JP5544921B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP5544921B2
JP5544921B2 JP2010037643A JP2010037643A JP5544921B2 JP 5544921 B2 JP5544921 B2 JP 5544921B2 JP 2010037643 A JP2010037643 A JP 2010037643A JP 2010037643 A JP2010037643 A JP 2010037643A JP 5544921 B2 JP5544921 B2 JP 5544921B2
Authority
JP
Japan
Prior art keywords
catalyst
zro
sio
powder
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010037643A
Other languages
Japanese (ja)
Other versions
JP2011125839A (en
Inventor
真秀 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010037643A priority Critical patent/JP5544921B2/en
Publication of JP2011125839A publication Critical patent/JP2011125839A/en
Application granted granted Critical
Publication of JP5544921B2 publication Critical patent/JP5544921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、S被毒耐性を高めた排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst having increased resistance to S poisoning.

従来の三元触媒技術では、貴金属(触媒金属)のシンタリング抑制を重視して、塩基性担体をベースとした触媒を採用してきた。特許文献1には、酸性担体であるZrO−SiO複合酸化物と相対的に塩基性であるAlとから成る担体にPdを担持させた排ガス浄化用触媒が開示されている。 In the conventional three-way catalyst technology, a catalyst based on a basic support has been adopted with emphasis on suppression of sintering of a noble metal (catalyst metal). Patent Document 1 discloses an exhaust gas purifying catalyst in which Pd is supported on a carrier composed of ZrO 2 —SiO 2 composite oxide that is an acidic carrier and Al 2 O 3 that is relatively basic.

しかし、このような酸性担体と相対的に塩基性のアルミナとの組み合わせは、NSR触媒としては高い触媒性能が得られても、三元触媒としては貴金属のシンタリングが問題となる(図7参照)。   However, such a combination of an acidic carrier and a relatively basic alumina has a problem of sintering a noble metal as a three-way catalyst even if high catalytic performance is obtained as an NSR catalyst (see FIG. 7). ).

また、近年、貴金属使用量を大幅に低減してきたため、排ガス中に含まれる硫黄(S)による被毒の影響が相対的に顕著となってきた(図8参照)。   Further, in recent years, since the amount of noble metal used has been greatly reduced, the influence of poisoning by sulfur (S) contained in the exhaust gas has become relatively significant (see FIG. 8).

そのため、シンタリング抑制効果を保持しつつ、硫黄被毒に対する耐性を確保することが求められている。   Therefore, it is required to ensure resistance to sulfur poisoning while maintaining the sintering suppression effect.

また、特許文献2には、Ce、Zr、Alなどの金属の酸化物から成る基粒子と、この基粒子の表面の少なくとも一部に担持されたPt、Rh、Pdなどから成る貴金属とから成る触媒粒子が、特許文献3には、貴金属が担持された多孔質酸化物粉末と、ジルコニアなどから成る排ガス浄化用触媒が開示されているが、いずれも前述の問題に対する配慮はなされていない。   Patent Document 2 includes a base particle made of an oxide of a metal such as Ce, Zr, or Al, and a noble metal made of Pt, Rh, Pd or the like supported on at least a part of the surface of the base particle. Patent Document 3 discloses a catalyst for exhaust gas purification comprising a porous oxide powder carrying a noble metal and zirconia as catalyst particles, but none of the above-mentioned problems are taken into consideration.

また、例えばPd触媒は、NOx浄化活性、HC酸化活性に優れた性能を有するが、2層構成の触媒の上層に配置すると、S被毒の影響で十分な性能を発揮しない。S被毒の影響を回避するために、Pd触媒をガスが拡散し難い下層に配置し、S被毒に強いRhを上層に配置すると、コストメリットの高いPdの性能を十分に生かしきれない。
特許文献4に、上層のPdを含み、上層Rhが40質量%以下で、下層Rhが60質量%以上である2層構成の触媒が開示されている。しかし、上記の問題に対しては配慮されていない。
Further, for example, a Pd catalyst has excellent performance in NOx purification activity and HC oxidation activity. However, when it is disposed on the upper layer of a catalyst having a two-layer structure, it does not exhibit sufficient performance due to the influence of S poisoning. In order to avoid the influence of S poisoning, if the Pd catalyst is disposed in the lower layer where gas is difficult to diffuse and the Rh that is resistant to S poisoning is disposed in the upper layer, the performance of Pd with high cost merit cannot be fully utilized.
Patent Document 4 discloses a catalyst having a two-layer structure that includes Pd in the upper layer, the upper layer Rh is 40% by mass or less, and the lower layer Rh is 60% by mass or more. However, no consideration is given to the above problems.

特開平10−235193号公報Japanese Patent Laid-Open No. 10-235193 特開2005−349383号公報JP 2005-349383 A 特開2001−009288号公報JP 2001-009288 A 特開2009−285604号公報JP 2009-285604 A

本発明は、シンタリング抑制効果を保持しつつ、S被毒耐性を高めた排ガス浄化用触媒を提供することを目的とする。   An object of the present invention is to provide an exhaust gas purifying catalyst having an increased S poisoning resistance while maintaining a sintering suppression effect.

上記の目的を達成するために、第1発明の排ガス浄化用触媒は、貴金属を担持するジルコニアと、シリカとが複合して成ることを特徴とする。
更に、第2発明の排ガス浄化用触媒は、2層構成の触媒コート層を有し、上層が、貴金属を担持するジルコニアと、シリカとが複合して成ることを特徴とする。
In order to achieve the above object, the exhaust gas purifying catalyst of the first invention is characterized by comprising a composite of zirconia supporting a noble metal and silica.
Further, the exhaust gas purifying catalyst of the second invention has a two-layered catalyst coat layer, and the upper layer is a composite of zirconia supporting noble metal and silica.

第1発明の排ガス浄化用触媒は、貴金属を担持するジルコニアと、シリカとが混在することにより、S被毒耐性が顕著に向上する。
第2発明の排ガス浄化用触媒は、上記複合構造を2層構成の触媒の上層に適用することにより、上層/下層の組み合わせを最適化して触媒性能を向上させることができる。
In the exhaust gas purifying catalyst of the first invention, S poisoning resistance is remarkably improved by mixing zirconia supporting noble metal and silica.
The exhaust gas purifying catalyst of the second invention can improve the catalyst performance by optimizing the combination of the upper layer / lower layer by applying the composite structure to the upper layer of the catalyst having a two-layer structure.

図1は、第1発明により、貴金属(Pd)がジルコニア(ZrO)に担持され、ジルコニア(ZrO)粒子とシリカ(SiO)粒子とがそれぞれ相互に独立した粒子として存在し且つ両者が密接して混在・共存する複合状態を示す模式図である。1, the first invention, the noble metal (Pd) is supported on zirconia (ZrO 2), zirconia (ZrO 2) particles and silica present and both as particles (SiO 2) and the particles were mutually independent each It is a schematic diagram which shows the compound state which closely mixed and coexists. 図2は、第1発明の規定による実施例と本発明の規定外の比較例の触媒サンプルについて、S被毒処理なしの場合の触媒活性を比較して示すグラフである。なお、図2〜図4において、SiOを「Si」、ZrOを「Zr」と略記し、例えば〔Pd/ZrO〕SiOの担持形態を「Si−Zr」と表記した。Si−Zrの( )内は、SiO含有量を示す。FIG. 2 is a graph showing a comparison of catalyst activity in the case of the catalyst sample of the example according to the first invention and the comparative example outside the present invention without the S poisoning treatment. 2 to 4, SiO 2 is abbreviated as “Si”, ZrO 2 is abbreviated as “Zr”, and for example, the support form of [Pd / ZrO 2 ] SiO 2 is denoted as “Si—Zr”. Of Si-Zr () within shows SiO 2 content. 図3は、第1発明の規定による実施例と本発明の規定外の比較例の触媒サンプルについて、S被毒処理中の触媒活性を比較して示すグラフである。FIG. 3 is a graph showing a comparison of the catalyst activity during the S poisoning treatment for the catalyst samples of the example according to the first invention and the comparative example outside the present invention. 図4は、第1発明の規定による実施例と本発明の規定外の比較例の触媒サンプルについて、S被毒処理後の触媒活性を比較して示すグラフである。FIG. 4 is a graph showing a comparison of the catalytic activity after the S poisoning treatment for the catalyst samples of the example according to the first invention and the comparative example outside the present invention. 図5は、2層構成の触媒コート層を有し、第2本発明の規定による実施例と本発明の規定外の比較例の触媒サンプルについて、S被毒処理なしの場合の触媒活性を比較して示すグラフである。FIG. 5 has a two-layered catalyst coat layer, and compares the catalyst activity of the example according to the second embodiment of the present invention and the catalyst sample of the comparative example outside of the present invention without S poisoning treatment. It is a graph shown. 図6は、2層構成の触媒コート層を有し、第2本発明の規定による実施例と本発明の規定外の比較例の触媒サンプルについて、S被毒処理中の触媒活性を比較して示すグラフである。FIG. 6 has a two-layered catalyst coat layer, and compares the catalyst activity during the S poisoning treatment of the catalyst sample of the example according to the second invention and the comparative sample outside the regulation of the present invention. It is a graph to show. 図7は、担体酸素のO1s結合エネルギー(eV)と、熱処理(800℃×5時間)後の被担持Pt粒子径(nm)との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the O1s binding energy (eV) of carrier oxygen and the supported Pt particle diameter (nm) after heat treatment (800 ° C. × 5 hours). 図8は、触媒の貴金属量(貴金属重量/触媒総重量)と、S被毒回復前後のNOx活性差との関係を示すグラフである。図中、UFCは床下触媒(アンダーフロアカタリスト)、SCはスタートアップ触媒の意味である。FIG. 8 is a graph showing the relationship between the amount of precious metal in the catalyst (precious metal weight / total catalyst weight) and the difference in NOx activity before and after recovery from S poisoning. In the figure, UFC means an underfloor catalyst (underfloor catalyst), and SC means a start-up catalyst.

本発明者は、貴金属を担持するジルコニア粒子と、シリカ粒子とを混合して排ガス浄化用触媒を構成すると、S被毒耐性が顕著に向上することを発見した。貴金属としては、Pd、Rh、Ptなど、排ガス浄化用触媒に用いられる触媒金属を用いることができる。以下、貴金属としてPdを例に説明する。   The present inventor has discovered that when the zirconia particles supporting the noble metal and the silica particles are mixed to constitute an exhaust gas purification catalyst, the S poisoning resistance is remarkably improved. As the noble metal, a catalyst metal used for an exhaust gas purifying catalyst such as Pd, Rh, Pt or the like can be used. Hereinafter, Pd will be described as an example of the noble metal.

この効果は、貴金属がジルコニアに担持されずにシリカに担持されていても得られず、ジルコニアとシリカとが相互に固溶していても得られない。すなわち、図1に模式的に示すように、ジルコニア(ZrO)粒子とシリカ(SiO)粒子とがそれぞれ相互に独立した粒子として存在し且つ両者が密接して混在・共存する複合状態でなくてはならない。この状態を〔Pd/ZrO〕SiOと表示する。 This effect cannot be obtained even if the noble metal is supported on silica without being supported on zirconia, and cannot be obtained even if zirconia and silica are in solid solution with each other. That is, as schematically shown in FIG. 1, zirconia (ZrO 2 ) particles and silica (SiO 2 ) particles exist as independent particles, and are not in a mixed state in which both are closely mixed and coexisting. must not. This state is expressed as [Pd / ZrO 2 ] SiO 2 .

ZrO担体にPdを担持したPd/ZrO触媒は、酸性担体上にPdを担持するよりも高分散に担持できるが、排ガス中の硫黄(S)分による活性低下が顕著である。本発明においては、Pd/ZrO触媒にSiOを複合させて〔Pd/ZrO〕SiO触媒とすることで、高分散を維持しつつS被毒に対する耐性を大幅に高めることができる。 Pd / ZrO 2 catalyst supporting Pd on ZrO 2 carrier will be supported in a highly dispersed than supporting Pd on acidic carrier, reduction in activity due to sulfur (S) content in the exhaust gas is remarkable. In the present invention, by combining SiO 2 with a Pd / ZrO 2 catalyst to form a [Pd / ZrO 2 ] SiO 2 catalyst, the resistance to S poisoning can be greatly enhanced while maintaining high dispersion.

更に、これまで、フルサイズ触媒の基本構成として、上層Rh/下層Pdの2層構成の触媒を用いているが、これはPd触媒がS被毒の影響を強く受け、浄化率が大幅に悪化してしまうため、上層に配置できなかったためである。本発明の〔Pd/ZrO〕SiO複合構造を上層に適用することにより、Pd触媒のS被毒耐性が高まり、従来の上層Rh/下層Pdの2層構成の触媒に比べてNOx浄化性能を大幅に高めることができる。 Furthermore, up to now, the catalyst of the two-layer structure of upper layer Rh / lower layer Pd has been used as the basic structure of the full-size catalyst, but this is because the Pd catalyst is strongly affected by S poisoning and the purification rate is greatly deteriorated. This is because it could not be arranged in the upper layer. By applying the [Pd / ZrO 2 ] SiO 2 composite structure of the present invention to the upper layer, the S poisoning resistance of the Pd catalyst is increased, and the NOx purification performance is improved as compared with the conventional catalyst having a two-layer structure of upper layer Rh / lower layer Pd. Can be greatly increased.

以下、実施例により、本発明の排ガス浄化用触媒を詳細に説明する。   Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail by way of examples.

〔第1発明の実施例〕
下記原料を種々に組み合わせて、本発明の規定による実施例および本発明の規定外の比較例の触媒を以下の手順および条件により作製した。
[Embodiment of the first invention]
Catalysts of Examples according to the present invention and Comparative Examples outside the present invention were prepared by the following procedures and conditions in various combinations of the following raw materials.

<用いた原料>
原料1:SiO粉末(「ナノテックSiO」シーアイ化成製)
原料2:ZrO粉末(「RC100」第一稀元素製)
原料3:SiZrO粉末(「珪酸ジルコニウム」ナカライテスク製)
〔比較例1〕:〔Pd/ZrO〕+ZrO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
<Used raw materials>
Raw material 1: SiO 2 powder (“Nanotech SiO 2 ” manufactured by CI Kasei)
Raw material 2: ZrO 2 powder ("RC100" made by first rare element)
Raw material 3: SiZrO 4 powder (“Zirconium silicate” manufactured by Nacalai Tesque)
[Comparative Example 1]: [Pd / ZrO 2 ] + ZrO 2
By evaporation to dryness, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (produced by Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .

得られたPd/ZrO:15gに対して、原料2(ZrO)を15g混合し、自動乳鉢で1h混合した。 15 g of raw material 2 (ZrO 2 ) was mixed with 15 g of the obtained Pd / ZrO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、比較例1の触媒サンプルとした。   A pressure of about 1 ton was applied to this powder with CIP to form a pellet of about 1 mm square, and a catalyst sample of Comparative Example 1 was obtained.

〔実施例1〕:95wt%〔Pd/ZrO〕+5wt%SiO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
[Example 1]: 95 wt% [Pd / ZrO 2 ] +5 wt% SiO 2
By evaporation to dryness, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (produced by Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .

得られたPd/ZrO:95gに対して、原料1(SiO)を5g混合し、自動乳鉢で1h混合した。 5 g of raw material 1 (SiO 2 ) was mixed with 95 g of the obtained Pd / ZrO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、実施例1の触媒サンプルとした。   To this powder, a pressure of about 1 ton was applied with CIP to form a pellet of about 1 mm square, and a catalyst sample of Example 1 was obtained.

〔実施例2〕:75wt%〔Pd/ZrO〕+25wt%SiO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
[Example 2]: 75 wt% [Pd / ZrO 2 ] +25 wt% SiO 2
By evaporation to dryness, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (produced by Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .

得られたPd/ZrO:75gに対して、原料1(SiO)を25g混合し、自動乳鉢で1h混合した。 25 g of raw material 1 (SiO 2 ) was mixed with 75 g of the obtained Pd / ZrO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、実施例2の触媒サンプルとした。   To this powder, a pressure of about 1 ton was applied by CIP to form a pellet of about 1 mm square to obtain a catalyst sample of Example 2.

〔実施例3〕:50wt%〔Pd/ZrO〕+50wt%SiO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
[Example 3]: 50 wt% [Pd / ZrO 2 ] +50 wt% SiO 2
By evaporation to dryness, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (produced by Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .

得られたPd/ZrO:50gに対して、原料1(SiO)を50g混合し、自動乳鉢で1h混合した。 50 g of raw material 1 (SiO 2 ) was mixed with 50 g of the obtained Pd / ZrO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、実施例3の触媒サンプルとした。   To this powder, a pressure of about 1 ton was applied with CIP to form a pellet of about 1 mm square to obtain a catalyst sample of Example 3.

〔実施例4〕:25wt%〔Pd/ZrO〕+75wt%SiO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
[Example 4]: 25 wt% [Pd / ZrO 2 ] +75 wt% SiO 2
By evaporation to dryness, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (produced by Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .

得られたPd/ZrO:25gに対して、原料1(SiO)を75g混合し、自動乳鉢で1h混合した。 75 g of raw material 1 (SiO 2 ) was mixed with 25 g of the obtained Pd / ZrO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、実施例4の触媒サンプルとした。   To this powder, a pressure of about 1 ton was applied with CIP to form a pellet of about 1 mm square to obtain a catalyst sample of Example 4.

〔比較例2〕:50wt%〔Pd/SiO〕+50wt%SiO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料1(SiO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/SiOを得た。
[Comparative Example 2]: 50 wt% [Pd / SiO 2 ] +50 wt% SiO 2
By evaporation to dryness, Pd was supported on the raw material 1 (SiO 2 ) from an aqueous palladium nitrate solution (Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / SiO 2 .

得られたPd/SiO:50gに対して、原料1(SiO)を50g混合し、自動乳鉢で1h混合した。 50 g of raw material 1 (SiO 2 ) was mixed with 50 g of the obtained Pd / SiO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、比較例2の触媒サンプルとした。   A pressure of about 1 ton was applied to this powder with CIP to form a pellet of about 1 mm square, and a catalyst sample of Comparative Example 2 was obtained.

〔比較例3〕:50wt%〔Pd/SiO〕+50wt%ZrO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料1(SiO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/SiOを得た。
[Comparative Example 3]: 50 wt% [Pd / SiO 2 ] +50 wt% ZrO 2
By evaporation to dryness, Pd was supported on the raw material 1 (SiO 2 ) from an aqueous palladium nitrate solution (Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / SiO 2 .

得られたPd/SiO:50gに対して、原料2(ZrO)を50g混合し、自動乳鉢で1h混合した。 50 g of raw material 2 (ZrO 2 ) was mixed with 50 g of the obtained Pd / SiO 2 and mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、比較例3の触媒サンプルとした。   A pressure of about 1 ton was applied to this powder with CIP to form a pellet of about 1 mm square, and a catalyst sample of Comparative Example 3 was obtained.

〔比較例4〕:Pd/SiZrO
蒸発乾固法により、Pd含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料3(SiZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/SiZrOを得た。
[Comparative Example 4]: Pd / SiZrO 4
By evaporation to dryness, Pd was supported on the raw material 3 (SiZrO 4 ) from an aqueous palladium nitrate solution (Cataler) having a Pd content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace, and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / SiZrO 4 .

得られたPd/SiZrOを自動乳鉢で1h混合した。 The obtained Pd / SiZrO 4 was mixed for 1 h in an automatic mortar.

なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。   The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

この粉末に、CIPで約1tonの圧力を加え、約1mm角のペレットを成形して、比較例4の触媒サンプルとした。   A pressure of about 1 ton was applied to this powder with CIP to form a pellet of about 1 mm square, and a catalyst sample of Comparative Example 4 was obtained.

実施例1〜4および比較例1〜4で得られた触媒サンプルについて、下記の条件でS被毒処理を行なった。   The catalyst samples obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were subjected to S poisoning treatment under the following conditions.

<S被毒処理の条件>
ストイキ+SO(50ppm)の雰囲気中で、400℃×1h加熱。
<Conditions for S poisoning treatment>
Heated at 400 ° C. for 1 h in an atmosphere of stoiki + SO 2 (50 ppm).

S被毒処理の処理前、処理中、処理後に、それぞれ触媒活性を下記の条件で評価した。   The catalytic activity was evaluated under the following conditions before, during and after the S poisoning treatment.

<触媒活性の評価条件>
《1》S被毒処理なし
調整した触媒サンプルそれぞれについて、固定床反応装置を用いて、以下の条件で評価した。
<Evaluation conditions for catalyst activity>
<< 1 >> No S poisoning treatment Each adjusted catalyst sample was evaluated using a fixed bed reactor under the following conditions.

触媒ペレット:3.0g
床温度:400℃
ガス流量:15L/min
ガス組成:0.15%NO+0.7%O+0.65%CO+0.1%CH+10%CO+3%HO
すなわち、アンダーフロアー触媒の代表的な使用温度域である400℃でのストイキ条件にて行なった。
Catalyst pellets: 3.0g
Floor temperature: 400 ° C
Gas flow rate: 15L / min
Gas composition: 0.15% NO + 0.7% O 2 + 0.65% CO + 0.1% C 3 H 6 + 10% CO 2 + 3% H 2 O
That is, it was carried out under stoichiometric conditions at 400 ° C., which is a typical operating temperature range of the underfloor catalyst.

《2》S被毒処理中
上記《1》の評価条件にSOガス50ppmを導入し、SOを含む反応ガスに触媒サンプルを1.5h曝した後の浄化率を測定した。
<< 2 >> During S poisoning treatment 50 ppm of SO 2 gas was introduced into the evaluation conditions of the above << 1 >>, and the purification rate after the catalyst sample was exposed to a reaction gas containing SO 2 for 1.5 h was measured.

《3》S被毒処理後
上記《2》の処理後、SOガスの導入を停止し、10分後の活性を測定した(SOガス以外の条件は不変)。
"3" S after the process of the treatment of poisoning after the "2", to stop the introduction of SO 2 gas, the activity was measured after 10 min (SO 2 conditions other than gas unchanged).

表1に、サンプル中のSiO含有量と、S被毒処理なし・処理中・処理後それぞれの触媒活性の評価とをまとめて示す。更に、図2、図3、図4に、サンプル中のSiO含有量に対するS被毒処理なし、処理中、処理後の触媒活性の評価をそれぞれ示す。なお、図中では、SiOを「Si」、ZrOを「Zr」と略記し、例えば〔Pd/ZrO〕SiOの担持形態を「Si−Zr」と表記した。 Table 1 summarizes the SiO 2 content in the sample and the evaluation of the respective catalytic activities without, during and after the S poisoning treatment. Further, FIGS. 2, 3 and 4 show evaluations of catalytic activity without, during and after the treatment with respect to the SiO 2 content in the sample. In the figure, SiO 2 is abbreviated as “Si”, ZrO 2 is abbreviated as “Zr”, and for example, the supported form of [Pd / ZrO 2 ] SiO 2 is denoted as “Si—Zr”.

Figure 0005544921
Figure 0005544921

<触媒活性の評価結果>
≪S被毒処理なし≫
S被毒処理なしの場合は、表1および図2に示すように、本発明の規定による〔Pd/ZrO〕SiOの担持形態を有する実施例1〜4は95〜97%の高い触媒活性を発揮した。本発明の規定外の比較例1〜4については、〔Pd/ZrO〕ZrOの担持形態を有する比較例1は、96%と本発明の実施例1〜4と同等の高い触媒活性を発揮した。〔Pd/SiO〕SiOの担持形態を有する比較例2および〔Pd/SiO〕ZrOの担持形態を有する比較例3はいずれも92%と若干劣り、更にPd/SiZrOの担持形態を有する比較例4は、79%とかなり劣る。
<Evaluation results of catalyst activity>
≪No S poisoning treatment≫
In the case of no S poisoning treatment, as shown in Table 1 and FIG. 2, Examples 1 to 4 having a supported form of [Pd / ZrO 2 ] SiO 2 according to the definition of the present invention are high catalysts of 95 to 97%. Demonstrated activity. For Comparative Examples 1 to 4 outside the scope of the present invention, Comparative Example 1 having a supported form of [Pd / ZrO 2 ] ZrO 2 has a high catalytic activity of 96%, which is equivalent to that of Examples 1 to 4 of the present invention. Demonstrated. [Pd / SiO 2] Comparative Example 3 is inferior 92% and slightly both having a supported form of Comparative Example 2 and [Pd / SiO 2] ZrO 2 having a SiO 2 of supported form, further supported form of Pd / SiZrO 4 Comparative Example 4 having

これは、SiO(比較例2、3)およびSiZrO(比較例4)には貴金属Pdを高分散に担持できないためであり、高分散を維持できないため担体の機能として不十分になるからである。 This is because SiO 2 (Comparative Examples 2 and 3) and SiZrO 4 (Comparative Example 4) cannot support the noble metal Pd in a highly dispersed state, and cannot maintain a highly dispersed state, so that the function of the support becomes insufficient. is there.

≪S被毒処理中≫
S被毒処理中の触媒活性は、表1および図3に示すように、本発明の実施例1〜4は48〜56%と、比較例1〜4の43〜46%に比べて優れている。これは、SiOを添加したことにより、Pd/ZrO触媒の性質がSOは酸化し難く、NOxは酸化し易く変化したことにより、高い触媒活性を維持できたと考えられる。
≪Under S poisoning treatment≫
As shown in Table 1 and FIG. 3, the catalytic activity during the S poisoning treatment is 48 to 56% in Examples 1 to 4 of the present invention, which is superior to 43 to 46% in Comparative Examples 1 to 4. Yes. This is probably because the addition of SiO 2 changed the properties of the Pd / ZrO 2 catalyst so that SO 2 was difficult to oxidize and NOx was easily oxidized, so that high catalytic activity could be maintained.

≪S被毒処理後≫
S被毒処理後の触媒活性は、表1および図4に示すように、本発明の実施例1〜4は76〜85%と、比較例1〜4の68〜73%に比べて著しく優れている。これは、SiOを共存させることで、SiO自体はSを溜めずに活性を発現でき、かつ、蓄積したSを離脱し易いため、S被毒処理後に高い触媒活性を発揮できると考えられる。特に、SiO含有量5〜50%の範囲は、S被毒耐性の向上が特に顕著であった。
≪After S poisoning treatment≫
As shown in Table 1 and FIG. 4, the catalytic activity after the S poisoning treatment is 76 to 85% in Examples 1 to 4 of the present invention, which is remarkably superior to 68 to 73% in Comparative Examples 1 to 4. ing. This is because the coexistence of SiO 2, is considered to SiO 2 itself can express activity without pooled S, and liable to leave the accumulated S, can exhibit high catalytic activity following S-poisoning treatment . In particular, when the SiO 2 content is in the range of 5 to 50%, the improvement in S poisoning resistance was particularly remarkable.

〔第2発明の実施例〕
上記原料を種々に組み合わせて、2層コート構成で、本発明の規定による実施例および本発明の規定外の比較例の触媒を以下の手順および条件により作製した。
[Embodiment of the second invention]
The above-mentioned raw materials were combined in various ways, and in the two-layer coating configuration, the catalyst according to the example of the present invention and the comparative example outside of the present invention were prepared according to the following procedures and conditions.

<触媒層成分1> Rh/ZrO
蒸発乾固法を用いて、貴金属含有量2.75wt%の硝酸ロジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を、脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Rh/ZrOを得た。
なお、Rhの担持量は、全体の粉末に対して0.25wt%となるように調整した。
<Catalyst layer component 1> Rh / ZrO 2
Using an evaporation to dryness method, Pd was supported on the raw material 2 (ZrO 2 ) from a rhodium nitrate aqueous solution (manufactured by Cataler) having a noble metal content of 2.75 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Rh / ZrO 2 .
The loading amount of Rh was adjusted to be 0.25 wt% with respect to the entire powder.

<触媒層成分2> 50wt%〔Pd/ZrO〕+50wt%SiO
蒸発乾固法を用いて、貴金属含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を、脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
得られたPd/ZrO:2.50gに対して、原料1(SiO粉末)50gを混合し、自動乳鉢で1h混合した。
なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。
<Catalyst layer component 2> 50 wt% [Pd / ZrO 2 ] +50 wt% SiO 2
Using an evaporation to dryness method, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (Cataler) having a noble metal content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .
50 g of raw material 1 (SiO 2 powder) was mixed with the obtained Pd / ZrO 2 : 2.50 g and mixed for 1 h in an automatic mortar.
The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.

<触媒層成分3> Pd/ZrO
蒸発乾固法を用いて、貴金属含有量8.2wt%の硝酸パラジウム水溶液(キャタラー製)から原料2(ZrO)へPdを担持した。すなわち、薬液を担持した後の粉末を、脱脂炉で120℃×12h乾燥後、電気炉で600℃×5hの焼成を行い、Pd/ZrOを得た。
なお、Pdの担持量は、全体の粉末に対して0.5wt%となるように調整した。
上記で調製した各触媒層成分を用いて以下の2層構成の触媒を作製した。
<Catalyst layer component 3> Pd / ZrO 2
Using an evaporation to dryness method, Pd was supported on the raw material 2 (ZrO 2 ) from an aqueous palladium nitrate solution (Cataler) having a noble metal content of 8.2 wt%. That is, the powder after supporting the chemical solution was dried at 120 ° C. for 12 hours in a degreasing furnace and then fired at 600 ° C. for 5 hours in an electric furnace to obtain Pd / ZrO 2 .
The amount of Pd supported was adjusted to 0.5 wt% with respect to the total powder.
Using the catalyst layer components prepared above, the following two-layer catalyst was prepared.

〔実施例5〕
触媒層成分が、下層《Rh/ZrO》、上層《50wt%〔Pd/ZrO〕+50wt%SiO》である2層構成の触媒を作製した。
(1)下層コート
θ-Al17.7g、触媒層成分1(Rh/ZrO)18.39g、水酸化アルミニウム粉末1.05g、40%硝酸アルミニウム水溶液22.6g、精製水73.3gを、300mlポリビーカーに入れて、ミキサーで30分攪拌した。その後、ボールミルにて3h混合し、スラリーを調整した。
このスラリーを、35ccセラミックハニカム(φ30mm×L50mm、400セル/4ミル、NGK製)に均一に流し込み、余分なスラリーを吹き払った後、脱脂炉で250℃×2h乾燥し、その後、500℃×2h焼成した。その時のコート量は4g/個となるように調製した。
Example 5
A catalyst having a two-layer structure in which the catalyst layer components were a lower layer << Rh / ZrO 2 >> and an upper layer << 50 wt% [Pd / ZrO 2 ] +50 wt% SiO 2 >> was prepared.
(1) Lower layer coat θ-Al 2 O 3 17.7 g, catalyst layer component 1 (Rh / ZrO 2 ) 18.39 g, aluminum hydroxide powder 1.05 g, 40% aluminum nitrate aqueous solution 22.6 g, purified water 73. 3 g was placed in a 300 ml poly beaker and stirred with a mixer for 30 minutes. Thereafter, the mixture was mixed for 3 hours with a ball mill to prepare a slurry.
This slurry was uniformly poured into a 35 cc ceramic honeycomb (φ30 mm × L50 mm, 400 cell / 4 mil, made by NGK), and after excess slurry was blown off, it was dried at 250 ° C. × 2 h in a degreasing furnace, and then 500 ° C. × Baked for 2 h. The coating amount at that time was adjusted to 4 g / piece.

(2)上層コート
θ-Al17.7g、触媒層成分2(50wt%〔Pd/ZrO〕+50wt%SiO)18.39g、水酸化アルミニウム粉末1.05g、40%硝酸アルミニウム水溶液22.6g、精製水73.3gを、300mlポリビーカーに入れて、ミキサーで30分攪拌した。その後、ボールミルにて3h混合し、スラリーを調整した。
このスラリーを、先に調製した下層コート済の35ccセラミックハニカム(φ30mm×L50mm、400セル/4ミル、NGK製)に均一に流し込み、余分なスラリーを吹き払った後、脱脂炉で250℃×2h乾燥し、その後、500℃×2h焼成した。その時のコート量は8g/個となるように調製した。
(2) Upper layer coat θ-Al 2 O 3 17.7 g, catalyst layer component 2 (50 wt% [Pd / ZrO 2 ] +50 wt% SiO 2 ) 18.39 g, aluminum hydroxide powder 1.05 g, 40% aluminum nitrate aqueous solution 22.6 g and 73.3 g of purified water were placed in a 300 ml poly beaker and stirred with a mixer for 30 minutes. Thereafter, the mixture was mixed for 3 hours with a ball mill to prepare a slurry.
This slurry was uniformly poured into the 35cc ceramic honeycomb (φ30 mm × L50 mm, 400 cell / 4 mil, manufactured by NGK) previously coated with the lower layer, and after excess slurry was blown off, 250 ° C. × 2 h in a degreasing furnace Then, it was baked at 500 ° C. for 2 hours. The coating amount at that time was adjusted to 8 g / piece.

〔比較例5〕
触媒層成分が、下層《Pd/ZrO》、上層《50wt%〔Pd/ZrO〕+50wt%SiO》である2層構成の触媒を作製した。
これは実施例5において、触媒層成分1に代えて触媒層成分3を用いた以外は、実施例5と同様の手順および条件にて調製した。
[Comparative Example 5]
A catalyst having a two-layer structure in which the catalyst layer components were a lower layer << Pd / ZrO 2 >> and an upper layer << 50 wt% [Pd / ZrO 2 ] +50 wt% SiO 2 >> was prepared.
This was prepared in the same procedure and conditions as in Example 5, except that catalyst layer component 3 was used instead of catalyst layer component 1 in Example 5.

〔比較例6〕
触媒層成分が、下層《50wt%〔Pd/ZrO〕+50wt%SiO》、上層《Pd/ZrO》である2層構成の触媒を作製した。
これは比較例5において、下層を形成する実施例5の工程(1)と、上層を形成する実施例5の工程(2)の順序を逆にして調整した。
[Comparative Example 6]
A catalyst having a two-layer structure in which the catalyst layer components were a lower layer << 50 wt% [Pd / ZrO 2 ] +50 wt% SiO 2 >> and an upper layer << Pd / ZrO 2 >> was prepared.
This was adjusted in the comparative example 5 by reversing the order of the step (1) in Example 5 for forming the lower layer and the step (2) in Example 5 for forming the upper layer.

〔実施例6〕
実施例5において、触媒層成分2の量を一定として、Al含有率がその71wt%となるように、θ-Al量を調整した。その他の工程は実施例5と同様であった。
Example 6
In Example 5, the amount of the catalyst layer component 2 was constant, and the amount of θ-Al 2 O 3 was adjusted so that the Al 2 O 3 content was 71 wt%. Other steps were the same as in Example 5.

〔実施例7〕
実施例5において、触媒層成分2の量を一定として、Al含有率がその65wt%となるように、θ-Al量を調整した。その他の工程は実施例5と同様であった。
Example 7
In Example 5, the amount of catalyst layer component 2 was constant, and the amount of θ-Al 2 O 3 was adjusted so that the Al 2 O 3 content was 65 wt%. Other steps were the same as in Example 5.

〔実施例8〕
実施例5において、触媒層成分2の量を一定として、Al含有率がその65wt%となるように、θ-Al量を調整した。その他の工程は実施例5と同様であった。
Example 8
In Example 5, the amount of catalyst layer component 2 was constant, and the amount of θ-Al 2 O 3 was adjusted so that the Al 2 O 3 content was 65 wt%. Other steps were the same as in Example 5.

実施例5〜8および比較例1〜2で得られた2層構成の触媒サンプルについて、下記の条件でS被毒処理を行なった。   The two-layered catalyst samples obtained in Examples 5 to 8 and Comparative Examples 1 and 2 were subjected to S poisoning treatment under the following conditions.

<S被毒処理の条件>
ストイキ+SO(50ppm)の雰囲気中で、400℃×1h加熱。
<Conditions for S poisoning treatment>
Heated at 400 ° C. for 1 h in an atmosphere of stoiki + SO 2 (50 ppm).

S被毒処理の処理前、処理中に、それぞれ触媒活性を下記の条件で評価した。
<触媒活性の評価条件>
《1》S被毒処理なし
調整した触媒サンプルそれぞれについて、固定床反応装置を用いて、以下の条件で評価した。
Before and during the S poisoning treatment, the catalytic activity was evaluated under the following conditions.
<Evaluation conditions for catalyst activity>
<< 1 >> No S poisoning treatment Each adjusted catalyst sample was evaluated using a fixed bed reactor under the following conditions.

触媒ペレット:35cc(サンプル1個当たり)
床温度:400℃
ガス流量:30/min
ガス組成:0.15%NO+0.7%O+0.65%CO+0.1%CH+10%CO+3%HO
すなわち、アンダーフロアー触媒の代表的な使用温度域である400℃でのストイキ条件にて行なった。
Catalyst pellet: 35cc (per sample)
Floor temperature: 400 ° C
Gas flow rate: 30 / min
Gas composition: 0.15% NO + 0.7% O 2 + 0.65% CO + 0.1% C 3 H 6 + 10% CO 2 + 3% H 2 O
That is, it was carried out under stoichiometric conditions at 400 ° C., which is a typical operating temperature range of the underfloor catalyst.

《2》S被毒処理中
上記《1》の評価条件にSOガス50ppmを導入し、SOを含む反応ガスに触媒サンプルを1.5h曝した後の浄化率を測定した。
表2に、各サンプルについて、コート層Al含有率と、S被毒処理なし・S被毒処理中の触媒活性の評価とをまとめて示す。更に、図5、6に、Al2O3含有率に対するS被毒処理なし、S被毒処理中の評価をそれぞれ示す。
<< 2 >> During S poisoning treatment 50 ppm of SO 2 gas was introduced into the evaluation conditions of the above << 1 >>, and the purification rate after the catalyst sample was exposed to a reaction gas containing SO 2 for 1.5 h was measured.
Table 2 summarizes the coating layer Al 2 O 3 content and the evaluation of the catalytic activity during the S poisoning treatment without the S poisoning treatment for each sample. Furthermore, FIGS. 5 and 6 show the evaluation during the S poisoning treatment without the S poisoning treatment with respect to the Al 2 O 3 content.

Figure 0005544921
Figure 0005544921

表2、図5に示すように、S被毒のない場合は、本発明の規定範囲内の実施例と本発明の規定範囲外の比較例との間に、触媒活性の差はほとんど認められない。
表2、図6に示すように、S被毒処理中の触媒活性は、実施例は比較例に対して明らかに優れている。
また、実施例5と、比較例5および比較例6とを比較すると、単純にPd/ZrOを上層に配した場合、Rh/ZrOを配置した場合に比べて、明らかに性能が劣る。
実施例1〜4の相互比較から、上層のPd層(50wt%〔Pd/ZrO〕+50wt%シリカ)中のAl含有率が45〜70%であることが望ましい。
Alは、触媒コート層を形成するために必須であり、除外することはできない。
As shown in Table 2 and FIG. 5, in the absence of S poisoning, there is almost no difference in catalytic activity between the examples within the specified range of the present invention and the comparative examples outside the specified range of the present invention. Absent.
As shown in Table 2 and FIG. 6, the catalyst activity during the S poisoning treatment is clearly superior to the comparative example.
Moreover, when Example 5 is compared with Comparative Example 5 and Comparative Example 6, when Pd / ZrO 2 is simply arranged in the upper layer, the performance is clearly inferior compared with the case where Rh / ZrO 2 is arranged.
From the mutual comparison of Examples 1 to 4, it is desirable that the Al 2 O 3 content in the upper Pd layer (50 wt% [Pd / ZrO 2 ] +50 wt% silica) is 45 to 70%.
Al 2 O 3 is essential for forming the catalyst coat layer and cannot be excluded.

本発明によれば、シンタリング抑制効果を保持しつつ、S被毒耐性を高めた排ガス浄化用触媒が提供される。
(態様1)
貴金属を担持するジルコニアと、シリカとが複合して成る排ガス浄化用触媒。
(態様2)
態様1において、前記シリカの含有量が排ガス浄化用触媒の5〜50wt%であることを特徴とする排ガス浄化用触媒。
(態様3)
2層構成の触媒コート層を有し、上層が、貴金属を担持するジルコニアと、シリカとが複合して成る排ガス浄化用触媒。
(態様4)
態様3において、前記上層が45〜70wt%のアルミナを含有することを特徴とする排ガス浄化用触媒。
ADVANTAGE OF THE INVENTION According to this invention, the catalyst for exhaust gas purification which improved S poisoning tolerance, maintaining the sintering suppression effect is provided.
(Aspect 1)
An exhaust gas purifying catalyst comprising a composite of zirconia supporting noble metal and silica.
(Aspect 2)
The exhaust gas purification catalyst according to aspect 1, wherein the silica content is 5 to 50 wt% of the exhaust gas purification catalyst.
(Aspect 3)
An exhaust gas purifying catalyst having a two-layer catalyst coat layer, the upper layer comprising a composite of zirconia supporting a noble metal and silica.
(Aspect 4)
The exhaust gas purifying catalyst according to aspect 3, wherein the upper layer contains 45 to 70 wt% of alumina.

Claims (2)

貴金属を担持するジルコニアと、シリカとが複合して成り、前記シリカの含有量が排ガス浄化用触媒の5〜25wt%であることを特徴とする排ガス浄化用触媒。 An exhaust gas purification catalyst comprising a composite of zirconia supporting a noble metal and silica, wherein the content of the silica is 5 to 25 wt% of the exhaust gas purification catalyst. 2層構成の触媒コート層を有し、上層が、貴金属を担持するジルコニアと、シリカとが複合して成り、前記上層が45〜70wt%のアルミナを含有することを特徴とする排ガス浄化用触媒。   A catalyst for exhaust gas purification having a two-layer catalyst coat layer, wherein the upper layer is a composite of zirconia supporting noble metal and silica, and the upper layer contains 45 to 70 wt% alumina. .
JP2010037643A 2009-11-18 2010-02-23 Exhaust gas purification catalyst Expired - Fee Related JP5544921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037643A JP5544921B2 (en) 2009-11-18 2010-02-23 Exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009263168 2009-11-18
JP2009263168 2009-11-18
JP2010037643A JP5544921B2 (en) 2009-11-18 2010-02-23 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2011125839A JP2011125839A (en) 2011-06-30
JP5544921B2 true JP5544921B2 (en) 2014-07-09

Family

ID=44289022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037643A Expired - Fee Related JP5544921B2 (en) 2009-11-18 2010-02-23 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5544921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854262B2 (en) * 2011-09-14 2016-02-09 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5807782B2 (en) * 2011-12-28 2015-11-10 トヨタ自動車株式会社 Exhaust gas purification catalyst
WO2017154685A1 (en) * 2016-03-09 2017-09-14 株式会社キャタラー Exhaust gas purification underfloor catalyst and catalyst system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407117B2 (en) * 2002-12-17 2010-02-03 日産自動車株式会社 Method for producing exhaust gas purifying catalyst
JP4265561B2 (en) * 2005-04-04 2009-05-20 株式会社デンソー Automobile exhaust gas purification catalyst body
JP2009112961A (en) * 2007-11-07 2009-05-28 Toyota Central R&D Labs Inc Catalyst for cleaning exhaust gas and method for cleaning exhaust gas using the same

Also Published As

Publication number Publication date
JP2011125839A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
EP1932590B1 (en) Particulate combustion catalyst, particulate filter, and exhaust gas clean-up system
KR101538183B1 (en) Multilayered catalyst compositions
JP4501012B2 (en) Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
JP5661989B2 (en) High heat resistant catalyst and process for producing the same
JP2005161311A (en) Layered catalyst composite
RU2549880C1 (en) Catalyst for limiting spent gas emission
JP6748590B2 (en) Exhaust gas purification catalyst
WO2012005375A1 (en) Exhaust gas purifying catalyst, and method for producing same
JP2012055842A (en) Exhaust gas purifying catalyst
JP2011140011A (en) Method for producing co oxidation catalyst and co oxidation catalyst obtained thereby
JP4831753B2 (en) Exhaust gas purification catalyst
JP5544921B2 (en) Exhaust gas purification catalyst
JP2006231280A (en) Solid oxidation catalyst for combustion
JP2006314894A (en) Production method of catalyst for cleaning emission gas
JP2009050791A (en) Catalyst for purifying exhaust gas
JP2009000648A (en) Exhaust gas cleaning catalyst
EP3078416A1 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP5854262B2 (en) Exhaust gas purification catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP2006192365A (en) Catalyst for cleaning exhaust gas from internal-combustion engine, method for manufacturing the catalyst, and exhaust gas-cleaning apparatus
WO2019167515A1 (en) Exhaust purification three-way catalyst and manufacturing method therefor, and exhaust purification monolithic catalyst
JP2016209862A (en) Exhaust gas purification catalyst
EP3384984B1 (en) Catalyst composition for inhibiting diesel engine white smoke emission
JP5104491B2 (en) Automotive exhaust gas purification catalyst
JP2020062645A (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

LAPS Cancellation because of no payment of annual fees