US20100064710A1 - Self contained water-to-water heat pump - Google Patents

Self contained water-to-water heat pump Download PDF

Info

Publication number
US20100064710A1
US20100064710A1 US12/563,647 US56364709A US2010064710A1 US 20100064710 A1 US20100064710 A1 US 20100064710A1 US 56364709 A US56364709 A US 56364709A US 2010064710 A1 US2010064710 A1 US 2010064710A1
Authority
US
United States
Prior art keywords
fluid
conduit
heat exchanger
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/563,647
Inventor
James William Slaughter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/775,739 external-priority patent/US20080006046A1/en
Application filed by Individual filed Critical Individual
Priority to US12/563,647 priority Critical patent/US20100064710A1/en
Publication of US20100064710A1 publication Critical patent/US20100064710A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/24Refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the present invention relates generally to a thermoelectric apparatus that transfers thermal energy from one location to another that can be used alternatively to either heat or cool an area.
  • Heat pumps are basically air conditioning units that function in reverse and are commonplace in many residential and commercial structures.
  • the most common air-to-air pumps employ a conduit filled with a thermally conductive coolant, such as Freon, that transfers heat taken from the air outside of the structure into the structure.
  • the vapor compression cycle that facilitates the heat transfer comprises generally a conduit that carries high pressure, high temperature liquid coolant to an expansion valve that reduces the pressure of the coolant, thereby lowering its temperature and pressure.
  • the now low temperature coolant is then directed to an evaporator, which is generally a system of coiled tubes that act as a heat exchanger.
  • the fluid in the evaporator is placed in thermal communication with the air outside the structure so that the heat from the air is transferred to the coolant in the evaporator.
  • air-to-air systems are not very efficient in the winter. More specifically, when the outside temperature is at or below about 35° F., heat is less easy to extract. Thus, in most locations, a furnace, a stove or a fireplace, for example, must be employed during colder periods to heat the structure. Further, air-to-air heat exchange systems are prone to damage and degradation since they must be located outside of the structure.
  • Water-to-water heat transfer systems also exist that are more efficient than air-to-air systems, one common system employing a ground source heat pump that obtains the required thermal energy from beneath the surface of the earth as opposed to the air around a structure. More specifically, the temperature of the ground or groundwater a few feet beneath the earth's surface remains relatively constant throughout the year, even though the outdoor air temperature may fluctuate greatly with the change of seasons. For example, at a depth of approximately 6 feet, the temperature of the soil in most of the world's regions remains stable between about 45° and 70° F. Thus there exists a constant and ready supply of heat to be pulled from the ground and used as a source of heat for a heat pump to heat the structure, for example.
  • geo-exchange heat pumps utilize the earth's natural heat that is collected in winter through a series of pipes, generally referred to an “earth loop” or “ground loop,” installed below the surface of the ground or submerged in a pond or lake.
  • An indoor heat exchange system then uses electrically driven compressors and heat exchangers in a vapor compression cycle to concentrate the earth's heat energy and selectively release it inside the dwelling at a higher temperature.
  • the process can be reversed in the summer to cool the dwelling. Approximately 70% of the energy used in a geo-exchange heating and cooling system is renewable from the ground.
  • the earth loop in a geo-exchange system remains out of sight beneath the earth's surface while it works unobtrusively to tap the heating and cooling nature provides.
  • the earth loops for a residential geo-exchange systems are installed either horizontally or vertically in the ground, or submerged in water in a pond or lake. In most cases, the fluid runs through a loop in a closed system, but open loop systems may be used where local codes permit.
  • Each type of loop configuration has its own, unique advantages and disadvantages.
  • Horizontal ground closed loops are usually the most effective when adequate yard space is available and trenches are easy to dig.
  • Trenchers or back hoes are employed to dig trenches about 3-6 feet below the ground wherein a series of parallel plastic pipes are placed in a closed loop. The trench is then back-filled while care is taken not to allow sharper objects to damage the pipes.
  • a typical horizontal loop will be about 400-600 feet long per ton of heating and cooling capacity required.
  • the buried or submerged pipe may be coiled in order to fit more of it into shorter trenches, but, while this reduces the amount of land space needed, it may require more pipe to achieve the same results as a single spread out pipe that can more efficiently extract or deposit thermal energy.
  • Horizontal ground loops are easiest to install at a home that is under construction.
  • a vertical ground closed loop may be employed which is ideal for homes where yard space is insufficient or for large structures that require large heating and cooling loads.
  • Vertical earth loops are also ideal when the earth is rocky close to the surface, or for retrofit applications where minimum disruption of landscaping is desired, wherein each hole contains a single loop of pipe with a u-bend at the bottom. After the pipe is inserted, the hole is back-filled or grouted.
  • Each vertical pipe is then connected to a horizontal pipe, which may also be concealed underground, that carries fluid in a closed system to and from the geo-exchange system.
  • Vertical loops are generally more expensive to install, but require less piping than horizontal loops because the earth at greater depths is alternatingly cooler in the summer and warmer in the winter.
  • a five ton system generally requires five holes each about 200 feet deep to be effective, which equates to 1000 feet of drilling that generally costs about $15 per foot for a total cost of about $15,000.00.
  • the following disclosure describes an improved system for utilizing a self contained water-to-water heat pump that does not require a ground loop.
  • additional compression may be needed in order to sustain the temperature of the water exiting the heat pump, but the system as contemplated herein is more efficient than air-to-air heat pumps and do not have the drawbacks inherent in ground loop systems and/or air-to-air systems.
  • one advantage of the system is that there is no need to drill or alter the landscape to provide a location for ground loops, thus, the system is less expensive to implement.
  • Embodiments of the present invention are also self-contained wherein a single conduit system is employed that includes segments of varying temperatures that define the vapor compression cycle.
  • a single conduit system is employed that includes segments of varying temperatures that define the vapor compression cycle.
  • it may be located indoors, thereby avoiding outside exposure concerns such as temperature fluctuations and moisture.
  • hot water i.e. hotter than the fluid heated by the ground that enters the heat pump in a traditional system
  • the mass flow through the heat pump may be slowed dramatically.
  • prior art systems require a source mass flow of about 12-15 gallons per minute to prevent the coolant in the evaporator from freezing.
  • the temperature of the source fluid is about 95° F., thereby preventing coolant freezing.
  • the flow rate of source fluid may be slowed and a smaller more energy efficient source pump may be utilized.
  • inventions of the present invention may be employed along with a traditional ground source earth loops wherein a single loop provides source heat that is directed to a plurality of self-contained heat pumps. Since the ground loop water is substantially cooler than the heated water generated by the heat pump, a mixing valve, tee, or any other common fluid mixing device may be used to direct water from the traditional ground source heat pumps into a portion of the hot water exiting the heat pump to provide source water that prevents evaporator coils from freezing as described above.
  • FIG. 1 is a schematic of a ground source heat pump system of the prior art
  • FIG. 2 is another schematic of a ground source heat pump system of the prior art
  • FIG. 3 is a schematic of a self-contained water-to-water heat pump system of one embodiment of the present invention.
  • FIG. 4 is a schematic of a heat pump employed in the embodiment of the present invention shown in FIG. 3 ;
  • FIG. 5 is a schematic of a self-contained water-to-water heat pump system of another embodiment of the present invention.
  • a ground source heat exchange system 2 of the prior art employs a ground loop 6 that is positioned either horizontally or vertically within the earth surface.
  • the latent heat 10 of the ground 14 is transferred to the cooler fluid 18 in the ground loop 6 via heat conduction.
  • the now heated warm fluid 18 in the loop is then placed in thermal communication with a coolant loop 22 via a heat exchanger 30 wherein the heat from the ground loop 6 is transferred to coolant contained in the coolant loop 22 .
  • the cold coolant vapor 26 produced by the heat exchanger 30 is then compressed by a compressor 32 , thereby converting electro-mechanical energy into heat energy that increases the temperature of the vapor.
  • the now hot vapor 34 is then directed to a condenser 36 wherein the heat energy may be extracted therefrom via a fan 38 , for example, to heat the inside of a structure.
  • a fan 38 removes heat from the coolant
  • coolant vapor condenses into hot liquid 42 that is directed to an expansion valve 46 that decreases the pressure and temperature of the hot liquid 42 .
  • hot liquid 42 exiting the heat pump 50 may be directed to a storage tank 54 for use in other hot water applications, such as showers, dishwashers, etc. and/or be used for radiant in-floor heating systems 58 .
  • FIG. 2 due to the size and location for the placement of the ground loop 6 , it may have to be placed vertically, wherein expensive drilling is required.
  • FIG. 1 A ground source heat pump system 2 of the prior art that employs a plurality of coolant loops is shown in FIG. 1 . More specifically, fluid is circulated via a ground loop 6 that employs a manifold 62 to split the flow into various loops that are in contact with the earth. The ground-heated water then is pumped into another manifold where it is split into a ground loop first inlet 64 and a ground loop second inlet 68 , which are both fed into the heat pump 50 .
  • the heat pump 50 employs a heat exchanger (not shown) that allows the ground loop first inlet 64 and the ground loop second inlet 68 to exchange their heat with a load loop first inlet 72 and a load loop second inlet 76 .
  • the now heated water from the inlet load first and second loops 72 , 76 are expelled via a outlet load loop 78 .
  • an outlet ground loop 80 that directs fluid back into the ground loop 6 .
  • the outlet load loop 78 begins at the heat pump 50 and is directed to a storage tank 54 , wherein a portion thereof is directed to a fan duct 38 to provide heated air to a structure, for example. Heated fluid may also be directed to radiant in-floor heating system 58 .
  • Various check valves 84 throughout the system ensure that the fluid in the system remains in the correct circulatory pattern.
  • the heating system would necessarily become a cooling system.
  • the fluid that exits the fan coil 38 and the radiant in-floor heating system 58 is directed to the storage tank 54 , thereby allowing for the heat still present in the fluid to be used again, if necessary.
  • the storage tank 54 also serves as a reservoir to provide fluid to be used by the inlet load first and second loops 72 , 76 .
  • embodiments of the present invention include a heat pump with a “load-in” conduit 96 and a “load-out” conduit 100 along with a “source-in” 104 conduit and a “source-out” 108 conduit.
  • Load-in” 96 and “load-out” 100 refers to conduits that supply heated water from the heat pump 50 to the storage tank 54 , a hydronic fan coil 38 , and/or in-floor heating devices 58 .
  • “Source-in” 104 and “source-out” 108 refers to conduits that supply warm water to the heat pump 50 .
  • a condenser 36 Within the heat pump 50 exists a condenser 36 , expansion valve 46 , evaporator 48 , and compressor 32 that are linked together with a conduit that stores a coolant, such as a refrigerant, a system that substantially similar to that of the prior art and should be well understood by one skilled in the art.
  • a coolant such as a refrigerant
  • the major difference between the embodiments of the present invention and that of the prior art is the source of heat energy directed to the source-in 104 side of the heat pump 50 is heat energy that originates from the hot water 112 of the load-out conduit 100 of the heat pump 50 that has been mixed with water from the source-out 108 side of the heat pump 50 .
  • the advantage of premixing the source-in 104 water is that the source side of the system can be pumped through the heat pump 50 at a much slower rate due to the fact that water of about 92° to 95° F. is being directed adjacent to the evaporator 46 of the heat pump 50 . More specifically, prior art devices direct water of about 38° F. into the evaporator 46 at a flow rate of about 12-15 gallons per minute, thereby increasing the chance that the coolant in the evaporator coils 46 freeze. Since embodiments of the present invention utilize fluid at a much higher temperature, freezing of the evaporator coils 46 is not an issue such that a smaller and more efficient source pump 88 may be utilized.
  • the system as contemplated herein is not as efficient as the ground source heat pump system as currently employed, however, the system is still more efficient than an air-to-air heat pump system, as described above in outdoor temperatures that are below about 34°.
  • cool water 116 from the storage tank 54 is pumped into the load-in 96 side of the heat pump 50 .
  • cool water 116 shall refer to water from temperatures of about 70° to 110° F.
  • the cool water 116 is heated by the operation of the heat pump 50 and exits the heat pump 50 at a temperature of about 5° hotter than it entered the heat pump 50 , up to about 115°, at a rate of about 12 gallons per minute (load-out 100 ).
  • the hot water 112 is then split at a tee 120 wherein a mass flow of about 9 gallons per minute is directed to the storage tank 54 for future use in hot water applications, such as washing machines, dishwashers, showers, etc.
  • the 9 gallon per minute flow may also be pumped into a hydronic fan coil 38 or in-floor radiant heating system 58 for use in temperature regulation of a dwelling.
  • a hydronic fan coil 38 or in-floor radiant heating system 58 for use in temperature regulation of a dwelling.
  • the lines are closed wherein no outside contaminations would enter the conduit.
  • the loop is completed by a conduit that runs to a pump 92 that pumps some of the fluid stored in the storage tank 54 and return fluid from the fan 38 and/or in-floor heating system 58 conduits at a rate of approximately 12 gallons per minute to the heat pump 50 (load-in 96 ).
  • the source side of the system is basically the same as a ground loop side of the prior art however with an important modification.
  • the load-out side 100 of the system carries water in a conduit at approximately 115° at a rate of approximately 12 gallons per minute wherein 9 gallons per minute was directed towards the storage tank 54 , fan 38 , and in-floor heating 58 , for example.
  • the remaining 3 gallons per minute is directed to the source-in 104 side of the heat pump 50 .
  • the hot water 112 from the load-out side 100 is mixed with cooler water 116 from the source-out side 108 of the heat pump 50 to supply water from about 92° to 95° F. to the heat pump 50 (source-in 104 ).
  • the mixed warm water 124 is pumped at a rate of about 3 gallons per minute into the heat pump 50 and supplies the source-in side 104 of the heat pump 50 .
  • the source out 108 water exits the heat pump 50 at about 65° at three gallons per minute, wherein approximately one gallon per minute is directed to the source in 104 conduit and the remainder is directed to the storage tank 54 , thereby adding to the 9 gallons per minute that exits the heating fan 38 and/or in-floor heating conduits 58 to produce the about 12 gallons per minute load-in 96 mass flow.
  • the warm water 124 (source-in 104 ) is placed in thermal communication with a coolant in an evaporator 48 of a vapor compression cycle loop.
  • the cold liquid coolant 128 interacts with the warm water 124 of the source-in 104 side, it evaporates to form hot coolant vapor 34 that is compressed by a compressor 32 and directed as superheated vapor 132 into a condenser 36 .
  • the condenser 36 allows for the load-in 96 fluid to thermally communicate with the super-heated vapor 132 , thereby transferring heat from the super-heated vapor 132 into the load-out fluid 100 .
  • the compressor 32 After the heat has been extracted from the super heated coolant vapor 132 it becomes hot liquid coolant 42 that is pumped 88 into the expansion valve 46 that decreases pressure and temperature and allows the coolant to cool into cold liquid coolant 128 to complete the cycle. Since some of the heat associated with the load side of the heating system is being taken to be mixed into the source-in 104 side, the compressor 32 must add more energy to the coolant. That is, in order to maintain the fluid temperature of the load-out side 100 of the heat pump 50 , additional energy must be added via the compressor 32 to the coolant, to allow the load side of the system to consistently achieve a temperature of about 115° F.
  • FIG. 5 another embodiment of the present invention is shown that includes many of the same components of the embodiments described above. Here, however, the line directly connecting the source out conduit 108 to the source in conduit 104 is omitted. More specifically, a system is provided that comprises a first heat exchanger 140 and a second heat exchanger 144 interconnected by way of a refrigerant conduit 148 in a closed circuit.
  • the refrigerant conduit 148 also includes a compressor 32 and an expansion valve 46 as described above.
  • a pump 152 may also be included to facilitate flow of refrigerant through the refrigerant conduit 148 .
  • the first heat exchanger 144 is a condenser and the second heat exchanger 148 is an evaporator.
  • the first heat exchanger 144 is associated with the “load side” 156 of the system that feeds fluid to the first heat exchanger 140 with a load in conduit 96 and that pulls heated fluid from the first heat exchanger 140 with a load out conduit 100 .
  • the load side 156 draws heat from the first heat exchanger 140 to reuse elsewhere in a dwelling, for example.
  • the second heat exchanger 144 is associated with a “source side” 160 of the system which includes a source in conduit 104 and a source out conduit 108 which provides the heat that raises the temperature of the refrigerant flowing within the refrigerant conduit 148 that provides heat to the load side 156 .
  • the load out conduit 100 is also associated with a mixing tee 120 or other member, such as a mixing valve, that splits the fluid flowing therein wherein, a portion of the heated fluid is directed to source in conduit 104 and a majority of the fluid is directed to an inlet conduit 164 of the storage tank 54 .
  • the cool fluid outputted from the source side 160 is directed to the storage tank 54 as well.
  • a valve such as a ball valve 168 .
  • a ball valve 168 may also be employed in the source out conduit 108 to further control the flow of fluid therethrough.
  • mixing valve and “ball valve” as used herein shall mean any mechanism used to split flow, restrict flow or control the flow fluid within a conduit.
  • At least one pump 92 is initiated.
  • the pump 152 of the heat pump 150 is initiated, thereby starting refrigerant flow through the heat pump that directs refrigerant to the compressor 32 that compresses and thus heats the refrigerant.
  • the heated refrigerant is then directed to the first heat exchanger 140 wherein heat is transferred to the fluid in the load in conduit 96 .
  • Heated output fluid is then directed to the mixing tee 120 and split wherein a majority thereof is fed to the storage tank 54 .
  • Fluid in the storage tank 54 is then drawn through a storage tank outlet conduit 170 by pumps 92 as needed to feed a heating fan 38 , infloor heating system 58 , or other heating device. Fluid that has been drained of all or some of its heat from the heating fan 38 and/or infloor heating system 58 is directed to the storage tank 54 .
  • a portion of the load side 156 output fluid is directed to the source side 104 of the system and used to feed the second heat exchanger 144 . That heat is used to evaporate the fluid in the refrigerant conduit 148 to complete the vapor cycle.
  • the output fluid from the source side 160 is also directed to the storage tank 54 . Fluid from the storage tank 54 is used as the input fluid of the load side 156 .
  • the pump 92 pulls water from the storage tank 54 at about 12 gallons/min and 135° Fahrenheit.
  • the temperature of the fluid in the storage tank is about 140° Fahrenheit.
  • the first heat exchanger 140 raises the temperature of the load side 156 to about 143° Fahrenheit which flows at about 12 gallons/min within the load out conduit 100 .
  • the flow in the load out conduit 100 is split wherein about 0.8 gallons/min is directed to the source in conduit 104 with the remainder being sent to the storage tank 54 .
  • the source side 160 receives about 143° Fahrenheit fluid.
  • the fluid in the source out conduit 108 flows at about 0.8 gallons/min at about 61° Fahrenheit.
  • a temperature sensor 174 was associated with the source side 160 approximate to the ball valve 168 of the source in conduit 104 . Additionally, a temperature sensor 174 and a flow sensor 108 were located approximate to an optional ball valve 168 therein.
  • the load side 156 was also monitored with temperature sensors 174 associated with the load in 96 and load out 100 conduits. Finally, a flow sensor 178 was associated with the load out conduit 100 .
  • Metrima model svm f27hc sensors were used. The source side 160 sensors measured input power consumption of about 9.7 kilowatts (33,120 BTU/hr) and the load side sensor 156 measured a power production of about 14.26 kilowatts (48,690 BTU/hr).
  • the power consumption of the compressor is about 16.2 amps and the fan 38 produces about a 20 degree temperature increase.
  • the fluid in the system may be water or any other fluid or gas used for heat transfer.
  • the refrigerant may be any acceptable fluid.
  • the compressor may be used to supplement any heat losses in the system by converting electrical energy to additional heat in the refrigerant line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

A self-contained water-to-water heat transfer system is provided that mixes hot water produced by a heat exchange with cold output fluid expelled from the heat pump to make source fluid. More specifically, in order to reduce the fluid flow rate required within a heat pump and substantially prevent freezing of evaporator coils within the heat pump, source water fed into the heat pump is taken from a mixture of the output hot water that was generated in the heat pump and the cool water exiting the heat pump. The system alleviates the need to employ a ground loop outside of a structure that is required by traditional geothermal heating systems.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 11/775,739, filed Jul. 10, 2007, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/806,902, filed Jul. 10, 2006, the entire disclosure of each are incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates generally to a thermoelectric apparatus that transfers thermal energy from one location to another that can be used alternatively to either heat or cool an area.
  • BACKGROUND OF THE INVENTION
  • Heat pumps are basically air conditioning units that function in reverse and are commonplace in many residential and commercial structures. The most common air-to-air pumps employ a conduit filled with a thermally conductive coolant, such as Freon, that transfers heat taken from the air outside of the structure into the structure. The vapor compression cycle that facilitates the heat transfer comprises generally a conduit that carries high pressure, high temperature liquid coolant to an expansion valve that reduces the pressure of the coolant, thereby lowering its temperature and pressure. The now low temperature coolant is then directed to an evaporator, which is generally a system of coiled tubes that act as a heat exchanger. The fluid in the evaporator is placed in thermal communication with the air outside the structure so that the heat from the air is transferred to the coolant in the evaporator. Hot coolant vapor exits the evaporator and is compressed and directed to a condenser where it is placed in thermal communication with air inside the structure. To complete the vapor compression cycle, the hot liquid coolant that exits the condenser is pumped into the expansion valve.
  • The major drawback with air-to-air systems is that they are not very efficient in the winter. More specifically, when the outside temperature is at or below about 35° F., heat is less easy to extract. Thus, in most locations, a furnace, a stove or a fireplace, for example, must be employed during colder periods to heat the structure. Further, air-to-air heat exchange systems are prone to damage and degradation since they must be located outside of the structure.
  • Water-to-water heat transfer systems also exist that are more efficient than air-to-air systems, one common system employing a ground source heat pump that obtains the required thermal energy from beneath the surface of the earth as opposed to the air around a structure. More specifically, the temperature of the ground or groundwater a few feet beneath the earth's surface remains relatively constant throughout the year, even though the outdoor air temperature may fluctuate greatly with the change of seasons. For example, at a depth of approximately 6 feet, the temperature of the soil in most of the world's regions remains stable between about 45° and 70° F. Thus there exists a constant and ready supply of heat to be pulled from the ground and used as a source of heat for a heat pump to heat the structure, for example. These “geo-exchange” heat pumps utilize the earth's natural heat that is collected in winter through a series of pipes, generally referred to an “earth loop” or “ground loop,” installed below the surface of the ground or submerged in a pond or lake. An indoor heat exchange system then uses electrically driven compressors and heat exchangers in a vapor compression cycle to concentrate the earth's heat energy and selectively release it inside the dwelling at a higher temperature. As one skilled in the art will appreciate, the process can be reversed in the summer to cool the dwelling. Approximately 70% of the energy used in a geo-exchange heating and cooling system is renewable from the ground. Further, once installed, the earth loop in a geo-exchange system remains out of sight beneath the earth's surface while it works unobtrusively to tap the heating and cooling nature provides. The earth loops for a residential geo-exchange systems are installed either horizontally or vertically in the ground, or submerged in water in a pond or lake. In most cases, the fluid runs through a loop in a closed system, but open loop systems may be used where local codes permit. Each type of loop configuration has its own, unique advantages and disadvantages.
  • Horizontal ground closed loops are usually the most effective when adequate yard space is available and trenches are easy to dig. Trenchers or back hoes are employed to dig trenches about 3-6 feet below the ground wherein a series of parallel plastic pipes are placed in a closed loop. The trench is then back-filled while care is taken not to allow sharper objects to damage the pipes. A typical horizontal loop will be about 400-600 feet long per ton of heating and cooling capacity required. The buried or submerged pipe may be coiled in order to fit more of it into shorter trenches, but, while this reduces the amount of land space needed, it may require more pipe to achieve the same results as a single spread out pipe that can more efficiently extract or deposit thermal energy. Horizontal ground loops are easiest to install at a home that is under construction. However, new types of digging equipment that allow horizontal boring are making it possible to retrofit geo-exchange systems into existing homes with minimal disturbance to lawns. Horizontal boring machines can even allow loops to be installed under existing buildings or driveways, however such retrofitting, can be very expensive. Unfortunately, many homes being built today are in sub-divisions wherein space is limited and the use of a horizontal earth loop is not feasible.
  • To compensate for limited area, a vertical ground closed loop may be employed which is ideal for homes where yard space is insufficient or for large structures that require large heating and cooling loads. Vertical earth loops are also ideal when the earth is rocky close to the surface, or for retrofit applications where minimum disruption of landscaping is desired, wherein each hole contains a single loop of pipe with a u-bend at the bottom. After the pipe is inserted, the hole is back-filled or grouted. Each vertical pipe is then connected to a horizontal pipe, which may also be concealed underground, that carries fluid in a closed system to and from the geo-exchange system. Vertical loops are generally more expensive to install, but require less piping than horizontal loops because the earth at greater depths is alternatingly cooler in the summer and warmer in the winter. For example, a five ton system generally requires five holes each about 200 feet deep to be effective, which equates to 1000 feet of drilling that generally costs about $15 per foot for a total cost of about $15,000.00. Thus it is a long felt need in its field of home heating and cooling to provide a system that is easy to install and that efficiently heats a structure without the cost associated with traditional geo-exchange heating systems. The following disclosure describes an improved system for utilizing a self contained water-to-water heat pump that does not require a ground loop.
  • SUMMARY OF THE INVENTION
  • It is one aspect of the present invention to provide a self-contained water-to-water heat transfer system that does not require the use of a ground loop as commonly employed in geo-exchange heating systems. That is, embodiments of the present invention utilize a novel method of mixing cooler water that exits a water-to-water heat pump with heated water also exiting the heat pump, and directing this mixture back into the heat pump so it can be more effectively used in a vapor compression cycle. One skilled in the art will appreciate that additional compression may be needed in order to sustain the temperature of the water exiting the heat pump, but the system as contemplated herein is more efficient than air-to-air heat pumps and do not have the drawbacks inherent in ground loop systems and/or air-to-air systems.
  • More specifically, one advantage of the system is that there is no need to drill or alter the landscape to provide a location for ground loops, thus, the system is less expensive to implement. Embodiments of the present invention are also self-contained wherein a single conduit system is employed that includes segments of varying temperatures that define the vapor compression cycle. In addition, due to the system's size and lack of external componentry, it may be located indoors, thereby avoiding outside exposure concerns such as temperature fluctuations and moisture. Further, since hot water (i.e. hotter than the fluid heated by the ground that enters the heat pump in a traditional system), is directed into the heat pump as the source of heat energy, the mass flow through the heat pump may be slowed dramatically. More specifically, prior art systems require a source mass flow of about 12-15 gallons per minute to prevent the coolant in the evaporator from freezing. In embodiments of the present invention, the temperature of the source fluid is about 95° F., thereby preventing coolant freezing. Thus the flow rate of source fluid may be slowed and a smaller more energy efficient source pump may be utilized.
  • It is another aspect of the present invention to provide a system that is easily incorporated onto current water-to-water heat pumps. That is, water-to-water heat pumps that use an external source to heat source water may be altered by the addition of embodiments of the present invention where the source of heat energy is replaced by the aforementioned preheating scheme.
  • It is still yet another aspect of the present invention to provide a system that can be used with traditional ground source heat exchange systems of the prior art. That is, embodiments of the present invention may be employed along with a traditional ground source earth loops wherein a single loop provides source heat that is directed to a plurality of self-contained heat pumps. Since the ground loop water is substantially cooler than the heated water generated by the heat pump, a mixing valve, tee, or any other common fluid mixing device may be used to direct water from the traditional ground source heat pumps into a portion of the hot water exiting the heat pump to provide source water that prevents evaporator coils from freezing as described above.
  • The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention. Additional aspects of the present invention will become more readily apparent from the Detail Description, particularly when taken together with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these inventions.
  • FIG. 1 is a schematic of a ground source heat pump system of the prior art;
  • FIG. 2 is another schematic of a ground source heat pump system of the prior art;
  • FIG. 3 is a schematic of a self-contained water-to-water heat pump system of one embodiment of the present invention;
  • FIG. 4 is a schematic of a heat pump employed in the embodiment of the present invention shown in FIG. 3; and
  • FIG. 5 is a schematic of a self-contained water-to-water heat pump system of another embodiment of the present invention.
  • To assist in the understanding of the embodiments of the present invention, the following list of components and associated numbering found in the drawings is provided herein.
  • Component #
    Ground Source Heat Pump System 2
    Ground Loop 6
    Heat 10
    Ground 14
    Cool Fluid 18
    Coolant Loop 22
    Cold Coolant Vapor 26
    Heat Exchanger 30
    Compressor 32
    Hot Coolant Vapor 34
    Condenser 36
    Fan 38
    Hot Coolant Liquid 42
    Expansion Valve 46
    Evaporator 48
    Heat Pump 50
    Storage Tank 54
    Radiant In-Floor Heating System 58
    Ground Loop Manifold 62
    Ground Loop First Inlet 64
    Ground Loop Second Inlet 68
    Load Loop First Inlet 72
    Load Loop Second Inlet 76
    Outlet Load Loop 78
    Outlet Ground Loop 80
    Check Valve 84
    Source Pump 88
    Pump 92
    Load In 96
    Load Out 100
    Source In 104
    Source Out 108
    Hot Water 112
    Cool Water 116
    Mixing Tee 120
    Warm Water 124
    Cold Liquid Coolant 128
    Superheated Coolant Vapor 132
    First Heat Exchanger 140
    Second Heat Exchanger 144
    Mixing Valve 145
    Refrigerant Conduit 148
    Pump 152
    Load Side 156
    Source Side 160
    Tank Input 164
    Ball Valve 168
    Tank Output 170
    Temperature Sensor 174
    Flow Sensor 178
  • It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
  • DETAILED DESCRIPTION
  • Referring now to FIGS. 1 and 2, a ground source heat exchange system 2 of the prior art is shown. More specifically, as is well understood by one skilled in the art, the prior art heating system 2 employs a ground loop 6 that is positioned either horizontally or vertically within the earth surface. The latent heat 10 of the ground 14 is transferred to the cooler fluid 18 in the ground loop 6 via heat conduction. The now heated warm fluid 18 in the loop is then placed in thermal communication with a coolant loop 22 via a heat exchanger 30 wherein the heat from the ground loop 6 is transferred to coolant contained in the coolant loop 22. The cold coolant vapor 26 produced by the heat exchanger 30 is then compressed by a compressor 32, thereby converting electro-mechanical energy into heat energy that increases the temperature of the vapor. The now hot vapor 34 is then directed to a condenser 36 wherein the heat energy may be extracted therefrom via a fan 38, for example, to heat the inside of a structure. When the fan 38 removes heat from the coolant, coolant vapor condenses into hot liquid 42 that is directed to an expansion valve 46 that decreases the pressure and temperature of the hot liquid 42. Additionally, one skilled in the art will appreciate that hot liquid 42 exiting the heat pump 50 may be directed to a storage tank 54 for use in other hot water applications, such as showers, dishwashers, etc. and/or be used for radiant in-floor heating systems 58. As can be seen specifically in FIG. 2, due to the size and location for the placement of the ground loop 6, it may have to be placed vertically, wherein expensive drilling is required.
  • A ground source heat pump system 2 of the prior art that employs a plurality of coolant loops is shown in FIG. 1. More specifically, fluid is circulated via a ground loop 6 that employs a manifold 62 to split the flow into various loops that are in contact with the earth. The ground-heated water then is pumped into another manifold where it is split into a ground loop first inlet 64 and a ground loop second inlet 68, which are both fed into the heat pump 50. The heat pump 50 employs a heat exchanger (not shown) that allows the ground loop first inlet 64 and the ground loop second inlet 68 to exchange their heat with a load loop first inlet 72 and a load loop second inlet 76. The now heated water from the inlet load first and second loops 72, 76 are expelled via a outlet load loop 78. Also employed by the heat pump is an outlet ground loop 80 that directs fluid back into the ground loop 6. The outlet load loop 78 begins at the heat pump 50 and is directed to a storage tank 54, wherein a portion thereof is directed to a fan duct 38 to provide heated air to a structure, for example. Heated fluid may also be directed to radiant in-floor heating system 58. Various check valves 84 throughout the system ensure that the fluid in the system remains in the correct circulatory pattern. One skilled in the art will appreciate that when the fluid flow through the system is reversed, the heating system would necessarily become a cooling system. The fluid that exits the fan coil 38 and the radiant in-floor heating system 58 is directed to the storage tank 54, thereby allowing for the heat still present in the fluid to be used again, if necessary. The storage tank 54 also serves as a reservoir to provide fluid to be used by the inlet load first and second loops 72, 76.
  • Referring now to FIGS. 3 and 4, one embodiment of the present invention is shown. In the illustrated embodiment, the ground source loop has been eliminated. More specifically, embodiments of the present invention include a heat pump with a “load-in” conduit 96 and a “load-out” conduit 100 along with a “source-in” 104 conduit and a “source-out” 108 conduit. “Load-in” 96 and “load-out” 100 refers to conduits that supply heated water from the heat pump 50 to the storage tank 54, a hydronic fan coil 38, and/or in-floor heating devices 58. “Source-in” 104 and “source-out” 108 refers to conduits that supply warm water to the heat pump 50. Within the heat pump 50 exists a condenser 36, expansion valve 46, evaporator 48, and compressor 32 that are linked together with a conduit that stores a coolant, such as a refrigerant, a system that substantially similar to that of the prior art and should be well understood by one skilled in the art. The major difference between the embodiments of the present invention and that of the prior art is the source of heat energy directed to the source-in 104 side of the heat pump 50 is heat energy that originates from the hot water 112 of the load-out conduit 100 of the heat pump 50 that has been mixed with water from the source-out 108 side of the heat pump 50. The advantage of premixing the source-in 104 water is that the source side of the system can be pumped through the heat pump 50 at a much slower rate due to the fact that water of about 92° to 95° F. is being directed adjacent to the evaporator 46 of the heat pump 50. More specifically, prior art devices direct water of about 38° F. into the evaporator 46 at a flow rate of about 12-15 gallons per minute, thereby increasing the chance that the coolant in the evaporator coils 46 freeze. Since embodiments of the present invention utilize fluid at a much higher temperature, freezing of the evaporator coils 46 is not an issue such that a smaller and more efficient source pump 88 may be utilized. One skilled in the art will appreciate that the system as contemplated herein is not as efficient as the ground source heat pump system as currently employed, however, the system is still more efficient than an air-to-air heat pump system, as described above in outdoor temperatures that are below about 34°.
  • In operation, cool water 116 from the storage tank 54 is pumped into the load-in 96 side of the heat pump 50. As used herein, “cool” water 116 shall refer to water from temperatures of about 70° to 110° F. The cool water 116 is heated by the operation of the heat pump 50 and exits the heat pump 50 at a temperature of about 5° hotter than it entered the heat pump 50, up to about 115°, at a rate of about 12 gallons per minute (load-out 100). The hot water 112 is then split at a tee 120 wherein a mass flow of about 9 gallons per minute is directed to the storage tank 54 for future use in hot water applications, such as washing machines, dishwashers, showers, etc. The 9 gallon per minute flow may also be pumped into a hydronic fan coil 38 or in-floor radiant heating system 58 for use in temperature regulation of a dwelling. Once the heat is transferred from the water via the fan 38 and/or the in-floor heating system 58, it returns as cool water 116 into the storage tank 54. It is important to note that the lines are closed wherein no outside contaminations would enter the conduit. The loop is completed by a conduit that runs to a pump 92 that pumps some of the fluid stored in the storage tank 54 and return fluid from the fan 38 and/or in-floor heating system 58 conduits at a rate of approximately 12 gallons per minute to the heat pump 50 (load-in 96).
  • The source side of the system is basically the same as a ground loop side of the prior art however with an important modification. As stated above, the load-out side 100 of the system carries water in a conduit at approximately 115° at a rate of approximately 12 gallons per minute wherein 9 gallons per minute was directed towards the storage tank 54, fan 38, and in-floor heating 58, for example. The remaining 3 gallons per minute is directed to the source-in 104 side of the heat pump 50. More specifically, the hot water 112 from the load-out side 100 is mixed with cooler water 116 from the source-out side 108 of the heat pump 50 to supply water from about 92° to 95° F. to the heat pump 50 (source-in 104). The mixed warm water 124 is pumped at a rate of about 3 gallons per minute into the heat pump 50 and supplies the source-in side 104 of the heat pump 50. The source out 108 water exits the heat pump 50 at about 65° at three gallons per minute, wherein approximately one gallon per minute is directed to the source in 104 conduit and the remainder is directed to the storage tank 54, thereby adding to the 9 gallons per minute that exits the heating fan 38 and/or in-floor heating conduits 58 to produce the about 12 gallons per minute load-in 96 mass flow.
  • Referring now to FIG. 4, the internal componentry of the heat pump 50 is shown. More specifically, the warm water 124 (source-in 104) is placed in thermal communication with a coolant in an evaporator 48 of a vapor compression cycle loop. As the cold liquid coolant 128 interacts with the warm water 124 of the source-in 104 side, it evaporates to form hot coolant vapor 34 that is compressed by a compressor 32 and directed as superheated vapor 132 into a condenser 36. The condenser 36 allows for the load-in 96 fluid to thermally communicate with the super-heated vapor 132, thereby transferring heat from the super-heated vapor 132 into the load-out fluid 100. After the heat has been extracted from the super heated coolant vapor 132 it becomes hot liquid coolant 42 that is pumped 88 into the expansion valve 46 that decreases pressure and temperature and allows the coolant to cool into cold liquid coolant 128 to complete the cycle. Since some of the heat associated with the load side of the heating system is being taken to be mixed into the source-in 104 side, the compressor 32 must add more energy to the coolant. That is, in order to maintain the fluid temperature of the load-out side 100 of the heat pump 50, additional energy must be added via the compressor 32 to the coolant, to allow the load side of the system to consistently achieve a temperature of about 115° F.
  • Referring now to FIG. 5, another embodiment of the present invention is shown that includes many of the same components of the embodiments described above. Here, however, the line directly connecting the source out conduit 108 to the source in conduit 104 is omitted. More specifically, a system is provided that comprises a first heat exchanger 140 and a second heat exchanger 144 interconnected by way of a refrigerant conduit 148 in a closed circuit. The refrigerant conduit 148 also includes a compressor 32 and an expansion valve 46 as described above. A pump 152 may also be included to facilitate flow of refrigerant through the refrigerant conduit 148. In one embodiment, the first heat exchanger 144 is a condenser and the second heat exchanger 148 is an evaporator.
  • The first heat exchanger 144 is associated with the “load side” 156 of the system that feeds fluid to the first heat exchanger 140 with a load in conduit 96 and that pulls heated fluid from the first heat exchanger 140 with a load out conduit 100. The load side 156 draws heat from the first heat exchanger 140 to reuse elsewhere in a dwelling, for example. The second heat exchanger 144 is associated with a “source side” 160 of the system which includes a source in conduit 104 and a source out conduit 108 which provides the heat that raises the temperature of the refrigerant flowing within the refrigerant conduit 148 that provides heat to the load side 156. The load out conduit 100 is also associated with a mixing tee 120 or other member, such as a mixing valve, that splits the fluid flowing therein wherein, a portion of the heated fluid is directed to source in conduit 104 and a majority of the fluid is directed to an inlet conduit 164 of the storage tank 54. The cool fluid outputted from the source side 160 is directed to the storage tank 54 as well. In order to control the flow of fluid within the source in conduit 104, one embodiment employs a valve, such as a ball valve 168. A ball valve 168 may also be employed in the source out conduit 108 to further control the flow of fluid therethrough. On skilled in the art will appreciate that the terms “mixing valve” and “ball valve” as used herein shall mean any mechanism used to split flow, restrict flow or control the flow fluid within a conduit.
  • In operation, in order to initiate flow of the heated water through the system, at least one pump 92 is initiated. Concurrently, the pump 152 of the heat pump 150 is initiated, thereby starting refrigerant flow through the heat pump that directs refrigerant to the compressor 32 that compresses and thus heats the refrigerant. The heated refrigerant is then directed to the first heat exchanger 140 wherein heat is transferred to the fluid in the load in conduit 96. Heated output fluid is then directed to the mixing tee 120 and split wherein a majority thereof is fed to the storage tank 54. Fluid in the storage tank 54 is then drawn through a storage tank outlet conduit 170 by pumps 92 as needed to feed a heating fan 38, infloor heating system 58, or other heating device. Fluid that has been drained of all or some of its heat from the heating fan 38 and/or infloor heating system 58 is directed to the storage tank 54.
  • Again, a portion of the load side 156 output fluid is directed to the source side 104 of the system and used to feed the second heat exchanger 144. That heat is used to evaporate the fluid in the refrigerant conduit 148 to complete the vapor cycle. The output fluid from the source side 160 is also directed to the storage tank 54. Fluid from the storage tank 54 is used as the input fluid of the load side 156.
  • In one embodiment of the present invention, the pump 92 pulls water from the storage tank 54 at about 12 gallons/min and 135° Fahrenheit. The temperature of the fluid in the storage tank is about 140° Fahrenheit. The first heat exchanger 140 raises the temperature of the load side 156 to about 143° Fahrenheit which flows at about 12 gallons/min within the load out conduit 100. The flow in the load out conduit 100 is split wherein about 0.8 gallons/min is directed to the source in conduit 104 with the remainder being sent to the storage tank 54. Thus, the source side 160 receives about 143° Fahrenheit fluid. The fluid in the source out conduit 108 flows at about 0.8 gallons/min at about 61° Fahrenheit. To monitor the performance of one embodiment, a temperature sensor 174 was associated with the source side 160 approximate to the ball valve 168 of the source in conduit 104. Additionally, a temperature sensor 174 and a flow sensor 108 were located approximate to an optional ball valve 168 therein. The load side 156 was also monitored with temperature sensors 174 associated with the load in 96 and load out 100 conduits. Finally, a flow sensor 178 was associated with the load out conduit 100. For the test Metrima model svm f27hc sensors were used. The source side 160 sensors measured input power consumption of about 9.7 kilowatts (33,120 BTU/hr) and the load side sensor 156 measured a power production of about 14.26 kilowatts (48,690 BTU/hr). The power consumption of the compressor is about 16.2 amps and the fan 38 produces about a 20 degree temperature increase. One of skilled in the art will appreciate that the fluid in the system may be water or any other fluid or gas used for heat transfer. The refrigerant may be any acceptable fluid. One skilled in the art will also appreciate that the compressor may be used to supplement any heat losses in the system by converting electrical energy to additional heat in the refrigerant line.
  • Components of the embodiments of the present invention are readily obtainable and currently used, thereby making construction of embodiments of the prior art feasible. For example, in experiments, conduit made of copper and of ¾″ and ½″ diameter have been employed for the mixing loop and the source-in 104 loop. In addition, within the heat pump 50, a pump manufactured by Grunfoss that produces 0.70 horse power along with a compressor 32 produced by Copeland has been used. The remaining portions of the water-to-water self-contained heat pump are generally well known in the art.
  • While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims.

Claims (19)

1. A self-contained water-to-water heat transfer system comprising:
a first heat exchanger;
a second heat exchanger;
a refrigerant conduit interconnecting said first heat exchanger to said second heat exchanger in a closed circuit;
a compressor associated with said refrigerant conduit;
an expansion valve associated with said refrigerant conduit;
a first fluid input conduit in communication with said first heat exchanger;
a first fluid output conduit in communication with said first heat exchanger;
a second fluid input conduit in communication with said second heat exchanger;
a second fluid output conduit in communication with said second heat exchanger; and
a fluid conduit in communication with said first fluid output conduit and said second fluid input conduit, wherein a portion of fluid positioned within said first fluid output conduit is directed to said second fluid input conduit, thereby providing heat to refrigerant positioned within said second heat exchanger.
2. The system of claim 1, further comprising a first valve associated with said second fluid input conduit for controlling the fluid flow thereof.
3. The system of claim 1, wherein fluid in said first fluid input conduit is about 135 degrees Fahrenheit, fluid in said first fluid output conduit is about 143 degrees Fahrenheit, fluid in said second fluid input conduit is about 143 degrees Fahrenheit, and the fluid in said second fluid output conduit is about 61 degrees Fahrenheit
4. The system of claim 1, wherein the fluid and the first fluid input conduit is flowing at about 12 gallons per minute, the fluid flowing in the first fluid output conduit is flowing at about 12 gallons per minute, the fluid flowing in said second fluid input conduit is about 0.8 gallons per minute and the fluid flowing in said second fluid output conduit is flowing at about 0.8 gallons per minute.
5. The system of claim 1, wherein said first heat exchanger is a condenser and said second heat exchanger is an evaporator.
6. The system of claim 1, wherein the change of energy between the first fluid input conduit and the first fluid output conduit is about 48,690 BTU/hr and the difference in energy of the second fluid input conduit and the fluid in the second fluid output conduit is about 33,120 BTU/hr.
7. The system of claim 1, wherein the majority of the fluid exiting from the first fluid output conduit is directed to a storage tank.
8. The system of claim 7, wherein the storage tank includes an outlet conduit associated with at least one of a indoor heater and an infloor heating system wherein the fluid directed thereto is redirected to said storage tank after a predetermined time.
9. The system of claim 1, further comprising a pump associated with at least one of said first fluid input conduit, said first fluid outlet conduit, said second fluid input conduit, and said second fluid output conduit.
10. A self-contained water-to-water heat transfer system comprising:
a heat pump having a source side with a first fluid input conduit and a first fluid output conduit and a load side with a second fluid input conduit and a second fluid output conduit;
a fluid conduit in communication with said first fluid output conduit and said second fluid input conduit, wherein a portion of fluid positioned within said first fluid output conduit is directed to said second fluid input conduit.
11. The system of claim 10 wherein said heat pump comprises
a first heat exchanger;
a second heat exchanger;
a refrigerant conduit interconnecting said first heat exchanger to said second heat exchanger in a closed circuit;
a compressor associated with said refrigerant conduit;
an expansion valve associated with said refrigerant conduit;
wherein said first fluid input conduit in communication with said first heat exchanger;
wherein said first fluid output conduit in communication with said first heat exchanger;
wherein said second fluid input conduit in communication with said second heat exchanger; and
wherein said second fluid output conduit in communication with said second heat exchanger.
12. The system of claim 10, further comprising a first valve associated with said second fluid input conduit for controlling the fluid flow thereof.
13. The system of claim 10, wherein fluid in said first fluid input conduit is about 135 degrees Fahrenheit, fluid in said first fluid output conduit is about 143 degrees Fahrenheit, fluid in said second fluid input conduit is about 143 degrees Fahrenheit, and the fluid in said second fluid output conduit is about 61 degrees Fahrenheit
14. The system of claim 10, wherein the fluid and the first fluid input conduit is flowing at about 12 gallons per minute, the fluid flowing in the first fluid output conduit is flowing at about 12 gallons per minute, the fluid flowing in said second fluid input conduit is about 0.8 gallons per minute and the fluid flowing in said second fluid output conduit is flowing at about 0.8 gallons per minute.
15. The system of claim 11, wherein said first heat exchanger is a condenser and said second heat exchanger is an evaporator.
16. The system of claim 10, wherein the change of energy between the first fluid input conduit and the first fluid output conduit is about 48,690 BTU/hr and the difference in energy of the second fluid input conduit and the fluid in the second fluid output conduit is about 33,120 BTU/hr.
17. The system of claim 10, wherein the majority of the fluid exiting from the first fluid output conduit is directed to a storage tank.
18. The system of claim 17, wherein the storage tank includes an outlet conduit associated with at least one of a indoor heater and an infloor heating system wherein the fluid directed thereto is redirected to said storage tank after a predetermined time.
19. The system of claim 10, further comprising a pump associated with at least one of said first fluid input conduit, said first fluid outlet conduit, said second fluid input conduit, and said second fluid output conduit.
US12/563,647 2006-07-10 2009-09-21 Self contained water-to-water heat pump Abandoned US20100064710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/563,647 US20100064710A1 (en) 2006-07-10 2009-09-21 Self contained water-to-water heat pump

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US80690206P 2006-07-10 2006-07-10
US11/775,739 US20080006046A1 (en) 2006-07-10 2007-07-10 Self contained water-to-water heat pump
US12/563,647 US20100064710A1 (en) 2006-07-10 2009-09-21 Self contained water-to-water heat pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/775,739 Continuation-In-Part US20080006046A1 (en) 2006-07-10 2007-07-10 Self contained water-to-water heat pump

Publications (1)

Publication Number Publication Date
US20100064710A1 true US20100064710A1 (en) 2010-03-18

Family

ID=42006012

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/563,647 Abandoned US20100064710A1 (en) 2006-07-10 2009-09-21 Self contained water-to-water heat pump

Country Status (1)

Country Link
US (1) US20100064710A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026281A1 (en) * 2007-07-25 2009-01-29 Mcgreevy Andrew Energy conservation system
US20120103280A1 (en) * 2010-10-08 2012-05-03 Dan Russell Wells Variable flow heating system with heating accessories placed in series
US20130031933A1 (en) * 2010-04-16 2013-02-07 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
US20140069607A1 (en) * 2012-09-13 2014-03-13 Heartswork, LLC dba EcoBuilt Efficient Buildings Energy efficient cooling and heating system
US9920518B2 (en) 2012-09-13 2018-03-20 Heartswork, LLC Energy efficient refrigerated room with optionally associated geothermal earth loop system
US20180103562A1 (en) * 2013-03-15 2018-04-12 Switch, Ltd. Data center facility design configuration
US9976785B2 (en) * 2014-05-15 2018-05-22 Lennox Industries Inc. Liquid line charge compensator
US10330358B2 (en) 2014-05-15 2019-06-25 Lennox Industries Inc. System for refrigerant pressure relief in HVAC systems
CN111023603A (en) * 2019-09-30 2020-04-17 阜新宏利新能源供热有限公司 Single-well double-temperature heat exchange device
US10634411B2 (en) 2012-09-13 2020-04-28 Heartswork, LLC Energy efficient refrigerated room with optionally associated geothermal earth loop system
US10663199B2 (en) 2018-04-19 2020-05-26 Lennox Industries Inc. Method and apparatus for common manifold charge compensator
US10753661B2 (en) 2014-09-26 2020-08-25 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US10830514B2 (en) 2018-06-21 2020-11-10 Lennox Industries Inc. Method and apparatus for charge compensator reheat valve
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11506430B2 (en) 2019-07-15 2022-11-22 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
WO2023149879A1 (en) * 2022-02-03 2023-08-10 Vilter Manufacturing Llc System and method for heating or cooling employing heat pump

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575325A (en) * 1948-02-14 1951-11-20 American Gas And Electric Comp Heat pump system
US3465537A (en) * 1967-09-12 1969-09-09 King Seeley Thermos Co Icemaker using condenser cooling water as thawing medium
US4248056A (en) * 1978-05-18 1981-02-03 379235 Ontario Ltd. Heat reclaimer for a heat pump
US4326868A (en) * 1978-12-20 1982-04-27 Tokyo Shibaura Denki Kabushiki Kaisha Refrigeration system utilizing a gaseous refrigerant bypass
US4344292A (en) * 1980-01-21 1982-08-17 Institut Francais Du Petrole Process for heat production by means of a heat pump operated with a specific mixture of fluids as the working agent
US4507938A (en) * 1982-09-10 1985-04-02 Mitsubishi Denki Kabushiki Kaisha System for air-conditioning and hot water supplying
US4653287A (en) * 1985-01-28 1987-03-31 Martin Jr James B System for heating and cooling liquids
US4718248A (en) * 1986-05-05 1988-01-12 Stephen Fisher Four element refrigeration heat pump and geothermal control systems
US4910969A (en) * 1987-02-19 1990-03-27 Par Dalin Apparatus for heat recovery by using a heat-pump system
US4955930A (en) * 1989-07-21 1990-09-11 Robinson Jr Glen P Variable water flow control for heat pump water heaters
US5465588A (en) * 1994-06-01 1995-11-14 Hydro Delta Corporation Multi-function self-contained heat pump system with microprocessor control
US5573182A (en) * 1995-08-22 1996-11-12 Tecumseh Products Company Heat pump hot water heater
US6167715B1 (en) * 1998-10-06 2001-01-02 Thomas H. Hebert Direct refrigerant geothermal heat exchange or multiple source subcool/postheat/precool system therefor
US6314744B1 (en) * 1998-05-01 2001-11-13 Toyota Jidosha Kabushiki Kaisha Air-conditioning system and operation control method thereof
US6668572B1 (en) * 2002-08-06 2003-12-30 Samsung Electronics Co., Ltd. Air conditioner having hot/cold water producing device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575325A (en) * 1948-02-14 1951-11-20 American Gas And Electric Comp Heat pump system
US3465537A (en) * 1967-09-12 1969-09-09 King Seeley Thermos Co Icemaker using condenser cooling water as thawing medium
US4248056A (en) * 1978-05-18 1981-02-03 379235 Ontario Ltd. Heat reclaimer for a heat pump
US4326868A (en) * 1978-12-20 1982-04-27 Tokyo Shibaura Denki Kabushiki Kaisha Refrigeration system utilizing a gaseous refrigerant bypass
US4344292A (en) * 1980-01-21 1982-08-17 Institut Francais Du Petrole Process for heat production by means of a heat pump operated with a specific mixture of fluids as the working agent
US4507938A (en) * 1982-09-10 1985-04-02 Mitsubishi Denki Kabushiki Kaisha System for air-conditioning and hot water supplying
US4653287A (en) * 1985-01-28 1987-03-31 Martin Jr James B System for heating and cooling liquids
US4718248A (en) * 1986-05-05 1988-01-12 Stephen Fisher Four element refrigeration heat pump and geothermal control systems
US4910969A (en) * 1987-02-19 1990-03-27 Par Dalin Apparatus for heat recovery by using a heat-pump system
US4955930A (en) * 1989-07-21 1990-09-11 Robinson Jr Glen P Variable water flow control for heat pump water heaters
US5465588A (en) * 1994-06-01 1995-11-14 Hydro Delta Corporation Multi-function self-contained heat pump system with microprocessor control
US5573182A (en) * 1995-08-22 1996-11-12 Tecumseh Products Company Heat pump hot water heater
US6314744B1 (en) * 1998-05-01 2001-11-13 Toyota Jidosha Kabushiki Kaisha Air-conditioning system and operation control method thereof
US6167715B1 (en) * 1998-10-06 2001-01-02 Thomas H. Hebert Direct refrigerant geothermal heat exchange or multiple source subcool/postheat/precool system therefor
US6668572B1 (en) * 2002-08-06 2003-12-30 Samsung Electronics Co., Ltd. Air conditioner having hot/cold water producing device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026281A1 (en) * 2007-07-25 2009-01-29 Mcgreevy Andrew Energy conservation system
US8245949B2 (en) * 2007-07-25 2012-08-21 Grand Hotel, LLC Energy conservation system for using heat from air conditioning units to heat water supply lines
US20130031933A1 (en) * 2010-04-16 2013-02-07 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
US9500394B2 (en) 2010-04-16 2016-11-22 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
US9341396B2 (en) * 2010-04-16 2016-05-17 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
US20120103280A1 (en) * 2010-10-08 2012-05-03 Dan Russell Wells Variable flow heating system with heating accessories placed in series
US9372017B2 (en) * 2012-09-13 2016-06-21 Heartswork, LLC Energy efficient cooling and heating system
US20140069607A1 (en) * 2012-09-13 2014-03-13 Heartswork, LLC dba EcoBuilt Efficient Buildings Energy efficient cooling and heating system
US9920518B2 (en) 2012-09-13 2018-03-20 Heartswork, LLC Energy efficient refrigerated room with optionally associated geothermal earth loop system
US10634411B2 (en) 2012-09-13 2020-04-28 Heartswork, LLC Energy efficient refrigerated room with optionally associated geothermal earth loop system
US20180103562A1 (en) * 2013-03-15 2018-04-12 Switch, Ltd. Data center facility design configuration
US9976785B2 (en) * 2014-05-15 2018-05-22 Lennox Industries Inc. Liquid line charge compensator
US10330358B2 (en) 2014-05-15 2019-06-25 Lennox Industries Inc. System for refrigerant pressure relief in HVAC systems
US10365022B2 (en) 2014-05-15 2019-07-30 Lennox Industries Inc. Liquid line charge compensator
US10921032B2 (en) 2014-05-15 2021-02-16 Lennox Industries Inc. Method of and system for reducing refrigerant pressure in HVAC systems
US10753661B2 (en) 2014-09-26 2020-08-25 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11480372B2 (en) 2014-09-26 2022-10-25 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US11448430B2 (en) 2016-07-08 2022-09-20 Climate Master, Inc. Heat pump and water heater
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US11435095B2 (en) 2016-11-09 2022-09-06 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US10989456B2 (en) 2018-04-19 2021-04-27 Lennox Industries Inc. Method and apparatus for common manifold charge compensator
US10663199B2 (en) 2018-04-19 2020-05-26 Lennox Industries Inc. Method and apparatus for common manifold charge compensator
US11512879B2 (en) 2018-06-21 2022-11-29 Lennox Industries Inc. Method and apparatus for charge compensator reheat valve
US10830514B2 (en) 2018-06-21 2020-11-10 Lennox Industries Inc. Method and apparatus for charge compensator reheat valve
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US11506430B2 (en) 2019-07-15 2022-11-22 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
CN111023603A (en) * 2019-09-30 2020-04-17 阜新宏利新能源供热有限公司 Single-well double-temperature heat exchange device
WO2023149879A1 (en) * 2022-02-03 2023-08-10 Vilter Manufacturing Llc System and method for heating or cooling employing heat pump

Similar Documents

Publication Publication Date Title
US20100064710A1 (en) Self contained water-to-water heat pump
US7617697B2 (en) In-ground geothermal heat pump system
US8733429B2 (en) Hybrid heating and/or cooling system
CN101581517B (en) Heat pump system of single-loop geothermal underground heat exchanger
KR101299519B1 (en) The hot water exclusive use terrestrial heat complex system
US20130037236A1 (en) Geothermal facility with thermal recharging of the subsoil
US20110197599A1 (en) Thermal Energy System And Method Of Operation
WO2006063532A1 (en) A heat tube device utilizing cold energy and application thereof
US8033127B2 (en) Direct exchange system design improvements
CN102393049B (en) Ground-source heat-pipe/heat-pump air conditioner
US20150163965A1 (en) System and method of managing cooling elements to provide high volumes of cooling
JP7357324B2 (en) Multi-source heat pump equipment
CN103900287B (en) The heat-exchange system that solar energy runs with geothermal energy united
US20080006046A1 (en) Self contained water-to-water heat pump
KR100778686B1 (en) System to supply hot water by collecting terrestrial heat
CN102032716B (en) Heat pump-soil heat conversion device
JP5067958B2 (en) Geothermal heat pump system and water heat pump system
CN106500204A (en) A kind of air conditioning system
Momin Experimental investigation of geothermal air conditioning
GB2455395A (en) Heating system comprising a heat pump and a thermal store
JP2017146054A (en) Heat utilization device
JP7359361B2 (en) heat pump equipment
Kanog˘ lu et al. Incorporating a district heating/cooling system into an existing geothermal power plant
RU2374564C1 (en) Heat generator operating method without using electric energy, and device for implementation thereof
RU2683059C1 (en) Method of extraction and use of geothermal heat for cooling soils around subway tunnels

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION