレングリコールで抽出)、アルニカエキス(ブチレングリコールで抽出)、アセンヤクエキス(ブチレングリコールで抽出)、エンメイソウエキス(エタノールで抽出)、オウゴンエキス(ブチレングリコールで抽出)、オレンジエキス(プロピレングリコールで抽出)、海藻エキス(でプロピレングリコール又はブチレングリコール抽出)、カッコンエキス(ブチレングリコール又はエタノールで抽出)、カミツレエキス(エタノール又はミリスチン酸オクチルドデシルで抽出)、クララエキス(ブチレングリコール/エタノール混合溶液又はブチレングリコールで抽出)、クロレラエキス(ブチレングリコールで抽出)、ゲンチアナエキス(ブチレングリコールで抽出)、コンフリーエキス(ブチレングリコールで抽出)、サクラエキス(ブチレングリコールで抽出)、サンザシエキス(ブチレングリコールで抽出)、セイヨウニワトコエキス(ブチレングリコールで抽出)、セイヨウノコギリソウエキス(ブチレングリコールで抽出)、ゼニアオイエキス(ブチレングリコールで抽出)、ダイズエキス(ブチレングリコール又はエタノールで抽出)、タイムエキス(ブチレングリコールで抽出)、ウーロン茶エキス(エタノールで抽出)、トウヒ(ブチレングリコールで抽出)エキス、ニームエキス(ブチレングリコールで抽出)、オタネニンジンエキス(ブチレングリコールで抽出)、ヒオウギエキス(ブチレングリコール/エタノール混合溶液で抽出)、ビルベリーエキス(ブチレングリコールで抽出)、ビワエキス(エタノールで抽出)、ブドウエキス(ブチレングリコールで抽出)、ペパーミントエキス(ブチレングリコール/ポリソルベート80/オレス-8リン酸Na混合溶液で抽出)、ボタンピエキス(ブチレングリコール又はエタノールで抽出)、メリッサエキス(ブチレングリコールで抽出)、ヤグルマギクエキス(ブチレングリコールで抽出)、ユズエキス(エタノールで抽出)、ルイボスエキス(ブチレングリコールで抽出)、レモングラスエキス(ブチレングリコールで抽出)、レンゲソウエキス(ブチレングリコール/エタノール混合溶液で抽出)、ローズマリーエキス(ブチレングリコールで抽出)、ローマカミツレエキス(ブチレングリコールで抽出)、ワイルドタイムエキス(ブチレングリコールで抽出)、サルビアエキス(エタノールで抽出)、バラエキス(水で抽出)、ラベンダーエキス(エタノール又はブチレングリコールで抽出)、キトサンエキス(エタノールで抽出)、絹エキス(ブチレングリコール又はフェノキシエタノール/エタノール混合溶液で抽出)、牛乳エキス(エタノールで抽出)、グルタミン酸エキス(エタノール又はブチレングリコールで抽出)、酵母エキス(エタノール、ブチレングリコール又は水で抽出)、豚血液エキス(フェノキシエタノールで抽出)、豚胎盤エキス(ブチレングリコールで抽出)、豚皮膚エキス(ブチレングリコールで抽出)、ローヤルゼリーエキス、シソの実エキス(ブチレングリコールで抽出)、ツキミソウエキス(ブチレングリコールで抽出)、ハマナスエキス、オウバクエキス(ブチレングリコールで抽出)、バオバブエキス(フェノキシエタノールで抽出)、オクラエキス(水で抽出)、キャンドルツリーエキス(水/ブチレングリコール混合溶液で抽出)、ホウセンカエキス、アーモンドエキス(水で抽出)、ライチエキス(ブチレングリコールで抽出)
(2) Results For the purpose of developing a deafness-resistant drug, screening of compounds that increase the expression of Ednrb was performed using cultured cells. Using human cells SK-Mel, we established a luciferase assay screening method by constructing a vector that expresses the luciferase gene downstream of the human and mouse Ednrb translation start sites using a 1 kb promoter. did. As a result of screening, 62 types of extracts listed below and 265 types of compounds (the structures of the respective compounds are shown in FIGS. 6 to 30) were selected.
(List of extracts selected by screening)
Avocado extract (extracted with butylene glycol), Achacha extract (extracted with butylene glycol), Arnica extract (extracted with butylene glycol), Acacia yak extract (extracted with butylene glycol), Enmeiso extract (extracted with ethanol), Ogon extract (butylene) Glycol extract), orange extract (extracted with propylene glycol), seaweed extract (extracted with propylene glycol or butylene glycol), cuckoo extract (extracted with butylene glycol or ethanol), chamomile extract (extracted with ethanol or octyldodecyl myristate), Clara extract (extracted with butylene glycol / ethanol mixed solution or butylene glycol), Chlorella extract (extracted with butylene glycol), Gentian extract (extracted with butylene glycol) ), Comfrey extract (extracted with butylene glycol), cherry extract (extracted with butylene glycol), hawthorn extract (extracted with butylene glycol), elderberry extract (extracted with butylene glycol), yarrow extract (extracted with butylene glycol), Mallow extract (extracted with butylene glycol), soybean extract (extracted with butylene glycol or ethanol), thyme extract (extracted with butylene glycol), oolong tea extract (extracted with ethanol), spruce (extracted with butylene glycol) extract, neem extract (butylene glycol) ), Ginseng extract (extracted with butylene glycol), barley extract (extracted with butylene glycol / ethanol mixed solution), bilberry extract (extracted with butylene glycol) ), Loquat extract (extracted with ethanol), grape extract (extracted with butylene glycol), peppermint extract (extracted with mixed solution of butylene glycol / polysorbate 80 / oleth-8 phosphate), button pi extract (extracted with butylene glycol or ethanol), Melissa extract (extracted with butylene glycol), cornflower extract (extracted with butylene glycol), yuzu extract (extracted with ethanol), rooibos extract (extracted with butylene glycol), lemongrass extract (extracted with butylene glycol), forsythia extract (butylene glycol / Extracted with ethanol mixed solution), Rosemary extract (extracted with butylene glycol), Roman chamomile extract (extracted with butylene glycol), Wild thyme extract (extracted with butylene glycol), Salviae Kiss (extracted with ethanol), rose extract (extracted with water), lavender extract (extracted with ethanol or butylene glycol), chitosan extract (extracted with ethanol), silk extract (extracted with butylene glycol or phenoxyethanol / ethanol mixed solution), milk extract (Extracted with ethanol), glutamic acid extract (extracted with ethanol or butylene glycol), yeast extract (extracted with ethanol, butylene glycol or water), pig blood extract (extracted with phenoxyethanol), porcine placenta extract (extracted with butylene glycol), pig Skin extract (extracted with butylene glycol), royal jelly extract, perilla extract (extracted with butylene glycol), camellia extract (extracted with butylene glycol), red pepper extract, buckwheat extract (butylene glyco) Extract), baobab extract (extracted with phenoxyethanol), okra extract (extracted with water), candle tree extract (extracted with water / butylene glycol mixed solution), spinach extract, almond extract (extracted with water), lychee extract (butylene) (Extracted with glycol)

Figure 0005548839
ヒト細胞およびマウス細胞におけるEdnrbのプロモーターアッセイ。コントロールに対しての比活性を示す。*, p<0.05; **, p<0.01; ***, p<0.001
Figure 0005548839
Ednrb promoter assay in human and mouse cells. Specific activity relative to control is shown. *, p <0.05; **, p <0.01; ***, p <0.001

4.野生型マウスを用いた騒音性難聴の評価方法の発明
マウスを用いた騒音性難聴の実験は永久的難聴を引き起こすものが多く、日常生活でさらされる騒音レベルで引き起こされる一過性難聴のモデルは非常に少ない。また、既報の一過性難聴モデルでは、回復までの時間が短すぎて(Hear Res, 194:87-96, 2004)測定のタイミングが難しい。そこで、一過性騒音性難聴のモデル動物の創出を目指し検討した。その結果、野生型マウスC57BL/6に対して70-100dB、5-60分間の騒音を与えると翌日に聴力が回復することを確認し、当該手法が一過性騒音性難聴の誘導に有効であることが判明した。
4). Invention of a method for evaluating noise-induced hearing loss using wild-type mice Many experiments of noise-induced hearing loss using mice cause permanent hearing loss, and models of transient hearing loss caused by noise levels exposed in daily life are Very few. Moreover, in the reported transient hearing loss model, the time to recovery is too short (Hear Res, 194: 87-96, 2004), and the timing of measurement is difficult. Therefore, we aimed to create a model animal for transient noise-induced hearing loss. As a result, we confirmed that hearing was restored the next day when 70-100dB, 5-60 minutes of noise was given to wild-type mouse C57BL / 6, and this method was effective in inducing transient noise-induced hearing loss. It turned out to be.

5.Ednrb発現増強剤の騒音性難聴に対する効果の確認
(1)方法
スクリーニングによって選抜された化合物ルテオリンの騒音性難聴に対する効果を調べた。ルテオリン水溶液を自由飲水により5ヶ月齢の野生型C57BL/6マウスに投与し(1ヶ月間)、内耳蓋膜のEdnrbの発現状態を調べた。一方、同様にルテオリンを投与したマウスに82dB、10分間騒音を暴露し、ノイズ暴露前後の12kHzにおけるABR閾値変化を測定した。
5. Confirmation of the effect of Ednrb expression enhancer on noise-induced hearing loss (1) Method The effect of compound luteolin selected by screening on noise-induced hearing loss was examined. Luteolin aqueous solution was administered to 5 month old wild type C57BL / 6 mice by free drinking (for 1 month), and the expression state of Ednrb in the inner ear cap membrane was examined. On the other hand, similarly, 82 dB, 10 minutes of noise was exposed to mice administered with luteolin, and changes in the ABR threshold at 12 kHz before and after noise exposure were measured.

(2)結果
マウス・ヒト両方の細胞でEdnrbの発現を上昇させる化合物の一つであるルテオリンについて、ルテオリン水溶液を自由飲水により5ヶ月齢の野生型C57BL/6マウスに投与し、1ヶ月間摂取させたところ、Ednrb-Tgマウスと同様に内耳コルチ器蓋膜においてEdnrbの発現がみられた(図2d、矢印)。さらに、ルテオリン投与マウスに騒音を暴露させ、騒音前後の聴力レベルを比較したところ、ルテオリン投与群は、12kHzにおいて、騒音性難聴に対し、統計学的に有為なレベルで抵抗性を示した(図2e)。このように、Ednrbの発現を上昇する化合物として選抜されたルテオリンが騒音性難聴に有効であることが示された。
(2) Results Luteolin, one of the compounds that increase the expression of Ednrb in both mouse and human cells, was administered to a 5-month-old wild-type C57BL / 6 mouse by free drinking and ingested for 1 month. As a result, the expression of Ednrb was observed in the inner ear Corti cap membrane as in the Ednrb-Tg mouse (FIG. 2d, arrow). Furthermore, when the luteolin-treated mice were exposed to noise and the hearing levels before and after the noise were compared, the luteolin-treated group showed resistance to noise-induced hearing loss at a statistically significant level at 12 kHz ( FIG. 2e). Thus, it was shown that luteolin selected as a compound that increases the expression of Ednrb is effective for noise-induced hearing loss.

6.Ednrb発現増強剤の加齢性難聴に対する効果の確認
(1)方法
5ヶ月齢のC57BL/6マウスのABRを測定した後、ルテオリン溶液(2.5mg/ml)を2ヶ月間自由飲水させた。その後、再度ABRを測定した(図3a)。
6). Confirmation of the effect of Ednrb expression enhancer on age-related hearing loss (1) Method
After measuring the ABR of 5-month-old C57BL / 6 mice, the luteolin solution (2.5 mg / ml) was allowed to drink freely for 2 months. Thereafter, ABR was measured again (FIG. 3a).

(2)結果
現在のところ、騒音性難聴と加齢性難聴の発症機構や病態は基本的に極めて類似していると考えられている(久保武ら編集:耳鼻咽喉科学 p61、金芳堂))。5ヶ月齢から2ヶ月間ルテオリンを経口投与した野生型C57BL/6マウスについて聴力レベルを測定した。投与群では2-17 dB程度に有意に抑制されたが、非投与群では5-7ヶ月齢の2ヶ月間に4 kHz-32 kHzの音域において15-30dBの聴力低下が観察された(図3)。これは、ルテオリンの内服によって加齢性難聴の進行が予防できることを示している。このように、Ednrbの発現を上昇する化合物として選抜されたルテオリンが加齢性難聴にも有効であることが示された。
(2) Results At present, it is considered that the onset mechanism and pathology of noise-induced hearing loss and age-related hearing loss are basically very similar (edited by Takeshi Kubo et al .: Otolaryngology p61, Kinyoshido). Hearing levels were measured for wild-type C57BL / 6 mice that were orally administered luteolin for 5 months to 2 months. In the treated group, it was significantly suppressed to about 2-17 dB, but in the non-treated group, a hearing loss of 15-30 dB was observed in the 4 kHz-32 kHz range for two months of 5-7 months (Fig. 3). This indicates that the progress of age-related deafness can be prevented by oral administration of luteolin. Thus, it was shown that luteolin selected as a compound that increases the expression of Ednrb is also effective for age-related hearing loss.

7.ヒトにおける騒音性難聴を高感度で評価/予知できるシステム
従来、4 kHzにおける聴力低下が最も高感度な騒音性難聴の指標として用いられてきた。しかし、実際に、4 kHzにおける難聴が発見される迄には、85 dBの騒音を20年間暴露された場合に5 dB程度、90 dBの騒音を20年間暴露された場合に10 dB程度の恒久的な騒音性難聴(PTS)が誘発されることが報告されている(岸玲子ら編集: NEW 予防医学・公衆衛生学 P287、南江堂)。本発明者らは、騒音性難聴を高感度で評価/予知できるシステムの創出を目指して検討した。その結果、一過性の騒音性難聴について、日常的レベルの音量(75-83 dB)の音楽を10分間被験者に暴露し、その前後での聴力の閾値変化について測定することにより、高感度に一過性騒音性難聴を検知できることが明らかとなった。測定の音域は通常のヒトの聴力検査で使用される1 kHz-8 kHzに加え、通常では測定されない8 kHz-20 kHzを測定した。音量による差異を受けるものの、特に12 kHzで好ましく、毎日1時間以上、ポータブルミュージックプレイヤーを使用している人に、一過性の騒音性難聴を検知した(図5)。一方、普段週3日以下しかMP3プレイヤーを使用していない人では、12kHzにおいて10dB程度の聴力低下が見られた(図5)。以上のように、臨床症状として、従来迄に検知することができなかったレベルの一過性の騒音性難聴を高感度に検知することが可能な方法を見出すことに成功した。例えば、ポータブルミュージックプレイヤー使用中、音楽の中断された時期に、8 kHz-20 kHz(好ましくは12 kHz)の音源を流すことにより、一過性の騒音性難聴を高感度に検知し、恒久的な騒音性難聴の発症を警告できる。このようなシステムは専用の装置によっても、或いは汎用的な装置(例えばポータブルミュージックプレイヤー)に所定のソフトウエアを組み込むことなどによっても実現可能である。
7). A system that can evaluate / predict noise-related hearing loss in humans with high sensitivity Conventionally, hearing loss at 4 kHz has been used as the most sensitive index for noise-related hearing loss. However, in practice, until hearing loss at 4 kHz is detected, it is about 5 dB when 85 dB of noise is exposed for 20 years and about 10 dB when 90 dB of noise is exposed for 20 years. It has been reported that noise-induced hearing loss (PTS) is induced (edited by Kyoko Kishi et al .: NEW Preventive Medicine / Public Health P287, Nanedo). The present inventors have studied to create a system capable of evaluating / predicting noise-induced hearing loss with high sensitivity. As a result, for transient noise-induced hearing loss, daily level (75-83 dB) music was exposed to subjects for 10 minutes, and the threshold change in hearing was measured before and after that. It became clear that transient noise-induced hearing loss can be detected. The measurement range was 8 kHz-20 kHz, which is not normally measured, in addition to 1 kHz-8 kHz used in normal human hearing tests. Although it was affected by volume, it was particularly preferable at 12 kHz, and transient noise-induced hearing loss was detected in people who used a portable music player for more than an hour every day (Fig. 5). On the other hand, those who usually use MP3 players for less than 3 days a week showed a hearing loss of about 10 dB at 12 kHz (Figure 5). As described above, as a clinical symptom, the present inventors have succeeded in finding a method capable of highly sensitively detecting transient noise-induced hearing loss at a level that could not be detected until now. For example, while using a portable music player, transient noise-induced hearing loss can be detected with high sensitivity by playing a sound source of 8 kHz-20 kHz (preferably 12 kHz) when music is interrupted. Can warn of the onset of noise-induced hearing loss. Such a system can be realized by a dedicated device or by incorporating predetermined software into a general-purpose device (for example, a portable music player).

8.ヒトにおける加齢性難聴を高感度で評価/予知できるシステム
ヒトでは、加齢とともに、一般に、8 kHz→4 kHz→2kHzというように高音域より聴力が低下することが知られている(久保武ら編集:耳鼻咽喉科学 p61、金芳堂)。本発明者らは、加齢性難聴を高感度で評価/予知できるシステムの創出を目指して検討した。その結果、通常のヒトの聴力検査で使用される125 Hz-8 kHzに加え、通常では測定されない8 kHz-20 kHz(特に好ましくは12kHz)を測定することにより、加齢性難聴が進行し始めている徴候(サイン)を高感度に検知し、潜在的な加齢性難聴を評価するとともに、今後の加齢性難聴の進展を予知できることが明らかとなった(図4)。つまり、8 kHz-20 kHzにおける聴力低下の著しいほど加齢性難聴の強い徴候があることを示しているので、今後、健康診断(集団検診)等の聴力検査にて、「加齢性難聴の現状の評価と進行の予想」として応用することができる。
8). A system that can evaluate / predict age-related deafness with high sensitivity in humans In general, it is known that hearing loss in humans decreases from the high frequency range of 8 kHz → 4 kHz → 2 kHz (Takeshi Kubo) Et al .: Otolaryngology p61, Kinyoshido). The present inventors have studied with the aim of creating a system capable of evaluating / predicting age-related hearing loss with high sensitivity. As a result, in addition to 125 Hz-8 kHz used in normal human hearing tests, by measuring 8 kHz-20 kHz (particularly preferably 12 kHz) that is not normally measured, age-related deafness begins to progress. It was clarified that signs of signs (signs) can be detected with high sensitivity, potential age-related hearing loss can be evaluated, and future progress of age-related hearing loss can be predicted (FIG. 4). In other words, it shows that there is a strong sign of age-related deafness as the hearing loss at 8 kHz-20 kHz is significant, so in future hearing tests such as health checkups (group screening), It can be applied as “current evaluation and prediction of progress”.

9.ヒトにおける騒音性難聴を高感度で評価/予知できるシステムを用いた一過性の騒音性難聴の予防・治療
(1)方法
上記7.で示した知見を基に、騒音性難聴に対するルテオリンの効果を調べた。まず、騒音曝露(75-80dB、10分間の音楽)の前後で被験者(30代男性)の聴力(1,4,8,12,16kHz)を測定した。その後、ルテオリン(0.9 m/日)を4週間内服にて投与した。その後、騒音曝露(75-80dB、10分間の音楽)の前後で被験者(30代男性)の聴力(1,4,8,12,16kHz)を再度測定した。
9. 6. Prevention and treatment of transient noise-induced hearing loss using a system capable of evaluating / predicting noise-induced hearing loss with high sensitivity (1) Method above The effect of luteolin on noise-induced hearing loss was investigated based on the findings presented in. First, the hearing (1,4,8,12,16kHz) of the subject (male in their 30s) was measured before and after noise exposure (75-80dB, 10 minutes of music). Thereafter, luteolin (0.9 m / day) was administered orally for 4 weeks. After that, the hearing (1,4,8,12,16kHz) of the subject (male in their 30s) was measured again before and after noise exposure (75-80dB, 10 minutes of music).

(2)結果
ルテオリン投与前後の聴力低下レベルを比較した結果、一過性の騒音性難聴(騒音暴露後の12kHzにおける10dBの聴力低下)を引き起こしにくくなったことが示された。
(2) Results As a result of comparing the hearing loss level before and after administration of luteolin, it was shown that it became difficult to cause transient noise-induced hearing loss (10 dB hearing loss at 12 kHz after noise exposure).

<考察>
内耳有毛細胞の細胞死誘導を原因とする感音性難聴は、先天的・後天的原因により新生児から老人まで幅広く発症する難聴であり、人においては現在内耳有毛細胞の再生を行う治療薬が存在しないため、有効な治療法が存在しない。ステロイド剤、血管拡張剤、血流改善剤、ビタミン(B1,B6,B12)剤、精神安定剤の投与のほか、抗酸化剤のN-アセチルシステインの腹腔投与での予防効果(参考文献1)、3つの抗酸化剤(βカロテン、ビタミンC、ビタミンE)とミネラル(マグネシウム)(腹腔投与・皮下投与・経口投与)の複合的予防効果(参考文献2)といった報告がある。さらに、内耳の血行改善と酸素分圧を高める目的で行う高圧酸素療法などがある(参考文献3)。しかしながら、これらの現存する治療手段はいずれも限界があり、臨床的に満足できる結果を達成できるものは未だなく、回復が見込めないとなると補聴器を使用することとなるが、一般に、補聴器は感音難聴には効果が乏しい。研究レベルでは、ウイルスベクターを用いた有効遺伝子の導入(参考文献4)、BDNF・GDNFなどの神経栄養因子を内耳に直接導入すること(参考文献5、6)が動物レベルで試みられているが、いずれも内耳に直接導入する方法であり、臨床化に向けてのハードルは高い。よって、一度難聴になってしまうと治療は難しく、難聴にならないための予防策が必要とされている。しかしながら、現在臨床的に使用されている難聴予防薬は存在せず、耳栓などの物理的な遮蔽に頼っているのが現状である。本研究では、Ednrb-Tgマウスにおいて蝸牛蓋膜でのEdnrbの発現が上昇することに着目し、このマウスに難聴抵抗性があることを示した。本研究で用いたプロモーター(DbHプロモーター)は神経堤に由来する末梢神経および色素細胞において発現することから(参考文献7、8)、内耳において聴力の制御に大変重要である聴神経(末梢神経)および血管条中間細胞(色素細胞)の両方に働きかけることのできるDbHプロモーターは最適であると言える。実際、蝸牛においてDbHが蓋膜に発現していることが報告されており(参考文献9)今回のデータとも矛盾しない。さらに、Ednrbの発現を上昇させる化合物を水溶液として摂取させ、この化合物が同様に蝸牛蓋膜のEdnrbの発現上昇および騒音性難聴・加齢性難聴の抵抗性を示すことが分かった。この化合物は、フラボノイドの一種で抗炎症作用があり、飲み水としてマウスに摂取させると、小脳におけるLPSによるIL-6産生を抑制するという報告があり(参考文献10)、経口投与でも十分に生体に効果があると考えられた。Ednrbの発現を上昇させる化合物を含んだ飲み水を摂取することで、遺伝子を強制発現させた場合と同様な発現パターンを起こすことから、実際に内耳でEdnrbの発現が亢進して機能していることが示され、さらに難聴に対して抵抗性があることは画期的なことであり、従来、予防薬が存在しなかった難聴に対して、容易に内耳に作用させることができる方法として臨床的にも大変有用な方法であるといえる。
<Discussion>
Sensorineural hearing loss caused by induction of cell death in inner ear hair cells is a deafness that affects a wide range of neonates and the elderly due to congenital and acquired causes. In humans, this is a therapeutic agent that currently regenerates inner ear hair cells. There is no effective treatment because there is no. In addition to the administration of steroids, vasodilators, blood flow improvers, vitamins (B1, B6, B12) and tranquilizers, the anti-peritoneal effect of the antioxidant N-acetylcysteine (Reference 1) There are reports on the combined preventive effect (reference 2) of three antioxidants (β-carotene, vitamin C, vitamin E) and mineral (magnesium) (peritoneal administration, subcutaneous administration, oral administration). Furthermore, there is hyperbaric oxygen therapy for the purpose of improving blood circulation in the inner ear and increasing the partial pressure of oxygen (Reference Document 3). However, none of these existing therapies are limited, and none of them can achieve clinically satisfactory results, and if recovery is not expected, a hearing aid will be used. Ineffective for hearing loss. At the research level, introduction of effective genes using viral vectors (Reference 4) and introduction of neurotrophic factors such as BDNF / GDNF directly into the inner ear (References 5 and 6) have been attempted at the animal level. These methods are all introduced directly into the inner ear, and there are high hurdles toward clinical development. Therefore, once it becomes deaf, it is difficult to treat and there is a need for preventive measures to prevent deafness. However, there are no hearing loss preventives currently used clinically, and the current situation is that they rely on physical shielding such as earplugs. In this study, we focused on the increased expression of Ednrb in the cochlear cap membrane in Ednrb-Tg mice, and showed that these mice are resistant to hearing loss. The promoter used in this study (DbH promoter) is expressed in peripheral nerves and pigment cells derived from the neural crest (Refs. 7 and 8), and therefore, the auditory nerve (peripheral nerve), which is very important for the control of hearing in the inner ear, and A DbH promoter that can act on both vascular intermediate cells (pigment cells) is optimal. In fact, it has been reported that DbH is expressed in the cap membrane in the cochlea (Reference 9), which is consistent with the present data. Furthermore, it was found that a compound that increases the expression of Ednrb was ingested as an aqueous solution, and that this compound similarly exhibited increased expression of Ednrb in the cochlear cap membrane and resistance to noise-induced hearing loss and age-related hearing loss. This compound is a kind of flavonoid and has an anti-inflammatory effect, and when it is ingested by mice as drinking water, it has been reported that IL-6 production by LPS in the cerebellum is suppressed (Reference 10), and even when administered orally, it is sufficiently biological. It was thought that it was effective. Ingestion of drinking water containing a compound that increases the expression of Ednrb causes the same expression pattern as when the gene is forcibly expressed, so the expression of Ednrb is actually enhanced in the inner ear and functions. In addition, it is groundbreaking to be resistant to hearing loss, and it is clinically possible as a method that can be easily applied to the inner ear for hearing loss for which no prophylactic drugs existed. It can be said that this is a very useful method.

<参考文献>
1.Bielefeld EC et al., Noise Health 7(29):24-30 (2005)
2.Le Prell CG et al., Free Radic Biol Med 42(9):1454-1463 (2007)
3.Conlin AE et al., Arch Otolaryngol Head Neck Surg 133(6):573-581 (2007)
4.Izumikawa M et al., Nat Med 11(3):271-276 (2005)
5.Altschuler RA et al., Ann N Y Acad Sci 884:305-311 (1999)
6.Maruyama J et al., Neurobiol Dis 29(1):14-21 (2008)
7.Kapur RP et al., Development 116(1):167-175 (1992)
8.Kapur RP et al., Neuron 7(5):717-727 (1991)
9.Trigueiros-Cunha N et al., Eur J Neurosci 18(9):2653-2662 (2003)
10.Jang S et al., Proc Natl Acad Sci U S A 105(21):7534-7539 (2008)
<References>
1. Bielefeld EC et al., Noise Health 7 (29): 24-30 (2005)
2. Le Prell CG et al., Free Radic Biol Med 42 (9): 1454-1463 (2007)
3. Conlin AE et al., Arch Otolaryngol Head Neck Surg 133 (6): 573-581 (2007)
4). Izumikawa M et al., Nat Med 11 (3): 271-276 (2005)
5. Altschuler RA et al., Ann NY Acad Sci 884: 305-311 (1999)
6). Maruyama J et al., Neurobiol Dis 29 (1): 14-21 (2008)
7). Kapur RP et al., Development 116 (1): 167-175 (1992)
8). Kapur RP et al., Neuron 7 (5): 717-727 (1991)
9. Trigueiros-Cunha N et al., Eur J Neurosci 18 (9): 2653-2662 (2003)
10. Jang S et al., Proc Natl Acad Sci USA 105 (21): 7534-7539 (2008)

本発明の予防・治療剤は加齢性難聴若しくは騒音性難聴又は耳鳴りの予防又は治療に有効である。利用形態としては例えば、加齢性難聴の予防として、高齢者による日常的/継続的な利用(摂取、投与など)が想定される。また、騒音性難聴の予防に関しては、騒音下での作業従事者やミュージックプレーヤーなどの利用者による日常的/継続的な利用の他、大音響環境下に置かれる者(例えばコンサート出席者)による単発的な(事前の)利用が想定される。   The prophylactic / therapeutic agent of the present invention is effective in preventing or treating age-related hearing loss, noise-induced hearing loss, or tinnitus. As a usage form, for example, daily / continuous use (ingestion, administration, etc.) by an elderly person is assumed as prevention of age-related deafness. In addition, for prevention of noise-induced hearing loss, in addition to daily / continuous use by noise workers, music players, and other users, those who are placed in a loud acoustic environment (eg concert attendees) One-time (advanced) usage is assumed.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

Claims (2)

エンドセリン受容体Bの発現を上昇させる物質であるルテオリンを含む、加齢性難聴若しくは騒音性難聴又は耳鳴りの予防・治療用組成物(但し、飲食品を除く)A composition for preventing / treating age-related hearing loss or noise-induced hearing loss or tinnitus, comprising luteolin, a substance that increases the expression of endothelin receptor B (excluding food and drink) . 薬である、請求項に記載の予防・治療用組成物。 It is pharmaceuticals, preventive or therapeutic composition of claim 1.
JP2009185334A 2009-08-08 2009-08-08 Preventive or therapeutic agent for hearing loss or tinnitus Active JP5548839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185334A JP5548839B2 (en) 2009-08-08 2009-08-08 Preventive or therapeutic agent for hearing loss or tinnitus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185334A JP5548839B2 (en) 2009-08-08 2009-08-08 Preventive or therapeutic agent for hearing loss or tinnitus

Publications (2)

Publication Number Publication Date
JP2011037738A JP2011037738A (en) 2011-02-24
JP5548839B2 true JP5548839B2 (en) 2014-07-16

Family

ID=43765924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185334A Active JP5548839B2 (en) 2009-08-08 2009-08-08 Preventive or therapeutic agent for hearing loss or tinnitus

Country Status (1)

Country Link
JP (1) JP5548839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751322A (en) * 2019-10-12 2020-02-04 广西大学 Litchi shoot control and flower promotion management method based on big data analysis and prediction

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610846B2 (en) * 2010-05-26 2014-10-22 株式会社ノエビア Anti-aging agent, antioxidant, anti-inflammatory agent, whitening agent, moisturizer, external preparation for skin and functional oral composition
KR101720054B1 (en) 2011-03-10 2017-03-27 경희대학교 산학협력단 Composition for preventing or treating hearing loss
CN102911180B (en) * 2011-06-30 2015-10-14 四川大学 8H-chromene [2,3-f]-4-ketone derivatives and its production and use
JP2013159572A (en) * 2012-02-03 2013-08-19 Atsuyoshi Murakami Composition for hearing loss prevention
CN102861154B (en) * 2012-09-25 2013-11-20 康军阳 Traditional Chinese medicine for treating nerve deafness
CN103134897B (en) * 2013-02-02 2014-12-24 四川逢春制药有限公司 Rhiaoma iridis tectori capsule detecting method
JP6263349B2 (en) * 2013-08-27 2018-01-17 国立大学法人広島大学 Antiallergic substances and method for producing the same
CN103599029B (en) * 2013-12-02 2015-11-25 河南省济源市济世药业有限公司 Anti-inflammation compositions, talcum powder and preparation method thereof
JP5728105B1 (en) * 2014-03-04 2015-06-03 株式会社エヌ・ティー・エイチ New component of henna flower
CN105111252B (en) * 2015-09-15 2017-12-22 中国科学院昆明植物研究所 Eneyne glycoside esters compound and its pharmaceutical composition and application
CN109310132B (en) * 2016-06-24 2023-02-28 三得利控股株式会社 Composition for inhibiting browning and use thereof
KR102665306B1 (en) * 2016-10-19 2024-05-10 주식회사 엘지생활건강 Composition for prevention or treatment of oral disease comprising forsythoside B
KR20190002366A (en) * 2017-06-29 2019-01-08 동국제약 주식회사 Pharmaceutical composition for preventing or treating comprising avocado oil as an active ingredient
KR102099363B1 (en) * 2017-09-08 2020-04-10 동국제약 주식회사 Pharmaceutical composition for preventing or treating comprising avocado oil fraction as an active ingredient
JP7044294B2 (en) * 2017-09-21 2022-03-30 学校法人慶應義塾 Acoustic exposure device for the production of acoustic trauma deafness model animals
JP6999896B2 (en) 2017-09-21 2022-01-19 学校法人慶應義塾 How to make an acoustic trauma model animal and the acoustic trauma model animal produced by it
JP7329784B2 (en) 2017-12-27 2023-08-21 国立大学法人東北大学 Hearing loss preventive or ameliorating agent
US20220133832A1 (en) * 2019-02-12 2022-05-05 Ajou University Industry-Academic Cooperation Foundation Composition for preventing or treating tinnitus comprising vitis vinifera leaf extract as active ingredient
KR102175201B1 (en) * 2019-09-06 2020-11-06 (주)아이엠디팜 Composition for preventing or treating sensorineural hearing impairment comprising Vaccinium myrtillus extract
JP7454209B2 (en) * 2020-01-06 2024-03-22 日本メナード化粧品株式会社 Capillary dilation inhibitor
KR102323400B1 (en) * 2021-03-26 2021-11-09 (주)아이엠디팜 Combined Composition for preventing or treating hearing loss comprising Sarpogrelate and Vaccinium myrtillus extract
CN113456626B (en) * 2021-08-16 2022-05-06 吉林大学 Xanthine oxidase inhibitor and screening method and application thereof
EP4431095A1 (en) * 2021-11-08 2024-09-18 Mitsubishi Gas Chemical Company, Inc. Ergothioneine-containing composition for suppressing or preventing inner ear hearing loss
WO2024022173A1 (en) * 2022-07-29 2024-02-01 天士力医药集团股份有限公司 Use of andrographolide and composition thereof in preparation of drug for treating hearing impairment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112730B2 (en) * 1999-02-22 2008-07-02 オリザ油化株式会社 Antibacterial agent for oral cavity
WO2006135084A1 (en) * 2005-06-14 2006-12-21 Kurume University Prophylactic or therapeutic agent for steatohepatitis or fatty liver
JP2007314472A (en) * 2006-05-26 2007-12-06 Oriza Yuka Kk Body odor inhibiting agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751322A (en) * 2019-10-12 2020-02-04 广西大学 Litchi shoot control and flower promotion management method based on big data analysis and prediction

Also Published As

Publication number Publication date
JP2011037738A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5548839B2 (en) Preventive or therapeutic agent for hearing loss or tinnitus
Cao et al. Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s disease via regulating miR-7/NLRP3 pathway
Tian et al. Emodin attenuates bleomycin-induced pulmonary fibrosis via anti-inflammatory and anti-oxidative activities in rats
Ye et al. Molecular mechanism of tumor necrosis factor-α modulation of intestinal epithelial tight junction barrier
Fengyang et al. Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-κB and MAPK signaling pathways in LPS-stimulated RAW264. 7 cells
Cho et al. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia
AU2015254309B2 (en) Muscle atrophy inhibitor containing quercetin glycoside
Kalinchuk et al. Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake–active basal forebrain neurons
KR101756417B1 (en) Pharmaceutical compositions comprising gold compound for preventing or treating fibrosis or cirrhosis of the liver
Kusakari et al. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice
Wu et al. SIRT1 activation by minocycline on regulation of microglial polarization homeostasis
Go et al. Piperlongumine activates Sirtuin1 and improves cognitive function in a murine model of Alzheimer’s disease
Gao et al. Daphnetin ameliorates Aβ pathogenesis via STAT3/GFAP signaling in an APP/PS1 double-transgenic mouse model of Alzheimer’s disease
Wu et al. Third‐Degree Hindpaw Burn Injury Induced Apoptosis of Lumbar Spinal Cord Ventral Horn Motor Neurons and Sciatic Nerve and Muscle Atrophy in Rats
Kim et al. Effect of Hibiscus syriacus Linnaeus extract and its active constituent, saponarin, in animal models of stress-induced sleep disturbances and pentobarbital-induced sleep
Jiang et al. PI3K/AKT pathway mediates the antidepressant-and anxiolytic-like roles of hydrogen sulfide in streptozotocin-induced diabetic rats via promoting hippocampal neurogenesis
Ishida et al. Mizagliflozin, a selective SGLT1 inhibitor, improves vascular cognitive impairment in a mouse model of small vessel disease
Cheng et al. Transcranial direct-current stimulation protects against cerebral ischemia-reperfusion injury through regulating Cezanne-dependent signaling
Tang et al. Aerobic exercise reverses the NF-κB/NLRP3 inflammasome/5-HT pathway by upregulating irisin to alleviate post-stroke depression
Park et al. Chronic high dose of captopril induces depressive-like behaviors in mice: possible mechanism of regulatory T cell in depression
Yuan et al. Xiaoyaosan inhibits neuronal apoptosis by regulating the miR-200/NR3C1 signaling in the prefrontal cortex of chronically stressed rats
Rao et al. Tetramethylpyrazine and Astragaloside IV have synergistic effects against spinal cord injury-induced neuropathic pain via the OIP5-AS1/miR-34a/Sirt1/NF-κB axis
Kurasawa et al. Loss of synaptic ribbons is an early cause in ROS-induced acquired sensorineural hearing loss
US20220233443A1 (en) Production and use of extracellular vesicle-contained enampt
Lin et al. Qi-Wei-Du-Qi-Wan and its major constituents exert an anti-asthmatic effect by inhibiting mast cell degranulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5548839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250