JP5545802B2 - Conductive pattern manufacturing method - Google Patents

Conductive pattern manufacturing method Download PDF

Info

Publication number
JP5545802B2
JP5545802B2 JP2009137985A JP2009137985A JP5545802B2 JP 5545802 B2 JP5545802 B2 JP 5545802B2 JP 2009137985 A JP2009137985 A JP 2009137985A JP 2009137985 A JP2009137985 A JP 2009137985A JP 5545802 B2 JP5545802 B2 JP 5545802B2
Authority
JP
Japan
Prior art keywords
ink
receiving layer
resin
conductive
ink receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009137985A
Other languages
Japanese (ja)
Other versions
JP2010284801A (en
Inventor
昌幸 松原
繁二 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Chemical Co Ltd
Original Assignee
Union Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Chemical Co Ltd filed Critical Union Chemical Co Ltd
Priority to JP2009137985A priority Critical patent/JP5545802B2/en
Publication of JP2010284801A publication Critical patent/JP2010284801A/en
Application granted granted Critical
Publication of JP5545802B2 publication Critical patent/JP5545802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、焼成にて導電パターンを製造するための導電パターン製造方法に関する。 The present invention relates to a conductive pattern manufacturing method for manufacturing a conductive pattern by firing.

従来から、電子回路や集積回路などの配線として金属の導電パターンを製造するために、フォトリソグラフィー法が用いられている。これは、基板に金属の導電層を形成して、感光剤であるいわゆるレジストを塗布して、導電パターンのマスクを使用して露光現像して、必要のない導電層部分を除去する方法である。この方法では、形成に要する装置や工程が多く、生産性が低くなることもあり、製造費用がかかるなどの問題があった。   Conventionally, a photolithography method has been used to manufacture a metal conductive pattern as a wiring of an electronic circuit, an integrated circuit, or the like. This is a method in which a conductive layer made of metal is formed on a substrate, a so-called resist as a photosensitizer is applied, exposed and developed using a mask of a conductive pattern, and unnecessary conductive layer portions are removed. . In this method, there are many devices and processes required for formation, productivity may be lowered, and manufacturing costs are increased.

そこで、特開2002−134878号公報のように、マスクを使用せずに、基板に直接、導電性インクジェットインクを用いてインクジェット印刷して、焼成にて導電パターンを製造する方法や、特許第4042497号公報のように、マスクを使用せずに、基板に微粒子を含有したインク受容層を形成して、導電性インクジェットインクを用いてインクジェット印刷して、焼成にて導電パターンを製造する方法が開発されている。   Therefore, as disclosed in Japanese Patent Application Laid-Open No. 2002-134878, a method of manufacturing a conductive pattern by performing ink jet printing directly on a substrate using a conductive ink jet ink without using a mask, and Japanese Patent No. 4042497. Developed a method to produce a conductive pattern by firing by forming an ink receiving layer containing fine particles on a substrate without using a mask, performing inkjet printing using a conductive inkjet ink, and firing Has been.

特開2002−134878号公報JP 2002-134878 A 特許第4042497号公報Japanese Patent No. 4042497

基板に直接、インクジェット印刷するとにじむことがある。にじむことなく設定した導電パターンを製造するため、基板にインク受容層を形成する方法があり、上記特許第4042497号公報のようなインク受容層が開発されているが、しかしながら、製造された導電パターンと基板との密着性が良いものではなかった。   When ink jet printing is directly performed on a substrate, it may be blurred. In order to manufacture a conductive pattern set without bleeding, there is a method of forming an ink receiving layer on a substrate, and an ink receiving layer such as the above-mentioned Japanese Patent No. 4042497 has been developed, however, the manufactured conductive pattern The adhesion between the substrate and the substrate was not good.

本発明が解決しようとする課題は、導電性インクジェットインクを使用してインクジェット印刷してもにじむことがなく、焼成にて製造された導電パターンと基板との密着性が良いものを提供することである。   The problem to be solved by the present invention is to provide a film having good adhesion between a conductive pattern produced by baking and a substrate without being blurred even when inkjet printing is performed using a conductive inkjet ink. is there.

これらの課題を解決するために、微粒子を含まず、膨潤タイプのインク受容層にてインク溶媒を吸収してにじみを抑えて、かつ、インク受容層の樹脂中のシリコンによって、基板との密着性を良くしたものである。   In order to solve these problems, the ink solvent is absorbed by the swelling type ink receiving layer without containing fine particles and the bleeding is suppressed, and the silicon in the resin of the ink receiving layer adheres to the substrate. It is what improved.

本発明は、微粒子を含まず、少なくともアクリルシリコン樹脂とインク溶媒吸収樹脂からなり、これらの樹脂は、どちらの樹脂においても一方の樹脂だけで25℃〜150℃の乾燥にて膜化でき、互いに相溶できるものであり、シリコン含有量が固形分比で0.1重量%〜0.5重量%であるインク受容層塗工液をポリイミド基板に塗布して、25℃〜150℃の乾燥にてインク受容層を単層で形成して、有機保護コロイドを有する導電性金属ナノ粒子からなる導電性インクジェットインクを用いて印刷して、200℃以上の焼成にてアクリルシリコン樹脂やインク溶媒吸収樹脂の有機成分が先に揮散して、続いて金属ナノ粒子が焼結して、それとともにシリコンが金属とポリイミド基板との密着性を良くする導電パターンとなることを特徴とする導電パターン製造方法である。 The present invention does not contain fine particles, and is composed of at least an acrylic silicon resin and an ink solvent absorption resin. These resins can be formed into a film by drying at 25 ° C. to 150 ° C. with only one of the resins. An ink receptive layer coating liquid having a silicon content of 0.1 wt% to 0.5 wt% in a solid content ratio is applied to a polyimide substrate and dried at 25 ° C. to 150 ° C. An ink receiving layer is formed as a single layer, printed using conductive ink jet ink composed of conductive metal nanoparticles having an organic protective colloid, and baked at 200 ° C. or higher, an acrylic silicon resin or an ink solvent absorbing resin features of the organic component is volatilized first, followed by the metal nanoparticles are sintered, it together with the silicon is conductive pattern to improve the adhesion between the metal and the polyimide substrate A conductive pattern producing method of.

本発明により、導電性インクジェットインクを使用してインクジェット印刷してもにじむことがなく、焼成にて製造された導電パターンと基板との密着性が良いものを提供することができるようになった。   According to the present invention, it is possible to provide an ink having good adhesion between a conductive pattern produced by baking and a substrate without being blurred even when ink-jet printing is performed using a conductive ink-jet ink.

基板にインク受容層を形成した断面を示した説明図である。It is explanatory drawing which showed the cross section which formed the ink receiving layer in the board | substrate. 図1にインクジェット印刷した印刷部を示した説明図である。It is explanatory drawing which showed the printing part which carried out the inkjet printing in FIG. 図2を焼成にて形成した導電部を示した説明図である。It is explanatory drawing which showed the electroconductive part formed by baking FIG.

本発明のインク受容層塗工液は、基板に塗布して、25℃〜150℃の乾燥にてインク受容層を単層で形成するものである。微粒子を含まず、膨潤タイプのインク受容層にてインク溶媒を吸収してにじみを抑えて、かつ、インク受容層の樹脂中のシリコンによって、基板との密着性を良くしたものである。   The ink receiving layer coating liquid of the present invention is applied to a substrate and dried at 25 ° C. to 150 ° C. to form an ink receiving layer as a single layer. It does not contain fine particles, absorbs the ink solvent by the swelling type ink receiving layer, suppresses bleeding, and improves the adhesion to the substrate by silicon in the resin of the ink receiving layer.

基板は、導電パターンの目的にあったものであれば良いが、200℃以上の焼成にも耐えうる必要があり、材料としては、ポリイミドが良い。ポリイミドのような耐熱性のある樹脂であれば、基板をフィルム状にすることもできる。フィルム状であれば、いわゆるコーターにてインク受容層塗工液を塗布することができる。 The substrate is not particularly limited as long as it meets the purpose of the conductive pattern. However, the substrate needs to be able to withstand baking at 200 ° C. or higher, and the material is preferably polyimide . The substrate can be formed into a film as long as it is a heat-resistant resin such as polyimide. In the case of a film, the ink receiving layer coating solution can be applied with a so-called coater.

インク溶媒を吸収する膨潤タイプのインク受容層であり、少なくともアクリルシリコン樹脂とインク溶媒吸収樹脂からなり、これらの樹脂は、どちらの樹脂においても一方の樹脂だけで25℃〜150℃の乾燥にて膜化でき、互いに相溶できる必要がある。   It is a swelling type ink receiving layer that absorbs the ink solvent, and is composed of at least an acrylic silicon resin and an ink solvent absorbing resin, and these resins can be dried at 25 ° C. to 150 ° C. with only one resin. It must be filmable and compatible with each other.

膜化が25℃〜150℃の乾燥であるのは、これより低いと膜化ができにくいことがあり、これより高いと樹脂の熱分解が始まり、インク溶媒の吸収が悪くなることがある。   The film formation is drying at 25 ° C. to 150 ° C. If the temperature is lower than this, the film formation may be difficult.

互いに相溶して基板に塗布して膜化すると、一方の樹脂だけで膜化するので、アクリルシリコン樹脂のネットワークとインク溶媒吸収樹脂のネットワークとが複雑に絡まり合って膜化されたインク受容層となる。 When they are mixed with each other and applied to a substrate to form a film, only one resin forms a film, so the ink-receiving layer formed by intricately intertwining the acrylic silicon resin network and the ink solvent absorbing resin network It becomes.

ここで、アクリルシリコン樹脂のネットワークは主にインク受容層を維持する骨格となり、インク溶媒吸収樹脂のネットワークは主に膨潤してインク溶媒を吸収する部分となると考えられる。これにより、微粒子を含まない膨潤タイプのインク受容層であっても、膨潤してもインク受容層の厚みが大きく膨らむことがなく、インク溶媒を吸収することができるものである。また、複雑に絡まり合っているため、どこに印刷してもインク溶媒がほぼ均等にインク受容層に吸収されることになり、微粒子を含有したインク受容層より、にじみが生じにくい。 Here, it is considered that the network of the acrylic silicon resin mainly serves as a skeleton that maintains the ink receiving layer, and the network of the ink solvent absorbing resin mainly serves as a portion that swells and absorbs the ink solvent. As a result, even if the swelling type ink receiving layer does not contain fine particles, the ink receiving layer does not swell greatly even if it swells, and the ink solvent can be absorbed. In addition, since the ink is entangled in a complicated manner, the ink solvent is absorbed almost uniformly by the ink receiving layer wherever printing is performed, and bleeding is less likely to occur than the ink receiving layer containing fine particles.

インク溶媒吸収樹脂が少ないと、インク溶媒の吸収が悪くなりにじんだりする不具合が起こりやすくなる。固形分比で、インク溶媒吸収樹脂は50重量%〜95重量%が好ましく、60重量%〜90重量%がより好ましい。また、塗工液には各種添加剤を含んでもよい。   When the amount of the ink solvent absorbing resin is small, there is a tendency that the ink solvent is poorly absorbed and bleeds. In the solid content ratio, the ink solvent absorbing resin is preferably 50% by weight to 95% by weight, and more preferably 60% by weight to 90% by weight. The coating liquid may contain various additives.

インク溶媒吸収樹脂としては、導電性インクジェットインクの溶媒を吸収することができ、アクリルシリコン樹脂と互いに相溶して基板に塗工でき、25℃〜150℃の乾燥にて膜化することができるものであればよい。例えば、ポリビニルアルコール、ポリビニルピロリドン、メラミン樹脂、尿素樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、無水マレイン酸樹脂、スチレンブタジエン樹脂などで、そのような性質を有するものが使用できる。   As the ink solvent absorbing resin, it can absorb the solvent of the conductive ink-jet ink, can be compatible with the acrylic silicon resin and applied to the substrate, and can be formed into a film by drying at 25 ° C. to 150 ° C. Anything is acceptable. For example, polyvinyl alcohol, polyvinyl pyrrolidone, melamine resin, urea resin, polyurethane resin, unsaturated polyester resin, maleic anhydride resin, styrene butadiene resin and the like having such properties can be used.

インクに用いる溶媒が水である場合は、ポリビニルアルコールが好ましく、有機溶剤である場合はポリウレタン樹脂が好ましい。   When the solvent used for the ink is water, polyvinyl alcohol is preferable, and when the solvent is an organic solvent, a polyurethane resin is preferable.

シリコンは、微粒子ではなく、アクリル樹脂にシリコンを変性させたアクリルシリコン樹脂を使用している。このようなアクリル樹脂に変性させたシリコンにより、インク溶媒吸収樹脂と互いに相溶してポリイミド基板に塗布するので、シリコンをインク受容層に偏りなく分布させることになる。これを焼成することで、アクリルシリコン樹脂やインク溶媒吸収樹脂の有機成分が先に揮散して、続いて金属ナノ粒子が焼結して、それとともにシリコンが金属とポリイミド基板との密着性を良くしているものである。 Silicon is not a fine particle but an acrylic silicon resin obtained by modifying an acrylic resin with silicon. Since the silicon modified into such an acrylic resin is compatible with the ink solvent absorbing resin and applied to the polyimide substrate , the silicon is distributed evenly in the ink receiving layer. By baking this, the organic components of the acrylic silicon resin and ink solvent absorbing resin are volatilized first, followed by the sintering of the metal nanoparticles, and the silicon improves the adhesion between the metal and the polyimide substrate. It is what you are doing.

シリコン含有量は、固形分比で0.1重量%〜5.0重量%であるのが好ましい。これより少なくても多くても、密着性を良くするような効果は見られない。少ない場合は、シリコンが金属と基板との密着性を良くすることができていないが、多い場合には、シリコン同士の密着が強くなって、金属と基板との密着を良くする効果が得られないのではないかと推測している。シリコン含有量は、固形分比で0.3重量%〜0.5重量%であるのがより好ましい。   The silicon content is preferably 0.1% by weight to 5.0% by weight in terms of solid content. Even if less or more than this, the effect which improves adhesiveness is not seen. When the amount is small, silicon cannot improve the adhesion between the metal and the substrate, but when the amount is large, the adhesion between the silicon becomes strong and the effect of improving the adhesion between the metal and the substrate is obtained. I guess it is not. The silicon content is more preferably 0.3% by weight to 0.5% by weight in terms of solid content.

この受容層塗工液を用いた導電パターン製造方法を、図を用いて説明する。   A conductive pattern manufacturing method using this receiving layer coating solution will be described with reference to the drawings.

図1は、基板1にインク受容層2を形成した断面を示した説明図である。基板1にインク受容層塗工液を塗布して、25℃〜150℃の乾燥にて膜化して、インク受容層2を単層で形成したものである。   FIG. 1 is an explanatory view showing a cross section in which an ink receiving layer 2 is formed on a substrate 1. The ink receiving layer coating liquid is applied to the substrate 1 and formed into a film by drying at 25 ° C. to 150 ° C. to form the ink receiving layer 2 as a single layer.

図2は、図1にインクジェット印刷した印刷部3を示した説明図である。図1のインク受容層2に導電性インクジェットインクを用いてインクジェット印刷したものである。   FIG. 2 is an explanatory diagram showing the printing unit 3 that has been ink-jet printed in FIG. The ink receiving layer 2 in FIG. 1 is ink-jet printed using a conductive ink-jet ink.

導電性インクジェットインクは、有機保護コロイドを有する導電性金属ナノ粒子からなるものが一般的である。有機保護コロイドを有することでインク溶媒に分散させることができ、インクジェット印刷ができる。   The conductive inkjet ink is generally made of conductive metal nanoparticles having an organic protective colloid. By having an organic protective colloid, it can be dispersed in an ink solvent, and ink jet printing can be performed.

インクジェット印刷の吐出方式としては、ピエゾ圧電素子を用いて圧力によってヘッドノズルからインクを吐出させる方式であるピエゾ式が適している。インクに瞬時に熱を加えてヘッドノズルからインクを吐出させるサーマル式では、熱に対してインク自体や有機保護コロイドなどが不安定になって、ドット欠けや飛行曲がり、にじみやハジキ、また、焼成にて製造した導電パターンにおいて抵抗値のバラツキが大きくなるなどの不具合が生じることがある。   As a discharge method of ink jet printing, a piezo method that discharges ink from a head nozzle by pressure using a piezoelectric element is suitable. In the thermal method, where heat is instantaneously applied to the ink and ink is ejected from the head nozzle, the ink itself and the organic protective colloid become unstable with respect to the heat, resulting in dot chipping, flying bends, bleeding, repelling, and firing. In some cases, the conductive pattern manufactured by the method has a problem such as a large variation in resistance value.

金属ナノ粒子の平均粒子径は100nm以下であり、10nm程度のものが適している。その金属ナノ粒子の周囲に有機保護コロイドを有している。そのため、印刷されたインク受容層2の印刷部3において、インク溶媒はインク受容層2に吸収されるが、金属ナノ粒子は受容層2の表面に残ることになる。また、インク溶媒が吸収されても、有機保護コロイドがあることにより、にじむことなく積み上がり厚さを出していると推測している。   The average particle diameter of the metal nanoparticles is 100 nm or less, and those having a size of about 10 nm are suitable. It has an organic protective colloid around the metal nanoparticles. Therefore, in the printing part 3 of the printed ink receiving layer 2, the ink solvent is absorbed by the ink receiving layer 2, but the metal nanoparticles remain on the surface of the receiving layer 2. Further, even if the ink solvent is absorbed, it is assumed that the organic protective colloid causes the accumulated thickness without bleeding.

図3は、図2を焼成にて形成した導電部4を示した説明図である。200℃以上の焼成を行うものである。図は断面であるので、図では導電部4は隣同士で接していないが、図の上から見た平面であれば、導電部4は回路のように導電パターンになっている。   FIG. 3 is an explanatory view showing the conductive portion 4 formed by firing FIG. Firing at 200 ° C. or higher is performed. Since the drawing is a cross section, the conductive portions 4 are not adjacent to each other in the drawing, but the conductive portion 4 has a conductive pattern like a circuit as long as it is a plane viewed from above.

焼成による温度上昇に伴い、有機成分が先に揮散して、続いて金属ナノ粒子が焼結して導電パターンとなっている。そのため、インク受容層2の揮散とともに、有機保護コロイドの揮散も始まり、印刷部3のない部分から直接インク受容層2が揮散するだけでなく、印刷部3の下にあるインク受容層2も金属ナノ粒子の隙間を通って揮散していると考えられる。   As the temperature rises due to firing, the organic components are volatilized first, and then the metal nanoparticles are sintered to form a conductive pattern. Therefore, the volatilization of the organic protective colloid starts with the volatilization of the ink receiving layer 2, and not only the ink receiving layer 2 is volatilized directly from the portion without the printing unit 3, but the ink receiving layer 2 under the printing unit 3 is also a metal It is thought that it is volatilized through the gaps between the nanoparticles.

このようにして、インク受容層塗工液を用いた導電パターンが製造される。   In this manner, a conductive pattern using the ink receiving layer coating solution is manufactured.

インク受容層塗工液としては、微粒子を含まず、次のようなアクリルシリコン樹脂とインク溶媒吸収樹脂からなり、固形分比で、アクリルシリコン樹脂は40重量%、インク溶媒吸収樹脂は60重量%にして、溶媒に水を用いて相溶させて、インク受容層塗工液を作製した。このインク受容層塗工液をポリイミド基板に塗布して、120℃の乾燥にて膜化して、インク受容層を単層で形成した。   The ink receiving layer coating liquid does not contain fine particles and is composed of the following acrylic silicon resin and ink solvent absorbing resin. The solid content ratio is 40% by weight for acrylic silicon resin and 60% by weight for ink solvent absorbing resin. Then, water was used as a solvent for the solvent to prepare an ink-receiving layer coating solution. This ink receiving layer coating liquid was applied to a polyimide substrate and formed into a film by drying at 120 ° C. to form an ink receiving layer as a single layer.

アクリルシリコン樹脂として、ダイセル化学工業株式会社製「アクアブリッド908」を用いた。アクリルシリコン樹脂のシリコン比は1%であるので、シリコン含有量が固形分比で0.4重量%となる。インク溶媒吸収樹脂として、株式会社クラレ製のポリビニルアルコール「PVA−220E」を用いた。   “Aquabrid 908” manufactured by Daicel Chemical Industries, Ltd. was used as the acrylic silicon resin. Since the silicon ratio of the acrylic silicon resin is 1%, the silicon content is 0.4% by weight in terms of solid content. As the ink solvent absorbing resin, polyvinyl alcohol “PVA-220E” manufactured by Kuraray Co., Ltd. was used.

この実施例におけるアクリルシリコン樹脂とインク溶媒吸収樹脂は、どちらの樹脂においても一方の樹脂だけを溶媒に水を用いて希釈して、ポリイミド基板に塗布して、120℃の乾燥にて膜化できた。また、溶媒に水を用いてこれらを混合させても、層分離などすることなく、相溶させることができた。   The acrylic silicone resin and ink solvent absorbing resin in this example can be formed into a film by diluting only one resin with water as a solvent and applying it to a polyimide substrate and drying at 120 ° C. It was. Moreover, even if these were mixed using water as a solvent, it was possible to achieve compatibility without layer separation.

導電性インクジェットインクとして、水系のもの、つまり、水に分散できるような有機保護コロイドを有する導電性金属ナノ粒子を、溶媒としての水に分散させたものを用いた。この水系導電性インクジェットインクを用いてピエゾ式インクジェットプリンタにて、インク受容層に次のような評価パターンを印刷した。評価パターンは、1辺がほぼ100μmの正方形を100μm間隔で10個×10個の点状のパターンである。   As the conductive inkjet ink, an aqueous ink, that is, a conductive metal nanoparticle having an organic protective colloid that can be dispersed in water is dispersed in water as a solvent. The following evaluation pattern was printed on the ink receiving layer with a piezo ink jet printer using this aqueous conductive ink jet ink. The evaluation pattern is a 10 × 10 dot pattern with a square of approximately 100 μm on a side at 100 μm intervals.

印刷性の評価として、にじみやハジキがあるかないかを光学顕微鏡で拡大観察した。評価結果としては、にじみやハジキがなく、1辺がほぼ100μmの正方形になっていることを確認して、OKとした。   As an evaluation of printability, an optical microscope was used to observe whether there was bleeding or repellency. As an evaluation result, it was confirmed that there was no blur or repellency, and that one side was a square of about 100 μm, and the result was OK.

密着性の評価として、インク受容層に評価パターンを印刷したものを、300℃で焼成して、インク受容層の樹脂を揮散させて、基板に導電パターン(評価パターン)を製造した。この評価パターンにセロテープ(登録商標)を貼着して、JISK5600の付着性試験に準じて引き剥がして、1辺がほぼ100μmの正方形が剥がれた数を測定した。基板から浮き上がったものも剥がれたとした。評価結果としては、剥がれた数は20個以下であり、OKとした。   As an evaluation of adhesion, the ink receiving layer printed with the evaluation pattern was baked at 300 ° C. to volatilize the resin of the ink receiving layer, and a conductive pattern (evaluation pattern) was produced on the substrate. Cellotape (registered trademark) was attached to this evaluation pattern and peeled off in accordance with the adhesion test of JISK5600, and the number of squares having a side of approximately 100 μm was measured. It was also assumed that what was lifted off the substrate was peeled off. As an evaluation result, the number of peeling was 20 or less, and it was set as OK.

実施例1とはインク溶媒吸収樹脂が異なり、他は実施例1と同様にしてインク受容層塗工液を作製した。インク溶媒吸収樹脂として、株式会社村山化学研究所製のポリウレタン樹脂「PUE930BS」を用いた。このインク受容層塗工液をポリイミド基板に塗布して、120℃の乾燥にて膜化して、インク受容層を単層で形成した。   An ink-receptive layer coating solution was prepared in the same manner as in Example 1 except that the ink solvent-absorbing resin was different from that in Example 1. A polyurethane resin “PUE930BS” manufactured by Murayama Chemical Laboratory Co., Ltd. was used as the ink solvent absorbing resin. This ink receiving layer coating liquid was applied to a polyimide substrate and formed into a film by drying at 120 ° C. to form an ink receiving layer as a single layer.

この実施例におけるアクリルシリコン樹脂とインク溶媒吸収樹脂は、どちらの樹脂においても一方の樹脂だけを溶媒に水を用いて希釈して、ポリイミド基板に塗布して、120℃の乾燥にて膜化できた。また、溶媒に水を用いてこれらを混合させても、層分離などすることなく、相溶させることができた。   The acrylic silicone resin and ink solvent absorbing resin in this example can be formed into a film by diluting only one resin with water as a solvent and applying it to a polyimide substrate and drying at 120 ° C. It was. Moreover, even if these were mixed using water as a solvent, it was possible to achieve compatibility without layer separation.

導電性インクジェットインクとして、溶剤系のもの、つまり、有機溶剤に分散できるような有機保護コロイドを有する導電性金属ナノ粒子を、溶媒としての有機溶剤に分散させたものを用いた。この溶剤系導電性インクジェットインクを用いてピエゾ式インクジェットプリンタにて、インク受容層に次のような評価パターンを印刷した。評価パターンは、1辺がほぼ100μmの正方形を100μm間隔で10個×10個の点状のパターンである。   As the conductive ink-jet ink, a solvent-based ink, that is, a conductive metal nanoparticle having an organic protective colloid that can be dispersed in an organic solvent is dispersed in an organic solvent as a solvent. The following evaluation pattern was printed on the ink receiving layer with a piezo ink jet printer using this solvent-based conductive ink jet ink. The evaluation pattern is a 10 × 10 dot pattern with a square of approximately 100 μm on a side at 100 μm intervals.

印刷性の評価として、にじみやハジキがあるかないかを光学顕微鏡で拡大観察した。評価結果としては、にじみやハジキがなく、1辺がほぼ100μmの正方形になっていることを確認して、OKとした。   As an evaluation of printability, an optical microscope was used to observe whether there was bleeding or repellency. As an evaluation result, it was confirmed that there was no blur or repellency, and that one side was a square of about 100 μm, and the result was OK.

密着性の評価として、インク受容層に評価パターンを印刷したものを、300℃で焼成して、インク受容層の樹脂を揮散させて、基板に導電パターン(評価パターン)を製造した。この評価パターンにセロテープ(登録商標)を貼着して、JISK5600の付着性試験に準じて引き剥がして、1辺がほぼ100μmの正方形が剥がれた数を測定した。基板から浮き上がったものも剥がれたとした。評価結果としては、剥がれた数は20個以下であり、OKとした。   As an evaluation of adhesion, the ink receiving layer printed with the evaluation pattern was baked at 300 ° C. to volatilize the resin of the ink receiving layer, and a conductive pattern (evaluation pattern) was produced on the substrate. Cellotape (registered trademark) was attached to this evaluation pattern and peeled off in accordance with the adhesion test of JISK5600, and the number of squares having a side of approximately 100 μm was measured. It was also assumed that what was lifted off the substrate was peeled off. As an evaluation result, the number of peeling was 20 or less, and it was set as OK.

導電性インクジェットインクは、有機保護コロイドを有する銀ナノ粒子と溶媒からなる。有機保護コロイドを有する銀ナノ粒子は、溶媒をノナノールに変更した大研化学工業株式会社製「NAG−09」を用いた。これに、インクジェットインクとしての適性を出すために、溶媒としてアイソパーEを追加した。有機保護コロイドを有する銀ナノ粒子、ノナノール、アイソパーEの混成比が、27重量%、27重量%、46重量%からなる導電性インクジェットインクである。   The conductive inkjet ink is composed of silver nanoparticles having an organic protective colloid and a solvent. As the silver nanoparticles having an organic protective colloid, “NAG-09” manufactured by Daiken Chemical Industry Co., Ltd., whose solvent was changed to nonanol was used. In addition, Isopar E was added as a solvent in order to obtain suitability as an inkjet ink. This is a conductive inkjet ink in which the mixing ratio of silver nanoparticles having an organic protective colloid, nonanol, and Isopar E is 27% by weight, 27% by weight, and 46% by weight.

この導電性インクジェットインクを用いてピエゾ式インクジェットプリンタにて、これら溶媒を吸収することができる実施例2のインク受容層に次のような評価パターンを印刷した。評価パターンは、1辺がほぼ100μmの正方形を100μm間隔で10個×10個の点状のパターンである。   The following evaluation pattern was printed on the ink receiving layer of Example 2 capable of absorbing these solvents with a piezoelectric inkjet printer using this conductive inkjet ink. The evaluation pattern is a 10 × 10 dot pattern with a square of approximately 100 μm on a side at 100 μm intervals.

印刷性の評価として、にじみやハジキがあるかないかを光学顕微鏡で拡大観察した。評価結果としては、にじみやハジキがなく、1辺がほぼ100μmの正方形になっていることを確認して、OKとした。   As an evaluation of printability, an optical microscope was used to observe whether there was bleeding or repellency. As an evaluation result, it was confirmed that there was no blur or repellency, and that one side was a square of about 100 μm, and the result was OK.

密着性の評価として、インク受容層に評価パターンを印刷したものを、300℃で焼成して、インク受容層の樹脂を揮散させて、基板に導電パターン(評価パターン)を製造した。この評価パターンにセロテープ(登録商標)を貼着して、JISK5600の付着性試験に準じて引き剥がして、1辺がほぼ100μmの正方形が剥がれた数を測定した。基板から浮き上がったものも剥がれたとした。評価結果としては、剥がれた数は20個以下であり、OKとした。   As an evaluation of adhesion, the ink receiving layer printed with the evaluation pattern was baked at 300 ° C. to volatilize the resin of the ink receiving layer, and a conductive pattern (evaluation pattern) was produced on the substrate. Cellotape (registered trademark) was attached to this evaluation pattern and peeled off in accordance with the adhesion test of JISK5600, and the number of squares having a side of approximately 100 μm was measured. It was also assumed that what was lifted off the substrate was peeled off. As an evaluation result, the number of peeling was 20 or less, and it was set as OK.

(比較例1)
実施例1と樹脂の固形分比が異なり、他は実施例1と同様にしてインク受容層塗工液を作製した。固形分比で、アクリルシリコン樹脂は60重量%、インク溶媒吸収樹脂は40重量%にした。アクリルシリコン樹脂のシリコン比は1%であるので、シリコン含有量が固形分比で0.6重量%となる。このインク受容層塗工液をポリイミド基板に塗布して、120℃の乾燥にて膜化して、インク受容層を単層で形成した。
(Comparative Example 1)
An ink receiving layer coating solution was prepared in the same manner as in Example 1 except that the solid content ratio of the resin was different from that in Example 1. The solid content ratio was 60% by weight for the acrylic silicon resin and 40% by weight for the ink solvent absorbing resin. Since the silicon ratio of the acrylic silicon resin is 1%, the silicon content is 0.6% by weight in terms of solid content. This ink receiving layer coating liquid was applied to a polyimide substrate and formed into a film by drying at 120 ° C. to form an ink receiving layer as a single layer.

実施例1と同様に、水系導電性インクジェットインクを用いてインク受容層に評価パターンを印刷して、評価した。印刷性の評価結果としては、にじみが見られ、また、密着性の評価結果としては、剥がれた数は20個より多くあり、OKとしなかった。   In the same manner as in Example 1, an evaluation pattern was printed on the ink receiving layer using a water-based conductive inkjet ink and evaluated. As a result of evaluation of printability, bleeding was observed, and as a result of evaluation of adhesion, the number of peeling was more than 20, and it was not determined as OK.

(比較例2)
実施例2と樹脂の固形分比が異なり、他は実施例2と同様にしてインク受容層塗工液を作製した。固形分比で、アクリルシリコン樹脂は60重量%、インク溶媒吸収樹脂は40重量%にした。アクリルシリコン樹脂のシリコン比は1%であるので、シリコン含有量が固形分比で0.6重量%となる。このインク受容層塗工液をポリイミド基板に塗布して、120℃の乾燥にて膜化して、インク受容層を単層で形成した。
(Comparative Example 2)
An ink receiving layer coating solution was prepared in the same manner as in Example 2 except that the solid content ratio of the resin was different from that in Example 2. The solid content ratio was 60% by weight for the acrylic silicon resin and 40% by weight for the ink solvent absorbing resin. Since the silicon ratio of the acrylic silicon resin is 1%, the silicon content is 0.6% by weight in terms of solid content. This ink receiving layer coating liquid was applied to a polyimide substrate and formed into a film by drying at 120 ° C. to form an ink receiving layer as a single layer.

実施例2と同様に、溶剤系導電性インクジェットインクを用いてインク受容層に評価パターンを印刷して、評価した。溶剤系導電性インクジェットインクは、実施例3のものを用いた。印刷性の評価結果としては、にじみが見られ、また、密着性の評価結果としては、剥がれた数は20個より多くあり、OKとしなかった。   In the same manner as in Example 2, an evaluation pattern was printed on the ink receiving layer using a solvent-based conductive inkjet ink and evaluated. The solvent-based conductive inkjet ink used in Example 3 was used. As a result of evaluation of printability, bleeding was observed, and as a result of evaluation of adhesion, the number of peeling was more than 20, and it was not determined as OK.

1 基板
2 インク受容層
3 印刷部
4 導電部
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Ink receiving layer 3 Printing part 4 Conductive part

Claims (1)

微粒子を含まず、少なくともアクリルシリコン樹脂とインク溶媒吸収樹脂からなり、これらの樹脂は、どちらの樹脂においても一方の樹脂だけで25℃〜150℃の乾燥にて膜化でき、互いに相溶できるものであり、シリコン含有量が固形分比で0.1重量%〜0.5重量%であるインク受容層塗工液をポリイミド基板に塗布して、25℃〜150℃の乾燥にてインク受容層を単層で形成して、有機保護コロイドを有する導電性金属ナノ粒子からなる導電性インクジェットインクを用いて印刷して、200℃以上の焼成にてアクリルシリコン樹脂やインク溶媒吸収樹脂の有機成分が先に揮散して、続いて金属ナノ粒子が焼結して、それとともにシリコンが金属とポリイミド基板との密着性を良くする導電パターンとなることを特徴とする導電パターン製造方法。 Containing at least acrylic silicon resin and ink solvent absorbing resin, which does not contain fine particles, and these resins can be formed into a film by drying at 25 ° C. to 150 ° C. with only one resin and compatible with each other. The ink receiving layer coating liquid having a silicon content of 0.1 wt% to 0.5 wt% in solid content ratio is applied to a polyimide substrate , and the ink receiving layer is dried at 25 ° C. to 150 ° C. Is formed using a single layer, printed using a conductive inkjet ink composed of conductive metal nanoparticles having an organic protective colloid, and an organic component such as an acrylic silicon resin or an ink solvent absorbing resin is formed by baking at 200 ° C. or higher. and volatilized earlier, conductive that subsequently the metal nanoparticles are sintered, silicon therewith is characterized by comprising a conductive pattern to improve the adhesion between the metal and the polyimide substrate Turn manufacturing method.
JP2009137985A 2009-06-09 2009-06-09 Conductive pattern manufacturing method Active JP5545802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137985A JP5545802B2 (en) 2009-06-09 2009-06-09 Conductive pattern manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137985A JP5545802B2 (en) 2009-06-09 2009-06-09 Conductive pattern manufacturing method

Publications (2)

Publication Number Publication Date
JP2010284801A JP2010284801A (en) 2010-12-24
JP5545802B2 true JP5545802B2 (en) 2014-07-09

Family

ID=43540901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137985A Active JP5545802B2 (en) 2009-06-09 2009-06-09 Conductive pattern manufacturing method

Country Status (1)

Country Link
JP (1) JP5545802B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110014034A (en) * 2009-08-04 2011-02-10 삼성전기주식회사 Metal circuit wiring having organic resin for adhesive layers and method of manufacturing it
US8366971B2 (en) * 2010-04-02 2013-02-05 Xerox Corporation Additive for robust metal ink formulations
JP2012232434A (en) * 2011-04-28 2012-11-29 Dic Corp Resin composition for forming conductive ink absorbing layer, conductive ink absorbing base material and substrate for forming circuit as well as printed matter, conductive pattern and circuit substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002019264A (en) * 2000-07-04 2002-01-23 Bando Chem Ind Ltd Transparent coating material for pigment ink jet ink and pigment ink jet material to be recorded
JP4042497B2 (en) * 2002-04-15 2008-02-06 セイコーエプソン株式会社 Method for forming conductive film pattern, wiring board, electronic device, electronic device, and non-contact card medium
JP2004143292A (en) * 2002-10-24 2004-05-20 Mitsubishi Pencil Co Ltd Fluid composition
JP2004175832A (en) * 2002-11-25 2004-06-24 Nippon Paint Co Ltd Method for forming electroconductive recorded matter and electroconductive recorded matter
JP2006088341A (en) * 2004-09-21 2006-04-06 Union Chemicar Co Ltd Inkjet recording sheet
JP4963393B2 (en) * 2006-10-03 2012-06-27 三ツ星ベルト株式会社 Low temperature firing type silver paste
JP2009001615A (en) * 2007-06-19 2009-01-08 Ube Nitto Kasei Co Ltd Coating liquid for forming ink receiving film, ink receiving film, laminated substrate and wiring material

Also Published As

Publication number Publication date
JP2010284801A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
KR100640119B1 (en) Ink jet printable thick film ink compositions and processes
CN104838342B (en) The method that transparent conductor is made on substrate
KR100644309B1 (en) Ink jet printable thick film ink compositions and processes
JP4177846B2 (en) Metal pattern and manufacturing method thereof
KR100690929B1 (en) Method for preparing a high resolution pattern with a high aspect ratio and the pattern thickness required by using a dry film resist
US20050173680A1 (en) Ink jet printable thick film ink compositions and processes
KR20090003249A (en) Porous film and layered product including porous film
KR100602811B1 (en) Conductive ink composition for inkjet printer, method for forming metal pattern by inkjet printing and printed cirsuit board using the method
US8293121B2 (en) Method for forming fine wiring
JP5545802B2 (en) Conductive pattern manufacturing method
KR20140015331A (en) Electrically conductive aqueous ink for inkjet recording
Murata et al. Super inkjet printer technology and its properties
JP2008294308A (en) Ink jet printing method
WO2013065683A1 (en) Base material for forming electroconductive pattern, circuit board, and method for producing each
US9578752B2 (en) Method of forming conductive pattern and substrate having conductive pattern manufactured by the same method
JP5049991B2 (en) Method for forming printed circuit pattern and method for forming guide
JP2005057139A (en) Multilayer wiring board and its manufacturing method
JP3951722B2 (en) Conductive laminate and method for producing the same
JP2007005451A (en) Circuit pattern forming method, and solution set
KR100772440B1 (en) Method for forming fine wiring
KR101850204B1 (en) Multi-layer wiring board and method for manufacturing thereof
JP2009170910A (en) Conductive pattern and method of forming thereof
KR100771468B1 (en) Method for forming fine wiring
JP2006294550A (en) Conductive ink for printed board wiring and wiring method of printed board
JP5578128B2 (en) Conductive pattern member forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5545802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250