JP5540506B2 - Window glass for solid-state image sensor package - Google Patents

Window glass for solid-state image sensor package Download PDF

Info

Publication number
JP5540506B2
JP5540506B2 JP2009010805A JP2009010805A JP5540506B2 JP 5540506 B2 JP5540506 B2 JP 5540506B2 JP 2009010805 A JP2009010805 A JP 2009010805A JP 2009010805 A JP2009010805 A JP 2009010805A JP 5540506 B2 JP5540506 B2 JP 5540506B2
Authority
JP
Japan
Prior art keywords
glass
solid
less
ultraviolet
window glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009010805A
Other languages
Japanese (ja)
Other versions
JP2010184816A (en
Inventor
和史 中野
慶太 飯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009010805A priority Critical patent/JP5540506B2/en
Publication of JP2010184816A publication Critical patent/JP2010184816A/en
Application granted granted Critical
Publication of JP5540506B2 publication Critical patent/JP5540506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Glass Compositions (AREA)

Description

本発明は、固体撮像素子を収納するパッケージの前面に取り付けられ、固体撮像素子を保護すると共に透光窓として使用される固体撮像素子パッケージ用窓ガラスに関するものである。   The present invention relates to a window glass for a solid-state image sensor package that is attached to the front surface of a package that houses a solid-state image sensor, protects the solid-state image sensor, and is used as a transparent window.

固体撮像素子は、受光素子であるLSIチップをアルミナセラミックや樹脂からなるパッケージ内に納め、その受光面に色分解モザイクフィルターを重ねてワイヤボンディングし、パッケージ開口部にカバーガラスを接着剤により封着した構造となっている。ここで用いられるカバーガラスは、パッケージとの気密封着によりLSIチップを保護するだけではなく受光面へ効率的に光を導入するため、内部欠陥の少ない光学的に均質な材料特性、高い透過率特性が要求される。また、このような用途に使用されるガラスは、パッケージと封着された時に割れや歪みが発生してはならない。すなわち、ガラスとパッケージ材質との熱膨張係数を適合させる必要がある。
また、CCD等の固体撮像素子は、カバーガラスから放出されるα線により、ソフトエラーを生じるため、ガラスに含有されるα線を放出する放射線同位元素の量の低減が行われている。
The solid-state image sensor is an LSI chip, which is a light-receiving element, placed in a package made of alumina ceramic or resin, a color separation mosaic filter is placed on the light-receiving surface, wire bonding is performed, and a cover glass is sealed to the package opening with an adhesive. It has a structure. The cover glass used here not only protects the LSI chip by hermetic sealing with the package, but also efficiently introduces light into the light receiving surface, so it has optically homogeneous material characteristics with low internal defects and high transmittance. Characteristics are required. Moreover, the glass used for such a use must not generate | occur | produce a crack and distortion, when sealed with a package. That is, it is necessary to match the thermal expansion coefficients of the glass and the package material.
In addition, since solid-state imaging devices such as CCDs generate soft errors due to α rays emitted from the cover glass, the amount of radiation isotopes that emit α rays contained in the glass is reduced.

ところで、固体撮像素子パッケージ用窓ガラスとしては、上記以外に、経時変質の少ない信頼性の高い材料であることが求められる。具体的には、長期間の使用に際して湿気によりガラス表面に曇りが発生したり、ソラリゼーション現象による透過率の低下が発生することのない高い耐候性および耐ソラリゼーション性が求められる。特許文献1には、ソラリゼーション防止剤として、PbOやTiOを適量添加することで長時間の露光に対して信頼性の高いガラスを得ることができるとされている。その他、Sbもソラリゼーション防止剤として知られている。TiOやSbを含有するガラスとしては、特許文献2や特許文献3に記載のガラスがある。 Incidentally, in addition to the above, the window glass for a solid-state imaging device package is required to be a highly reliable material with little deterioration with time. Specifically, high weather resistance and solarization resistance are required, which do not cause fogging on the glass surface due to moisture or decrease in transmittance due to solarization phenomenon during long-term use. In Patent Document 1, it is said that a glass having high reliability for long-time exposure can be obtained by adding an appropriate amount of PbO or TiO 2 as a solarization inhibitor. In addition, Sb 2 O 3 is also known as a solarization inhibitor. Examples of the glass containing TiO 2 or Sb 2 O 3 include glasses described in Patent Document 2 and Patent Document 3.

特開平7−233939号公報JP-A-7-233939 特開2005−8509号公報JP 2005-8509 A 特開2005−162600号公報JP-A-2005-162600

固体撮像素子パッケージ用窓ガラスは、固体撮像素子が収納されたパッケージとの気密封着において、硬化時間の短縮を目的として紫外線硬化型の接着剤が使用されるようになってきている。
しかしながら、ガラスにPbOやTiO、Sbを含有すると、これら元素の光吸収特性により紫外線硬化型樹脂を硬化させる際に用いる紫外線がガラスに吸収されるため、固体撮像素子パッケージ用窓ガラスをパッケージに気密封着する際に紫外線硬化型樹脂接着剤の硬化に長時間を要し、固体撮像素子の組み立て工程の能力が低下する問題がある。
一方、ガラスの洗浄工程において、ガラス表面に紫外線照射を行い、紫外線の作用で発生したオゾンから分離した活性酸素の作用で有機汚染物質を揮発性の物質に分解変化させて除去する、いわゆる紫外線洗浄が行われることがある。紫外線洗浄は、短時間に強力なエネルギーの紫外線が照射されるため、ガラスの着色(ソラリゼーション)が促進されるおそれがある。
また、近年の地球環境に対する配慮から、ビデオカメラ等の家電製品を構成する部品に環境負荷物質をできる限り使用しないことが求められており、ガラス部品についても、PbOやAs、Sbを含まない環境に配慮したガラスが求められている。
本発明は、かかる状況に鑑み、高い耐候性および耐ソラリゼーション性を備えつつ、高い紫外線透過特性を有する固体撮像素子パッケージ用窓ガラスを提供することを目的とする。
For the window glass for a solid-state image sensor package, an ultraviolet curable adhesive has been used for the purpose of shortening the curing time in hermetic sealing with the package containing the solid-state image sensor.
However, when PbO, TiO 2 , or Sb 2 O 3 is contained in the glass, the ultraviolet light used when the ultraviolet curable resin is cured is absorbed by the glass due to the light absorption characteristics of these elements. When hermetically sealing the material to the package, it takes a long time to cure the ultraviolet curable resin adhesive, and there is a problem that the capability of the assembly process of the solid-state imaging device is lowered.
On the other hand, in the glass cleaning process, ultraviolet irradiation is performed on the glass surface, and organic pollutants are decomposed and removed into volatile substances by the action of active oxygen separated from ozone generated by the action of ultraviolet rays, so-called ultraviolet cleaning. May be performed. In the ultraviolet cleaning, since ultraviolet rays having strong energy are irradiated in a short time, there is a possibility that the coloring (solarization) of the glass is promoted.
Further, in consideration of the recent global environment, it is demanded that as much as possible no environmentally hazardous substances be used in parts constituting home appliances such as video cameras. For glass parts, PbO, As 2 O 3 , Sb 2 are also required. There is a need for environmentally friendly glasses that do not contain O 3 .
In view of such circumstances, an object of the present invention is to provide a window glass for a solid-state imaging device package having high ultraviolet transmission characteristics while having high weather resistance and solarization resistance.

本発明の固体撮像素子パッケージ用窓ガラスは、質量%で、SiO 58〜75%、Al 0.5〜15%、B 6〜20%、Li O 0〜7%、Na O 0〜15%、K O 0〜15%(ただし、Li O+Na O+K O 2〜20%)、ZrO 0.01%未満、SnO 0〜0.1%、Nb 0〜0.2%、(ただし、SnO +Nb 0.001〜0.2%)、Fe 0.0001〜0.005%を含有し、実質的にAs 、Sb 、PbO、TiO 、CeO を含有しない硼珪酸系ガラスからなることを特徴とする。
また、前記硼珪酸系ガラスは、質量%で、SnO 0.002〜0.04%を含有することを特徴とする。
また、前記硼珪酸系ガラスは、実質的に、MgO、CaO、SrO、BaO、ZnOを含有せず、ガラスからのα線放出量が0.0002c/cm・h未満であることを特徴とする。
The window glass for a solid-state imaging device package of the present invention is, by mass%, SiO 2 58 to 75%, Al 2 O 3 0.5 to 15%, B 2 O 3 6 to 20%, Li 2 O 0 to 7%. , Na 2 O 0-15%, K 2 O 0-15% (however, Li 2 O + Na 2 O + K 2 O 2-20%), ZrO less than 0.01%, SnO 2 0-0.1%, Nb 2 O 5 0~0.2%, (provided that, SnO 2 + Nb 2 O 5 0.001~0.2%), containing Fe 2 O 3 0.0001~0.005%, and being substantially free of as 2 O 3 , It consists of borosilicate glass which does not contain Sb 2 O 3 , PbO, TiO 2 or CeO 2 .
Further, the borosilicate glass is characterized by containing SnO 2 0.002 to 0.04% by mass.
The borosilicate glass is substantially free of MgO, CaO, SrO, BaO, and ZnO, and the amount of α rays emitted from the glass is less than 0.0002 c / cm 2 · h. To do.

本発明の固体撮像素子パッケージ用窓ガラスは、SnO、Nbを合量で0.001〜0.2%含有し、実質的にAs、Sb、PbOを含有しないため、環境に配慮しつつ、耐候性に優れたガラスが得られる。また、Fe 0.0001〜0.005%を含有し、実質的にTiO、CeOを含有しないため、これら元素の相互作用による着色を未然に防止でき、よって透過率の高いガラスが得られる。 The window glass for a solid-state imaging device package of the present invention contains SnO 2 and Nb 2 O 5 in a total amount of 0.001 to 0.2%, and substantially contains As 2 O 3 , Sb 2 O 3 , and PbO. Therefore, a glass excellent in weather resistance can be obtained while considering the environment. Further, since it contains 0.002 to 0.005% of Fe 2 O 3 and does not substantially contain TiO 2 or CeO 2 , it is possible to prevent coloring due to the interaction of these elements, and thus a glass with high transmittance. Is obtained.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

SnOは、ソラリゼーションを防止する成分であるが、添加することでガラスが紫外線吸収性能を有する。固体撮像素子パッケージ用窓ガラスとパッケージとの封着が紫外線硬化型樹脂接着剤で行われる場合、ガラスが紫外線吸収性能を有すると、紫外線照射した際に紫外線硬化型樹脂接着剤に到達する紫外線光量がガラスに吸収されることで少なくなり、硬化に長い時間を要することになる。このため、SnO換算で0.1%を超える場合、ガラスの紫外線吸収性能が高く、紫外線硬化型樹脂接着剤の硬化時間が長くなり作業性が著しく悪化するため好ましくない。SnOの含有量は、好ましくは0.002〜0.04%、より好ましくは0.002〜0.015%である。なお、本発明の固体撮像素子パッケージ用窓ガラスにおいて、Sn成分をSnOの含有量で規定しているが、これはガラス組成として含有するSn(錫)の含有量が、酸化物である酸化第二錫で換算した場合の質量比で表して、所定範囲内にあることを意味している。また、ガラス組成の他の成分についても、同様に記載の酸化物に換算した場合で表している。 SnO 2 is a component that prevents solarization, but when added, the glass has an ultraviolet absorbing performance. When the window glass for solid-state image sensor package and the package are sealed with an ultraviolet curable resin adhesive, if the glass has an ultraviolet absorption capability, the amount of ultraviolet light that reaches the ultraviolet curable resin adhesive when irradiated with ultraviolet rays Is reduced by being absorbed by the glass, and a long time is required for curing. For this reason, when it exceeds 0.1% in terms of SnO 2 , the ultraviolet absorption performance of the glass is high, the curing time of the ultraviolet curable resin adhesive becomes long, and the workability is remarkably deteriorated. The content of SnO 2 is preferably 0.002 to 0.04%, more preferably 0.002 to 0.015%. Note that, in the window glass for a solid-state image pickup device package of the present invention, the Sn component is defined by the content of SnO 2. This is an oxidation in which the content of Sn (tin) contained as a glass composition is an oxide. Expressed as a mass ratio when converted to stannic, it means being within a predetermined range. In addition, other components of the glass composition are similarly expressed in terms of the oxides described.

Nbは、SnOと同様にソラリゼーションを防止する成分であるが、質量%で、0.2%を超えるとガラスが着色し、可視光域の透過率が低下するため好ましくない。 Nb 2 O 5 is a component that prevents solarization as in the case of SnO 2. However, if it exceeds 0.2% by mass, the glass is colored and the transmittance in the visible light region is lowered, which is not preferable.

ソラリゼーション防止成分であるSnOとNbとの合量は、0.001%未満では十分なソラリゼーション防止効果が得られず好ましくない。SnOとNbの合量は、好ましくは0.002〜0.04%、より好ましくは0.002〜0.015%である。 If the total amount of SnO 2 and Nb 2 O 5 that are anti-solarization components is less than 0.001%, a sufficient anti-solarization effect cannot be obtained, which is not preferable. The total amount of SnO 2 and Nb 2 O 5 is preferably 0.002 to 0.04%, more preferably 0.002 to 0.015%.

Feは、ソラリゼーションを防止する成分であるが、紫外線を強力に吸収する成分でもあり、質量%で0.005%を超えるとガラスの紫外線吸収量が多くなるため好ましくない。また、0.0001%未満では、ソラリゼーション防止効果が得られず好ましくない。また、Feは、工業設備上完全に排除することが難しい成分であるため、0.0001%未満にすると各種原料純度を非常に高くする必要があり、原料コストが高くなるため好ましくない。好ましい範囲は、0.0003%〜0.002%である。 Fe 2 O 3 is a component that prevents solarization, but is also a component that strongly absorbs ultraviolet rays, and if it exceeds 0.005% by mass, it is not preferable because the amount of ultraviolet rays absorbed by the glass increases. If it is less than 0.0001%, the effect of preventing solarization cannot be obtained, which is not preferable. Moreover, since Fe 2 O 3 is a component that is difficult to eliminate completely on industrial equipment, if it is less than 0.0001%, it is necessary to make the purity of various raw materials very high, which is not preferable because the raw material cost increases. . A preferable range is 0.0003% to 0.002%.

As、Sb、PbOは、従来のガラスにおいては、清澄効果やソラリゼーション防止効果を目的として添加されてきたが、環境負荷物質であるため、本発明のガラスにおいては、実質的に含まないようにすべきである。なお、本発明において、実質的に含有しないとは、意図して添加しないという意味であり、原料等から不可避的に混入し、所期の特性に影響を与えない程度の含有を排除するものではないが、可能な限り排除することが好ましい。 As 2 O 3 , Sb 2 O 3 , and PbO have been added in the conventional glass for the purpose of clarifying effect and prevention of solarization. However, since they are environmental impact substances, Should not be included. In the present invention, substantially not containing means that it is not intentionally added, and it is unavoidably mixed from raw materials and the like, and does not exclude inclusions that do not affect the intended properties. However, it is preferable to eliminate as much as possible.

TiO、CeOは、ガラス中にFeが存在すると相互作用によりガラスの着色を強めるため、高い透過率特性が求められる固体撮像素子パッケージ用窓ガラスにおいては、実質的に含有しないよう管理する必要がある。固体撮像素子がカメラ内に実装された状態では、外光によるガラスのソラリゼーションの進展は極僅かであるが、前述のように紫外線硬化型樹脂接着剤の使用やガラスを紫外線洗浄する場合、短時間に強力な紫外線が照射され、ガラスの着色が促進される結果となるので、本発明においては、それらの原因物質の共存を避けることでこの問題を解消した。また、TiO、CeOは、強力な紫外線吸収剤であり、ガラスに添加することでガラスが紫外線吸収性能を有することになる。前述のとおり、ガラスの紫外線吸収性能が高いと紫外線硬化型樹脂接着剤の硬化時間が長くなるため、この点からも含有しないことが好ましい。 Since TiO 2 and CeO 2 strengthen the coloring of glass due to interaction when Fe 2 O 3 is present in the glass, they are not substantially contained in the window glass for a solid-state imaging device package that requires high transmittance characteristics. Need to manage. In the state where the solid-state image sensor is mounted in the camera, the progress of solarization of glass due to external light is negligible. However, as described above, when using UV curable resin adhesive or cleaning glass with UV light, it takes a short time. In the present invention, this problem has been solved by avoiding the coexistence of those causative substances. TiO 2 and CeO 2 are powerful ultraviolet absorbers, and when added to glass, the glass has ultraviolet absorption performance. As described above, when the ultraviolet absorption performance of glass is high, the curing time of the ultraviolet curable resin adhesive becomes long.

また、本発明の一実施形態は、前記硼珪酸系ガラスが、質量%で、SiO 58〜75%、Al 0.5〜15%、B 6〜20%、LiO 0〜7%、NaO 0〜15%、KO 0〜15%(ただし、LiO+NaO+KO 2〜20%)、ZrO 0.01%未満を含有することを特徴するが、ここで、各成分の含有量を上記のように限定した理由を以下に説明する。 Further, an embodiment of the present invention, the borosilicate glass, in mass%, SiO 2 58~75%, Al 2 O 3 0.5~15%, B 2 O 3 6~20%, Li 2 It is characterized by containing O 0-7%, Na 2 O 0-15%, K 2 O 0-15% (however, Li 2 O + Na 2 O + K 2 O 2-20%), less than 0.01% ZrO. However, the reason why the content of each component is limited as described above will be described below.

SiOは、ガラス骨格を構成する主成分でありガラスの耐久性を向上させる成分であるが、58%未満では化学的耐久性が得られず、75%を超えると溶融性が著しく悪化する。好ましくは、63〜71%である。 SiO 2 is a main component constituting the glass skeleton and is a component that improves the durability of the glass. However, if it is less than 58%, chemical durability cannot be obtained, and if it exceeds 75%, the meltability is remarkably deteriorated. Preferably, it is 63 to 71%.

Alは、ガラスの耐候性を向上させる成分であるが、0.5%未満では化学的耐久性が十分でなく、15%を超えるガラス内に脈理が発生し易くなる傾向がある。好ましくは、1〜15%である。 Al 2 O 3 is a component that improves the weather resistance of the glass, but if it is less than 0.5%, the chemical durability is not sufficient, and striae tends to occur in the glass that exceeds 15%. . Preferably, it is 1 to 15%.

は、溶融性向上および粘度調整の目的で用いられる成分であるが、20%を超えると耐候性が低下する傾向があり、6%未満では溶融性が悪化する傾向がある。好ましくは、10〜19%である。 B 2 O 3 is a component used for the purpose of improving the meltability and adjusting the viscosity. However, if it exceeds 20%, the weather resistance tends to decrease, and if it is less than 6%, the meltability tends to deteriorate. Preferably, it is 10 to 19%.

LiO、NaOおよびKOは、融剤として作用し、かつ耐失透性を良くする成分である。しかし、合量が2%未満ではその効果がなく、20%を超えると耐候性が悪くなり、かつ熱膨張係数が大きくなる。各成分の含有量は、質量%で、LiOを0〜7%、NaOを0〜15%、KOを0〜15%とすることが好ましい。それぞれの含有量が各上限値を超える場合には、熱膨張係数が大きくなりすぎたり、耐候性が悪くなる。 Li 2 O, Na 2 O and K 2 O are components that act as fluxes and improve devitrification resistance. However, if the total amount is less than 2%, the effect is not obtained, and if it exceeds 20%, the weather resistance is deteriorated and the thermal expansion coefficient is increased. The content of each component, in mass%, the Li 2 O 0 to 7%, 0 to 15% of Na 2 O, it is preferable that 0 to 15% of K 2 O. When each content exceeds each upper limit, the thermal expansion coefficient becomes too large, or the weather resistance deteriorates.

ZrOは、不純物として放射性同位元素であるUやThを含む物質であり、ガラスからα線放出量を極力少なくするため、0.01%未満好ましくは0.005%未満、より好ましくは0.002%未満に抑えることが望ましい。 ZrO 2 is a substance containing U or Th as radioisotopes as impurities, and in order to minimize the amount of α-ray emission from the glass, it is less than 0.01%, preferably less than 0.005%, more preferably 0.8. It is desirable to keep it below 002%.

アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)は、溶融性、耐候性、耐失透性の改善や熱膨張係数の調整に効果のある成分であるが、ガラスに1%でも添加すると、ガラスのα線放出量が大きくばらつくことが確認された。これは、アルカリ土類金属酸化物の原料において、α線放出量に関係するU、Thの含有量はppbオーダーで管理できるものの、同じくα線放出量に関係するRaについては含有量の管理が困難であり、Raによる影響があると推測される。具体的には、アルカリ土類金属酸化物の原料に不純物として混入するRaの含有量はppbより更に下の桁であり、その含有量のRaを精度良く分析することは困難である。そのため、不純物として混入するRa含有量を管理することは実質的に困難であり、それがアルカリ土類金属酸化物をガラス原料に用いた場合のα線放出量のばらつきに影響するものと考えられる。
そのため、本発明の固体撮像素子パッケージ用窓ガラスにおいては、アルカリ土類金属酸化物を含有する場合は、アルカリ土類金属酸化物の合量で1%未満にすることが好ましく、アルカリ土類金属酸化物を実質的に含有しないことがより好ましい。
Alkaline earth metal oxides (MgO, CaO, SrO, BaO) are effective components for improving meltability, weather resistance, devitrification resistance and adjusting the thermal expansion coefficient. Then, it was confirmed that the amount of α rays emitted from the glass varies greatly. This is because, in the alkaline earth metal oxide raw material, the contents of U and Th related to the amount of α-ray emission can be managed in the ppb order, but the content of Ra related to the amount of α-ray emission is also controlled. It is difficult and is presumed to be affected by Ra. Specifically, the content of Ra mixed as an impurity in the raw material of the alkaline earth metal oxide is an order of magnitude lower than ppb, and it is difficult to accurately analyze the Ra of the content. Therefore, it is practically difficult to control the Ra content mixed as an impurity, which is considered to affect the variation in the amount of α-ray emission when an alkaline earth metal oxide is used as a glass raw material. .
Therefore, in the window glass for a solid-state imaging device package of the present invention, when the alkaline earth metal oxide is contained, the total amount of the alkaline earth metal oxide is preferably less than 1%. More preferably, the oxide is substantially not contained.

ZnOは、失透防止や化学的耐久性向上に有効な成分であるが、アルカリ土類金属酸化物と同様にRa含有量を管理することが困難であり、含有することでガラスのα線放出量がばらつく可能性があることから、ZnOを含有する場合は、5%以下にすることが好ましく、ZnOを実質的に含有しないことがより好ましい。   ZnO is an effective component for preventing devitrification and improving chemical durability, but it is difficult to control the Ra content as in the case of alkaline earth metal oxides. Since the amount may vary, when ZnO is contained, the content is preferably 5% or less, and more preferably substantially free of ZnO.

前述のように、アルカリ土類金属酸化物とZnOを実質的に含有しないとすることで、ガラスへのRaの混入を抑えることができ、ガラスからのα線放出量を0.0015c/cm・h以下とすることができる。これにより、本発明の固体撮像素子パッケージ用窓ガラスはガラスからのα線放出量が少なく、このガラスを用いることにより固体撮像素子にエラーが発生する可能性を低くすることができる。 As described above, by substantially not containing alkaline earth metal oxide and ZnO, the mixing of Ra into the glass can be suppressed, and the amount of α rays emitted from the glass is 0.0015 c / cm 2. -It can be set to h or less. Thereby, the window glass for a solid-state image pickup device package of the present invention has a small amount of α-ray emission from the glass, and the use of this glass can reduce the possibility of an error occurring in the solid-state image pickup device.

その他、固体撮像素子パッケージ用窓ガラスは、泡、異物といった欠点品質について可能な限り少なく・小さく(例えば5μm以下)することが要求される。本発明の固体撮像素子パッケージ用窓ガラスは、従来のガラスで清澄剤として用いられていたAs、Sbを実質的に含有しないことから、清澄を目的として、硫酸塩や硝酸塩、塩化物、フッ化物を単独もしくは組み合わせて適宜添加することが望ましい。
これら成分は、いずれも分解揮発成分であり排ガスとして揮発するため、ガラス製造上の排ガス処理装置の腐食や処理にかかるコストを考慮した場合、上限を0.5%以下にすることが好ましい。また、泡を効果的に切るために、0.005%以上とすることが好ましい。
In addition, the window glass for a solid-state imaging device package is required to be as small and small as possible (for example, 5 μm or less) for defect quality such as bubbles and foreign matters. Since the window glass for a solid-state image pickup device package of the present invention does not substantially contain As 2 O 3 and Sb 2 O 3 that have been used as fining agents in conventional glass, for the purpose of fining, sulfates and nitrates are used. It is desirable to add chlorides and fluorides alone or in combination as appropriate.
Since these components are all decomposition volatile components and volatilize as exhaust gas, the upper limit is preferably set to 0.5% or less in consideration of the cost of corrosion and treatment of the exhaust gas treatment apparatus in glass production. Moreover, in order to cut a bubble effectively, it is preferable to set it as 0.005% or more.

次に本発明の固体撮像素子パッケージ用窓ガラスの製造方法について説明する。   Next, the manufacturing method of the window glass for solid-state image sensor packages of this invention is demonstrated.

まず、所望の組成の各成分を構成するガラス原料を準備する。本発明で利用するガラス原料は、酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩、フッ化物、塩化物等、いずれの形態の化合物も用いることができる。いずれのガラス原料においても放射性同位元素の含有量が少ない高純度なガラス原料(例えば、Uの含有量が10ppb以下であり、かつThの含有量が15ppb以下)を利用することが好ましい。さらに好ましくは、何れの原料においても、α線放出量が0.1c/cm・h以下である。このようなガラス原料を調合してガラス原料調合物とすると、最終的にUの含有量が10ppb以下であり、Thの含有量が20ppb以下で、さらにα線放出量が0.01c/cm・h以下のガラスを得ることができる。 First, the glass raw material which comprises each component of a desired composition is prepared. As the glass raw material used in the present invention, any form of compound such as oxide, hydroxide, carbonate, sulfate, nitrate, fluoride, and chloride can be used. In any glass raw material, it is preferable to use a high-purity glass raw material having a low radioisotope content (for example, a U content of 10 ppb or less and a Th content of 15 ppb or less). More preferably, in any raw material, the α-ray emission amount is 0.1 c / cm 2 · h or less. When such a glass raw material is prepared into a glass raw material preparation, the U content is finally 10 ppb or less, the Th content is 20 ppb or less, and the α-ray emission amount is 0.01 c / cm 2.・ H or less glass can be obtained.

次いで、この原料を所望の組成を有するガラスとなるようにガラス原料の調合を行い、原料を溶融槽に投入する。
溶融槽は、白金、白金合金、耐火物、から選択される容器で行う。本発明において白金、白金合金とは白金(Pt)、イリジウム(Ir)、パラジウム(Pd)、ロジウム(Rh)、金(Au)およびそれらの合金からなる群より選択された金属を用いた合金製容器のことであり、高温溶融に耐用できるものである。
また、ガラスのα線放出量を極力少なくするため、α線放出源である放射線同位元素を不純物として多く含有するZrOの混入を防止する観点から、溶融槽にZrO系の耐火物を使用することは避け、アルミナ耐火物(Al 95%以上)や石英系耐火物を用いた溶融設備にすることが好ましく、これによりガラス中に混入する放射性同位元素を抑制し、α線放出量の少ないガラスを得ることができる。
Next, the glass raw material is prepared so that this raw material becomes glass having a desired composition, and the raw material is put into a melting tank.
The melting tank is a container selected from platinum, a platinum alloy, and a refractory. In the present invention, platinum and a platinum alloy are made of an alloy using a metal selected from the group consisting of platinum (Pt), iridium (Ir), palladium (Pd), rhodium (Rh), gold (Au), and alloys thereof. It is a container and can withstand high temperature melting.
Further, in order to minimize the α-ray emission of the glass, the radioactive isotope is α-ray emitting sources from the viewpoint of preventing contamination of ZrO 2 containing many as an impurity, using the refractory of the ZrO 2 in the molten bath It is preferable to use a melting facility that uses alumina refractory (Al 2 O 3 95% or more) and quartz refractory, thereby suppressing radioactive isotopes mixed in the glass and emitting alpha rays. A small amount of glass can be obtained.

溶解槽で溶解されたガラスを下流側に配した脱泡槽や攪拌槽で泡と脈理の除去を行うことにより、ガラス欠点の少ない均質化された高品質のガラスを得ることができる。上述したガラスはノズル等を介して流出させ金型に鋳込成型を行ったり、ロールアウトし板状に引き出して所定の形状に成形する。徐冷したガラスにスライス、研磨加工等を施し、所定の形状のガラスが得られる。   By removing bubbles and striae in a defoaming tank or a stirring tank in which the glass melted in the melting tank is arranged on the downstream side, a homogenized high quality glass with few glass defects can be obtained. The glass described above is allowed to flow out through a nozzle or the like and cast into a mold, or rolled out and drawn into a plate shape to be formed into a predetermined shape. The slowly cooled glass is subjected to slicing, polishing and the like to obtain a glass having a predetermined shape.

以下、実施例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

各実施例(表1のNo.1〜No.17)および各比較例(表1のNo.18〜No.21)に用いた試料は、次のようにして作成した。
まず、表1に記載のガラス組成となるようガラス原料を調合し、このガラス原料調合物を白金坩堝を用いてモリブデンシリサイドを発熱体とした電気炉で1550℃の温度下で5時間溶融を行ったのち清澄、攪拌を行った。このガラスを鋳鉄の金型に鋳込み成形し、徐冷を行い、800gのガラス試料(ガラスブロック)を得た。また、このガラスブロックにスライス、研磨加工等を行い、所定形状(25mm×25mm×1mm)のガラスを得た。
The sample used for each Example (No.1-No.17 of Table 1) and each comparative example (No.18-No.21 of Table 1) was created as follows.
First, a glass raw material was prepared so as to have the glass composition shown in Table 1, and this glass raw material mixture was melted at a temperature of 1550 ° C. for 5 hours in an electric furnace using molybdenum silicide as a heating element using a platinum crucible. After that, it was clarified and stirred. This glass was cast into a cast iron mold and slowly cooled to obtain 800 g of a glass sample (glass block). Further, this glass block was sliced, polished, etc., to obtain a glass having a predetermined shape (25 mm × 25 mm × 1 mm).

得られたガラスブロックおよびガラスについて、耐ソラリゼーション性、α線放出量、泡の評価を行った。これらの結果を、表1に示す。 The obtained glass block and glass were evaluated for solarization resistance , α-ray emission amount, and foam. These results are shown in Table 1.

Figure 0005540506
Figure 0005540506

耐ソラリゼーション性は、厚さが1mmとなるよう両面光学研磨加工した所定形状(25mm×25mm×1mm)のガラスについて、V−570型紫外可視近赤外分光光度計(日本分光社製)にて透過率を測定した。次に日本光学硝子工業会測定規格JOGIS−04に基づきガラスに紫外線を照射した後、再度ガラスの透過率を測定し、紫外線照射前後の波長400nmにおける透過率変化を比較した。なお、透過率変化(%)=[(紫外線照射前の透過率−紫外線照射後の透過率)/紫外線照射前の透過率]×100が、1%以上の場合を、”変化あり”、1%未満の場合を”変化なし”とした。実施例の各ガラスは、紫外線照射前後の透過率変化が少なく、比較例の各ガラスと比べて、高い耐ソラリゼーション性を有していた。なお、比較例(No.21)のガラスは、実施例のガラスと同様に紫外線照射前後の透過率変化が少なかったが、これはSbを含有しているためと考えられる。 Solarization resistance was measured using a V-570 type UV-Vis near-infrared spectrophotometer (manufactured by JASCO Corporation) for glass of a predetermined shape (25 mm × 25 mm × 1 mm) that was optically polished on both sides to a thickness of 1 mm. The transmittance was measured. Next, after irradiating the glass with ultraviolet rays based on Japan Optical Glass Industry Association measurement standard JOGIS-04, the transmittance of the glass was measured again, and the change in transmittance at a wavelength of 400 nm before and after the ultraviolet irradiation was compared. Note that transmittance change (%) = [(transmittance before UV irradiation−transmittance after UV irradiation) / transmittance before UV irradiation] × 100 is 1% or more, “changed”, 1 The case of less than% was regarded as “no change”. Each glass of the example had a small change in transmittance before and after the ultraviolet irradiation , and had higher solarization resistance than each glass of the comparative example. The glass of Comparative Example (No.21) is had less transmittance change before and after the ultraviolet irradiation similarly to the glass of Example, which is considered because it contains the Sb 2 O 3.

α線放出量は、ガラスフロー比例計数管を用いて測定した。結果として、実施例のガラスは、いずれもα線放出量が0.01c/cm・h以下であった。また、アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)およびZnOを実質的に含有しない実施例(No.11、No.15、No.17)の各ガラスは、いずれもα線放出量が0.0015c/cm・h以下であり、α線放出量が非常に低く、固体撮像素子パッケージ用窓ガラスとして好適な特性を備えている。 The amount of α-ray emission was measured using a glass flow proportional counter. As a result, all the glasses of the examples had an α-ray emission amount of 0.01 c / cm 2 · h or less. In addition, each glass of Examples (No. 11, No. 15, No. 17) substantially not containing alkaline earth metal oxides (MgO, CaO, SrO, BaO) and ZnO emits alpha rays. The amount is 0.0015 c / cm 2 · h or less, the α-ray emission amount is very low, and it has characteristics suitable as a window glass for a solid-state imaging device package.

泡は、ガラスブロックから約300g程度の体積を切り出し両面研磨したものを20倍の実体顕微鏡で測定観察を行い、測定した泡数を1kgあたりに換算した値である。実施例の各ガラスは、従来清澄剤として用いられてきたAsやSbを含有していないものの、Sbを含有している比較例(No.21)と泡数は同等であり、固体撮像素子パッケージ用窓ガラスとして好適な泡品質を備えている。 The foam is a value obtained by measuring and observing a volume of about 300 g from a glass block and polishing both sides with a 20-fold stereo microscope, and converting the measured number of bubbles per kg. Each glass of Examples, although do not contain As 2 O 3 and Sb 2 O 3 which has been conventionally used as a fining agent, Sb 2 O 3 Example Comparative containing the (No.21) and the number of bubbles Are equivalent and have suitable foam quality as a window glass for a solid-state imaging device package.

次に、紫外波長領域におけるガラスの透過率を確認するため、実施例No.1および実施例No.4、実施例No.10、比較例No.20の各ガラスについて、肉厚1mmにおける分光透過率を測定した。その結果を表2に示す。これらより、実施例の各ガラスは、254nmにおける透過率が70%以上を示すことから紫外波長領域における透過率が高く、パッケージに対しガラスを紫外線硬化型樹脂接着剤にて固定する場合であっても、照射する紫外線がガラスで吸収されることなく、短い紫外線照射時間でガラスを固定することができる。これに対し、SnOを0.2%含有する比較例20のガラスは、254nmにおける透過率が25%以下であった。これは、SnOの紫外線吸収効果によるものと考えられ、このガラスをパッケージに対し紫外線硬化型樹脂接着剤にて固定する場合には、長い紫外線照射時間を要するものであった。 Next, in order to confirm the transmittance of the glass in the ultraviolet wavelength region, Example No. 1 and Example No. 4, Example No. 10, Comparative Example No. For each of the 20 glasses, the spectral transmittance at a thickness of 1 mm was measured. The results are shown in Table 2. From these, each glass of the example has a high transmittance in the ultraviolet wavelength region because the transmittance at 254 nm is 70% or more, and is a case where the glass is fixed to the package with an ultraviolet curable resin adhesive. In addition, the glass can be fixed in a short ultraviolet irradiation time without the ultraviolet rays to be irradiated being absorbed by the glass. In contrast, the glass of Comparative Example 20 containing 0.2% SnO 2 had a transmittance at 254 nm of 25% or less. This is considered to be due to the ultraviolet absorption effect of SnO 2. When this glass is fixed to the package with an ultraviolet curable resin adhesive, a long ultraviolet irradiation time is required.

Figure 0005540506
Figure 0005540506

本発明によれば、高い耐候性および耐ソラリゼーション性を備えつつ、高い紫外線透過特性を有し、かつ環境に配慮された固体撮像素子パッケージ用窓ガラスを提供することができる。   According to the present invention, it is possible to provide a window glass for a solid-state imaging device package that has high weather resistance and solarization resistance, has high ultraviolet transmission characteristics, and is environmentally friendly.

Claims (3)

質量%で、SiO 58〜75%、Al 0.5〜15%、B 6〜20%、Li O 0〜7%、Na O 0〜15%、K O 0〜15%(ただし、Li O+Na O+K O 2〜20%)、ZrO 0.01%未満、SnO 0〜0.1%、Nb 0〜0.2%、(ただし、SnO+Nb 0.001〜0.2%)、Fe 0.0001〜0.005%を含有し、実質的にAs、Sb、PbO、TiO、CeOを含有せず、アルカリ金属酸化物を含む硼珪酸系ガラスからなることを特徴とする固体撮像素子パッケージ用窓ガラス。 By mass%, SiO 2 58~75%, Al 2 O 3 0.5~15%, B 2 O 3 6~20%, Li 2 O 0~7%, Na 2 O 0~15%, K 2 O 0-15% (however, Li 2 O + Na 2 O + K 2 O 2-20%), ZrO less than 0.01%, SnO 2 0-0.1%, Nb 2 O 5 0-0.2%, (however, SnO 2 + Nb 2 O 5 0.001 to 0.2%), Fe 2 O 3 0.0001 to 0.005%, substantially As 2 O 3 , Sb 2 O 3 , PbO, TiO 2 , A window glass for a solid-state imaging device package, which is made of borosilicate glass containing no alkali metal oxide and containing no CeO 2 . 前記硼珪酸系ガラスは、質量%で、SnOThe borosilicate glass is Sn% by mass. 2 0.002〜0.04%を含有することを特徴とする請求項1記載の固体撮像素子パッケージ用窓ガラス。  The window glass for a solid-state imaging device package according to claim 1, comprising 0.002 to 0.04%. 前記硼珪酸系ガラスは、実質的に、MgO、CaO、SrO、BaO、ZnOを含有せず、ガラスからのα線放出量が0.0002c/cm・h未満であることを特徴とする請求項1または2記載の固体撮像素子パッケージ用窓ガラス The borosilicate glass is substantially free of MgO, CaO, SrO, BaO, and ZnO, and emits α rays from the glass to less than 0.0002 c / cm 2 · h. Item 3. The window glass for a solid-state imaging device package according to Item 1 or 2
JP2009010805A 2009-01-16 2009-01-21 Window glass for solid-state image sensor package Active JP5540506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010805A JP5540506B2 (en) 2009-01-16 2009-01-21 Window glass for solid-state image sensor package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009007589 2009-01-16
JP2009007589 2009-01-16
JP2009010805A JP5540506B2 (en) 2009-01-16 2009-01-21 Window glass for solid-state image sensor package

Publications (2)

Publication Number Publication Date
JP2010184816A JP2010184816A (en) 2010-08-26
JP5540506B2 true JP5540506B2 (en) 2014-07-02

Family

ID=42765713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010805A Active JP5540506B2 (en) 2009-01-16 2009-01-21 Window glass for solid-state image sensor package

Country Status (1)

Country Link
JP (1) JP5540506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190352213A1 (en) * 2018-05-18 2019-11-21 Schott Ag Use of a flat glass in electronic components
US11465929B2 (en) 2018-05-18 2022-10-11 Schott Ag Flat glass, method for producing same, and use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727149B2 (en) * 2009-04-13 2015-06-03 Hoya株式会社 Optical glass, glass material for press molding, optical element blank, optical element manufacturing method, and optical glass coloring suppression method
JP2012113045A (en) * 2010-11-22 2012-06-14 Seiko Epson Corp Optical multilayer film, optical element, imaging assembly, digital camera and method for manufacturing optical multilayer film
DE102012100233B4 (en) * 2012-01-12 2014-05-15 Schott Ag Highly solar-resistant high-transmission glasses, their use and process for their preparation
WO2017026450A1 (en) * 2015-08-12 2017-02-16 旭硝子株式会社 Glass having duv resistance
KR102056359B1 (en) * 2016-05-03 2019-12-16 주식회사 엘지화학 Borosilicate glass, light guide plate comprising the same and fabricating methods thereof
CN109476530A (en) 2016-07-28 2019-03-15 康宁股份有限公司 Glass with anti-photoluminescence darkening property
JP6523408B2 (en) * 2017-11-14 2019-05-29 Hoya Candeo Optronics株式会社 Ultraviolet transmission visible light absorption glass and ultraviolet transmission visible light absorption filter
US20220388893A1 (en) * 2019-11-05 2022-12-08 Nippon Electric Glass Co., Ltd. Ultraviolet transmission glass
CN111574049B (en) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 Glass composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634063B2 (en) * 1988-06-22 1997-07-23 東芝硝子株式会社 Cover glass for solid-state imaging device
JP3206787B2 (en) * 1993-10-08 2001-09-10 旭テクノグラス株式会社 Window glass for solid-state imaging device package
JPH1081543A (en) * 1996-09-02 1998-03-31 Nippon Electric Glass Co Ltd Ultraviolet-transmission glass for sealing alumina and its production
JP3818571B2 (en) * 2000-06-16 2006-09-06 旭テクノグラス株式会社 Glass suitable for sealing Fe-Ni-Co alloys
JP3771429B2 (en) * 2000-08-17 2006-04-26 旭テクノグラス株式会社 Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP2005126320A (en) * 2003-10-01 2005-05-19 Nippon Electric Glass Co Ltd Window glass for solid imaging element package
JP4371841B2 (en) * 2004-02-09 2009-11-25 Hoya株式会社 Window glass for semiconductor packages
JP2008010401A (en) * 2006-05-29 2008-01-17 Nippon Electric Glass Co Ltd Glass vessel for lighting, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190352213A1 (en) * 2018-05-18 2019-11-21 Schott Ag Use of a flat glass in electronic components
US11465929B2 (en) 2018-05-18 2022-10-11 Schott Ag Flat glass, method for producing same, and use thereof

Also Published As

Publication number Publication date
JP2010184816A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5540506B2 (en) Window glass for solid-state image sensor package
JP7207442B2 (en) UV transparent glass
US9831392B2 (en) Cover glass for light emitting diode package, sealed structure, and light emitting device
US9233871B2 (en) Optical glass and core material for optical fiber
JP2002249340A (en) Cover glass for semiconductor package
JP2005162600A (en) Cover glass plate for semiconductor package
JP2010208906A (en) Substrate glass for optical device
US20130090227A1 (en) Lead-free glass for semiconductor encapsulation
US8211816B2 (en) Cover glass for solid-state imaging element package
TW201730126A (en) Ultraviolet radiation-transmitting glass
JP7044064B2 (en) Alkaline-free glass substrate, laminated substrate, and manufacturing method of glass substrate
JP3532178B2 (en) Window material glass for semiconductor package and method of manufacturing the same
JP4371841B2 (en) Window glass for semiconductor packages
JP3288169B2 (en) Manufacturing method of glass for packaging
JP3283722B2 (en) Window glass for semiconductor package and method of manufacturing the same
JP4758618B2 (en) Glass for UV transmission filter and UV transmission filter
JP3206804B2 (en) Window glass for solid-state imaging device package
JP2005200289A (en) Cover glass for solid imaging element and its manufacturing method
JPH05279074A (en) Window glass for solid-state image pickup element package
JP3386058B2 (en) Cover glass for semiconductor package and method of manufacturing the same
JP2000086281A (en) Window glass for semiconductor package and its production
JP3123009B2 (en) Window glass for solid-state imaging device package
JP2002348142A (en) Cover glass for semiconductor package and solid-state imaging element
JP2562803B2 (en) Window glass for EP-ROM package
JPH07109145A (en) Aperture glass for solid image pickup element package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250