JP5543239B2 - Heat supply system for cultivation facilities - Google Patents

Heat supply system for cultivation facilities Download PDF

Info

Publication number
JP5543239B2
JP5543239B2 JP2010038256A JP2010038256A JP5543239B2 JP 5543239 B2 JP5543239 B2 JP 5543239B2 JP 2010038256 A JP2010038256 A JP 2010038256A JP 2010038256 A JP2010038256 A JP 2010038256A JP 5543239 B2 JP5543239 B2 JP 5543239B2
Authority
JP
Japan
Prior art keywords
heat
pipe
heat supply
cultivation
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010038256A
Other languages
Japanese (ja)
Other versions
JP2011172502A (en
Inventor
八洲夫 田村
隆二 久保田
潤 安藤
澄夫 青砥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASAKI GEOLOGICAL ENGINEERING CO., LTD.
Original Assignee
KAWASAKI GEOLOGICAL ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASAKI GEOLOGICAL ENGINEERING CO., LTD. filed Critical KAWASAKI GEOLOGICAL ENGINEERING CO., LTD.
Priority to JP2010038256A priority Critical patent/JP5543239B2/en
Publication of JP2011172502A publication Critical patent/JP2011172502A/en
Application granted granted Critical
Publication of JP5543239B2 publication Critical patent/JP5543239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)

Description

本発明は、栽培施設の熱供給システムに関する。   The present invention relates to a heat supply system for a cultivation facility.

従来、栽培施設の熱供給システムとしては、特許文献1に記載のようにボイラーで水を加熱して熱水を作り、これを循環させるシステムが知られている。   2. Description of the Related Art Conventionally, as a heat supply system for a cultivation facility, a system that heats water with a boiler to make hot water and circulates it is known as described in Patent Document 1.

特開2006−204161号公報JP 2006-204161 A

しかしながら、特許文献1のようにボイラーで熱水を作る場合、石油系燃料費の高騰や脱炭素の観点から将来的にふさわしくない方法である。   However, when making hot water with a boiler like patent document 1, it is a method which is not suitable in the future from the viewpoint of soaring petroleum fuel cost and decarbonization.

本発明は、このような従来の問題点を解決するためになされたものであって、脱炭素をこなして効率のよい熱供給を行う栽培施設の熱供給システムを提供することを目的とする。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a heat supply system for a cultivation facility that performs decarbonization and efficiently supplies heat.

本発明は上記の目的を達成するために、土壌にて栽培対象の栽培を行う栽培施設の熱供給システムにおいて、ヒートポンプを設け、前記ヒートポンプは、地中熱と熱交換を行う熱交換用配管と、前記ヒートポンプによって発生した熱を前記栽培施設に供給する熱供給用配管とを有し、前記熱供給用配管を前記栽培対象の根域の下方に水平に配置し、前記熱交換用配管を前記熱供給用配管の下方に水平に配置し、前記熱交換用配管内および前記熱供給用配管内に不凍液を循環させて前記熱交換用配管および前記熱供給用配管の周辺と熱交換するものであり、前記熱供給用配管から供給する熱によって前記熱交換用配管の周辺の温度を補償する、ことを特徴とする。 In order to achieve the above object, the present invention provides a heat supply system for a cultivation facility that cultivates an object to be cultivated in soil , provided with a heat pump, and the heat pump includes a heat exchange pipe that exchanges heat with underground heat. And a heat supply pipe for supplying heat generated by the heat pump to the cultivation facility, and the heat supply pipe is disposed horizontally below the root area of the cultivation target, and the heat exchange pipe is It is arranged horizontally below the heat supply pipe and circulates an antifreeze liquid in the heat exchange pipe and the heat supply pipe to exchange heat with the periphery of the heat exchange pipe and the heat supply pipe. And the temperature around the heat exchange pipe is compensated by heat supplied from the heat supply pipe .

本発明によれば、脱炭素をこなして効率のよい熱供給を行う栽培施設の熱供給システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat supply system of the cultivation facility which manages decarbonization and performs efficient heat supply can be provided.

本発明の栽培施設(温室)と、その土壌面下への熱供給システムの概観を示す図である。It is a figure which shows the general view of the cultivation facility (greenhouse) of this invention, and the heat supply system under the soil surface. 本発明の畝と畦の下に水平設置された放熱管配管および地中熱交換配管の概念図である。It is a conceptual diagram of the heat radiating pipe piping and the underground heat exchange piping installed horizontally under the cage and the cage of the present invention. 本発明の栽培施設を含む放熱管および熱交換管の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステムについて、その熱移動の概念を一次伝熱で表現した図である。It is the figure which expressed the concept of the heat transfer by primary heat transfer about the heat source ground temperature compensation type underground heat pump system by the horizontal two-layer installation system in the soil of the heat radiating pipe and heat exchange pipe containing the cultivation facility of the present invention.

以下、図面を用いて、本発明の実施形態に係る栽培施設の熱供給システムをについて詳細に説明する。   Hereinafter, the heat supply system of the cultivation facility which concerns on embodiment of this invention is demonstrated in detail using drawing.

従来、施設栽培の熱供給方法は、エアコンによる空気対流方式を除けば、殆どの場合、栽培施設の地上に低く設置した放熱配管に熱水を供給し、その放熱を空気の対流移動によって栽培野菜・花卉の根およびを葉・茎に温熱を供給する方法であり、その熱源は石油系燃料ボイラーあるいは温泉熱水である。この方法では施設に冷熱を供給するにはエアコンのような別の設備が必要である。ボイラーで熱水を作る場合、燃料費の高騰と脱炭素の点から将来的にふさわしくない方法である。   Conventionally, the heat supply method for facility cultivation, except for the air convection method using an air conditioner, in most cases, supplies hot water to a heat radiating pipe installed low on the ground of the cultivation facility, and radiates the heat by convection movement of air.・ It is a method of supplying heat to the roots and leaves / stems of flower buds, and the heat source is petroleum fuel boiler or hot spring hot water In this method, another facility such as an air conditioner is required to supply cold heat to the facility. When making hot water with a boiler, this method is not suitable in the future in terms of rising fuel costs and decarbonization.

また、空気対流移動による熱供給のエネルギー効率は、伝導・伝達移動方法と比較して、鉢植栽培はともかく、畝床栽培における地面下の根への熱供給の効率は悪いので、熱移動方法に立ち入った熱供給の改良が求められる。   In addition, the energy efficiency of heat supply by air convection movement is lower than that of conduction / transmission movement method, because the efficiency of heat supply to the roots under the ground in paddy bed cultivation is poor. There is a need for improved heat supply.

孔井を熱交換井に用いた地中熱ヒートポンプによって地上配管に熱供給する試みが考えられるが、空気の対流移動による熱供給方式である限り、熱源コストが孔井掘削費を含めて相当に掛かる。   Although an attempt to supply heat to the ground piping by using a geothermal heat pump using a hole well as a heat exchange well can be considered, as long as the heat supply method is based on convection movement of air, the heat source cost is considerable including the hole drilling cost. It takes.

総じて、従来の方式は、本願のように栽培野菜・花卉に根域の下から熱伝導、熱伝達で熱供給し、同時に地中熱交換器設置部分の温度を補償する画期的な省エネルギーシステムの類ではない。   In general, the conventional method is a groundbreaking energy-saving system that supplies heat to the cultivated vegetables and flowers from below the root area by heat conduction and heat transfer, and at the same time compensates the temperature of the underground heat exchanger installation part as in the present application. Not like that.

本発明は、野菜・花卉の施設栽培に必要な熱供給システムとして、土壌中の根域の下位近傍に放熱配管を水平設置し、その下位近傍に地中熱交換配管を水平設置し、双方をヒートポンプに結合したシステムを構成することによって、地中熱交換配管で得られた温熱または冷熱を放熱配管から、上方へ熱伝導して根域に熱供給し、その後に熱伝達によって地上の葉・茎部に熱供給できる無駄の少ない熱供給方法であるとともに、放熱配管から下方へ伝導した熱によって地中熱交換配管領域の地中温度を補償できるフィードバック機能を有する省エネルギー型の施設栽培熱供給の制作を目的としたものである。   The present invention is a heat supply system necessary for the facility cultivation of vegetables and flowers, where a heat dissipating pipe is horizontally installed in the lower vicinity of the root area in the soil, and an underground heat exchange pipe is horizontally installed in the lower vicinity. By configuring a system coupled to a heat pump, the heat or cold obtained from the underground heat exchange pipe is conducted upward from the heat radiating pipe to supply heat to the root area, and then the heat is transferred to the ground Energy-saving facility cultivation heat supply that has a feedback function that can compensate the underground temperature of the underground heat exchange piping area by heat conducted downward from the heat radiating pipe as well as a wasteful heat supply method that can supply heat to the stem It is intended for production.

すなわち、本発明は、上記の事情に鑑み、栽培施設での畝床栽培において、成育に最も肝要な土壌中の根域への適温の熱供給(温熱または冷熱)を重視し、熱対流が主たる熱移動である従来方式をやめて、床暖房と類似するように地中に水平設置した放熱管からの熱伝導・熱伝達を主とする熱移動方法を採用する。これによって上方熱伝達によって葉・茎部への熱供給熱エネルギーの利用効率が上がる。   That is, in view of the above circumstances, the present invention focuses on heat supply (heat or cold) at an appropriate temperature to the root area in the soil, which is the most important for growth, in the bed cultivation in the cultivation facility, and heat convection is mainly used. Instead of the conventional method of heat transfer, a heat transfer method mainly adopting heat conduction and heat transfer from the heat radiation pipe installed horizontally in the ground is adopted to resemble floor heating. As a result, the utilization efficiency of heat supply heat energy to the leaves and stems is increased by upward heat transfer.

装置として、水平設置の放熱配管とその下位に水平配管した地中熱交換器をヒートポンプに接続したシステムを構成することによって、放熱管からの下方熱伝導の熱エネルギーが地中熱交換器周囲の熱交換によって変化した地温を補償できるので、その地中熱交換効率の補償およびヒートポンプ成績係数によって、熱源の脱石油および電力量節減を図ることができ、さらに冷熱用設備が不要であり、放熱配管および熱交換配管が土木的施工によって可能であるので、総じて施設栽培の採算性をいっそう高めることができる。   By constructing a system in which the heat radiation pipe installed horizontally and the underground heat exchanger horizontally installed below it are connected to the heat pump, the heat energy of the downward heat conduction from the heat radiation pipe is Since the ground temperature changed by heat exchange can be compensated, the heat source efficiency can be compensated and the heat pump coefficient of performance can be used to reduce the amount of oil used in the heat source and save electricity. Since heat exchanging piping is possible by civil engineering construction, the profitability of institutional cultivation can be further improved as a whole.

すなわち、本発明は、栽培施設のそれぞれ約50cm幅の畝および畦の下の土壌内に、葉菜・果菜・花卉等の根域より下位の適切に深い畝表面の下50cm程度の深度に放熱管を水平配管し、それよりさらに50cm程度深い畦の下に地中熱交換管を水平配管することにより、放熱管および熱交換器の土壌内水平二層設置方式によって熱源地温補償型の地中熱ヒートポンプシステムを構成する。   In other words, the present invention dissipates heat to a depth of about 50 cm below the surface of the deeper koji surface lower than the root area of leafy vegetables, fruit vegetables, flower buds, etc., in the soil under the heddle and heddle of about 50 cm width in the cultivation facility. The pipes are horizontally laid, and the underground heat exchange pipes are horizontally laid under a pit about 50 cm deeper than that. Construct a thermal heat pump system.

地温の日変化は、一般的に深さ50cmで1℃程度、深さ1mでは殆どゼロなので、日単位では放熱管、地中熱交換管を自然の安定した地温場に設置と評価できる。   Diurnal changes in soil temperature are generally about 1 ° C at a depth of 50 cm and almost zero at a depth of 1 m. Therefore, it can be evaluated that a heat radiating pipe and a ground heat exchange pipe are installed in a natural and stable ground temperature field on a daily basis.

季節に関係なく施設栽培するための温度調整システムの標準的なモデルとして、土壌根域・施設内・外気の標準温度を設定し、放熱管から根域への放熱係数、土壌根域から施設内への伝熱係数、施設内から外気への伝熱係数をそれぞれ設定し、それらをベースにして放熱管から外気に至る定常的熱移動環境を作る必要がある。その手段として、土壌の温度調整を放熱管温水温度で行い、施設内の温度調整を遮熱ブラインドまたは補助機能として設置の空調エアコンで行うことによって、放熱管から外気に至る定常的熱移動環境をつくることができる。   As a standard model of temperature control system for facility cultivation regardless of the season, standard temperature of soil root area, facility inside and outside air is set, heat dissipation coefficient from heat radiation pipe to root area, soil root area to facility inside It is necessary to set the heat transfer coefficient to the outside and the heat transfer coefficient from the inside of the facility to the outside air, and create a steady heat transfer environment from the heat radiating pipe to the outside air based on them. As a means for this, the temperature of the soil is adjusted with the temperature of the radiator pipe hot water, and the temperature inside the facility is adjusted with a heat-shielding blind or an air-conditioning air conditioner installed as an auxiliary function, thereby creating a steady heat transfer environment from the radiator pipe to the outside air. Can be made.

深さ50cm、1mでは地温の年変化は、雪国(例えば秋田)ではそれぞれ25℃程度、20℃程度あるが、放熱管温水温度の調整によって土壌根域温度を維持でき、放熱管からの下方伝熱によって年間をとおして地中熱源場の地温をほぼ一定の地温に概ね実現することが可能である。   At a depth of 50cm and 1m, the annual change in ground temperature is about 25 ° C and 20 ° C in snowy countries (for example, Akita), respectively, but the soil root zone temperature can be maintained by adjusting the temperature of the heat-radiating pipe. It is possible to realize the ground temperature of the underground heat source field to almost constant ground temperature throughout the year by heat.

(効果1)
本発明のシステムによれば、このシステムひとつで季節に関係なく、特に雪国で施設栽培による冬季農業が可能となる。
(Effect 1)
According to the system of the present invention, this system enables winter farming by facility cultivation in a snowy country, regardless of the season.

(効果2)
ひとつのシステムで根域から葉・茎部へ上昇するに類する熱伝導・熱伝達を主とする床暖房に類する栽培型方式で、温熱供給、冷熱供給、さらにそれらの供給量調整をヒートポンプに内臓の2つの熱交換器の役割モード変換操作だけで施設栽培の温度管理ができる。
(Effect 2)
It is a cultivation type system similar to floor heating mainly for heat conduction and heat transfer similar to ascending from the root region to leaves and stems in one system. It is possible to manage the temperature of facility cultivation only by the role mode conversion operation of the two heat exchangers.

(効果3)
地中熱交換の熱源場が深度1m程度と浅いにも関らず、放熱管からの下方伝熱によって、概ね一定の地温を保って、安定的な地中熱交換効率を実現できる。
(Effect 3)
Although the heat source field for underground heat exchange is as shallow as about 1 m in depth, stable underground heat exchange efficiency can be realized by maintaining a substantially constant ground temperature by downward heat transfer from the heat radiating pipe.

(効果4)
放熱管からの熱エネルギーを、その1/3〜1/4のヒートポンプ電気エネルギーで作り出すことができ、ボイラーで熱水を造る必要がなく、二酸化炭素排出が多量で、かつ将来的に高騰しうる石油系燃料の使用から脱却して、経済性向上を図って低炭素社会へ移行する施設栽培農業の再生可能エネルギー中心の省エネルギーインフラとして有効である。
(Effect 4)
The heat energy from the heat radiating pipe can be produced with 1/3 to 1/4 of the heat pump electric energy, it is not necessary to make hot water in the boiler, the carbon dioxide emission is large, and it can rise in the future It is effective as an energy-saving infrastructure centering on renewable energy in facility-grown agriculture that moves away from the use of petroleum-based fuels and shifts to a low-carbon society in an effort to improve economy.

(実施例)
一般的に存在する大きさおよび仕様の栽培施設の事例として、施設表面がビニール製で栽培有効土床面積が400m2(20m×20mの矩形)の施設を実施モデルとする。施設栽培の温度分布として、野菜・花卉類の栽培適温が15℃〜25℃であることから土壌根域温度を冬・夏ともに20℃とし、外気平均温度を冬0℃、夏30℃とし、施設内温度を通常作物の光合成等が可能な冬10℃、夏20℃を標準的温度として設定する。
(Example)
As an example of a general cultivation facility of size and specification, the implementation model is a facility whose surface is made of vinyl and has an effective cultivation floor area of 400m 2 (20m x 20m rectangle). As the temperature distribution of greenhouse cultivation, the optimum temperature for cultivation of vegetables and flowers is 15 ℃ to 25 ℃, the soil root zone temperature is 20 ℃ in winter and summer, the outside air average temperature is 0 ℃ in winter, 30 ℃ in summer, The temperature inside the facility is set to 10 ° C in winter and 20 ° C in summer, where photosynthesis is possible for normal crops.

放熱管の水平配管形態として、クッションタンクから放熱管へ温水(または冷水)が流出する下り幹管と流入する上り幹管を設け、この2本の幹管から分枝して何列かの畝下を直列に刺し通した枝管のユニットをすべての畝下に対して設置する。   As the horizontal piping form of the radiator pipe, a down trunk pipe from which hot water (or cold water) flows out from the cushion tank to the radiator pipe and an upstream trunk pipe into which the inflow flows are provided. A branch pipe unit pierced in series below is installed for all armpits.

地中熱交換管の水平配管形態として、ヒートポンプの地中熱源側の熱交換器から地中熱交換器へ不凍液が流出する下り幹管と流入する上り幹管を設け、この2本の幹管から分枝して何列かの畦下を直列に刺し通した枝管のユニットをすべての畦下に対して設置する。   As the horizontal piping form of the underground heat exchange pipe, a down trunk pipe where antifreeze liquid flows out from the heat exchanger on the ground heat source side of the heat pump to the underground heat exchanger and an upstream trunk pipe into which it flows are provided, and these two trunk pipes A branch pipe unit that is branched from and pierced several rows of armpits in series is installed for all armpits.

クッションタンクは、放熱管との流体循環回路のほかに、ヒートポンプの二次側の熱交換器との温水・冷水循環の回路、および補助機能として施設内に設置のファンコイルユニットとの温水・冷水循環の回路が結合している。   In addition to the fluid circulation circuit with the radiator pipe, the cushion tank has a circuit for circulating hot water and cold water with the heat exchanger on the secondary side of the heat pump, and hot and cold water with the fan coil unit installed in the facility as an auxiliary function. Circulating circuits are connected.

ビニール製の施設の屋根および壁面には可動式の遮熱カーテンが設置されている。   A movable heat-insulating curtain is installed on the roof and walls of the vinyl facility.

根域下の放熱管水平配管、および地中熱交換水平配管のチューブには、熱伝導率が比較的良く、衝撃に強く、最も良く使われている架橋ポリエチレン製のものを使う。   Use the most commonly used cross-linked polyethylene pipes for heat radiation horizontal pipes under the root zone and underground heat exchange horizontal pipes with relatively good thermal conductivity and impact resistance.

図1は、栽培施設(温室)10と、その土壌面下への熱供給システムの概観を示す。   FIG. 1 shows an overview of a cultivation facility (greenhouse) 10 and its heat supply system below the soil surface.

本発明の熱供給システムは、土壌15中の根域下位の放熱管水平配管(熱供給用配管17)およびその下位の地中熱交換水平配管(熱交換用配管16)、並びにヒートポンプ本体14、クッションタンク13および補助熱供給機能としてのファンコイルユニット12から構成される。   The heat supply system of the present invention includes a heat radiation pipe horizontal pipe (heat supply pipe 17) below the root zone in the soil 15 and a ground heat exchange horizontal pipe (heat exchange pipe 16) below the heat pump main body 14, It comprises a cushion tank 13 and a fan coil unit 12 as an auxiliary heat supply function.

栽培施設(温室)10は、遮熱カーテン11で覆われるものとしてもよい。   The cultivation facility (greenhouse) 10 may be covered with a heat shielding curtain 11.

図2は、土壌15の畝と畦のほぼ直下に水平設置された放熱管配管16および地中熱交換配管17の概念図であり、放熱管配管16および地中熱交換配管17の両者ともに幹管と枝管とで構成されている。   FIG. 2 is a conceptual diagram of the heat radiating pipe 16 and the underground heat exchange pipe 17 installed horizontally just below the ridges of the soil 15. Both the heat radiating pipe 16 and the underground heat exchange pipe 17 are trunks. It consists of a pipe and a branch pipe.

上記の実施モデルで栽培施設10の栽培有効土床面積が400m2(20m×20mの矩形)であり、畝と畦を0.5m間隔で交互に配列すると、それぞれ20m長の畝と畦が20列ずつできる。 In the above implementation model, the cultivation floor 10 has an effective cultivation floor area of 400m 2 (20m x 20m rectangle), and when the cocoons and cocoons are arranged alternately at intervals of 0.5m, 20 rows of 20m long cocoons and cocoons are provided. You can do it one by one.

放熱管16の幹管はクッションタンク13と循環するように流出する下り管と流入する上り管による循環管であり、地中熱交換管17の幹管はヒートポンプ14の地中熱源側熱交換器と不凍液が循環するように流出する下り管と流入する上り管による循環管である。放熱管幹管および地中熱交換管幹管の全長はそれぞれ40mとする。   The trunk pipe of the heat radiating pipe 16 is a circulation pipe composed of a down pipe flowing out so as to circulate with the cushion tank 13 and an up pipe flowing in. The trunk pipe of the underground heat exchange pipe 17 is a heat exchanger on the ground heat source side of the heat pump 14. The circulation pipe is composed of a down pipe that flows out so that the antifreeze circulates and an up pipe that flows in. The total length of the radiant pipe trunk pipe and underground heat exchange pipe trunk pipe shall be 40 m respectively.

放熱管16の枝管は畝2列分を50cm深に水平にコ字状に串刺して幹管の上り管・下り管に接続するが、これをユニットとしてすべての畝下に枝管を設置する。放熱管枝管の全長は400mとなる。地中熱交換管17の枝管は畦2列分を1m深に水平にコ字状に串刺して幹管の上り管・下り管に接続するが、これをユニットとしてすべての畦下に枝管を設置する。地中熱交換管17の全長は400mとなる。   The branch pipes of the radiating pipe 16 are connected to the upstream and downstream pipes of the trunk pipe by connecting two rows of ridges horizontally in a U shape to a depth of 50 cm, and branch pipes are installed under all the armpits as a unit. . The total length of the radiating pipe branch pipe is 400 m. The branch pipes of the underground heat exchange pipe 17 are connected to the upstream and downstream pipes of the trunk pipe by connecting two rows of ridges horizontally in a U-shape to a depth of 1 m, and this is connected as a unit to all the armpits. Is installed. The total length of the underground heat exchange pipe 17 is 400 m.

図3は、本発明の栽培施設10を含む放熱管16および熱交換管17の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステムについて、その熱移動の概念を一次伝熱で表現したものであり、これを用いて伝熱量を概算する。   FIG. 3 shows the concept of heat transfer for the heat source ground temperature compensation type geothermal heat pump system by the horizontal two-layer installation method in the soil of the heat radiating pipe 16 and the heat exchange pipe 17 including the cultivation facility 10 of the present invention. This is an expression that is used to approximate the amount of heat transfer.

土壌面から地表への標準的な熱伝達率は4kcal/h・m2・℃であり、施設壁面から外気への標準的な熱伝達率を3kcal/h・m2・℃とする。冬季において、外気温0℃、施設内温度10℃、土壌温度20℃を設定すると、土壌面から地表への伝熱量は概計算4×(20-10)℃×400m2=16,000kcal/hである。これを定常的な伝熱量とするために、放熱管16からの放熱効率を単位管長当たり40kcal/h・m供給すると、全放熱量が概計算40×400m=16,000 kcal/hになる。一方、施設10の壁面積から外気への伝熱量を16,000kcal/hとするには熱伝達する壁の面積は概略16,000÷3÷(10−0)℃=540m2となり、これより広い部分の壁面からに相当する熱通過量は遮熱カーテン11、その他の方法(FCU12暖房等)で防ぐことになる。 Standard heat transfer rate to the ground from the soil surface is 4kcal / h · m 2 · ℃ , standard heat transfer rate to the outside air from the facility wall and 3kcal / h · m 2 · ℃ . In winter, if the outside air temperature is 0 ° C, the facility temperature is 10 ° C, and the soil temperature is 20 ° C, the heat transfer from the soil surface to the ground surface is approximately 4 × (20-10) ° C × 400m 2 = 16,000kcal / h is there. In order to make this a steady heat transfer amount, if the heat radiation efficiency from the heat radiating pipe 16 is supplied at 40 kcal / h · m per unit pipe length, the total heat radiation amount is approximately 40 × 400 m = 16,000 kcal / h. On the other hand, to make the heat transfer amount from the wall area of the facility 10 to the outside air 16,000kcal / h, the area of the heat transfer wall is approximately 16,000 ÷ 3 ÷ (10−0) ℃ = 540m 2 , The amount of heat passing through the wall surface is prevented by the heat shielding curtain 11 and other methods (FCU 12 heating and the like).

ヒートポンプを標準的な成績係数(COP)=4で運転すると、16,000kcal/hの放熱量の元となる地中熱交換量は採熱の場合16,000×3/4=12,000 kcal/hとなり、単位長当たり熱交換率=16,000÷400m=30 kcal/h・m=35W/ mである。この熱交換量は地下水流のない地質環境での最少量に相当する熱交換量とみなすことができる。   When the heat pump is operated with a standard coefficient of performance (COP) = 4, the heat exchange rate in the ground, which is the source of heat dissipation of 16,000 kcal / h, is 16,000 x 3/4 = 12,000 kcal / h in the case of heat collection. Heat exchange rate per length = 16,000 ÷ 400 m = 30 kcal / h · m = 35 W / m. This heat exchange amount can be regarded as the heat exchange amount corresponding to the minimum amount in a geological environment without a groundwater flow.

次に、砂質・粘土質土壌も熱伝導率は概ね1kcal/mh℃であるので、根域下の放熱管16から35℃の放射熱が下方伝熱によって40kcal/h・mを円筒放射上に伝熱すると地中熱交換管17の深度で概算20℃程度の地温を与えることになる。   Next, since the thermal conductivity of sandy and clay soils is approximately 1 kcal / mh ° C, the radiation heat of 35 ° C from the heat radiation pipe 16 below the root zone causes 40 kcal / h · m to be radiated to the cylinder by downward heat transfer. When heat is transferred to the ground, a ground temperature of about 20 ° C. is given at the depth of the underground heat exchange pipe 17.

以上の概算で分かるように、放熱管からの35℃程度の放熱量で、定常的に根域領域の温度20℃および土壌上の施設内温度10℃を維持して、外気の平均気温0℃の冬季に施設栽培が可能であり、そして地中熱交換配管の地温を下方伝熱によって概ね20℃に維持し、ヒートポンプCOP=4の性能によって採熱に無理のない地中熱交換率35W/ mを得ることが十分に可能なトータルシステムである。   As can be seen from the above estimates, the average temperature of the outside air is 0 ° C with a heat release of about 35 ° C from the heat radiating pipe, constantly maintaining the root region temperature of 20 ° C and the facility temperature on the soil of 10 ° C. Can be cultivated in winter, and the ground heat exchange pipe is maintained at a ground temperature of approximately 20 ° C by downward heat transfer, and the heat pump COP = 4 has a ground heat exchange rate of 35W / It is a total system that can sufficiently obtain m.

(付記)
本発明は、以下に記載のものである。
1.(装置)
施設栽培の土壌中に、栽培野菜・花卉等の根域より下位の近傍に栽培に水道水を循環させる放熱配管装置を水平に設置し、その放熱管装置の下位の近傍に不凍液を循環させる地中熱交換器配管を水平に設置して、ともに地上の水冷式ヒートポンプに結合させた装置で、根域に適温の温熱(または冷熱)を供給し、土壌域から施設内へ上昇する温熱(または冷熱)を野菜・花卉の葉・茎域に熱供給し、さらに放熱管から下方伝熱する温熱(または冷熱)によって地中から採熱して地温低下(または地中へ排熱して地温上昇)している地中熱交換器配管周囲の地温を上昇(または下降)回復させる効果を機能として有し、さらに外気温度と断熱能力の乏しい素材からなる栽培施設の屋根および壁面との間の熱貫通量を調整して地中から外気まで定常的な熱伝達を確保するために、遮熱カーテンあるいはヒートポンプからの施設内部の空気暖房(または冷房)を補助機能として組み込んでいること特徴とする、放熱管および熱交換器の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステム。
2.(方法)
通常規模の適当な床面積を有する葉菜・果菜・花卉類の栽培施設の土壌表面に、畝と畦を適切な間隔で配列し、野菜の根域(畝表面より深さ30cm以内)より近傍下位(土壌表面より深さ50cm程度)の畝下に水道水を循環させる枝管放熱配管を畝2列(または4列)直列で水平配管して放熱管幹管に結合させて、ヒートポンプのクッションタンクに接続させ、一方、土壌表面より深さ1m程度の畦下に不凍液を循環させる枝管地中熱交換配管を畦2列(または4列)直列で水平配管して熱交換管幹管に結合させて、ヒートポンプ内の熱交換器(または凝縮器)に接続させることによって、地中熱交換配管内を一定の流速で流動する不凍液が隣接する地中との間で伝熱によって採熱(または排熱)して昇温(または降温)した不凍液をヒートポンプの蒸発器としての熱交換器(または凝縮器としての熱交換器)に導入してヒートポンプの循環冷媒を液体からガス化(またはガスから液化)させた後、電動式圧縮機で高温高圧ガス(または膨張器で低温低圧液)にし、凝縮器としての熱交換器(または蒸発器としての熱交換器)内で凝縮器としての熱交換器(または蒸発器としての熱交換器)とクッションタンクを経由して放熱管との間を循環する水道水に放熱(または、水道水から採熱)して昇温(または降温)させて、放熱配管内を一定の流速で流動する水道水が隣接する地中土壌との間で伝熱によって放熱(または吸熱)することにより、放熱管の上位土壌の根域温度を適温に上昇(または下降)させ、さらに土壌面を通して栽培施設の空気中へ伝熱が定常的に野菜・花卉の茎・葉部を適温に維持できるように、栽培施設の屋根および壁面に遮断カーテンを設置あるいはヒートポンプからの施設内部の空気暖房(または冷房)を補助機能として組み込んでおり、さらに放熱管からその下位の地中熱交換配管領域へ伝熱することにより、採熱(または排熱)によって降下(または上昇)した地中温度を上昇(または下降)回復させる熱源環境補償機能を有する方法を特徴とする、放熱管および熱交換器の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステム。
3.
地中の水平放熱配管装置から放熱される温熱(または冷熱)は、含水土壌中を熱伝達して野菜・花卉の根域に直接的に熱供給し、さらに地表面の上に熱伝達して空気を暖め(または冷やし)、その空気から葉・茎部に熱伝達するため、栽培野菜・花卉に対して無駄のない熱供給方法であって、さらに地中の放熱管水平配管装置から放熱される温熱(または冷熱)の熱伝達形式が、放熱管配管から上位近傍の根域に向かって、そして放熱管配管から下位近傍の地中熱交換器配管装置に向かって、ともに円筒型放射状の伝熱の組合せによって比較的簡単な伝熱モデルで表現されるので、省エネルギーで制御し易いことを特徴とする、放熱管および熱交換器の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステム。
4.
栽培施設の床面の下位に設置した水平放熱配管装置と地中熱交換器配管装置を地上の水冷式ヒートポンプに結合させたシステムで、1基のシステムでその構成器である2つの熱交換器の役割を蒸発器と凝縮器の組合せ、または凝縮器と蒸発器の組合せの片方を選択することによって、それぞれ温熱の供給または冷熱の供給を栽培環境の変化等に対応させて供給できることを特徴とする、放熱管および熱交換器の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステム。
5.
栽培施設の床面から0.5m程度の下位に設置した水平放熱配管装置と床面から1m程度の下位に水平に設置した地中熱交換器配管装置を地上の水冷式ヒートポンプに結合させたシステムであるので、地中熱交換のための孔井掘削を必要としないで簡便で安価な土木的作業の機械と方法で施工が可能であり、栽培土壌の基盤作りの一環として施工が可能であることを特徴とする、放熱管および熱交換器の土壌内水平二層設置方式による熱源地温補償型地中熱ヒートポンプシステム。
(Appendix)
The present invention is described below.
1. (apparatus)
In a facility-cultivated soil, a heat dissipating pipe device that circulates tap water for cultivation in the vicinity below the root region of cultivated vegetables and flower buds is installed horizontally, and the antifreeze liquid is circulated near the subordinate portion of the heat dissipating tube device. An intermediate heat exchanger pipe installed horizontally and connected to an above-ground water-cooled heat pump, supplying appropriate heat (or cold) to the root area, and rising heat from the soil area into the facility (or (Cold heat) is supplied to vegetables, flower leaves, and stems, and heat is also collected from the ground by the heat (or cold heat) that is transferred downward from the radiator pipe to lower the ground temperature (or exhaust to the ground to increase the ground temperature). The amount of heat penetration between the roof and wall of a cultivation facility that has the effect of raising (or lowering) and recovering the temperature around the underground heat exchanger pipe, and is made of a material with poor outside air temperature and heat insulation ability To adjust from the ground to the open air In order to ensure effective heat transfer, heat radiation curtains or heat pumps inside the facility from the heat pump (or cooling) are incorporated as an auxiliary function, and two horizontal layers in the soil of the heat sink and heat exchanger Heat source ground temperature compensation type underground heat pump system by installation method.
2. (Method)
Arrange the persimmons and persimmons at appropriate intervals on the soil surface of leafy vegetables, fruit vegetables, and flowering plants with a suitable floor area of normal scale, and close to the root area of the vegetable (within 30 cm depth from the persimmon surface) Heat pump cushions by connecting branch pipe heat radiating pipes that circulate tap water under the lower arm (about 50 cm deep from the soil surface) horizontally in series (two or four lines) in series and radiating pipe trunk pipes On the other hand, the branch pipe underground heat exchange pipe that circulates the antifreeze liquid under the dredging about 1 m deep from the soil surface is horizontally arranged in two rows (or four rows) in series to form a heat exchange pipe trunk. Combined and connected to the heat exchanger (or condenser) in the heat pump, the antifreeze flowing in the underground heat exchange pipe at a constant flow rate is collected by heat transfer between adjacent underground ( (Or waste heat) and evaporate the antifreeze liquid heated (or cooled) by the heat pump After introducing into the heat exchanger (or heat exchanger as a condenser) and gasifying (or liquefying) the circulating refrigerant of the heat pump from the liquid, the high-temperature and high-pressure gas (or the expander) with an electric compressor In the low-temperature and low-pressure liquid), and through the heat exchanger (or heat exchanger as an evaporator) and the cushion tank in the heat exchanger (or heat exchanger as an evaporator) as a condenser Underground soil adjacent to tap water that radiates heat (or collects heat from tap water) and raises (or cools down) the tap water circulating between the radiator pipes and flows at a constant flow rate in the heat dissipation pipe Heat (or endothermic) by heat transfer to and from the soil, the root zone temperature of the upper soil of the heat radiating pipe is raised (or lowered) to an appropriate temperature, and the heat transfer to the air in the cultivation facility through the soil surface is steady Suitable temperature for the stems and leaves of vegetables and flowers In order to maintain it, a curtain is installed on the roof and wall of the cultivation facility, or air heating (or cooling) inside the facility from the heat pump is incorporated as an auxiliary function, and the underground heat exchange piping area below it from the radiator pipe A heat radiating tube and a heat exchanger characterized by a method having a heat source environment compensation function that recovers the underground temperature lowered (or increased) due to heat collection (or exhaust heat) by transferring heat to Heat source ground temperature compensation type geothermal heat pump system by horizontal two-layer installation method in soil.
3.
The heat (or cold heat) radiated from the horizontal heat radiating piping system in the ground is transferred directly to the root area of vegetables and flowers by transferring heat through the hydrous soil, and then transferring heat to the ground surface. Heating (or cooling) the air and transferring heat from the air to the leaves and stems is a heat supply method that is not wasteful to the cultivated vegetables and florets. Both the heat transfer mode of the heat (or cold) to be transferred is a cylindrical radial transmission from the radiator pipe to the upper root region and from the radiator pipe to the lower underground heat exchanger piping device. It is expressed by a relatively simple heat transfer model depending on the combination of heat, so it is easy to control and save energy, and heat source ground temperature compensation type ground heat by heat radiation pipe and heat exchanger horizontal two-layer installation method in the soil Heat pump system.
4).
A system that combines a horizontal heat-dissipating piping system and an underground heat exchanger piping system installed below the floor of a cultivation facility with a water-cooled heat pump on the ground. By selecting one of the combination of the evaporator and the condenser, or the combination of the condenser and the evaporator, the supply of hot or cold can be supplied corresponding to changes in the cultivation environment, etc. A heat source ground temperature compensation type geothermal heat pump system by horizontal two-layer installation method of heat radiation pipe and heat exchanger in the soil.
5.
A system that combines a horizontal heat-dissipating piping system installed about 0.5m below the floor of a cultivation facility and a ground heat exchanger piping system installed horizontally about 1m below the floor with a water-cooled heat pump on the ground. Therefore, construction is possible with simple and inexpensive civil engineering machines and methods without the need for borehole excavation for underground heat exchange, and construction is possible as part of the foundation of cultivated soil The heat source ground temperature compensation type geothermal heat pump system by the horizontal two-layer installation method in the soil of the radiator pipe and heat exchanger.

以上、本発明の好ましい実施形態について説明したが、実施の形態については上記に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更および組み合わせが可能である。   The preferred embodiments of the present invention have been described above. However, the embodiments are not limited to the above, and various modifications and combinations can be made without departing from the gist of the present invention.

10 温室(栽培施設)
11 遮熱カーテン
12 FCU(ファンコイルユニット)
13 クッションタンク
14 HP(ヒートポンプ)
15 土壌
16 熱交換用配管
17 熱供給用配管
10 Greenhouse (cultivation facility)
11 Thermal barrier 12 FCU (fan coil unit)
13 Cushion tank 14 HP (Heat pump)
15 Soil 16 Piping for heat exchange 17 Piping for heat supply

Claims (4)

土壌にて栽培対象の栽培を行う栽培施設の熱供給システムにおいて、
ヒートポンプを設け、
前記ヒートポンプは、地中熱と熱交換を行う熱交換用配管と、前記ヒートポンプによって発生した熱を前記栽培施設に供給する熱供給用配管とを有し、
前記熱供給用配管を前記栽培対象の根域の下方に水平に配置し、前記熱交換用配管を前記熱供給用配管の下方に水平に配置し、
前記熱交換用配管内および前記熱供給用配管内に不凍液を循環させて前記熱交換用配管および前記熱供給用配管の周辺と熱交換するものであり、
前記熱供給用配管から供給する熱によって前記熱交換用配管の周辺の温度を補償する、
ことを特徴とする栽培施設の熱供給システム。
In the heat supply system of the cultivation facility that cultivates the cultivation target in the soil,
A heat pump,
The heat pump has a heat exchange pipe for exchanging heat with underground heat, and a heat supply pipe for supplying heat generated by the heat pump to the cultivation facility,
The heat supply pipe is horizontally arranged below the root area of the cultivation target, and the heat exchange pipe is horizontally arranged below the heat supply pipe,
In the heat exchange pipe and in the heat supply pipe, an antifreeze is circulated to exchange heat with the heat exchange pipe and the periphery of the heat supply pipe.
Compensating the temperature around the heat exchange pipe with heat supplied from the heat supply pipe;
A heat supply system for a cultivation facility characterized by that.
前記ヒートポンプと前記熱供給用配管との間に、クッションタンクをさらに設けた、
ことを特徴とする請求項1に記載の栽培施設の熱供給システム。
A cushion tank was further provided between the heat pump and the heat supply pipe.
The heat supply system for a cultivation facility according to claim 1.
前記栽培施設内に補助熱供給を行うファンコイルユニットをさらに設けた、
ことを特徴とする請求項1または2に記載の栽培施設の熱供給システム。
Further provided a fan coil unit for supplying auxiliary heat in the cultivation facility,
The heat supply system for a cultivation facility according to claim 1 or 2.
前記熱交換用配管を前記栽培施設内の畦のほぼ直下に配置し、
前記熱供給用配管を前記栽培施設内の畝のほぼ直下に配置した、
ことを特徴とする請求項1ないし3のうちのいずれか1項に記載の栽培施設の熱供給システム。
The heat exchanging pipe is arranged almost directly under the straw in the cultivation facility,
The heat supply pipe is arranged almost directly below the ridge in the cultivation facility,
The heat supply system for a cultivation facility according to any one of claims 1 to 3, wherein the heat supply system is a cultivation facility.
JP2010038256A 2010-02-24 2010-02-24 Heat supply system for cultivation facilities Active JP5543239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038256A JP5543239B2 (en) 2010-02-24 2010-02-24 Heat supply system for cultivation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038256A JP5543239B2 (en) 2010-02-24 2010-02-24 Heat supply system for cultivation facilities

Publications (2)

Publication Number Publication Date
JP2011172502A JP2011172502A (en) 2011-09-08
JP5543239B2 true JP5543239B2 (en) 2014-07-09

Family

ID=44686008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038256A Active JP5543239B2 (en) 2010-02-24 2010-02-24 Heat supply system for cultivation facilities

Country Status (1)

Country Link
JP (1) JP5543239B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757752B2 (en) * 2010-03-15 2015-07-29 佐藤 順彦 Underground heat storage type air conditioner
CN103190313B (en) * 2013-04-19 2014-12-10 哈尔滨工业大学 Air energy soil-thermal storage heating and cooling device for fruit and vegetable plastic sheds or greenhouses in cold areas
CN108958336B (en) * 2017-06-18 2020-10-02 谢旭阳 Greenhouse system based on solar energy and ground source heat pump

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581522A (en) * 1978-12-13 1980-06-19 Takeo Fujii Energy saving method and installation in cooling and warming of atomosphere within installation
JPS5752728A (en) * 1980-09-16 1982-03-29 Watanabe Pipe Kk Hothouse heating system
JPS57146526A (en) * 1981-03-07 1982-09-10 Hiroyuki Morita Greenhouse
JPS57152828A (en) * 1981-03-16 1982-09-21 Engei Gijutsu Center Kk Cultivation in greenhouse
JPS58134919A (en) * 1981-12-28 1983-08-11 ネポン株式会社 Heating and cooling system in horticulture greenhouse
JPS6010448U (en) * 1984-05-15 1985-01-24 株式会社 前川製作所 Greenhouse heating and heat storage device
JP2003092933A (en) * 2001-09-26 2003-04-02 Kokusai Gijutsu Kaihatsu Co Ltd Ground temperature controlling apparatus
JP3845056B2 (en) * 2002-11-08 2006-11-15 株式会社東條製作所 Heat pipe and heating device and cooling device using the heat pipe
JP2008220217A (en) * 2007-03-09 2008-09-25 Yanmar Co Ltd Greenhouse warming system
JP2009136203A (en) * 2007-12-06 2009-06-25 Rajiant:Kk Method for warming soil for greenhouse cultivation

Also Published As

Publication number Publication date
JP2011172502A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
US8567482B2 (en) Heat tube device utilizing cold energy and application thereof
US20100064710A1 (en) Self contained water-to-water heat pump
JP2018509892A (en) Environmentally friendly indoor cultivation
Paksoy et al. Thermal energy storage (TES) systems for greenhouse technology
CN102536353B (en) For cooling the method for the carrier fluid of power station, power station and cooling system
US20150163965A1 (en) System and method of managing cooling elements to provide high volumes of cooling
RU2651276C1 (en) Soil heating device
US20190162451A1 (en) Thermal And Moisture Enhanced Gradient Strata For Heat Exchangers
CN202635230U (en) Greenhouse cold and heat exchange system with deep-buried ground source heat pump
JP5543239B2 (en) Heat supply system for cultivation facilities
KR101818574B1 (en) Vinyl House heating and Cooling device By Geothermal Energy
KR100557460B1 (en) Geothermal heat pump system
CN103636436A (en) Solar underground heat accumulation sunlight greenhouse heating system
KR20100028893A (en) Greenhouse heating apparatus using the waste heat
US20080006046A1 (en) Self contained water-to-water heat pump
CN108353698A (en) Solar heat underground heat complementation energy facilities agricultural greenhouse
KR101303576B1 (en) Soil heating apparatus using remainded Heat of house and heat pump
Ozgener et al. Geothermal heating applications
CN205546718U (en) Greenhouse system
JP2019143934A (en) Air conditioner for cultivation facility
CN201449084U (en) Tubular pile ground source heat pump system
KR20100026445A (en) Insulation apparatus of house using underground air
JP2009136203A (en) Method for warming soil for greenhouse cultivation
Yousefi et al. Economic and environmental feasibility study of greenhouse heating and cooling using geothermal heat pump in northwest Iran
CN201690853U (en) Geothermal-energy anti-freezing device for open type flower nursery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250