WO2017026450A1 - Glass having duv resistance - Google Patents

Glass having duv resistance Download PDF

Info

Publication number
WO2017026450A1
WO2017026450A1 PCT/JP2016/073320 JP2016073320W WO2017026450A1 WO 2017026450 A1 WO2017026450 A1 WO 2017026450A1 JP 2016073320 W JP2016073320 W JP 2016073320W WO 2017026450 A1 WO2017026450 A1 WO 2017026450A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
wavelength
transmittance
sio
Prior art date
Application number
PCT/JP2016/073320
Other languages
French (fr)
Japanese (ja)
Inventor
林 英明
円佳 小野
盛輝 大原
公章 赤塚
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017026450A1 publication Critical patent/WO2017026450A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a glass having DUV (Deep UV) resistance, and more particularly to a glass having DUV resistance and excellent chemical strengthening properties.
  • DUV Deep UV
  • aluminosilicate glass has been developed as a glass for chemical strengthening that has high chemical strengthening characteristics and can achieve high strength.
  • Chemically tempered glass is useful for display applications because of its high strength, but it is required to be highly transmissive in addition to high strength in order to ensure the visibility of the display screen. Therefore, a highly permeable chemically strengthened glass in which the iron content that contributes to coloration is reduced has been studied.
  • High-strength glass that has been chemically strengthened is subjected to various pretreatments when used for a display or the like.
  • One example is UV ozone cleaning treatment by ultraviolet irradiation in a wavelength region called DUV (Deep UV) using a low-pressure mercury lamp, and there are cases where organic substances on the glass surface are removed or surface modification is performed.
  • DUV Deep UV
  • DUV has a shorter wavelength than UV in solarization caused by sunlight. According to the study by the present inventors, it has been found that the transmittance in a specific wavelength region of the glass is lowered by the irradiation of the DUV. As a result, when the DUV is irradiated, the transparency of the glass is impaired, and the color of the glass deteriorates depending on the region where the transmittance is reduced.
  • an object of the present invention is to provide a glass that does not lower the transmittance even when irradiated with UV on the short wavelength side such as a low-pressure mercury lamp.
  • DC resistance refers to a change in transmittance before and after irradiation with a short wavelength UV of 185 nm and 254 nm using a low-pressure mercury lamp.
  • Solarization resistance is intended for the transmittance change before and after UV irradiation with a main wavelength of 365 nm using a high-pressure mercury lamp.
  • the short wavelength side UV and the long wavelength side UV may be collectively referred to simply as “UV”.
  • the present inventors have found that, by adopting a specific glass composition, glass can be obtained without lowering the transmittance even when UV on the short wavelength side is irradiated.
  • the invention has been completed.
  • the present invention relates to the following ⁇ 1> to ⁇ 10>.
  • the transmittance at a wavelength of 380 to 780 nm after the treatment under the following condition 1 is 80, including at least one of the following: Al 2 O 3 : 7.5 to 18%, not including As 2 O 3 % Glass or more. (Condition 1)
  • the glass was heat-treated at (Tg + 40) ° C.
  • Oxide-based molar percentage display containing 50 to 80% SiO 2 and containing at least one of Li 2 O, Na 2 O and K 2 O, Li 2 O, Na 2
  • ⁇ 5> The glass according to any one of ⁇ 1> to ⁇ 4>, which contains substantially no coloring component other than TiO 2 and Fe 2 O 3 .
  • ⁇ 6> The glass according to any one of ⁇ 1> to ⁇ 5>, which contains SnO 2 in an amount of 0.001 to 1% in terms of a molar percentage based on an oxide.
  • SiO 2 is contained, Li 2 O is not contained, and the content expressed in terms of mole percentage based on oxides of Na 2 O, K 2 O, Al 2 O 3 and SiO 2 is [2 ⁇
  • Oxide-based molar percentage display SiO 2 60 to 70%, Al 2 O 3 7.5 to 18%, Li 2 O, Na 2 O and K 2 O at least one total 5 to 25%, MgO 0 to 15%, CaO 0 to 5%, Fe 2 O 3 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0 7 to 4.0%, and the total content of other components is 3% or less, Li 2 O, Na 2 O, K 2 O, Al 2 O 3 and SiO 2 ⁇ 1> to ⁇ in which the content expressed in terms of mole percentage on the basis of oxide satisfies the relationship of [2 ⁇ (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] ⁇ 0.5
  • Oxide-based molar percentage display SiO 2 63-66%, Al 2 O 3 9-12%, Na 2 O 14-17%, K 2 O 0-1%, MgO 7 to 9%, CaO 0 to 1%, Fe 2 O 3 0.001 to 0.022%, TiO 2 0.011 to 0.8%, and other components in total 3 % Or less of the glass according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 10> A chemically strengthened glass obtained by chemically strengthening the glass according to any one of ⁇ 1> to ⁇ 9>.
  • the present invention it is possible to obtain a glass having a high transmittance before UV irradiation and which does not decrease the transmittance even when UV on the short wavelength side is irradiated. It is very useful as a chemically strengthened glass used for display applications.
  • FIG. 1 is a graph showing a change in transmittance spectrum when a glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp.
  • FIG. 2 is a graph showing the ESR spectrum change when the glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp.
  • FIG. 3 is a fluorescence spectrum of the glass of Test Example 6 (Comparative Example).
  • FIG. 4 is a transmittance spectrum before and after the glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp.
  • FIG. 5 is a transmittance spectrum before and after the glass of Test Example 5 (Example) was irradiated with a low-pressure mercury lamp.
  • FIG. 1 is a graph showing a change in transmittance spectrum when a glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp.
  • FIG. 2 is a graph showing the
  • FIG. 6 is a graph showing the change in transmittance at a wavelength of 380 nm before and after the glass is irradiated with a low-pressure mercury lamp for each TiO 2 content in the glass.
  • FIG. 7 is a graph showing the relationship between the TiO 2 content in the glass and the DOL after the chemical strengthening treatment.
  • the glass according to the present invention is expressed in terms of mole percentage based on oxide, Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0.7 to At least one of 4.0% and Al 2 O 3 : 7.5 to 18%, no As 2 O 3 , and a wavelength of 380 to 780 nm after performing the treatment under the following condition 1
  • the transmittance is 80% or more. That is, the DUV resistance is excellent.
  • the glass was heat-treated at (Tg + 40) ° C.
  • the glass composition can be measured by the fluorescent X-ray method, and more precisely by the wet analysis method. The glass composition will be described later.
  • the DUV resistance means that UV (DUV) with a wavelength of 100 to 280 nm is irradiated, that is, a low-pressure mercury lamp with main wavelengths of 185 nm and 254 nm, an Xe gas excimer lamp with a main wavelength of 172 nm, and an ArF excimer lamp with a main wavelength of 193 nm.
  • UV (DUV) with a wavelength of 100 to 280 nm is irradiated, that is, a low-pressure mercury lamp with main wavelengths of 185 nm and 254 nm, an Xe gas excimer lamp with a main wavelength of 172 nm, and an ArF excimer lamp with a main wavelength of 193 nm.
  • the DUV irradiation is performed within a range of irradiation time of 1 to 20000 seconds with an illuminance at a wavelength of 254 nm of 0.1 to 1000 mW / cm 2 on the surface of the glass irradiated with light. From the aspect of reducing the processing cost, it is preferable that the irradiation time is 1 to 100 mW / cm 2 and the irradiation time is 1200 seconds or less.
  • the exposure preferably be carried out at the 10 ⁇ 10000mJ / cm 2 condition, more preferably of 50 ⁇ 5000mJ / cm 2 conditions.
  • the present invention in order to more accurately evaluate the DUV resistance of glass, physical properties (transmittance, absorption coefficient, DUV and UV-induced absorption, etc.) after the treatment under the following condition 1 can be evaluated. preferable.
  • the glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then irradiated with a low-pressure mercury lamp having a wavelength of 254 nm and an illuminance of 8 mW / cm 2 for 10 minutes.
  • the illumination intensity in this specification means the illumination intensity right above a glass surface instead of the illumination intensity right under a lamp.
  • the physical properties of the glass after DUV irradiation can be evaluated without variation by irradiating the short wavelength side UV under the above condition 1 after the heat treatment.
  • the DUV resistance in this specification does not include suppression of a decrease in transmittance when a light source having a high optical power density, such as an ArF excimer laser having a main wavelength of 193 nm or a KrF excimer laser having a main wavelength of 248 nm, is used.
  • a light source having a high optical power density such as an ArF excimer laser having a main wavelength of 193 nm or a KrF excimer laser having a main wavelength of 248 nm
  • the transmittance in the wavelength region of 380 to 780 nm before UV irradiation on the short wavelength side is T0
  • the transmittance in the wavelength region of 380 to 780 nm after irradiation is T1.
  • the DUV-induced absorption ⁇ at each wavelength represented by the following formula is preferably 0.095 or less, and more preferably 0.085 or less.
  • -ln (T1 / T0)
  • the resistance to solarization means that a decrease in transmittance at a wavelength of 380 to 780 nm is suppressed when irradiated with UV light having a wavelength of 315 to 400 nm, that is, when irradiated with a high-pressure mercury lamp having a main wavelength of 365 nm or sunlight. means.
  • This UV irradiation on the long wavelength side is generally used for lamination and the like with a substrate using a UV curable resin.
  • the UV irradiation on the long wavelength side is carried out within a range of irradiation time of 1 to 20000 seconds with an illuminance at a wavelength of 365 nm of 0.1 to 1000 mW / cm 2 on the surface of the glass irradiated with light. . From the aspect of reducing the processing cost, it is preferable that the irradiation time is 1 to 100 mW / cm 2 and the irradiation time is 1200 seconds or less.
  • the exposure amount is preferably 10 to 10,000 mJ / cm 2 .
  • the transmittance in the wavelength region of 380 to 780 nm before UV irradiation on the long wavelength side is T0 ′
  • the transmittance in the wavelength region of 380 to 780 nm after irradiation is T1 ′.
  • the UV-induced absorption ⁇ ′ at each wavelength represented by the following formula is preferably 0.095 or less, and more preferably 0.085 or less.
  • ⁇ ′ ⁇ ln (T1 ′ / T0 ′)
  • the glass according to the present invention has a transmittance of 90% or more at a wavelength of 380 to 780 nm before irradiating UV to a glass having a thickness of 1 mm, preferably 90.5% or more, more preferably 91% or more, Preferably it is 91.5% or more.
  • the transmittance at a wavelength of 380 to 780 nm after irradiating a glass having a thickness of 1 mm with short wavelength side UV and / or long wavelength side UV is 80% or more, preferably 81% or more, more preferably 82% or more, more preferably 83% or more, and most preferably 84% or more.
  • the degree of change in transmittance after UV irradiation varies depending on UV irradiation conditions, glass composition, thickness, manufacturing method, and the like.
  • the wavelength at which the transmittance is less than 1% is preferably 280 nm or less before and after irradiating the glass having a thickness of 1 mm with UV. If the wavelength exceeds 280 nm, sufficient transmittance cannot be obtained at wavelengths of 380 to 780 nm, and the color of the transmitted color of the glass may be deteriorated, such as coloring yellow.
  • the glass according to the present invention has an absorption coefficient ⁇ of 2.35 ⁇ 10 ⁇ 3 cm ⁇ 1 or less, preferably 1.80 ⁇ 10 ⁇ 3 cm ⁇ 1 or less, at a wavelength of 380 to 780 nm before UV irradiation. More preferably, it is 1.25 ⁇ 10 ⁇ 3 cm ⁇ 1 or less, and further preferably 7.00 ⁇ 10 ⁇ 4 cm ⁇ 1 or less.
  • the absorption coefficient ⁇ at a wavelength of 380 to 780 nm after irradiation with UV on the short wavelength side is preferably 1.35 ⁇ 10 ⁇ 2 cm ⁇ 1 or less, more preferably 1.25 ⁇ 10 ⁇ 2 cm ⁇ 1 or less, More preferably, it is 1.12 ⁇ 10 ⁇ 2 cm ⁇ 1 or less, even more preferably 1.00 ⁇ 10 ⁇ 2 cm ⁇ 1 or less, and most preferably 8.82 ⁇ 10 ⁇ 3 cm ⁇ 1 or less.
  • the absorption coefficient ⁇ of the glass can be obtained according to the following formula, assuming that the absorption at a wavelength of 780 nm is zero.
  • the reason why the absorption at a wavelength of 780 nm is regarded as zero and used as a reference is to subtract the influence of the reflection of the glass.
  • 2.303 ⁇ log (T 780 / Ti) / d Ti: Transmittance of measurement wavelength (%)
  • T780 Transmittance (%) at a wavelength of 780 nm
  • d Glass thickness (cm)
  • the L * a * b * color system transmission color of the glass before and after being irradiated with UV on the short wavelength side is calculated from the tristimulus values X, Y, Z of the object based on JIS Z8722: 2009 from the transmittance measurement data. Then, it can be obtained by converting to the L * a * b * color system (D65 light source, 2-degree visual field) by the following formula.
  • the color tone b * in the chromaticity coordinates after irradiation with UV on the short wavelength side is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.6 or less, and particularly preferably 1.0 or less. preferable.
  • the chromaticity change means a difference (change) in chromaticity of the glass before and after irradiating UV on the short wavelength side or long wavelength side, and can be evaluated by ⁇ E obtained by the following formula. If the change in chromaticity (value of ⁇ E) is large, it means that the color of the glass is poor. Therefore, it is preferable that the change in chromaticity is small.
  • the chromaticity difference (chromaticity change) ⁇ E between before and after irradiation with UV on the short wavelength side is preferably 2 or less, more preferably 1.8 or less, and 1. 7 or less is more preferable, and 1.5 or less is most preferable.
  • L 0 * , a 0 * , b 0 * are the values of the respective color tones in the chromaticity coordinates of the L * a * b * color system of the glass before UV irradiation
  • L * , a * And b * are the values of the respective color tones in the chromaticity coordinates of the L * a * b * color system of the glass after UV irradiation.
  • the values of each color tone can be converted from the measured data of transmittance based on JIS Z8722: 2009 based on the tristimulus values X, Y, and Z of the object, and converted from these values by the above-described formula.
  • Glass composition The glass according to the present invention is expressed in terms of mole percentage based on oxide, Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0.7 to It contains at least one of 4.0%.
  • the DUV resistance is increased, but the color of the glass is deteriorated.
  • the content of Fe 2 O 3 is 0.001 to 0 by including at least one of TiO 2 : 0.011 to 0.8% and ZrO 2 : 0.7 to 4.0%. Even when the content is as low as 0.022%, the change in chromaticity can be reduced while maintaining high DUV resistance. Also although TiO 2 and Fe 2 O 3 is a component which can be a coloring component, it is possible to content can be almost neglected coloring in the above range to obtain a high transmittance glass.
  • TiO 2 is more preferably 0.015% or more, more preferably 0.02% or more, particularly preferably 0.03% or more, and most preferably 0.05% or more, because more excellent DUV resistance can be obtained.
  • 0.7% or less is more preferable, 0.6% or less is more preferable, 0.5% or less is particularly preferable, and 0.4% is more preferable in that the change in chromaticity can be further reduced and the chemical strengthening characteristics are not deteriorated. The following are most preferred.
  • ZrO 2 is a component that gives excellent DUV resistance, at the same time, improves chemical durability, increases the surface compressive stress (CS) during chemical strengthening, and improves Vickers hardness after chemical strengthening. is there.
  • the content of ZrO 2 is preferably 0.7% or more, more preferably 0.9% or more, further preferably 1.2% or more, and most preferably 1.5% or more.
  • the amount added is preferably 4.0% or less from the viewpoint of suppressing devitrification during the production of glass and preventing a reduction in the depth of compression stress layer (DOL; Depth of Layer) during chemical strengthening. % Or less is more preferable, 3% or less is more preferable, and 2.5% or less is most preferable.
  • DOL Depth of Layer
  • TiO 2 and ZrO 2 are both components that improve DUV resistance, but TiO 2 has a greater effect of improving DUV resistance than ZrO 2 . More preferably, the glass according to the present invention contains only TiO 2 or both TiO 2 and ZrO 2 .
  • Fe 2 O 3 is preferably 0.001% or more. If it is less than 0.001%, sufficient DUV resistance may not be obtained. Further, in manufacturing the glass, the amount of impurities of Fe 2 O 3 components other than Fe 2 O 3 is not necessary to use very little material, there is a possibility that the manufacturing cost is increased. Fe 2 O 3 is more preferably 0.0015% or more, further preferably 0.002% or more, and particularly preferably 0.0025% or more. Moreover, from the point which can reduce a chromaticity change, 0.022% or less is preferable, 0.015% or less is more preferable, 0.008% or less is further more preferable, 0.005% or less is especially preferable.
  • SnO 2 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5 can be used together with TiO 2 and / or ZrO 2 or in place of TiO 2 and / or ZrO 2. .
  • SnO 2 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5 it is necessary to set optimum conditions separately in order to achieve compatibility with other characteristics such as solarization resistance and permeability.
  • the total amount of SnO 2 , MoO 3 , Ta 2 O 5 and Nb 2 O 5 is preferably 0.001 to 1%, and 0.01 to 0.5% in terms of mol% based on oxide. Is more preferable.
  • All of these components have an absorption coefficient of 1 cm ⁇ 1 or more at a wavelength of 220 nm (5.6 eV). That is, when irradiated with UV on the short wavelength side, these components absorb energy in the vicinity of a wavelength of 220 nm (5.6 eV) and suppress absorption by the glass structure itself, so that a glass structure that causes a decrease in transmittance. It is considered that the generation of defects is suppressed and the DUV resistance is improved.
  • FIG. 1 shows a change in transmission spectrum when a glass containing no TiO 2 is polished to a plate thickness of 0.3 mm and then irradiated with a low-pressure mercury lamp (DUV). It can be seen that as the DUV irradiation time increases, the transmittance near the wavelength of 220 nm improves, while the transmittance near the wavelength of 400 to 500 nm decreases.
  • FIG. 2 shows evaluation of electron spin resonance (ESR) for the same glass as that evaluated in FIG.
  • ESR electron spin resonance
  • a peak that increases with an increase in the irradiation time of the low-pressure mercury lamp is presumed to be NBOHC (Non Bridging Oxygen Hole Center), which is a kind of glass structural defect.
  • NBOHC Non Bridging Oxygen Hole Center
  • the ratio of the increase in peak intensity with respect to the irradiation time in FIG. 2 and the ratio of the decrease in transmittance with respect to the irradiation time in FIG. 1 correspond to about 1: 1. Therefore, the cause of the decrease in the transmittance in the visible region is NBOHC. It is believed that there is.
  • FIG. 3 shows a fluorescence spectrum when the glass of the present invention containing 1 mol% of TiO 2 is excited at a wavelength of 220 nm and an excitation spectrum when monitored at an emission wavelength of 470 nm.
  • TiO 2 present in the form of Ti 4+ ions in the glass absorbs energy corresponding to the wavelength of 220 nm instead of the glass structure, and consumes energy absorbed by light emission (radiation transition) and thermal deactivation (non-radiation transition). Therefore, it is considered that the generation of NBOHC is suppressed.
  • the glass of the present invention containing TiO 2 is not excited at a wavelength around 365 nm and does not have absorption, it has high solarization resistance against high pressure mercury lamps and sunlight. Expected to be.
  • the glass according to the present invention contains 7.5 to 18% of Al 2 O 3 .
  • the glass according to the present invention is, for example, an aluminosilicate glass.
  • An aluminosilicate glass containing an alkali is suitable as a glass for chemical strengthening.
  • the glass according to the present invention is preferably a chemically strengthened glass.
  • Al 2 O 3 has an effect of improving ion exchange performance in chemical strengthening, and in particular, has a large effect of improving a surface compressive stress (CS). It is also known as a component that improves the weather resistance of glass.
  • CS surface compressive stress
  • the Al 2 O 3 content is 7.5% or more, preferably 8% or more, more preferably 8.5% or more, further preferably 9% or more, and most preferably 9.5% or more.
  • the upper limit is 18% or less, preferably 17.5% or less, more preferably 16% or less, further preferably 14% or less, and most preferably 12% or less.
  • SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass. Further, it is a component that reduces the occurrence of cracks when scratches (indentations) are made on the glass surface, or reduces the fracture rate when indentations are made after chemical strengthening.
  • the content of SiO 2 is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and most preferably 63% or more. Further, the upper limit is preferably 80% or less, more preferably 75% or less, further preferably 73% or less, particularly preferably 70% or less, and most preferably 66% or less.
  • the content of SiO 2 is 50% or more, it is advantageous in terms of stability and weather resistance as glass. Moreover, an increase in thermal expansion can be suppressed by forming a network structure.
  • the content of SiO 2 is 80% or less, it is advantageous in terms of solubility and moldability.
  • B 2 O 3 is a component that promotes melting of the glass raw material and improves the brittleness and weather resistance of the glass.
  • the content is 1% or more, so that the fracture rate when scratches (indentations) are made after chemical strengthening can be reduced, or the meltability at high temperature is improved.
  • the content of B 2 O 3 is preferably 15% or less, more preferably 10% or less, and more preferably 7.5%, in order not to cause inconvenience such as generation of striae due to volatilization and furnace wall erosion. % Or less is particularly preferable. In the case where it is desired to further increase the homogeneity of the glass by suppressing the formation of striae or the like, 1% or less is preferable.
  • P 2 O 5 is a component that improves damage resistance without hindering ion exchange performance.
  • a glass having a high crack extension starting load (CIL) can be obtained when the content is 2.5% or more. Further, the content of P 2 O 5 by 10% or less, it is possible to obtain an excellent glass in acid resistance. When it is desired to further increase the chemical durability of the glass, it is preferably 1% or less, and more preferably not contained.
  • Li 2 O, Na 2 O, and K 2 O are all components that improve the meltability and moldability of the glass, and preferably contain at least one of them.
  • the total Li 2 O + Na 2 O + K 2 O content of Li 2 O, Na 2 O, and K 2 O is preferably 5% or more, more preferably 8% or more, and even more preferably 12% or more.
  • Li 2 O + Na 2 O + K 2 O is preferably 25% or less, more preferably 22% or less, still more preferably 18% or less, and particularly preferably 15% or less.
  • Na 2 O is an essential component for forming a surface compressive stress layer by ion exchange, and has the effect of deepening the DOL. Moreover, it is a component which lowers
  • Na 2 O is a component that generates non-crosslinked oxygen, and the variation in chemical strengthening characteristics when the amount of moisture in the glass varies is reduced.
  • the Na 2 O content is preferably 8% or more, more preferably 10% or more, still more preferably 11% or more, particularly preferably 12% or more, and most preferably 14% or more.
  • the upper limit is preferably 22% or less, more preferably 19% or less, still more preferably 17% or less, and most preferably 15% or less.
  • K 2 O is an ingredient that increases the ion exchange rate, deepens the DOL, lowers the melting temperature of the glass, and increases non-crosslinked oxygen, so it may be contained in a range of 7% or less. If it is 7% or less, the DOL does not become too deep, sufficient CS is obtained, and the melting temperature of the glass can be lowered. Or avoid an increase in variation of surface compressive stress due NaNO 3 concentration in the potassium nitrate molten salt. When it contains K 2 O, it is preferably 5% or less, more preferably 2% or less, and particularly preferably 1% or less.
  • K 2 O since a small amount of K 2 O has an effect of suppressing the amount of intrusion of tin from the bottom surface at the time of molding by the float process, it is preferably contained when molding by the float process.
  • the content of K 2 O is preferably 0.05% or more, more preferably 0.1% or more.
  • Li 2 O excessively lowers the strain point and low-temperature viscosity to facilitate stress relaxation, and as a result, the stress value of the compressive stress layer may be lowered. Therefore, it is preferably 12% or less, more preferably 10% or less. It is particularly preferable that it is not substantially contained.
  • Li 2 O, Na 2 O, K 2 O represented by [2 ⁇ (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] is preferable.
  • Al 2 O 3 and SiO 2 content are preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.35 or less, and particularly preferably 0.3 or less.
  • 0.02 or more is preferable from the point of a chemical strengthening characteristic, 0.05 or more is more preferable, 0.08 or more is further more preferable, 0.1 or more is especially preferable.
  • [2 ⁇ (Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] is 0.5 or less from the viewpoint of DUV resistance, The following is more preferable, 0.35 or less is further preferable, and 0.3 or less is particularly preferable. Moreover, 0.02 or more is preferable from the point of a chemical strengthening characteristic, 0.05 or more is more preferable, 0.08 or more is further more preferable, 0.1 or more is especially preferable.
  • MgO is a component that can stabilize the glass, improve the solubility, and reduce the alkali metal content by adding this to suppress an increase in the coefficient of thermal expansion (CTE).
  • the content of MgO is preferably 1% or more, more preferably 2% or more. Further, the upper limit is preferably 15% or less, more preferably 12% or less. When the content of MgO is 1% or more, the CTE increase suppression effect is exhibited. On the other hand, when the content of MgO is 15% or less, the difficulty of devitrification is maintained, or a sufficient ion exchange rate is obtained.
  • CaO is a component that stabilizes the glass, and has the effect of improving the solubility while preventing devitrification due to the presence of MgO and suppressing an increase in CTE.
  • the CaO content is preferably 0 to 5%, more preferably 0 to 1%. When the content of CaO is 5% or less, a sufficient ion exchange rate is obtained, and a desired DOL is obtained. Moreover, when it is desired to particularly improve the ion exchange performance in chemical strengthening, CaO is less than 1%, preferably 0.5% or less.
  • CaO / MgO is preferably 0.5 or less from the viewpoint of improving ion exchange performance in chemical strengthening and increasing the transmittance of the glass plate.
  • SO 3 as a refining agent for molten glass, chloride, fluoride or the like may also contain appropriate.
  • SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, SrO is not substantially contained or even if contained.
  • the content is preferably 3% or less.
  • substantially not containing means that the content is of the order of impurities, preferably less than 0.05%, more preferably less than 0.01%.
  • BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides. Therefore, BaO is not substantially contained or even if contained, its content is 3% or less. Preferably there is.
  • the total content thereof is preferably 1% or less, more preferably less than 0.3%.
  • the total content of these three components is preferably less than 3%. When the total is less than 3%, a decrease in ion exchange rate can be avoided. Typically 1% or less.
  • SnO 2 is a component that makes DUV resistance better.
  • the content of SnO 2 is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.01% or more, and particularly preferably 0.02% or more.
  • SnO 2 reduces the solarization resistance, so 1% or less is preferable, 0.7% or less is more preferable, 0.5% or less is more preferable, and 0.3% or less is particularly preferable.
  • CeO 2 is a component that makes DUV resistance more excellent, but greatly reduces the resistance to solarization. CeO 2 is preferably less than 0.1%, more preferably less than 0.05%, further preferably less than 0.01%, and most preferably not contained.
  • As 2 O 3 is a component that makes DUV resistance more excellent and promotes clarification of the glass batch, but has a high environmental load. Therefore, it is most preferable that As 2 O 3 is not substantially contained.
  • the glass according to the present invention is a colorless glass and is preferably used for display applications and the like.
  • the colorless glass refers to a glass having a transmittance of 90% or more at a wavelength of 380 to 780 nm before UV irradiation.
  • the transmittance is more preferably 90.5% or more.
  • the aluminosilicate glass according to the present invention contains 50 to 80% of SiO 2 in terms of oxide-based mole percentage, and contains one or more of Li 2 O, Na 2 O and K 2 O.
  • the total Li 2 O + Na 2 O + K 2 O content of Li 2 O, Na 2 O and K 2 O is preferably 5 to 25%.
  • the aluminosilicate glass according to the present invention is expressed in terms of mole percentage based on oxides, and SiO 2 is 60 to 70%, Al 2 O 3 is 7.5 to 18%, Li 2 O, Na 2 O, and K 2 O. Any one or more total 5 to 25%, MgO 0 to 15%, CaO 0 to 5%, Fe 2 O 3 0.001 to 0.022% and TiO 2 0.011 to 0.8 %, Or 0.7 to 4% of ZrO 2, and the total content of other components is preferably 3% or less.
  • the content expressed in terms of mole percentages based on oxides of Li 2 O, Na 2 O, K 2 O, Al 2 O 3 and SiO 2 is [2 ⁇ (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] ⁇ 0.5 is preferably satisfied.
  • the aluminosilicate glass according to the present invention is expressed in terms of mole percentages based on oxides, with SiO 2 63-66%, Al 2 O 3 9-12%, Na 2 O 14-17%, K 2 O 0 Contains 1 to 1%, MgO 7 to 9%, CaO 0 to 1%, Fe 2 O 3 0.001 to 0.022%, TiO 2 0.011 to 0.8%.
  • the total content is preferably 3% or less.
  • Ti is preferably present in the state of Ti 4+ ions in the glass, and is preferably not present in the state of Ti 3+ ions. Since Ti 3+ ions have absorption in the visible range, the glass may be colored.
  • the ratio of Ti 4+ ions in the glass can be increased.
  • the redox ratio is preferably 0.500 or less, and more preferably 0.450 or less. It is to be noted that the redox ratio, refers to the percentage of divalent iron Fe 2+ to the total amount of iron Fe contained in the glass, the amount of Fe 2+ in the glass was quantified by bipyridyl absorptiometry, ICP emission spectrometry total Fe content It can be determined quantitatively by an analytical method.
  • the redox ratio can also be calculated by obtaining the ratio of divalent iron Fe 2+ and trivalent iron Fe 3+ contained in the glass from the spectrum of the glass.
  • the optical basicity of the glass By setting the optical basicity of the glass to 0.50 or more, the ratio of Ti 4+ ions in the glass can be increased.
  • the optical basicity is preferably 0.52 or more, and more preferably 0.54 or more.
  • the optical basicity ⁇ is defined as follows.
  • the meaning of each code is as follows.
  • ⁇ i 1.36 (xi ⁇ 0.26), zi: the valence of the cation in the oxide of the i-th component, ri: ratio of the number of cations in the oxide of the i-th component to the total number of oxygen in the “glass composition represented by mol% notation containing oxide”, xi: Pauling electronegativity of atoms bonded to oxygen in the i-th component oxide.
  • Optical basicity ⁇ is calculated by Duffy et al. Am. Chem. Soc. , 93 (1971) 6448, which is proposed as an index of basicity of glass, and can be obtained by simple calculation from the glass composition without performing measurement or complicated analysis or calculation.
  • the glass according to the present invention is preferably a glass plate, and the thickness (plate thickness) of the glass plate at that time may be 0.1 to 2 mm as a whole, and 0.2 to 1 mm is rigid and lightweight. From the viewpoint of compatibility, 0.3 to 0.8 mm is particularly preferable.
  • the glass transition temperature (Tg) of the glass according to the present invention is, for example, 550 ° C. or higher, preferably 570 ° C. or higher, more preferably 580 ° C. or higher, and further preferably 580 to 700 ° C. .
  • Tg can be adjusted by adjusting the total amount of SiO 2 and Al 2 O 3 and the amount of alkali metal oxide and alkaline earth oxide.
  • the temperature T2 at which the glass according to the present invention has a viscosity of 10 2 dPa ⁇ s is preferably 1800 ° C. or lower, more preferably 1750 ° C. or lower. Although the minimum of T2 is not specifically limited, Usually, it is 1400 degreeC or more.
  • the temperature T4 at which the viscosity of the glass according to the present invention is 10 4 dPa ⁇ s is preferably 1350 ° C. or lower.
  • the liquidus temperature of the glass according to the present invention is preferably lower than T4 and more preferably 20 ° C. lower than T4 from the viewpoint of suppressing devitrification during glass forming.
  • the thermal expansion coefficient CTE of the glass according to the present invention is, for example, 65 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / K, preferably 70 ⁇ 10 ⁇ 7 to 105 ⁇ 10 ⁇ in the temperature range of 50 to 350 ° C. 7 / K, more preferably 74 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / K.
  • CTE can be adjusted by adjusting the amount of alkali metal oxide and alkaline earth oxide.
  • the specific gravity at room temperature of the glass according to the present invention is 2.35 to 2.6 g / cm 3 , preferably 2.38 to 2.5 g / cm 3 , more preferably 2.40 to 2.48 g / cm 3 . 3 .
  • the Young's modulus E of the glass according to the present invention is preferably 60 GPa or more. If it is less than 60 GPa, the crack resistance and breaking strength of the glass may be insufficient. More preferably, it is 68 GPa or more. The Young's modulus is typically 90 GPa or less, and more typically 88 GPa or less.
  • the Poisson's ratio ⁇ of the glass of the present invention is preferably 0.28 or less. If it exceeds 0.28, the crack resistance of the glass may be insufficient. More preferably, it is 0.25 or less.
  • the Poisson's ratio is typically 0.15 or more, more typically 0.17 or more.
  • the chemical strengthening treatment of the glass according to the present invention can be performed by a generally used method.
  • the method of immersing in the molten salt containing potassium nitrate is mentioned.
  • the glass after chemical strengthening treatment (chemically strengthened glass) preferably has a CS of 300 to 1500 MPa, more preferably 650 to 1300 MPa. If it is less than 300 MPa, scratches are likely to occur on the surface of the glass, and there is a possibility that a practically sufficient strength cannot be obtained.
  • the compressive stress layer depth (DOL; Depth of Layer) is preferably 10 to 100 ⁇ m, and more preferably 15 to 90 ⁇ m. If the surface is less than 10 ⁇ m, if the surface of the glass is scratched, the depth of the scratch may exceed the DOL and the glass may be easily broken.
  • CS tensile stress value
  • DOL Center Tension
  • the manufacturing method of the glass plate in this invention is not specifically limited,
  • molding molten glass into a plate-shaped glass plate is not specifically limited.
  • appropriate amounts of various raw materials are prepared, heated to about 1500-1700 ° C and melted, and then homogenized by defoaming, stirring, etc., and the plate is obtained by a well-known float method, downdraw method (fusion method, etc.), press method Or cast into a block shape, and after slow cooling, cut into a desired size to produce a glass plate.
  • a polishing process is performed as necessary, but it is also possible to treat the glass plate surface with a fluorine agent in addition to or instead of the polishing process.
  • the glass plate of the present invention is the size of a display such as a tablet PC or a smartphone or the size of a window glass of a building or a house.
  • the glass of the present invention is generally cut into a rectangle, but other shapes such as a circle or a polygon may be used without any problem, and a glass subjected to drilling is also included.
  • the glass after production is expressed in terms of mole percentage based on oxide, Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8% and ZrO 2 : 0.7 to 4.
  • the glass raw material is selected so that the glass is 80% or more.
  • the glass was heat-treated at (Tg + 40) ° C.
  • the glass Prior to the chemical strengthening treatment, it is preferable to perform shape processing according to the application, for example, mechanical processing such as cutting, end surface processing and drilling processing.
  • the chemical strengthening treatment is performed by cutting the manufactured glass to a desired size to obtain a glass plate, and then preheating the glass plate to about 400 ° C., and in the molten salt, Na on the surface of the glass plate and K in the molten salt. Can be processed by ion exchange. Further, after ion exchange in a molten salt containing a specific salt, an acid treatment and an alkali treatment may be performed to obtain a chemically strengthened glass plate having higher strength.
  • molten salt for performing the ion exchange treatment examples include alkali nitrates such as potassium nitrate, potassium sulfate and potassium chloride, alkali sulfates and alkali chloride salts. These molten salts may be used alone or in combination of two or more. Further, a salt containing sodium may be mixed in order to adjust the chemical strengthening characteristics.
  • the CS of the chemically strengthened glass can be adjusted by adjusting the Na concentration, the strengthening time, and the molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain higher CS, the Na concentration in the molten potassium nitrate is reduced.
  • DOL can be adjusted by adjusting Na concentration, strengthening time and molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain a higher DOL, the temperature of the molten salt is increased.
  • Chemically tempered glass can be cut after chemical tempering treatment. You may chamfer the cutting edge after cutting.
  • the chamfering may be a mechanical grinding process or a method of treating with a chemical solution such as hydrofluoric acid.
  • the use of the glass of the present invention is not particularly limited. Since chemically strengthened glass has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected.
  • mobile phones including multifunctional information terminals such as smartphones
  • PHS, PDA, tablet terminals notebook personal computers, game machines, portable music / video players, electronic books, electronic terminals
  • Cover glass for display parts such as watches, cameras or GPS, and cover glass for touch panel operation monitors of these devices
  • cover glass for cookers such as microwave ovens and oven toasters
  • top plates such as electromagnetic cookers, meters
  • machines or devices such as cover glass for instruments such as gauges and glass plates for reading parts such as copying machines or scanners.
  • window glass for vehicles, ships, airplanes, etc. household or industrial lighting equipment, signals, guide lights, cover boards for electric bulletin boards, showcases, bulletproof glass, etc.
  • Examples include a cover glass for protecting a solar cell and a glass material for condensing for increasing the power generation efficiency of the solar cell.
  • glass for mirror surfaces there are various glass for mirror surfaces, and further, as a substrate for information storage media such as HDDs, and as a substrate for information recording media such as CDs, DVDs, and Blu-ray discs.
  • it can be used as a building material such as an aquarium, dishes such as dishes and cups, various cooking utensils such as bottles or chopping boards, cupboards, shelf boards and walls of refrigerators, roofs or partitions.
  • a building material such as an aquarium, dishes such as dishes and cups, various cooking utensils such as bottles or chopping boards, cupboards, shelf boards and walls of refrigerators, roofs or partitions.
  • chemically strengthened glass produced after the chemical strengthening treatment is optimal as a glass material for display incorporated in various image display devices such as liquid crystal, plasma, and organic EL.
  • the obtained glass was poured into a mold material and held at a temperature of 710 ° C. for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block.
  • the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm.
  • the plate thickness of the glass plate was measured with a digital micrometer.
  • a coefficient of thermal expansion (CTE) and a glass transition temperature (Tg) were measured based on JIS R 1618: 2002 using a thermal dilatometer (manufactured by Bruker Ax, TD5000SA).
  • the Tg was 662 ° C. and the average coefficient of thermal expansion at 50 to 350 ° C. was 80 ⁇ 10 ⁇ 7 / K.
  • the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm.
  • the plate thickness of the glass plate was measured with a digital micrometer.
  • the Tg was 511 ° C.
  • the average linear expansion coefficient at 50 to 350 ° C. was 88 ⁇ 10 ⁇ 7 / K.
  • the specific gravity of the obtained glass plate was 2.50 g / cm 3 .
  • the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm.
  • the plate thickness of the glass plate was measured with a digital micrometer.
  • the obtained glass plate of Test Example 17 was measured in the same manner as in Test Example 1.
  • the Tg was 604 ° C., and the average linear expansion coefficient at 50 to 350 ° C. was 98 ⁇ 10 ⁇ 7 / K.
  • the specific gravity was 2.48 g / cm 3 .
  • Test examples 26 to 29 are examples, and test example 25 is a comparative example.
  • Generally used glass raw materials and reagents were weighed to 1000 g as glass so that the composition described in Table 2 was obtained in terms of oxide-based molar ratio.
  • the weighed raw materials were mixed, put into a platinum crucible, put into a 1650 ° C. resistance heating electric furnace, melted for 3 hours, defoamed and homogenized.
  • the obtained glass was poured into a mold material, held at a temperature of 680 ° C. for 1 hour, and then cooled to room temperature at a rate of 1.0 ° C./min to obtain a glass block.
  • the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm.
  • the plate thickness of the glass plate was measured with a digital micrometer.
  • the obtained glass plate of Test Example 25 was measured in the same manner as in Test Example 1. As a result, Tg was 633 ° C., and the average linear expansion coefficient at 50 to 350 ° C. was 91 ⁇ 10 ⁇ 7 / K. Moreover, the specific gravity of the obtained glass plate was 2.46 g / cm 3 .
  • the composition of the obtained glass plate was identified by the fluorescent X-ray method, and it confirmed that it had a desired composition.
  • Transmittance measurement after DUV irradiation under condition 1 means that the glass is heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then the glass plate is left on the table horizontally. Then, after irradiating light from a low-pressure mercury lamp (PL 21-200 manufactured by Sen Special Light Source, main wavelengths 185 nm and 254 nm) from a position 5 cm above the glass plate for 10 minutes, the transmittance at a wavelength of 380 nm was measured.
  • PL 21-200 low-pressure mercury lamp
  • the illuminance at 254 nm at the place where the glass plate was installed was 8 mW / cm 2 (measured with an illuminance meter UV-M03A and a photoreceiver UV-SD25-M10 manufactured by Oak Manufacturing Co., Ltd.).
  • the transmittance was measured with a spectrophotometer (trade name U-4100) manufactured by Hitachi High-Technologies Corporation.
  • the DUV-induced absorption ⁇ represented by the following formula was calculated, where T0 was the transmittance at a wavelength of 380 nm before light irradiation, and T1 was the transmittance at a wavelength of 380 nm after light irradiation.
  • the transmittance at a wavelength of 380 nm is the lowest among the transmittances at a wavelength of 380 to 780 nm both before and after the DUV irradiation. Therefore, if a transmittance of a desired value or more is obtained at a wavelength of 380 nm, it can be said that a transmittance of a desired value or more is obtained even at a wavelength of 380 to 780 nm.
  • -ln (T1 / T0)
  • the results of the DUV resistance test are shown in Tables 1 and 2 as “induced absorption after low-pressure mercury irradiation (DUV resistance)”. If the DUV-induced absorption ⁇ is less than 0.095, it can be said that the DUV resistance is excellent.
  • UV-induced absorption ⁇ ′ represented by the following formula was calculated, where T0 ′ is a transmittance at a wavelength of 380 nm before light irradiation, and T1 ′ is a transmittance at a wavelength of 380 nm after light irradiation.
  • ⁇ ′ ⁇ ln (T1 ′ / T0 ′)
  • the transmittance at a wavelength of 380 nm before UV irradiation is 90% or more, and the transmittance at a wavelength of 380 nm after UV irradiation or DUV irradiation at a long wavelength side is 80% or more, the transmittance is excellent, and solarization resistance and DUV It can be said that it is excellent in tolerance.
  • the wavelength at which the transmittance was less than 1% was measured before and after irradiating DUV to a glass with a thickness of 1 mm.
  • the results are shown in “UV unirradiated transmittance ⁇ 1% wavelength (nm)” and “Transmittance after low-pressure mercury irradiation ⁇ 1% wavelength (nm)” in Tables 1 and 2. If the wavelength at which the transmittance is less than 1% is 280 nm or less, it can be said that a sufficient transmittance can be obtained at a wavelength of 380 to 780 nm, and the color of the transmitted color of the glass does not deteriorate.
  • the absorption coefficient ⁇ was calculated for the glass not irradiated with UV and the glass after irradiation with the low-pressure mercury lamp. The calculation results are shown in “UV non-irradiated 380 nm absorption coefficient (cm ⁇ 1 )” and “low-pressure mercury irradiated 380 nm absorption coefficient (cm ⁇ 1 )” in Tables 1 and 2, respectively.
  • the absorption coefficient ⁇ was calculated as follows, assuming that the absorption at 780 nm was zero.
  • the transmission data L * , a * , and b * of the glass not irradiated with UV and the glass after DUV irradiation, and the transmittance measurement data obtained by the method described in the above ⁇ Transparency> are JIS Z8722: 2009.
  • the tristimulus values X, Y, and Z of the object color are calculated based on the above, and are calculated by converting them into the L * a * b * color system based on these numerical values.
  • the results are shown in “UV unirradiated transmission color” and “Transmission color after low-pressure mercury irradiation” in Tables 1 and 2, respectively.
  • the value of the color tone b * after DUV irradiation is preferably 2.0 or less.
  • the CS value is 650 MPa or more and the DOL value is 15 ⁇ m or more.
  • the reduction rate of DOL due to addition of TiO 2 and ZrO 2 is preferably less than 10%.
  • the DOL value (25.1 ⁇ m) of the glass in Test Example 1 was used as a reference, and the decrease rate of DOL from the reference was defined as “DOL decrease rate (%)”.
  • the DOL reduction rate is preferably less than 10%.
  • the DOL value (35.8 ⁇ m) of the glass in Test Example 25 was used as a reference, and the DOL decrease rate from the reference was defined as “DOL decrease rate (%)”.
  • the DOL reduction rate is preferably less than 10%.
  • Figure 6 is a transmittance change in the wavelength 380nm before and after irradiation with a low-pressure mercury lamp on the glass, is a graph representing every TiO 2 content in the glass by including TiO 2 0.011% or more, a low pressure mercury It is possible to satisfactorily prevent a decrease in transmittance after lamp irradiation. Further, although the value of DOL after the chemical strengthening according TiO 2 content is increased tends to be low, if the content of TiO 2 is 0.011 to 0.8%, almost the DOL when not adding equivalent It was confirmed that the value of was obtained.
  • the present invention it is possible to obtain a glass having excellent DUV resistance and solarization resistance, and excellent chemical strengthening properties with high transmission and small color change even after UV irradiation. Therefore, even if UV of each wavelength is irradiated before using the glass, highly transparent and high-strength glass can be obtained without coloration. Useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention pertains to glass that contains Fe:0.001~0.022%、 TiO:0.011~0.8% and/or ZrO:0.7~4.0%, and Al:7.5~18%, does not contain As, and has transmittance at a wavelength of 380-780 nm after being subjected to treatment by condition 1 of 80% or higher. (Condition 1) The glass is heat treated for one hour at (Tg + 40)°C, slowly cooled to room temperature at 0.5°C/min, and then irradiated for 10 minutes by a low-pressure mercury lamp having a wavelength of 254 nm and illuminance of 8 mW/cm2.

Description

DUV耐性を有するガラスDUV resistant glass
 本発明はDUV(Deep UV)耐性を有するガラスに関し、より詳細には、DUV耐性を有する化学強化特性に優れたガラスに関する。 The present invention relates to a glass having DUV (Deep UV) resistance, and more particularly to a glass having DUV resistance and excellent chemical strengthening properties.
 近年、携帯電話または携帯情報端末(PDA)等のディスプレイにおいて、高強度なガラスが求められている。そのため、化学強化処理によりガラスを高強度化することが行われている(化学強化ガラス)。従来、ディスプレイ用途のガラス板にはソーダライムガラスが広く用いられていたが、化学強化特性が不十分であり、化学強化後であっても強度が低い。そこで、化学強化特性が高く、高強度の実現が可能な化学強化用ガラスとして、アルミノシリケートガラス等が開発されている。 In recent years, high-strength glass has been demanded for displays such as mobile phones or personal digital assistants (PDAs). For this reason, the glass is strengthened by chemical strengthening treatment (chemically strengthened glass). Conventionally, soda lime glass has been widely used as a glass plate for display, but its chemical strengthening properties are insufficient, and its strength is low even after chemical strengthening. Therefore, aluminosilicate glass has been developed as a glass for chemical strengthening that has high chemical strengthening characteristics and can achieve high strength.
 化学強化ガラスは高強度であることからディスプレイ用途として有用であるが、表示画面の視認性を確保するため、高強度に加えて高透過であることが求められる。そのため、呈色の一因となる鉄の含有量を減らした高透過な化学強化ガラスが検討されている。 Chemically tempered glass is useful for display applications because of its high strength, but it is required to be highly transmissive in addition to high strength in order to ensure the visibility of the display screen. Therefore, a highly permeable chemically strengthened glass in which the iron content that contributes to coloration is reduced has been studied.
 ガラスの透過率を下げる要因のひとつとして、紫外線等の影響により遷移金属イオンや希土類イオンなど多価カチオンの価数状態が変わってガラスの色が変化する、いわゆるソラリゼーションが知られている。
 特許文献1では、ガラスの耐ソラリゼーション性を高めるために、TiOを含む有色ガラスが開示されている。
As one of the factors that lower the transmittance of glass, so-called solarization is known in which the valence state of a polyvalent cation such as a transition metal ion or rare earth ion changes due to the influence of ultraviolet rays or the like, and the color of the glass changes.
In Patent Document 1, in order to increase the resistance to solarization of the glass, colored glass containing TiO 2 is disclosed.
国際公開第2013/021975号International Publication No. 2013/021975
 化学強化処理をした高強度のガラス(化学強化ガラス)は、ディスプレイ等に用いる際、様々な前処理がされる。そのひとつとして、低圧水銀ランプを用いたDUV(Deep UV)と呼ばれる波長領域の紫外線照射によるUVオゾン洗浄処理が挙げられ、ガラス表面の有機物の除去や表面改質を行う場合がある。 High-strength glass that has been chemically strengthened (chemically strengthened glass) is subjected to various pretreatments when used for a display or the like. One example is UV ozone cleaning treatment by ultraviolet irradiation in a wavelength region called DUV (Deep UV) using a low-pressure mercury lamp, and there are cases where organic substances on the glass surface are removed or surface modification is performed.
 DUVは、太陽光に起因するソラリゼーションにおけるUVと比べて波長が短い。
 本発明者らの検討により、該DUVの照射により、ガラスの特定の波長領域における透過率が低下することが判明した。その結果、DUVを照射すると、ガラスの透過性が損なわれ、また、透過率が低下した領域に応じてガラスの色味が悪くなる。
DUV has a shorter wavelength than UV in solarization caused by sunlight.
According to the study by the present inventors, it has been found that the transmittance in a specific wavelength region of the glass is lowered by the irradiation of the DUV. As a result, when the DUV is irradiated, the transparency of the glass is impaired, and the color of the glass deteriorates depending on the region where the transmittance is reduced.
 したがって本発明では、低圧水銀ランプ等の短波長側のUVを照射しても、透過率を下げることないガラスを提供することを目的とする。
 なお、本明細書において「DUV耐性」とは、低圧水銀ランプを用いた主波長185nmおよび254nmの短波長UV照射前後における透過率変化を対象としている。また、「耐ソラリゼーション性」とは、高圧水銀ランプを用いた主波長365nmのUV照射前後における透過率変化を対象としている。また、短波長側のUV及び長波長側のUVを総称して単に「UV」と称することがある。
Accordingly, an object of the present invention is to provide a glass that does not lower the transmittance even when irradiated with UV on the short wavelength side such as a low-pressure mercury lamp.
In the present specification, “DUV resistance” refers to a change in transmittance before and after irradiation with a short wavelength UV of 185 nm and 254 nm using a low-pressure mercury lamp. “Solarization resistance” is intended for the transmittance change before and after UV irradiation with a main wavelength of 365 nm using a high-pressure mercury lamp. Further, the short wavelength side UV and the long wavelength side UV may be collectively referred to simply as “UV”.
 本発明者らは、鋭意研鑽を積んだ結果、特定のガラス組成を採用することにより、短波長側のUVを照射しても、透過率を下げることなく、ガラスを得られることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that, by adopting a specific glass composition, glass can be obtained without lowering the transmittance even when UV on the short wavelength side is irradiated. The invention has been completed.
 すなわち、本発明は下記<1>~<10>に関するものである。
<1> 酸化物基準のモル百分率表示で、Fe:0.001~0.022%と、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方と、Al:7.5~18%とを含み、Asを含まず、かつ下記条件1で処理を実施した後の波長380~780nmにおける透過率が80%以上であるガラス。
(条件1) ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、波長254nmかつ照度8mW/cmの低圧水銀ランプを10分間照射する。
<2> 前記条件1で処理を実施した後の波長380~780nmにおける吸収係数αが1.35×10-2cm-1以下である前記<1>に記載のガラス。
<3> 前記条件1で処理を実施した後のL表色系の色度座標における色調bが2.0以下である前記<1>または<2>に記載のガラス。
<4> 酸化物基準のモル百分率表示で、SiOを50~80%含有し、かつLiO、NaO及びKOのいずれか一種以上を含有して、LiO、NaO及びKOの含有量の合計LiO+NaO+KOが5~25%である、前記<1>~<3>のいずれか一に記載のガラス。
<5> TiO及びFe以外の着色成分を実質的に含有しない前記<1>~<4>のいずれか一に記載のガラス。
<6> SnOを酸化物基準のモル百分率表示で0.001~1%含む前記<1>~<5>のいずれか一に記載のガラス。
<7> SiOを含有し、LiOを含有せず、NaO、KO、Al及びSiOの酸化物基準のモル百分率表示で表される含有量が[2×(NaO+KO-Al)/SiO]≦0.5の関係を満たす前記<1>~<6>のいずれか一に記載のガラス。
<8> 酸化物基準のモル百分率表示で、SiOを60~70%、Alを7.5~18%、LiO、NaO及びKOのいずれか一種以上を合計で5~25%、MgOを0~15%、CaOを0~5%、Feを0.001~0.022%、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方を含有し、その他の成分の含有量が合計で3%以下であり、LiO、NaO、KO、Al及びSiOの酸化物基準のモル百分率表示で表される含有量が[2×(LiO+NaO+KO-Al)/SiO]≦0.5の関係を満たす前記<1>~<7>のいずれか一に記載のガラス。
<9> 酸化物基準のモル百分率表示で、SiOを63~66%、Alを9~12%、NaOを14~17%、KOを0~1%、MgOを7~9%、CaOを0~1%、Feを0.001~0.022%、TiOを0.011~0.8%含有し、その他の成分の含有量が合計で3%以下である前記<1>~<7>のいずれか一に記載のガラス。
<10> 前記<1>~<9>のいずれか一に記載のガラスが化学強化された化学強化ガラス。
That is, the present invention relates to the following <1> to <10>.
<1> Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8% and ZrO 2 : 0.7 to 4.0% in terms of mole percentage based on oxide The transmittance at a wavelength of 380 to 780 nm after the treatment under the following condition 1 is 80, including at least one of the following: Al 2 O 3 : 7.5 to 18%, not including As 2 O 3 % Glass or more.
(Condition 1) The glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then irradiated with a low-pressure mercury lamp having a wavelength of 254 nm and an illuminance of 8 mW / cm 2 for 10 minutes.
<2> The glass according to <1>, wherein the absorption coefficient α at a wavelength of 380 to 780 nm after the treatment under the condition 1 is 1.35 × 10 −2 cm −1 or less.
<3> The glass according to <1> or <2>, wherein the color tone b * in the chromaticity coordinates of the L * a * b * color system after the treatment under the condition 1 is 2.0 or less.
<4> Oxide-based molar percentage display, containing 50 to 80% SiO 2 and containing at least one of Li 2 O, Na 2 O and K 2 O, Li 2 O, Na 2 The glass according to any one of <1> to <3>, wherein the total Li 2 O + Na 2 O + K 2 O content of O and K 2 O is 5 to 25%.
<5> The glass according to any one of <1> to <4>, which contains substantially no coloring component other than TiO 2 and Fe 2 O 3 .
<6> The glass according to any one of <1> to <5>, which contains SnO 2 in an amount of 0.001 to 1% in terms of a molar percentage based on an oxide.
<7> SiO 2 is contained, Li 2 O is not contained, and the content expressed in terms of mole percentage based on oxides of Na 2 O, K 2 O, Al 2 O 3 and SiO 2 is [2 × The glass according to any one of <1> to <6>, wherein a relationship of (Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] ≦ 0.5 is satisfied.
<8> Oxide-based molar percentage display, SiO 2 60 to 70%, Al 2 O 3 7.5 to 18%, Li 2 O, Na 2 O and K 2 O at least one total 5 to 25%, MgO 0 to 15%, CaO 0 to 5%, Fe 2 O 3 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0 7 to 4.0%, and the total content of other components is 3% or less, Li 2 O, Na 2 O, K 2 O, Al 2 O 3 and SiO 2 <1> to << in which the content expressed in terms of mole percentage on the basis of oxide satisfies the relationship of [2 × (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] ≦ 0.5 The glass according to any one of 7>.
<9> Oxide-based molar percentage display, SiO 2 63-66%, Al 2 O 3 9-12%, Na 2 O 14-17%, K 2 O 0-1%, MgO 7 to 9%, CaO 0 to 1%, Fe 2 O 3 0.001 to 0.022%, TiO 2 0.011 to 0.8%, and other components in total 3 % Or less of the glass according to any one of <1> to <7>.
<10> A chemically strengthened glass obtained by chemically strengthening the glass according to any one of <1> to <9>.
 本発明によれば、UV照射前の透過率が高く、短波長側のUVを照射しても透過率を下げないガラスを得ることができる。ディスプレイ用途等に用いられる化学強化ガラスとして非常に有用である。 According to the present invention, it is possible to obtain a glass having a high transmittance before UV irradiation and which does not decrease the transmittance even when UV on the short wavelength side is irradiated. It is very useful as a chemically strengthened glass used for display applications.
図1は、試験例1(比較例)のガラスに低圧水銀ランプを照射した際の透過率スペクトル変化を表すグラフである。FIG. 1 is a graph showing a change in transmittance spectrum when a glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp. 図2は、試験例1(比較例)のガラスに低圧水銀ランプを照射した際のESRスペクトル変化を表すグラフである。FIG. 2 is a graph showing the ESR spectrum change when the glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp. 図3は、試験例6(比較例)のガラスの蛍光スペクトルである。FIG. 3 is a fluorescence spectrum of the glass of Test Example 6 (Comparative Example). 図4は、試験例1(比較例)のガラスに低圧水銀ランプを照射した前後の透過率スペクトルである。FIG. 4 is a transmittance spectrum before and after the glass of Test Example 1 (Comparative Example) is irradiated with a low-pressure mercury lamp. 図5は、試験例5(実施例)のガラスに低圧水銀ランプを照射した前後の透過率スペクトルである。FIG. 5 is a transmittance spectrum before and after the glass of Test Example 5 (Example) was irradiated with a low-pressure mercury lamp. 図6は、ガラスに低圧水銀ランプを照射した前後の波長380nmにおける透過率変化を、ガラス中のTiO含有量ごとに表すグラフである。FIG. 6 is a graph showing the change in transmittance at a wavelength of 380 nm before and after the glass is irradiated with a low-pressure mercury lamp for each TiO 2 content in the glass. 図7は、ガラス中のTiO含有量と化学強化処理後のDOLとの関係を表すグラフである。FIG. 7 is a graph showing the relationship between the TiO 2 content in the glass and the DOL after the chemical strengthening treatment.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本明細書において単に「%」と記載した場合には「モル%」を意味し、「~」とはその下限の値以上、その上限の値以下であることを意味する。 Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. In this specification, when “%” is simply described, it means “mol%”, and “˜” means that it is not less than the lower limit value and not more than the upper limit value.
<ガラス>
 本発明に係るガラスは、酸化物基準のモル百分率表示で、Fe:0.001~0.022%と、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方と、Al:7.5~18%とを含み、Asを含まず、かつ下記条件1で処理を実施した後の波長380~780nmにおける透過率が80%以上であることを特徴とする。すなわちDUV耐性が優れている。
(条件1) ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、波長254nmかつ照度8mW/cmの低圧水銀ランプを10分間照射する。
 なお、ガラスの組成は蛍光X線法で測定することができ、より正確には湿式分析法により測定できる。ガラス組成については後述する。
<Glass>
The glass according to the present invention is expressed in terms of mole percentage based on oxide, Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0.7 to At least one of 4.0% and Al 2 O 3 : 7.5 to 18%, no As 2 O 3 , and a wavelength of 380 to 780 nm after performing the treatment under the following condition 1 The transmittance is 80% or more. That is, the DUV resistance is excellent.
(Condition 1) The glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then irradiated with a low-pressure mercury lamp having a wavelength of 254 nm and an illuminance of 8 mW / cm 2 for 10 minutes.
The glass composition can be measured by the fluorescent X-ray method, and more precisely by the wet analysis method. The glass composition will be described later.
(DUV耐性)
 本明細書においてDUV耐性とは、波長100~280nmのUV(DUV)を照射した場合、すなわち主波長185nmおよび254nmの低圧水銀ランプや主波長172nmのXeガスエキシマランプ、主波長193nmのArFエキシマランプ、主波長248nmのKrFエキシマランプ等を照射した場合に、380~780nmの波長における透過率の低下が抑制されることを意味する。
 この短波長側のUV照射は、基板のUV洗浄処理や表面改質、UV殺菌処理等に一般的に用いられるものである。
(DUV resistance)
In this specification, the DUV resistance means that UV (DUV) with a wavelength of 100 to 280 nm is irradiated, that is, a low-pressure mercury lamp with main wavelengths of 185 nm and 254 nm, an Xe gas excimer lamp with a main wavelength of 172 nm, and an ArF excimer lamp with a main wavelength of 193 nm. This means that when a KrF excimer lamp having a main wavelength of 248 nm is irradiated, a decrease in transmittance at a wavelength of 380 to 780 nm is suppressed.
This UV irradiation on the short wavelength side is generally used for UV cleaning treatment, surface modification, UV sterilization treatment and the like of the substrate.
 前記DUV照射は、光が照射されるガラスの面上において、254nmの波長での照度が0.1~1000mW/cmで、1~20000秒の照射時間の範囲内で実施される。処理コストを下げる側面からは、1~100mW/cmで、1200秒以下の照射時間で実施することが好ましい。露光量としては、10~10000mJ/cmの条件で実施することが好ましく、50~5000mJ/cmの条件がより好ましい。
 なお、本発明においては、ガラスのDUV耐性をより正確に評価するために、下記条件1で処理を実施した後の物性(透過率、吸収係数、DUVおよびUV誘起吸収等)を評価することが好ましい。
(条件1) ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、波長254nmかつ照度8mW/cmの低圧水銀ランプを10分間照射する。
 なお、本明細書における照度とは、ランプ直下での照度ではなく、ガラス面直上での照度を意味する。
The DUV irradiation is performed within a range of irradiation time of 1 to 20000 seconds with an illuminance at a wavelength of 254 nm of 0.1 to 1000 mW / cm 2 on the surface of the glass irradiated with light. From the aspect of reducing the processing cost, it is preferable that the irradiation time is 1 to 100 mW / cm 2 and the irradiation time is 1200 seconds or less. The exposure preferably be carried out at the 10 ~ 10000mJ / cm 2 condition, more preferably of 50 ~ 5000mJ / cm 2 conditions.
In the present invention, in order to more accurately evaluate the DUV resistance of glass, physical properties (transmittance, absorption coefficient, DUV and UV-induced absorption, etc.) after the treatment under the following condition 1 can be evaluated. preferable.
(Condition 1) The glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then irradiated with a low-pressure mercury lamp having a wavelength of 254 nm and an illuminance of 8 mW / cm 2 for 10 minutes.
In addition, the illumination intensity in this specification means the illumination intensity right above a glass surface instead of the illumination intensity right under a lamp.
 上記条件1における熱処理を行うことにより、ガラスに対するそれまでのDUV照射の効果がキャンセルされ、透過率や色が元のガラスの状態(初期状態)に戻る。そのため、該熱処理を行った後に、短波長側のUVを上記条件1により照射することで、ガラスのDUV照射後の物性をバラつきなく評価することができる。 By performing the heat treatment under the above condition 1, the effect of the previous DUV irradiation on the glass is canceled, and the transmittance and color return to the original glass state (initial state). Therefore, the physical properties of the glass after DUV irradiation can be evaluated without variation by irradiating the short wavelength side UV under the above condition 1 after the heat treatment.
 なお、本明細書におけるDUV耐性は、主波長193nmのArFエキシマレーザ、主波長248nmのKrFエキシマレーザ等、光パワー密度の高い光源を照射したときの透過率低下の抑制は含まない。 Note that the DUV resistance in this specification does not include suppression of a decrease in transmittance when a light source having a high optical power density, such as an ArF excimer laser having a main wavelength of 193 nm or a KrF excimer laser having a main wavelength of 248 nm, is used.
 本発明に係るガラスでは、DUV耐性として、短波長側のUV照射前の380~780nmの波長領域における透過率をT0とし、照射後の380~780nmの波長領域における透過率をT1としたときの、以下の式で表される各波長におけるDUV誘起吸収Δαが0.095以下であることが好ましく、0.085以下であることがより好ましい。
        Δα=-ln(T1/T0)
In the glass according to the present invention, as DUV resistance, the transmittance in the wavelength region of 380 to 780 nm before UV irradiation on the short wavelength side is T0, and the transmittance in the wavelength region of 380 to 780 nm after irradiation is T1. The DUV-induced absorption Δα at each wavelength represented by the following formula is preferably 0.095 or less, and more preferably 0.085 or less.
Δα = -ln (T1 / T0)
(耐ソラリゼーション性)
 耐ソラリゼーション性とは、波長315~400nmのUVを照射した場合、すなわち主波長365nmの高圧水銀ランプや太陽光を照射した場合に、380~780nmの波長における透過率の低下が抑制されることを意味する。
 この長波長側のUV照射は、ラミネーション等、UV硬化樹脂による基板との貼合等に一般的に用いられるものである。
(Solarization resistance)
The resistance to solarization means that a decrease in transmittance at a wavelength of 380 to 780 nm is suppressed when irradiated with UV light having a wavelength of 315 to 400 nm, that is, when irradiated with a high-pressure mercury lamp having a main wavelength of 365 nm or sunlight. means.
This UV irradiation on the long wavelength side is generally used for lamination and the like with a substrate using a UV curable resin.
 前記長波長側のUV照射は、光が照射されるガラスの面上において、波長365nmでの照度が0.1~1000mW/cmで、1~20000秒の照射時間の範囲内で実施される。処理コストを下げる側面からは、1~100mW/cmで、1200秒以下の照射時間で実施することが好ましい。露光量としては、10~10000mJ/cmの条件で実施することが好ましい。 The UV irradiation on the long wavelength side is carried out within a range of irradiation time of 1 to 20000 seconds with an illuminance at a wavelength of 365 nm of 0.1 to 1000 mW / cm 2 on the surface of the glass irradiated with light. . From the aspect of reducing the processing cost, it is preferable that the irradiation time is 1 to 100 mW / cm 2 and the irradiation time is 1200 seconds or less. The exposure amount is preferably 10 to 10,000 mJ / cm 2 .
 本発明に係るガラスでは、耐ソラリゼーション性として、長波長側のUV照射前の380~780nmの波長領域における透過率をT0’とし、照射後の380~780nmの波長領域における透過率をT1’としたときの、以下の式で表される各波長におけるUV誘起吸収Δα’が0.095以下であることが好ましく、0.085以下であることがより好ましい。
        Δα’=-ln(T1’/T0’)
In the glass according to the present invention, as solarization resistance, the transmittance in the wavelength region of 380 to 780 nm before UV irradiation on the long wavelength side is T0 ′, and the transmittance in the wavelength region of 380 to 780 nm after irradiation is T1 ′. The UV-induced absorption Δα ′ at each wavelength represented by the following formula is preferably 0.095 or less, and more preferably 0.085 or less.
Δα ′ = − ln (T1 ′ / T0 ′)
(透過性)
 本発明に係るガラスは、1mmの厚さのガラスにUVを照射する前の波長380~780nmにおける透過率が90%以上であり、好ましくは90.5%以上、より好ましくは91%以上、さらに好ましくは91.5%以上である。また、1mmの厚さのガラスに短波長側のUV及び/又は長波長側のUVを照射した後の波長380~780nmにおける透過率が80%以上であり、好ましくは81%以上、より好ましくは82%以上、さらに好ましくは83%以上、最も好ましくは84%以上である。
 ただし、UVの照射条件やガラスの組成、厚み、製法等によってUV照射後の透過率の変化度合いが異なる。
 本発明に係るガラスは、1mmの厚さのガラスにUVを照射する前後において、透過率が1%未満となる波長が280nm以下であることが好ましい。波長280nmを超えると、波長380~780nmにおいて十分な透過率が得られず、また、黄色に着色する等、ガラスの透過色の色味が悪くなるおそれがある。
(Transparency)
The glass according to the present invention has a transmittance of 90% or more at a wavelength of 380 to 780 nm before irradiating UV to a glass having a thickness of 1 mm, preferably 90.5% or more, more preferably 91% or more, Preferably it is 91.5% or more. Further, the transmittance at a wavelength of 380 to 780 nm after irradiating a glass having a thickness of 1 mm with short wavelength side UV and / or long wavelength side UV is 80% or more, preferably 81% or more, more preferably 82% or more, more preferably 83% or more, and most preferably 84% or more.
However, the degree of change in transmittance after UV irradiation varies depending on UV irradiation conditions, glass composition, thickness, manufacturing method, and the like.
In the glass according to the present invention, the wavelength at which the transmittance is less than 1% is preferably 280 nm or less before and after irradiating the glass having a thickness of 1 mm with UV. If the wavelength exceeds 280 nm, sufficient transmittance cannot be obtained at wavelengths of 380 to 780 nm, and the color of the transmitted color of the glass may be deteriorated, such as coloring yellow.
(吸収係数)
 本発明に係るガラスは、UVを照射する前の波長380~780nmにおける吸収係数αが2.35×10-3cm-1以下であり、好ましくは1.80×10-3cm-1以下、より好ましくは1.25×10-3cm-1以下、さらに好ましくは7.00×10-4cm-1以下である。また、短波長側のUVを照射した後の波長380~780nmにおける吸収係数αが1.35×10-2cm-1以下が好ましく、より好ましくは1.25×10-2cm-1以下、さらに好ましくは1.12×10-2cm-1以下、よりさらに好ましくは1.00×10-2cm-1以下、最も好ましくは8.82×10-3cm-1以下である。
(Absorption coefficient)
The glass according to the present invention has an absorption coefficient α of 2.35 × 10 −3 cm −1 or less, preferably 1.80 × 10 −3 cm −1 or less, at a wavelength of 380 to 780 nm before UV irradiation. More preferably, it is 1.25 × 10 −3 cm −1 or less, and further preferably 7.00 × 10 −4 cm −1 or less. Further, the absorption coefficient α at a wavelength of 380 to 780 nm after irradiation with UV on the short wavelength side is preferably 1.35 × 10 −2 cm −1 or less, more preferably 1.25 × 10 −2 cm −1 or less, More preferably, it is 1.12 × 10 −2 cm −1 or less, even more preferably 1.00 × 10 −2 cm −1 or less, and most preferably 8.82 × 10 −3 cm −1 or less.
 なお、ガラスの吸収係数αは、波長780nmにおける吸収をゼロとみなし、以下の式に従い求めることができる。ここで波長780nmにおける吸収をゼロとみなして基準にするのは、ガラスの反射の影響を差し引くためである。
   α=2.303×log(T780/Ti)/d
   Ti:測定波長の透過率(%)
   T780:波長780nmにおける透過率(%)
   d:ガラスの厚み(cm)
The absorption coefficient α of the glass can be obtained according to the following formula, assuming that the absorption at a wavelength of 780 nm is zero. Here, the reason why the absorption at a wavelength of 780 nm is regarded as zero and used as a reference is to subtract the influence of the reflection of the glass.
α = 2.303 × log (T 780 / Ti) / d
Ti: Transmittance of measurement wavelength (%)
T780 : Transmittance (%) at a wavelength of 780 nm
d: Glass thickness (cm)
(透過色)
 短波長側のUVを照射した前後のガラスのL表色系の透過色は、透過率の測定データからJIS Z8722:2009に基づき物体の三刺激値X、Y、Zを計算し、下記の式によってL表色系(D65光源、2度視野)に換算することで求めることができる。
  L=116×(Y/Yn)1/3-16
  a=500×[(X/Xn)1/3-(Y/Yn)1/3
  b=200×[(Y/Yn)1/3-(Z/Zn)1/3
 ただしXn=95.02、Yn=100、Zn=108.82
(Transparent color)
The L * a * b * color system transmission color of the glass before and after being irradiated with UV on the short wavelength side is calculated from the tristimulus values X, Y, Z of the object based on JIS Z8722: 2009 from the transmittance measurement data. Then, it can be obtained by converting to the L * a * b * color system (D65 light source, 2-degree visual field) by the following formula.
L * = 116 × (Y / Yn) 1/3 −16
a * = 500 × [(X / Xn) 1 /3-(Y / Yn) 1/3 ]
b * = 200 × [(Y / Yn) 1 /3-(Z / Zn) 1/3 ]
However, Xn = 95.02, Yn = 100, Zn = 108.82
 短波長側のUVを照射した後の色度座標における色調bが2.0以下であることが好ましく、1.8以下がより好ましく、1.6以下がさらに好ましく、1.0以下が特に好ましい。 The color tone b * in the chromaticity coordinates after irradiation with UV on the short wavelength side is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.6 or less, and particularly preferably 1.0 or less. preferable.
(色度変化)
 色度変化とは、短波長側あるいは長波長側のUVを照射する前後でのガラスの色度の差(変化)のことをいい、下記式で求められるΔEで評価することができる。該色度変化(ΔEの値)が大きいとガラスの色味が悪いことを意味するので、色度変化は小さいことが好ましい。
 具体的には、短波長側のUVを照射する前後でのガラスの色度の差(色度変化)ΔEが2以下であることが好ましく、1.8以下であることがより好ましく、1.7以下であることがさらに好ましく、1.5以下であることが最も好ましい。
(Chromaticity change)
The chromaticity change means a difference (change) in chromaticity of the glass before and after irradiating UV on the short wavelength side or long wavelength side, and can be evaluated by ΔE obtained by the following formula. If the change in chromaticity (value of ΔE) is large, it means that the color of the glass is poor. Therefore, it is preferable that the change in chromaticity is small.
Specifically, the chromaticity difference (chromaticity change) ΔE between before and after irradiation with UV on the short wavelength side is preferably 2 or less, more preferably 1.8 or less, and 1. 7 or less is more preferable, and 1.5 or less is most preferable.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式中、L 、a 、b とは、UV照射前のガラスのL表色系の色度座標におけるそれぞれの色調の値であり、L、a、bとは、UV照射後のガラスのL表色系の色度座標におけるそれぞれの色調の値である。
 また、各色調の値は透過率の測定データからJIS Z8722:2009に基づき物体の三刺激値X、Y、Zを計算し、それらの値から先述した式により換算することができる。
In the above formula, L 0 * , a 0 * , b 0 * are the values of the respective color tones in the chromaticity coordinates of the L * a * b * color system of the glass before UV irradiation, and L * , a * And b * are the values of the respective color tones in the chromaticity coordinates of the L * a * b * color system of the glass after UV irradiation.
Further, the values of each color tone can be converted from the measured data of transmittance based on JIS Z8722: 2009 based on the tristimulus values X, Y, and Z of the object, and converted from these values by the above-described formula.
(ガラス組成)
 本発明に係るガラスは、酸化物基準のモル百分率表示で、Fe:0.001~0.022%と、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方を含有する。
(Glass composition)
The glass according to the present invention is expressed in terms of mole percentage based on oxide, Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0.7 to It contains at least one of 4.0%.
 Feを含むことによりDUV耐性が高くなる一方で、ガラスの色味が悪くなる。本発明では、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方を含むことにより、Feの含有量が0.001~0.022%と少ない場合でも、高いDUV耐性を維持したまま、色度変化を小さくすることができる。
 またTiOとFeは着色成分になり得る成分であるものの、含有量を上記範囲とすることにより着色を殆ど無視することができ、高透過なガラスを得ることができる。
By containing Fe 2 O 3 , the DUV resistance is increased, but the color of the glass is deteriorated. In the present invention, the content of Fe 2 O 3 is 0.001 to 0 by including at least one of TiO 2 : 0.011 to 0.8% and ZrO 2 : 0.7 to 4.0%. Even when the content is as low as 0.022%, the change in chromaticity can be reduced while maintaining high DUV resistance.
Also although TiO 2 and Fe 2 O 3 is a component which can be a coloring component, it is possible to content can be almost neglected coloring in the above range to obtain a high transmittance glass.
 TiOはより優れたDUV耐性が得られることから0.015%以上がより好ましく、0.02%以上がさらに好ましく、0.03%以上が特に好ましく、0.05%以上が最も好ましい。一方、より色度変化を小さくでき、かつ化学強化特性を低下させない点から0.7%以下がより好ましく、0.6%以下がさらに好ましく、0.5%以下が特に好ましく、0.4%以下が最も好ましい。 TiO 2 is more preferably 0.015% or more, more preferably 0.02% or more, particularly preferably 0.03% or more, and most preferably 0.05% or more, because more excellent DUV resistance can be obtained. On the other hand, 0.7% or less is more preferable, 0.6% or less is more preferable, 0.5% or less is particularly preferable, and 0.4% is more preferable in that the change in chromaticity can be further reduced and the chemical strengthening characteristics are not deteriorated. The following are most preferred.
 ZrOは優れたDUV耐性を与えると同時に、化学的耐久性を向上させ、化学強化時の表面圧縮応力値(CS;Compressive Stress)を増大させるとともに、化学強化後のビッカース硬度を向上させる成分である。TiOを添加しない場合には、ZrOの含有量は0.7%以上が好ましく、0.9%以上がより好ましく、1.2%以上がさらに好ましく、1.5%以上が最も好ましい。一方、ガラスの製造時の失透を抑止し、化学強化時の圧縮応力層深さ(DOL;Depth of Layer)低下を防止する観点から、添加量は4.0%以下が好ましく、3.5%以下がより好ましく、3%以下がさらに好ましく、2.5%以下が最も好ましい。 ZrO 2 is a component that gives excellent DUV resistance, at the same time, improves chemical durability, increases the surface compressive stress (CS) during chemical strengthening, and improves Vickers hardness after chemical strengthening. is there. When TiO 2 is not added, the content of ZrO 2 is preferably 0.7% or more, more preferably 0.9% or more, further preferably 1.2% or more, and most preferably 1.5% or more. On the other hand, the amount added is preferably 4.0% or less from the viewpoint of suppressing devitrification during the production of glass and preventing a reduction in the depth of compression stress layer (DOL; Depth of Layer) during chemical strengthening. % Or less is more preferable, 3% or less is more preferable, and 2.5% or less is most preferable.
 TiOとZrOはいずれもDUV耐性を向上させる成分であるが、ZrOに比べてTiOの方がDUV耐性向上の効果が大きい。本発明に係るガラスはTiOのみ、又は、TiOとZrOを共に含有することがより好ましい。 TiO 2 and ZrO 2 are both components that improve DUV resistance, but TiO 2 has a greater effect of improving DUV resistance than ZrO 2 . More preferably, the glass according to the present invention contains only TiO 2 or both TiO 2 and ZrO 2 .
 Feは0.001%以上とすることが好ましい。0.001%未満では、十分なDUV耐性が得られないおそれがある。また、ガラスを製造する際に、Fe以外の成分についてFeの不純物量が極めて少ない原料を使用しなければならず、製造コストが増加するおそれがある。Feは0.0015%以上がより好ましく、0.002%以上がさらに好ましく、0.0025%以上が特に好ましい。また色度変化を少なくできる点から0.022%以下が好ましく、0.015%以下がより好ましく、0.008%以下がさらに好ましく、0.005%以下が特に好ましい。 Fe 2 O 3 is preferably 0.001% or more. If it is less than 0.001%, sufficient DUV resistance may not be obtained. Further, in manufacturing the glass, the amount of impurities of Fe 2 O 3 components other than Fe 2 O 3 is not necessary to use very little material, there is a possibility that the manufacturing cost is increased. Fe 2 O 3 is more preferably 0.0015% or more, further preferably 0.002% or more, and particularly preferably 0.0025% or more. Moreover, from the point which can reduce a chromaticity change, 0.022% or less is preferable, 0.015% or less is more preferable, 0.008% or less is further more preferable, 0.005% or less is especially preferable.
 Fe、TiOを上記範囲にすることにより、DUV耐性と耐ソラリゼーション性に優れ、色度変化の少ない高透過なガラスとすることができる。 By setting Fe 2 O 3 and TiO 2 in the above ranges, a highly transparent glass having excellent DUV resistance and resistance to solarization and little change in chromaticity can be obtained.
 なおDUV耐性に関しては、TiOおよび/またはZrOと共に、または、TiOおよび/またはZrOに代えて、SnO、MoO、Ta、Nbを用いることも可能である。
 SnO、MoO、Ta、Nbを用いる際には、耐ソラリゼーション性や透過性等の他の特性と両立するために、別途最適な条件を設定する必要がある。SnO、MoO、Ta及びNbの合計量が酸化物基準のモル%表示で0.001~1%であることが好ましく、0.01~0.5%であることがより好ましい。
Regarding DUV resistance, SnO 2 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5 can be used together with TiO 2 and / or ZrO 2 or in place of TiO 2 and / or ZrO 2. .
When using SnO 2 , MoO 3 , Ta 2 O 5 , and Nb 2 O 5 , it is necessary to set optimum conditions separately in order to achieve compatibility with other characteristics such as solarization resistance and permeability. The total amount of SnO 2 , MoO 3 , Ta 2 O 5 and Nb 2 O 5 is preferably 0.001 to 1%, and 0.01 to 0.5% in terms of mol% based on oxide. Is more preferable.
 これらの成分はいずれも波長220nm(5.6eV)における吸収係数が1cm-1以上である。すなわち、短波長側のUVを照射した際、これら成分が波長220nm(5.6eV)付近のエネルギーを吸収して、ガラス構造自体による吸収を抑制することから、透過率低下の原因となるガラス構造欠陥の生成を抑制し、DUV耐性が向上するものと考えられる。 All of these components have an absorption coefficient of 1 cm −1 or more at a wavelength of 220 nm (5.6 eV). That is, when irradiated with UV on the short wavelength side, these components absorb energy in the vicinity of a wavelength of 220 nm (5.6 eV) and suppress absorption by the glass structure itself, so that a glass structure that causes a decrease in transmittance. It is considered that the generation of defects is suppressed and the DUV resistance is improved.
 DUV照射による透過率低下の詳細について、以下のことが考えられる。
 図1は、TiOを含まないガラスを板厚0.3mmに研磨した後、低圧水銀ランプ(DUV)を照射していった際の透過スペクトルの変化を示す。DUV照射時間の増加とともに、波長220nm付近の透過率が向上していき、その一方で波長400~500nm付近の透過率が低下していくことがわかる。
 図2は、図1で評価したガラスと同一のガラスについて、電子スピン共鳴(ESR)を評価したものである。低圧水銀ランプの照射時間の増加とともに増加するピークは、ガラスの構造欠陥の一種であるNBOHC(Non Bridging Oxygen Hole Center)と推定される。図2の照射時間に対するピーク強度の増加の割合と、図1の照射時間に対する透過率低下の割合はほぼ1:1に対応していることから、可視域での透過率低下の原因はNBOHCであると考えられる。
The following can be considered about the details of the transmittance reduction by DUV irradiation.
FIG. 1 shows a change in transmission spectrum when a glass containing no TiO 2 is polished to a plate thickness of 0.3 mm and then irradiated with a low-pressure mercury lamp (DUV). It can be seen that as the DUV irradiation time increases, the transmittance near the wavelength of 220 nm improves, while the transmittance near the wavelength of 400 to 500 nm decreases.
FIG. 2 shows evaluation of electron spin resonance (ESR) for the same glass as that evaluated in FIG. A peak that increases with an increase in the irradiation time of the low-pressure mercury lamp is presumed to be NBOHC (Non Bridging Oxygen Hole Center), which is a kind of glass structural defect. The ratio of the increase in peak intensity with respect to the irradiation time in FIG. 2 and the ratio of the decrease in transmittance with respect to the irradiation time in FIG. 1 correspond to about 1: 1. Therefore, the cause of the decrease in the transmittance in the visible region is NBOHC. It is believed that there is.
 図3は、TiOを1モル%含有する本発明のガラスを220nmの波長で励起したときの蛍光スペクトル、および470nmの発光波長でモニターしたときの励起スペクトルである。ガラス中にTi4+イオンの形で存在するTiOが220nmの波長に相当するエネルギーをガラス構造の代わりに吸収し、発光(輻射遷移)および熱失活(無輻射遷移)によって吸収したエネルギーを消費するため、NBOHCの生成を抑制していると考えられる。なお、図3からわかるように、TiOを含有する本発明のガラスは365nm付近の波長では励起されず、吸収をもたないと考えられるため、高圧水銀ランプや太陽光に対する耐ソラリゼーション性も高くなると予測される。 FIG. 3 shows a fluorescence spectrum when the glass of the present invention containing 1 mol% of TiO 2 is excited at a wavelength of 220 nm and an excitation spectrum when monitored at an emission wavelength of 470 nm. TiO 2 present in the form of Ti 4+ ions in the glass absorbs energy corresponding to the wavelength of 220 nm instead of the glass structure, and consumes energy absorbed by light emission (radiation transition) and thermal deactivation (non-radiation transition). Therefore, it is considered that the generation of NBOHC is suppressed. As can be seen from FIG. 3, since the glass of the present invention containing TiO 2 is not excited at a wavelength around 365 nm and does not have absorption, it has high solarization resistance against high pressure mercury lamps and sunlight. Expected to be.
 本発明に係るガラスは、Alを7.5~18%含有する。本発明に係るガラスは、たとえばアルミノシリケートガラスである。アルカリを含有するアルミノシリケートガラスは、化学強化用ガラスとして好適である。本発明に係るガラスは、化学強化ガラスとすることが好ましい。 The glass according to the present invention contains 7.5 to 18% of Al 2 O 3 . The glass according to the present invention is, for example, an aluminosilicate glass. An aluminosilicate glass containing an alkali is suitable as a glass for chemical strengthening. The glass according to the present invention is preferably a chemically strengthened glass.
 Alは化学強化におけるイオン交換性能を向上させる作用があり、特に表面圧縮応力値(CS;Compressive Stress)を向上する作用が大きい。ガラスの耐候性を向上する成分としても知られている。 Al 2 O 3 has an effect of improving ion exchange performance in chemical strengthening, and in particular, has a large effect of improving a surface compressive stress (CS). It is also known as a component that improves the weather resistance of glass.
 Al含有量は7.5%以上とし、8%以上が好ましく、8.5%以上がより好ましく、9%以上がさらに好ましく、9.5%以上が最も好ましい。一方、上限は18%以下とし、17.5%以下が好ましく、16%以下がより好ましく、14%以下がさらに好ましく、12%以下が最も好ましい。
 Alの含有量が7.5%以上であると、イオン交換によって所望のCS値が得られ、耐候性が向上し、また、フロート法において、錫溶融バスに接している面(ボトム面)からの錫の侵入を抑制し化学強化時にガラスを反り難くする効果、水分量変化に対する安定性の効果、脱アルカリ促進効果が得られる。一方、Alの含有量が18%以下であると、ガラスの粘性が高い場合でも失透温度が大きくは上昇しないため、フロート設備での溶解、成形の点で優位であり、また、耐酸性の低下を防止することができる。
The Al 2 O 3 content is 7.5% or more, preferably 8% or more, more preferably 8.5% or more, further preferably 9% or more, and most preferably 9.5% or more. On the other hand, the upper limit is 18% or less, preferably 17.5% or less, more preferably 16% or less, further preferably 14% or less, and most preferably 12% or less.
When the content of Al 2 O 3 is 7.5% or more, a desired CS value is obtained by ion exchange, the weather resistance is improved, and the surface in contact with the tin fusion bath (bottom) in the float process The effect of suppressing the intrusion of tin from the surface) and making the glass difficult to warp during chemical strengthening, the effect of stability against changes in moisture content, and the effect of promoting alkali removal are obtained. On the other hand, when the content of Al 2 O 3 is 18% or less, since the devitrification temperature does not increase greatly even when the viscosity of the glass is high, it is advantageous in terms of melting and forming in a float facility, A decrease in acid resistance can be prevented.
 SiOは、ガラス微細構造の中で網目構造を形成する成分として知られており、ガラスを構成する主要成分である。また、ガラス表面に傷(圧痕)がついたときのクラックの発生を低減させ、あるいは化学強化後に圧痕をつけたときの破壊率を小さくする成分である。SiOの含有量は、50%以上が好ましく、より好ましくは55%以上、さらに好ましくは60%以上、最も好ましくは63%以上である。また、上限は80%以下が好ましく、より好ましくは75%以下、さらに好ましくは73%以下、特に好ましくは70%以下、最も好ましくは66%以下である。
 SiOの含有量が50%以上であるとガラスとしての安定性や耐候性の点で優位である。また、網目構造を形成することにより熱膨張の増大を抑制できる。一方、SiOの含有量が80%以下であると、溶解性および成形性の点で優位である。
SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass. Further, it is a component that reduces the occurrence of cracks when scratches (indentations) are made on the glass surface, or reduces the fracture rate when indentations are made after chemical strengthening. The content of SiO 2 is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and most preferably 63% or more. Further, the upper limit is preferably 80% or less, more preferably 75% or less, further preferably 73% or less, particularly preferably 70% or less, and most preferably 66% or less.
When the content of SiO 2 is 50% or more, it is advantageous in terms of stability and weather resistance as glass. Moreover, an increase in thermal expansion can be suppressed by forming a network structure. On the other hand, when the content of SiO 2 is 80% or less, it is advantageous in terms of solubility and moldability.
 Bは、ガラス原料の溶融を促進し、ガラスの脆性や耐候性を向上させる成分である。
 Bを含有させる場合はその含有量が1%以上であることで、化学強化後に傷(圧痕)をつけた時の破壊率を小さくすることができる、または高温での溶融性が向上する。Bの含有量は、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が生じないために15%以下であることが好ましく、10%以下がより好ましく、7.5%以下が特に好ましい。脈理の生成等を抑制してガラスの均質性をより高めたい場合には1%以下が好ましい。
B 2 O 3 is a component that promotes melting of the glass raw material and improves the brittleness and weather resistance of the glass.
When B 2 O 3 is contained, the content is 1% or more, so that the fracture rate when scratches (indentations) are made after chemical strengthening can be reduced, or the meltability at high temperature is improved. To do. The content of B 2 O 3 is preferably 15% or less, more preferably 10% or less, and more preferably 7.5%, in order not to cause inconvenience such as generation of striae due to volatilization and furnace wall erosion. % Or less is particularly preferable. In the case where it is desired to further increase the homogeneity of the glass by suppressing the formation of striae or the like, 1% or less is preferable.
 Pは、イオン交換性能を阻害することなく耐損傷性を向上させる成分である。Pを含有させる場合はその含有量が2.5%以上であることによって、クラック伸展開始荷重(CIL)が高いガラスを得ることができる。また、Pの含有量を10%以下とすることにより、耐酸性に優れたガラスを得ることができる。ガラスの化学的耐久性をより高めたい場合には1%以下が好ましく、含有しないことがより好ましい。 P 2 O 5 is a component that improves damage resistance without hindering ion exchange performance. In the case where P 2 O 5 is contained, a glass having a high crack extension starting load (CIL) can be obtained when the content is 2.5% or more. Further, the content of P 2 O 5 by 10% or less, it is possible to obtain an excellent glass in acid resistance. When it is desired to further increase the chemical durability of the glass, it is preferably 1% or less, and more preferably not contained.
 LiO、NaO、KOはいずれもガラスの溶融性、成形性を向上させる成分であり、いずれか一種以上を含有することが好ましい。LiO、NaO、KOの含有量の合計LiO+NaO+KOは5%以上が好ましく、8%以上がより好ましく、12%以上がさらに好ましい。また、ガラスの化学的耐久性を高くするために、LiO+NaO+KOは25%以下が好ましく、22%以下がより好ましく、18%以下がさらに好ましく、15%以下が特に好ましい。 Li 2 O, Na 2 O, and K 2 O are all components that improve the meltability and moldability of the glass, and preferably contain at least one of them. The total Li 2 O + Na 2 O + K 2 O content of Li 2 O, Na 2 O, and K 2 O is preferably 5% or more, more preferably 8% or more, and even more preferably 12% or more. In order to increase the chemical durability of the glass, Li 2 O + Na 2 O + K 2 O is preferably 25% or less, more preferably 22% or less, still more preferably 18% or less, and particularly preferably 15% or less.
 NaOはイオン交換により表面圧縮応力層を形成させる必須成分であり、DOLを深くする作用がある。また、ガラスの溶解温度と失透温度を下げ、ガラスの溶解性、成形性を向上させる成分である。NaOは非架橋酸素を生み出す成分であり、ガラス中の水分量が変動したときの化学強化特性の変動が少なくなる。
 NaOの含有量は、8%以上が好ましく、より好ましくは10%以上、さらに好ましくは11%以上、特に好ましくは12%以上、最も好ましくは14%以上である。また上限は22%以下が好ましく、より好ましくは19%以下、さらに好ましくは17%以下、最も好ましくは15%以下である。
 NaOの含有量が8%以上であると、イオン交換により所望の表面圧縮応力層を形成することができ、水分量変化に対する変動も抑えられる。一方、NaOの含有量が22%以下であると、圧痕からのクラック生成を回避でき、十分な耐候性が得られ、フロート法による成形時にボトム面からの錫の侵入量も抑制でき、化学強化処理後にガラスを反り難くすることができる。
Na 2 O is an essential component for forming a surface compressive stress layer by ion exchange, and has the effect of deepening the DOL. Moreover, it is a component which lowers | hangs the melting temperature and devitrification temperature of glass, and improves the meltability and moldability of glass. Na 2 O is a component that generates non-crosslinked oxygen, and the variation in chemical strengthening characteristics when the amount of moisture in the glass varies is reduced.
The Na 2 O content is preferably 8% or more, more preferably 10% or more, still more preferably 11% or more, particularly preferably 12% or more, and most preferably 14% or more. The upper limit is preferably 22% or less, more preferably 19% or less, still more preferably 17% or less, and most preferably 15% or less.
When the content of Na 2 O is 8% or more, a desired surface compressive stress layer can be formed by ion exchange, and fluctuations due to changes in moisture content can be suppressed. On the other hand, if the content of Na 2 O is 22% or less, crack generation from the indentation can be avoided, sufficient weather resistance can be obtained, and the amount of intrusion of tin from the bottom surface can be suppressed during molding by the float method, It is possible to make the glass difficult to warp after the chemical strengthening treatment.
 KOはイオン交換速度を増大しDOLを深くし、ガラスの溶解温度を下げる効果があり、非架橋酸素を増大させる成分であるため、7%以下の範囲で含有してもよい。7%以下であるとDOLが深くなりすぎず、また十分なCSが得られ、ガラスの溶解温度を下げることができる。または硝酸カリウム溶融塩中のNaNO濃度による表面圧縮応力の変化の増大を回避できる。KOを含有する場合は5%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。一方で、少量のKOは、フロート法による成形時にボトム面からの錫の侵入量を抑制する効果があるため、フロート法により成形する際には含有することが好ましい。この場合、KOの含有量は0.05%以上が好ましく、より好ましくは0.1%以上である。 K 2 O is an ingredient that increases the ion exchange rate, deepens the DOL, lowers the melting temperature of the glass, and increases non-crosslinked oxygen, so it may be contained in a range of 7% or less. If it is 7% or less, the DOL does not become too deep, sufficient CS is obtained, and the melting temperature of the glass can be lowered. Or avoid an increase in variation of surface compressive stress due NaNO 3 concentration in the potassium nitrate molten salt. When it contains K 2 O, it is preferably 5% or less, more preferably 2% or less, and particularly preferably 1% or less. On the other hand, since a small amount of K 2 O has an effect of suppressing the amount of intrusion of tin from the bottom surface at the time of molding by the float process, it is preferably contained when molding by the float process. In this case, the content of K 2 O is preferably 0.05% or more, more preferably 0.1% or more.
 LiOは歪点および低温粘性を過度に低くして応力緩和を起こりやすくし、その結果圧縮応力層の応力値が低下してしまうおそれがあるので12%以下が好ましく、10%以下がより好ましく、実質的に含有しないことが特に好ましい。 Li 2 O excessively lowers the strain point and low-temperature viscosity to facilitate stress relaxation, and as a result, the stress value of the compressive stress layer may be lowered. Therefore, it is preferably 12% or less, more preferably 10% or less. It is particularly preferable that it is not substantially contained.
 上記LiO、NaO、KOは化学強化特性を向上する観点から好ましい成分であるが、一方で、LiO、NaO、KOを構成する非架橋酸素(Non-Bridging Oxygen;NBO)によりDUV耐性が低くなる。DUV耐性の観点からは非架橋酸素が少ないほど好ましく、[2×(LiO+NaO+KO-Al)/SiO]で表されるLiO、NaO、KO、Al及びSiOの含有量の関係が0.5以下となることが好ましく、0.4以下がより好ましく、0.35以下がさらに好ましく、0.3以下が特に好ましい。また、化学強化特性の点から下限は0.02以上が好ましく、0.05以上がより好ましく、0.08以上がさらに好ましく、0.1以上が特に好ましい。 The Li 2 O, Na 2 O, K 2 O but is a preferred ingredient in view of improving the chemical strengthening properties, while, Li 2 O, non-bridging oxygen constituting the Na 2 O, K 2 O ( Non- Bridging Oxygen (NBO) reduces DUV resistance. From the viewpoint of DUV resistance, less non-crosslinked oxygen is preferable, and Li 2 O, Na 2 O, K 2 O represented by [2 × (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] is preferable. , Al 2 O 3 and SiO 2 content are preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.35 or less, and particularly preferably 0.3 or less. Moreover, 0.02 or more is preferable from the point of a chemical strengthening characteristic, 0.05 or more is more preferable, 0.08 or more is further more preferable, 0.1 or more is especially preferable.
 LiOを含有しない場合には、DUV耐性の観点からは、[2×(NaO+KO-Al)/SiO]が0.5以下となることが好ましく、0.4以下がより好ましく、0.35以下がさらに好ましく、0.3以下が特に好ましい。また、化学強化特性の点から下限は0.02以上が好ましく、0.05以上がより好ましく、0.08以上がさらに好ましく、0.1以上が特に好ましい。 When Li 2 O is not contained, it is preferable that [2 × (Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] is 0.5 or less from the viewpoint of DUV resistance, The following is more preferable, 0.35 or less is further preferable, and 0.3 or less is particularly preferable. Moreover, 0.02 or more is preferable from the point of a chemical strengthening characteristic, 0.05 or more is more preferable, 0.08 or more is further more preferable, 0.1 or more is especially preferable.
 MgOは、ガラスを安定化させ、溶解性を向上させ、かつこれを添加することでアルカリ金属の含有量を低下させて熱膨張率(CTE)の上昇を抑制することのできる成分である。MgOの含有量は、1%以上が好ましく、より好ましくは2%以上である。また上限は15%以下が好ましく、より好ましくは12%以下である。MgOの含有量が1%以上であると、CTEの上昇抑制効果を発揮する。一方、MgOの含有量が15%以下であると、失透の起こりにくさが維持され、もしくは十分なイオン交換速度が得られる。 MgO is a component that can stabilize the glass, improve the solubility, and reduce the alkali metal content by adding this to suppress an increase in the coefficient of thermal expansion (CTE). The content of MgO is preferably 1% or more, more preferably 2% or more. Further, the upper limit is preferably 15% or less, more preferably 12% or less. When the content of MgO is 1% or more, the CTE increase suppression effect is exhibited. On the other hand, when the content of MgO is 15% or less, the difficulty of devitrification is maintained, or a sufficient ion exchange rate is obtained.
 CaOは、ガラスを安定化させる成分であり、MgOの存在による失透を防止し、かつCTEの上昇を抑制しながら溶解性を向上する効果を有する。CaOの含有量は、0~5%が好ましく、より好ましくは0~1%である。CaOの含有量が5%以下であると、十分なイオン交換速度が得られ、所望のDOLが得られる。また、化学強化におけるイオン交換性能を特段に向上させたい場合には、CaOは1%未満であり、好ましくは0.5%以下である。 CaO is a component that stabilizes the glass, and has the effect of improving the solubility while preventing devitrification due to the presence of MgO and suppressing an increase in CTE. The CaO content is preferably 0 to 5%, more preferably 0 to 1%. When the content of CaO is 5% or less, a sufficient ion exchange rate is obtained, and a desired DOL is obtained. Moreover, when it is desired to particularly improve the ion exchange performance in chemical strengthening, CaO is less than 1%, preferably 0.5% or less.
 CaO/MgOは、化学強化におけるイオン交換性能を向上させ、ガラス板の透過率を高める観点から、0.5以下であることが好ましい。
 また、ガラスの溶融の清澄剤としてSO、塩化物、フッ化物などを適宜含有してもよい。
CaO / MgO is preferably 0.5 or less from the viewpoint of improving ion exchange performance in chemical strengthening and increasing the transmittance of the glass plate.
Further, SO 3 as a refining agent for molten glass, chloride, fluoride or the like may also contain appropriate.
 SrOは必要に応じて含有してもよいが、MgO、CaOに比べてイオン交換速度を低下させる効果が大きいので、SrOは実質的に含有しないこととするか、含有する場合であってもその含有量は3%以下であることが好ましい。なお、本明細書において実質的に含有しないとは、不純物程度の含有量であることをいい、好ましくは0.05%未満、より好ましくは、0.01%未満である。 SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, SrO is not substantially contained or even if contained. The content is preferably 3% or less. In the present specification, “substantially not containing” means that the content is of the order of impurities, preferably less than 0.05%, more preferably less than 0.01%.
 BaOはアルカリ土類金属酸化物の中でイオン交換速度を低下させる効果が最も大きいので、BaOは実質的に含有しないこととするか、含有する場合であってもその含有量は3%以下であることが好ましい。 BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides. Therefore, BaO is not substantially contained or even if contained, its content is 3% or less. Preferably there is.
 SrOまたはBaOを含有する場合それらの含有量の合計は1%以下であることが好ましく、より好ましくは0.3%未満である。 When SrO or BaO is contained, the total content thereof is preferably 1% or less, more preferably less than 0.3%.
 CaO、SrO、BaOのいずれか1以上を含有する場合それら3成分の含有量の合計は3%未満であることが好ましい。当該合計が3%未満であることによって、イオン交換速度の低下を回避できる。典型的には1%以下である。 When one or more of CaO, SrO, and BaO are contained, the total content of these three components is preferably less than 3%. When the total is less than 3%, a decrease in ion exchange rate can be avoided. Typically 1% or less.
 SnOはDUV耐性をより優れたものとする成分である。SnOの含有量は0.001%以上が好ましく、0.005%以上がより好ましく、0.01%以上がさらに好ましく、0.02%以上が特に好ましい。一方でSnOは耐ソラリゼーション性を低下させることから、1%以下が好ましく、0.7%以下がより好ましく、0.5%以下がさらに好ましく、0.3%以下が特に好ましい。 SnO 2 is a component that makes DUV resistance better. The content of SnO 2 is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.01% or more, and particularly preferably 0.02% or more. On the other hand, SnO 2 reduces the solarization resistance, so 1% or less is preferable, 0.7% or less is more preferable, 0.5% or less is more preferable, and 0.3% or less is particularly preferable.
 CeOはDUV耐性をより優れたものとする成分であるが、一方で耐ソラリゼーション性を大きく低下させる。CeOは0.1%未満が好ましく、0.05%未満がより好ましく、0.01%未満がさらに好ましく、含有しないことが最も好ましい。 CeO 2 is a component that makes DUV resistance more excellent, but greatly reduces the resistance to solarization. CeO 2 is preferably less than 0.1%, more preferably less than 0.05%, further preferably less than 0.01%, and most preferably not contained.
 AsはDUV耐性をより優れたものとし、ガラスバッチの清澄を促進する成分であるが、環境負荷が高い。そのためAsは実質的に含有しないことが最も好ましい。 As 2 O 3 is a component that makes DUV resistance more excellent and promotes clarification of the glass batch, but has a high environmental load. Therefore, it is most preferable that As 2 O 3 is not substantially contained.
 本発明に係るガラスは無色ガラスであり、ディスプレイ用途等に用いることが好ましい。無色ガラスとは、UV照射前の波長380~780nmにおける透過率が90%以上であるガラスを言う。該透過率は90.5%以上がより好ましい。
 ディスプレイ用ガラス板として用いる場合、透過率を低くすることからTiO及びFe以外の着色成分は実質的に含有しないことが好ましい。
The glass according to the present invention is a colorless glass and is preferably used for display applications and the like. The colorless glass refers to a glass having a transmittance of 90% or more at a wavelength of 380 to 780 nm before UV irradiation. The transmittance is more preferably 90.5% or more.
When used as a glass plate for display, it is preferable that substantially no coloring components other than TiO 2 and Fe 2 O 3 are contained because the transmittance is lowered.
 着色成分としては、CoO、CuO、V、Cr、Pr11、CeO、Bi、Eu、MnO、Er、NiO、Nd、WO、RbO及びAgOからなる群より選ばれる少なくとも1種が挙げられる。 As the coloring component, CoO, CuO, V 2 O 5, Cr 2 O 3, Pr 6 O 11, CeO 2, Bi 2 O 3, Eu 2 O 3, MnO, Er 2 O 3, NiO, Nd 2 O 3 And at least one selected from the group consisting of WO 3 , Rb 2 O and Ag 2 O.
 その他に含んでいてもよい成分としては、SO、ZnO、CsO、FrO、SeO、等が挙げられる。
 これらは合計で0~3%含むことができる。
Other components that may be included include SO 3 , ZnO 2 , Cs 2 O, Fr 2 O, SeO 2 , and the like.
These can be contained in a total of 0 to 3%.
 本発明に係るアルミノシリケートガラスは、酸化物基準のモル百分率表示で、SiOを50~80%含有し、かつLiO、NaO及びKOのいずれか一種以上を含有して、LiO、NaO及びKOの含有量の合計LiO+NaO+KOが5~25%であることが好ましい。 The aluminosilicate glass according to the present invention contains 50 to 80% of SiO 2 in terms of oxide-based mole percentage, and contains one or more of Li 2 O, Na 2 O and K 2 O. The total Li 2 O + Na 2 O + K 2 O content of Li 2 O, Na 2 O and K 2 O is preferably 5 to 25%.
 本発明に係るアルミノシリケートガラスは、酸化物基準のモル百分率表示で、SiOを60~70%、Alを7.5~18%、LiO、NaO及びKOのいずれか一種以上を合計で5~25%、MgOを0~15%、CaOを0~5%、Feを0.001~0.022%及びTiOを0.011~0.8%、またはZrOを0.7~4%含有し、その他の成分の含有量が合計で3%以下であることが好ましい。そしてLiO、NaO、KO、Al及びSiOの酸化物基準のモル百分率表示で表される含有量が[2×(LiO+NaO+KO-Al)/SiO]≦0.5の関係を満たすことが好ましい。 The aluminosilicate glass according to the present invention is expressed in terms of mole percentage based on oxides, and SiO 2 is 60 to 70%, Al 2 O 3 is 7.5 to 18%, Li 2 O, Na 2 O, and K 2 O. Any one or more total 5 to 25%, MgO 0 to 15%, CaO 0 to 5%, Fe 2 O 3 0.001 to 0.022% and TiO 2 0.011 to 0.8 %, Or 0.7 to 4% of ZrO 2, and the total content of other components is preferably 3% or less. The content expressed in terms of mole percentages based on oxides of Li 2 O, Na 2 O, K 2 O, Al 2 O 3 and SiO 2 is [2 × (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] ≦ 0.5 is preferably satisfied.
 本発明に係るアルミノシリケートガラスは、酸化物基準のモル百分率表示で、SiOを63~66%、Alを9~12%、NaOを14~17%、KOを0~1%、MgOを7~9%、CaOを0~1%、Feを0.001~0.022%、TiOを0.011~0.8%含有し、その他の成分の含有量が合計で3%以下であることが好ましい。 The aluminosilicate glass according to the present invention is expressed in terms of mole percentages based on oxides, with SiO 2 63-66%, Al 2 O 3 9-12%, Na 2 O 14-17%, K 2 O 0 Contains 1 to 1%, MgO 7 to 9%, CaO 0 to 1%, Fe 2 O 3 0.001 to 0.022%, TiO 2 0.011 to 0.8%. The total content is preferably 3% or less.
 高いDUV耐性を得るためには、Tiはガラス中でTi4+イオンの状態で存在することが好ましく、Ti3+イオンの状態で存在することは好ましくない。Ti3+イオンは可視域に吸収を持つため、ガラスが着色するおそれがある。 In order to obtain high DUV resistance, Ti is preferably present in the state of Ti 4+ ions in the glass, and is preferably not present in the state of Ti 3+ ions. Since Ti 3+ ions have absorption in the visible range, the glass may be colored.
 ガラスのレドックス比を0.550未満とすることで、ガラス中のTi4+イオンの割合を高めることができる。レドックス比は0.500以下が好ましく、0.450以下がより好ましい。なお、レドックス比とは、ガラス中に含まれる鉄Feの全量に対する2価の鉄Fe2+の割合をいい、ガラス中のFe2+量をビピリジル吸光光度法により定量し、全Fe量をICP発光分光分析法で定量して求めることができる。また、レドックス比は、ガラスの分光スペクトルからガラス中に含まれる2価の鉄Fe2+と3価の鉄Fe3+の割合を求めて、計算することもできる。 By setting the redox ratio of the glass to less than 0.550, the ratio of Ti 4+ ions in the glass can be increased. The redox ratio is preferably 0.500 or less, and more preferably 0.450 or less. It is to be noted that the redox ratio, refers to the percentage of divalent iron Fe 2+ to the total amount of iron Fe contained in the glass, the amount of Fe 2+ in the glass was quantified by bipyridyl absorptiometry, ICP emission spectrometry total Fe content It can be determined quantitatively by an analytical method. The redox ratio can also be calculated by obtaining the ratio of divalent iron Fe 2+ and trivalent iron Fe 3+ contained in the glass from the spectrum of the glass.
 ガラスの光学的塩基度を0.50以上とすることで、ガラス中のTi4+イオンの割合を高めることができる。光学的塩基度は0.52以上が好ましく、0.54以上がより好ましい。光学的塩基度Λは次のとおり定義される。 By setting the optical basicity of the glass to 0.50 or more, the ratio of Ti 4+ ions in the glass can be increased. The optical basicity is preferably 0.52 or more, and more preferably 0.54 or more. The optical basicity Λ is defined as follows.
 酸化物を成分とするモル%表示で表わされたガラス組成について、第i成分の酸化物をCiモル%含有する場合、光学的塩基度Λは以下の式で表される。
 Λ=1-Σ[zi・ri(γi-1)/2γi]
 式中、Σは添字iについて合計することを示す。また、各符号の意味は以下のとおりである。
 γi=1.36(xi-0.26)、
 zi:第i成分の酸化物中の陽イオンの価数、
 ri:前記「酸化物を成分とするモル%表示で表わされたガラス組成」中の全酸素数に対する、第i成分の酸化物中の陽イオン数の比率、
 xi:第i成分の酸化物中で酸素と結合している原子のポーリングの電気陰性度。
When the glass composition represented by mol% containing an oxide as a component contains Ci mol% of the oxide of the i-th component, the optical basicity Λ is expressed by the following equation.
Λ = 1−Σ [zi · ri (γi−1) / 2γi]
In the formula, Σ indicates summing up for the subscript i. The meaning of each code is as follows.
γi = 1.36 (xi−0.26),
zi: the valence of the cation in the oxide of the i-th component,
ri: ratio of the number of cations in the oxide of the i-th component to the total number of oxygen in the “glass composition represented by mol% notation containing oxide”,
xi: Pauling electronegativity of atoms bonded to oxygen in the i-th component oxide.
 光学的塩基度Λは、DuffyらがJ.Am.Chem.Soc.,93(1971)6448においてガラスの塩基度の指標として提案したものであり、測定または複雑な解析や計算を行うことなく、ガラス組成から簡単な計算によって得られるものである。 Optical basicity Λ is calculated by Duffy et al. Am. Chem. Soc. , 93 (1971) 6448, which is proposed as an index of basicity of glass, and can be obtained by simple calculation from the glass composition without performing measurement or complicated analysis or calculation.
 本発明に係るガラスはガラス板とすることが好ましく、その際のガラス板の厚さ(板厚)は全体で0.1~2mmであればよく、0.2~1mmが剛性と軽量性の両立の点から好ましく、0.3~0.8mmが特に好ましい。 The glass according to the present invention is preferably a glass plate, and the thickness (plate thickness) of the glass plate at that time may be 0.1 to 2 mm as a whole, and 0.2 to 1 mm is rigid and lightweight. From the viewpoint of compatibility, 0.3 to 0.8 mm is particularly preferable.
 本発明に係るガラスのガラス転移温度(Tg)は、例えば550℃以上であり、570℃以上であることが好ましく、580℃以上であることがより好ましく、580~700℃であることがさらに好ましい。Tgが550℃以上であることにより、化学強化処理時の応力緩和の抑制、熱反りの抑制等の点で有利となる。
 Tgの調整は、SiO、Alの総量とアルカリ金属酸化物およびアルカリ土類酸化物の量を調整すること等により可能である。
The glass transition temperature (Tg) of the glass according to the present invention is, for example, 550 ° C. or higher, preferably 570 ° C. or higher, more preferably 580 ° C. or higher, and further preferably 580 to 700 ° C. . When Tg is 550 ° C. or higher, it is advantageous in terms of suppression of stress relaxation and thermal warpage during chemical strengthening treatment.
Tg can be adjusted by adjusting the total amount of SiO 2 and Al 2 O 3 and the amount of alkali metal oxide and alkaline earth oxide.
 本発明に係るガラスの粘度が10dPa・sとなる温度T2は、好ましくは1800℃以下、より好ましくは1750℃以下である。T2の下限は、特に限定されないが、通常は1400℃以上である。
 本発明に係るガラスの粘度が10dPa・sとなる温度T4は、1350℃以下であることが好ましい。
 本発明に係るガラスの液相温度は、ガラス成形時の失透抑制の観点からはT4より低いことが好ましく、T4より20℃以上低いことがより好ましい。
The temperature T2 at which the glass according to the present invention has a viscosity of 10 2 dPa · s is preferably 1800 ° C. or lower, more preferably 1750 ° C. or lower. Although the minimum of T2 is not specifically limited, Usually, it is 1400 degreeC or more.
The temperature T4 at which the viscosity of the glass according to the present invention is 10 4 dPa · s is preferably 1350 ° C. or lower.
The liquidus temperature of the glass according to the present invention is preferably lower than T4 and more preferably 20 ° C. lower than T4 from the viewpoint of suppressing devitrification during glass forming.
 本発明に係るガラスの熱膨張率CTEは、50~350℃の温度範囲において、例えば65×10-7~110×10-7/Kであり、好ましくは70×10-7~105×10-7/K、さらに好ましくは74×10-7~100×10-7/Kである。CTEが65×10-7/K以上であることにより、金属や他の物質との熱膨張マッチングの点で有利となる。またCTEの調整は、アルカリ金属酸化物およびアルカリ土類酸化物の量を調整すること等により可能である。 The thermal expansion coefficient CTE of the glass according to the present invention is, for example, 65 × 10 −7 to 110 × 10 −7 / K, preferably 70 × 10 −7 to 105 × 10 − in the temperature range of 50 to 350 ° C. 7 / K, more preferably 74 × 10 −7 to 100 × 10 −7 / K. When the CTE is 65 × 10 −7 / K or more, it is advantageous in terms of thermal expansion matching with metals and other substances. CTE can be adjusted by adjusting the amount of alkali metal oxide and alkaline earth oxide.
 本発明に係るガラスの室温での比重は、2.35~2.6g/cmであり、好ましくは2.38~2.5g/cm、より好ましくは2.40~2.48g/cmである。 The specific gravity at room temperature of the glass according to the present invention is 2.35 to 2.6 g / cm 3 , preferably 2.38 to 2.5 g / cm 3 , more preferably 2.40 to 2.48 g / cm 3 . 3 .
 本発明に係るガラスのヤング率Eは60GPa以上であることが好ましい。60GPa未満ではガラスの耐クラック性や破壊強度が不十分となるおそれがある。より好ましくは68GPa以上である。ヤング率は、典型的には90GPa以下であり、より典型的には88GPa以下である。 The Young's modulus E of the glass according to the present invention is preferably 60 GPa or more. If it is less than 60 GPa, the crack resistance and breaking strength of the glass may be insufficient. More preferably, it is 68 GPa or more. The Young's modulus is typically 90 GPa or less, and more typically 88 GPa or less.
 本発明のガラスのポアソン比σは0.28以下であることが好ましい。0.28超ではガラスの耐クラック性が不十分となるおそれがある。より好ましくは0.25以下である。ポアッソン比は、典型的には0.15以上であり、より典型的には0.17以上である。 The Poisson's ratio σ of the glass of the present invention is preferably 0.28 or less. If it exceeds 0.28, the crack resistance of the glass may be insufficient. More preferably, it is 0.25 or less. The Poisson's ratio is typically 0.15 or more, more typically 0.17 or more.
 本発明に係るガラスの化学強化処理は、一般に用いられる方法により行うことができる。例えば、硝酸カリウムを含む溶融塩に浸漬する方法が挙げられる。 The chemical strengthening treatment of the glass according to the present invention can be performed by a generally used method. For example, the method of immersing in the molten salt containing potassium nitrate is mentioned.
 化学強化処理後のガラス(化学強化ガラス)はCSが300~1500MPaであることが好ましく、650~1300MPaがより好ましい。300MPa未満であると、ガラスの表面に傷が生じやすく、実用上十分な強度が得られないおそれがある。
 圧縮応力層深さ(DOL;Depth of Layer)は10~100μmが好ましく、15~90μmがより好ましい。10μm未満であると、ガラスの表面に傷が生じた場合に、その傷の深さがDOLを超えてガラスが破壊され易くなるおそれがある。
 CSが大きすぎたり、DOLが深くなりすぎると、ガラス中央の引張応力値(CT;Center Tension)が大きくなり過ぎ、ガラスが破壊するときに粉砕することがある。なお、CS及びDOLの値は表面応力計により測定することができる。
The glass after chemical strengthening treatment (chemically strengthened glass) preferably has a CS of 300 to 1500 MPa, more preferably 650 to 1300 MPa. If it is less than 300 MPa, scratches are likely to occur on the surface of the glass, and there is a possibility that a practically sufficient strength cannot be obtained.
The compressive stress layer depth (DOL; Depth of Layer) is preferably 10 to 100 μm, and more preferably 15 to 90 μm. If the surface is less than 10 μm, if the surface of the glass is scratched, the depth of the scratch may exceed the DOL and the glass may be easily broken.
If CS is too large or DOL is too deep, the tensile stress value (CT; Center Tension) at the center of the glass becomes too large and may be crushed when the glass breaks. The values of CS and DOL can be measured with a surface stress meter.
<ガラス板の製造方法>
 本発明におけるガラス板の製造方法は特に限定されず、溶融ガラスを板状のガラス板に成形する方法は特に限定されない。例えば、種々の原料を適量調合し、約1500~1700℃に加熱し溶融した後、脱泡、攪拌等により均質化し、周知のフロート法、ダウンドロー法(フュージョン法等)、プレス法等によって板状に、またはキャストしてブロック状に成形し、徐冷後所望のサイズに切断し、ガラス板が製造される。必要に応じて研磨加工を施すが、研磨加工に加えてまたは研磨加工に代えて、ガラス板表面をフッ素剤で処理することも可能である。
<Method for producing glass plate>
The manufacturing method of the glass plate in this invention is not specifically limited, The method of shape | molding molten glass into a plate-shaped glass plate is not specifically limited. For example, appropriate amounts of various raw materials are prepared, heated to about 1500-1700 ° C and melted, and then homogenized by defoaming, stirring, etc., and the plate is obtained by a well-known float method, downdraw method (fusion method, etc.), press method Or cast into a block shape, and after slow cooling, cut into a desired size to produce a glass plate. A polishing process is performed as necessary, but it is also possible to treat the glass plate surface with a fluorine agent in addition to or instead of the polishing process.
 本発明のガラス板は、タブレットPCまたはスマートフォン等のディスプレイの大きさや、ビルまたは住宅の窓ガラスの大きさとなる。本発明のガラスは、一般的には矩形に切断されているが、円形または多角形などの他の形状でも問題なく、孔あけ加工を施したガラスも含まれる。 The glass plate of the present invention is the size of a display such as a tablet PC or a smartphone or the size of a window glass of a building or a house. The glass of the present invention is generally cut into a rectangle, but other shapes such as a circle or a polygon may be used without any problem, and a glass subjected to drilling is also included.
 製造後のガラスが酸化物基準のモル百分率表示で、Fe:0.001~0.022%と、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方と、Al:7.5~18%とを含み、Asを含まず、かつ下記条件1で処理を実施した後の波長380~780nmにおける透過率が80%以上であるガラスとなるようにガラス原料を選択する。
(条件1) ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、波長254nmかつ照度8mW/cmの低圧水銀ランプを10分間照射する。
The glass after production is expressed in terms of mole percentage based on oxide, Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8% and ZrO 2 : 0.7 to 4. Transmittance at a wavelength of 380 to 780 nm after treatment under the following condition 1 including at least one of 0% and Al 2 O 3 : 7.5 to 18%, not including As 2 O 3 The glass raw material is selected so that the glass is 80% or more.
(Condition 1) The glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then irradiated with a low-pressure mercury lamp having a wavelength of 254 nm and an illuminance of 8 mW / cm 2 for 10 minutes.
 さらには、該ガラスを化学強化処理することが好ましい。化学強化処理の前に、用途に応じた形状加工、例えば、切断、端面加工および孔あけ加工などの機械的加工を行うことが好ましい。
 化学強化処理は例えば、製造されたガラスを所望のサイズに切断してガラス板とした後、該ガラス板を400℃程度に予熱し、溶融塩内でガラス板表面のNaと溶融塩内のKとをイオン交換することで処理することができる。
 また、特定の塩を含む溶融塩内でイオン交換した後に、酸処理およびアルカリ処理を行うことで、さらに高強度の化学強化ガラス板としてもよい。
Furthermore, it is preferable to chemically treat the glass. Prior to the chemical strengthening treatment, it is preferable to perform shape processing according to the application, for example, mechanical processing such as cutting, end surface processing and drilling processing.
For example, the chemical strengthening treatment is performed by cutting the manufactured glass to a desired size to obtain a glass plate, and then preheating the glass plate to about 400 ° C., and in the molten salt, Na on the surface of the glass plate and K in the molten salt. Can be processed by ion exchange.
Further, after ion exchange in a molten salt containing a specific salt, an acid treatment and an alkali treatment may be performed to obtain a chemically strengthened glass plate having higher strength.
 イオン交換処理を行うための溶融塩としては、例えば、硝酸カリウム、硫酸カリウムおよび塩化カリウム等のアルカリ硝酸塩、アルカリ硫酸塩およびアルカリ塩化物塩などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。また、化学強化特性を調整するために、ナトリウムを含む塩を混ぜてもよい。 Examples of the molten salt for performing the ion exchange treatment include alkali nitrates such as potassium nitrate, potassium sulfate and potassium chloride, alkali sulfates and alkali chloride salts. These molten salts may be used alone or in combination of two or more. Further, a salt containing sodium may be mixed in order to adjust the chemical strengthening characteristics.
 化学強化ガラスのCSの調整は、イオン交換に用いる溶融硝酸カリウム塩中のNa濃度、強化時間および溶融塩温度を調整することにより可能である。より高いCSを得るためには、溶融硝酸カリウム塩中のNa濃度を低減する。
 DOLの調整は、イオン交換に用いる溶融硝酸カリウム塩中のNa濃度、強化時間および溶融塩温度を調整することにより可能である。より高いDOLを得るためには、溶融塩の温度を上げる。
The CS of the chemically strengthened glass can be adjusted by adjusting the Na concentration, the strengthening time, and the molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain higher CS, the Na concentration in the molten potassium nitrate is reduced.
DOL can be adjusted by adjusting Na concentration, strengthening time and molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain a higher DOL, the temperature of the molten salt is increased.
 化学強化ガラスは、化学強化処理後に切断することが可能である。切断後に切断エッジの面取り加工を施しても良い。面取りは、機械的な研削加工でもよいし、フッ酸等の薬液で処理する方法を用いることもできる。 Chemically tempered glass can be cut after chemical tempering treatment. You may chamfer the cutting edge after cutting. The chamfering may be a mechanical grinding process or a method of treating with a chemical solution such as hydrofluoric acid.
 本発明のガラスの用途は、特段限定されない。化学強化されたガラスは高い機械的強度を有することから、落下による衝撃や、他の物質との接触が予想される箇所への使用に好適である。 The use of the glass of the present invention is not particularly limited. Since chemically strengthened glass has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected.
 具体的には、例えば、携帯電話機(スマートフォン等の多機能情報端末を含む。)、PHS、PDA、タブレット型端末、ノート型パーソナルコンピュータ、ゲーム機、携帯音楽・動画プレーヤー、電子ブック、電子端末、時計、カメラまたはGPS等のディスプレイ部分用のカバーガラス、及びこれらの機器のタッチパネル操作用モニターのカバーガラス、電子レンジ、オーブントースター等の調理器のカバーガラス、電磁調理器等のトッププレート、メーター、ゲージ等の計器類のカバーガラス並びにコピー機またはスキャナ等の読み取り部分用のガラス板等の機械または機器類の保護用途がある。 Specifically, for example, mobile phones (including multifunctional information terminals such as smartphones), PHS, PDA, tablet terminals, notebook personal computers, game machines, portable music / video players, electronic books, electronic terminals, Cover glass for display parts such as watches, cameras or GPS, and cover glass for touch panel operation monitors of these devices, cover glass for cookers such as microwave ovens and oven toasters, top plates such as electromagnetic cookers, meters, There are protection applications for machines or devices such as cover glass for instruments such as gauges and glass plates for reading parts such as copying machines or scanners.
 また、例えば、車両、船舶、航空機等の窓用ガラス、家庭用または産業用の照明機器、信号、誘導灯、電光掲示板のカバーガラス、ショーケースおよび防弾ガラス等の用途が挙げられる。太陽電池保護用のカバーガラスおよび太陽電池の発電効率を高めるための集光用のガラス材としての用途が挙げられる。 Also, for example, window glass for vehicles, ships, airplanes, etc., household or industrial lighting equipment, signals, guide lights, cover boards for electric bulletin boards, showcases, bulletproof glass, etc. can be mentioned. Examples include a cover glass for protecting a solar cell and a glass material for condensing for increasing the power generation efficiency of the solar cell.
 また、例えば、各種の鏡面用のガラス、さらには、HDD等の情報記憶媒体の基盤、CD、DVD、ブルーレイディスク等の情報記録媒体の基板としての用途がある。 Also, for example, there are various glass for mirror surfaces, and further, as a substrate for information storage media such as HDDs, and as a substrate for information recording media such as CDs, DVDs, and Blu-ray discs.
 また、例えば、水槽、皿やコップ等の食器、びん又はまな板等の各種の調理器具、食器棚、冷蔵庫の棚板及び壁、屋根または仕切り等の建材としての用途が挙げられる。 In addition, for example, it can be used as a building material such as an aquarium, dishes such as dishes and cups, various cooking utensils such as bottles or chopping boards, cupboards, shelf boards and walls of refrigerators, roofs or partitions.
 これらの用途に加え、化学強化処理を終えて製造される化学強化ガラスは、液晶、プラズマ、有機EL等の各種画像表示装置に組み込まれるディスプレイ用ガラス材として最適である。 In addition to these uses, chemically strengthened glass produced after the chemical strengthening treatment is optimal as a glass material for display incorporated in various image display devices such as liquid crystal, plasma, and organic EL.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
<ガラス板(ガラス母組成A)の製造;試験例1~14、16、20~24>
 試験例2~5、9、14、16、20~24は実施例、試験例1、6~8、10~13、15は比較例である。
 酸化物基準のモル比表示で、表1または表2に記載した組成となるように、一般に使用されているガラス原料および試薬を適宜選択し、ガラスとして400gとなるように秤量した。
 秤量した原料を混合し、白金製るつぼに入れ、1650℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した。
 得られたガラスを型材に流し込み、710℃の温度で1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。次いで、ガラスブロックを切断、研磨し、両面を鏡面加工することにより、板厚1mmのガラス板を得た。なお、ガラス板の板厚はデジタルマイクロメーターによって測定した。
 得られた試験例1のガラス板について、JIS R 1618:2002にもとづき、熱膨張率(CTE)およびガラス転移温度(Tg)の測定を熱膨張計(ブルカー・エイエックス社製、TD5000SA)を用いて5℃/分の昇温速度で測定したところ、Tgは662℃、50~350℃の平均熱膨張率は80×10-7/Kであった。また、得られたガラス板の比重をアルキメデス法で測定したところ、2.44g/cmであった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
<Production of Glass Plate (Glass Mother Composition A); Test Examples 1 to 14, 16, 20 to 24>
Test Examples 2-5, 9, 14, 16, 20-24 are Examples, and Test Examples 1, 6-8, 10-13, 15 are Comparative Examples.
Generally used glass raw materials and reagents were appropriately selected so that the composition described in Table 1 or Table 2 was obtained in terms of oxide-based molar ratio, and weighed to 400 g as glass.
The weighed raw materials were mixed, put into a platinum crucible, put into a 1650 ° C. resistance heating electric furnace, melted for 3 hours, defoamed and homogenized.
The obtained glass was poured into a mold material and held at a temperature of 710 ° C. for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block. Next, the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm. The plate thickness of the glass plate was measured with a digital micrometer.
About the obtained glass plate of Test Example 1, a coefficient of thermal expansion (CTE) and a glass transition temperature (Tg) were measured based on JIS R 1618: 2002 using a thermal dilatometer (manufactured by Bruker Ax, TD5000SA). As a result, the Tg was 662 ° C. and the average coefficient of thermal expansion at 50 to 350 ° C. was 80 × 10 −7 / K. Moreover, it was 2.44 g / cm < 3 > when the specific gravity of the obtained glass plate was measured by the Archimedes method.
<ガラス板(ガラス母組成B)の製造;試験例15(比較例)>
 酸化物基準のモル比表示で、表1に記載した組成となるように、一般に使用されているガラス原料および試薬を、ガラスとして400gとなるように秤量した。
 秤量した原料を混合し、白金製るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した。
 得られたガラスを型材に流し込み、600℃の温度で1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。次いで、ガラスブロックを切断、研磨し、両面を鏡面加工することにより、板厚1mmのガラス板を得た。なお、ガラス板の板厚はデジタルマイクロメーターによって測定した。
 得られたガラス板について、試験例1と同様に測定したところ、Tgは511℃、50~350℃の平均線膨張率は88×10-7/Kであった。また、得られたガラス板の比重は、2.50g/cmであった。
<Manufacture of glass plate (glass mother composition B); Test Example 15 (Comparative Example)>
Generally used glass raw materials and reagents were weighed to 400 g as glass so that the composition described in Table 1 was obtained in terms of the molar ratio based on the oxide.
The weighed raw materials were mixed, put in a platinum crucible, put in a resistance heating electric furnace at 1600 ° C., melted for 3 hours, defoamed and homogenized.
The obtained glass was poured into a mold material and held at a temperature of 600 ° C. for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block. Next, the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm. The plate thickness of the glass plate was measured with a digital micrometer.
When the obtained glass plate was measured in the same manner as in Test Example 1, the Tg was 511 ° C., and the average linear expansion coefficient at 50 to 350 ° C. was 88 × 10 −7 / K. Moreover, the specific gravity of the obtained glass plate was 2.50 g / cm 3 .
<ガラス板(ガラス母組成C)の製造;試験例17~19(実施例)>
 酸化物基準のモル比表示で、表2に記載した組成となるように、一般に使用されているガラス原料および試薬を、ガラスとして400gとなるように秤量した。
 秤量した原料を混合し、白金製るつぼに入れ、1650℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した。
 得られたガラスを型材に流し込み、650℃の温度で1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。次いで、ガラスブロックを切断、研磨し、両面を鏡面加工することにより、板厚1mmのガラス板を得た。なお、ガラス板の板厚はデジタルマイクロメーターによって測定した。
 得られた試験例17のガラス板について、試験例1と同様に測定したところ、Tgは604℃、50~350℃の平均線膨張率は98×10-7/Kであった。また、比重は、2.48g/cmであった。 
<Production of glass plate (glass mother composition C); Test Examples 17 to 19 (Examples)>
Generally used glass raw materials and reagents were weighed to 400 g as glass so that the composition described in Table 2 was obtained in terms of oxide-based molar ratio.
The weighed raw materials were mixed, put into a platinum crucible, put into a 1650 ° C. resistance heating electric furnace, melted for 3 hours, defoamed and homogenized.
The obtained glass was poured into a mold material, held at a temperature of 650 ° C. for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain a glass block. Next, the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm. The plate thickness of the glass plate was measured with a digital micrometer.
The obtained glass plate of Test Example 17 was measured in the same manner as in Test Example 1. The Tg was 604 ° C., and the average linear expansion coefficient at 50 to 350 ° C. was 98 × 10 −7 / K. The specific gravity was 2.48 g / cm 3 .
<ガラス板(ガラス母組成D)の製造;試験例25~29>
 試験例26~29は実施例、試験例25は比較例である。
 酸化物基準のモル比表示で、表2に記載した組成となるように、一般に使用されているガラス原料および試薬を、ガラスとして1000gとなるように秤量した。
 秤量した原料を混合し、白金製るつぼに入れ、1650℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した。
 得られたガラスを型材に流し込み、680℃の温度で1時間保持した後、1.0℃/分の速度で室温まで冷却し、ガラスブロックを得た。次いで、ガラスブロックを切断、研磨し、両面を鏡面加工することにより、板厚1mmのガラス板を得た。なお、ガラス板の板厚はデジタルマイクロメーターによって測定した。
 得られた試験例25のガラス板について、試験例1と同様に測定したところ、Tgは633℃、50~350℃の平均線膨張率は91×10-7/Kであった。また、得られたガラス板の比重は、2.46g/cmであった。 
<Production of glass plate (glass mother composition D); Test Examples 25 to 29>
Test examples 26 to 29 are examples, and test example 25 is a comparative example.
Generally used glass raw materials and reagents were weighed to 1000 g as glass so that the composition described in Table 2 was obtained in terms of oxide-based molar ratio.
The weighed raw materials were mixed, put into a platinum crucible, put into a 1650 ° C. resistance heating electric furnace, melted for 3 hours, defoamed and homogenized.
The obtained glass was poured into a mold material, held at a temperature of 680 ° C. for 1 hour, and then cooled to room temperature at a rate of 1.0 ° C./min to obtain a glass block. Next, the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass plate having a thickness of 1 mm. The plate thickness of the glass plate was measured with a digital micrometer.
The obtained glass plate of Test Example 25 was measured in the same manner as in Test Example 1. As a result, Tg was 633 ° C., and the average linear expansion coefficient at 50 to 350 ° C. was 91 × 10 −7 / K. Moreover, the specific gravity of the obtained glass plate was 2.46 g / cm 3 .
<ガラス組成>
 得られたガラス板の組成は蛍光X線法により同定を行い、所望の組成となっていることを確認した。
<Glass composition>
The composition of the obtained glass plate was identified by the fluorescent X-ray method, and it confirmed that it had a desired composition.
<DUV耐性>
 DUV照射前と条件1によるDUV照射後のガラスについて、透過率を測定した。条件1によるDUV照射後の透過率測定とは、ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、ガラス板を台の上に水平に静置し、低圧水銀ランプ(セン特殊光源製PL21-200、主波長185nmおよび254nm)の光をガラス板の上方の5cm離れた位置から10分照射した後、波長380nmにおける透過率を測定した。なお、このときのガラス板の設置場所における254nmの照度は8mW/cmであった(オーク製作所製の照度計UV-M03Aおよび受光器UV-SD25-M10による測定)。透過率は日立ハイテクノロジーズ社製の分光光度計(商品名U-4100)により測定した。
 光照射前の波長380nmにおける透過率をT0とし、光照射後の波長380nmにおける透過率をT1としたときの、以下の式で表されるDUV誘起吸収Δαを算出した。なお、DUV照射前後ともに、波長380~780nmにおける透過率のうち、波長380nmにおける透過率が最も低い。そのため、波長380nmにおいて所望の値以上の透過率が得られていれば、波長380~780nmにおいても所望の値以上の透過率が得られていると言える。
  Δα=-ln(T1/T0)
<DUV resistance>
The transmittance of the glass before DUV irradiation and after DUV irradiation according to Condition 1 was measured. Transmittance measurement after DUV irradiation under condition 1 means that the glass is heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then the glass plate is left on the table horizontally. Then, after irradiating light from a low-pressure mercury lamp (PL 21-200 manufactured by Sen Special Light Source, main wavelengths 185 nm and 254 nm) from a position 5 cm above the glass plate for 10 minutes, the transmittance at a wavelength of 380 nm was measured. At this time, the illuminance at 254 nm at the place where the glass plate was installed was 8 mW / cm 2 (measured with an illuminance meter UV-M03A and a photoreceiver UV-SD25-M10 manufactured by Oak Manufacturing Co., Ltd.). The transmittance was measured with a spectrophotometer (trade name U-4100) manufactured by Hitachi High-Technologies Corporation.
The DUV-induced absorption Δα represented by the following formula was calculated, where T0 was the transmittance at a wavelength of 380 nm before light irradiation, and T1 was the transmittance at a wavelength of 380 nm after light irradiation. Note that the transmittance at a wavelength of 380 nm is the lowest among the transmittances at a wavelength of 380 to 780 nm both before and after the DUV irradiation. Therefore, if a transmittance of a desired value or more is obtained at a wavelength of 380 nm, it can be said that a transmittance of a desired value or more is obtained even at a wavelength of 380 to 780 nm.
Δα = -ln (T1 / T0)
 DUV耐性試験の結果を「低圧水銀照射後 誘起吸収(DUV耐性)」として表1及び表2に示す。DUV誘起吸収Δαが0.095未満であればDUV耐性に優れていると言える。 The results of the DUV resistance test are shown in Tables 1 and 2 as “induced absorption after low-pressure mercury irradiation (DUV resistance)”. If the DUV-induced absorption Δα is less than 0.095, it can be said that the DUV resistance is excellent.
<耐ソラリゼーション性>
 ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、ガラス板を台の上に水平に静置し、高圧水銀ランプ(オーク製作所製QRU-2161-J、主波長365nm)の光をガラス板の上方の15cm離れた位置から10分照射した後、波長380nmにおける透過率を測定した。透過率は日立ハイテクノロジーズ社製の分光光度計(商品名U-4100)により測定した。
 光照射前の波長380nmにおける透過率をT0’とし、光照射後の波長380nmにおける透過率をT1’としたときの、以下の式で表されるUV誘起吸収Δα’を算出した。
  Δα’=-ln(T1’/T0’)
<Solarization resistance>
The glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then the glass plate was left on the table horizontally, and a high-pressure mercury lamp (QRU-2161, manufactured by Oak Seisakusho) J, the main wavelength of 365 nm) was irradiated for 10 minutes from a position 15 cm above the glass plate, and the transmittance at a wavelength of 380 nm was measured. The transmittance was measured with a spectrophotometer (trade name U-4100) manufactured by Hitachi High-Technologies Corporation.
UV-induced absorption Δα ′ represented by the following formula was calculated, where T0 ′ is a transmittance at a wavelength of 380 nm before light irradiation, and T1 ′ is a transmittance at a wavelength of 380 nm after light irradiation.
Δα ′ = − ln (T1 ′ / T0 ′)
 耐ソラリゼーション性試験の結果を「高圧水銀照射後 誘起吸収(耐ソラリ性)」として表1及び表2に示す。UV誘起吸収Δα’が0.095未満であれば耐ソラリゼーション性に優れていると言える。 The results of the solarization resistance test are shown in Tables 1 and 2 as “induced absorption after high-pressure mercury irradiation (solarization resistance)”. If the UV-induced absorption Δα ′ is less than 0.095, it can be said that the solarization resistance is excellent.
<透過性>
 UV未照射のガラスについて、波長380~780nmにおける透過率を測定した。測定は日立ハイテクノロジーズ社製の分光光度計(商品名U-4100)を用いて行った。透過率が最も低い波長であった380nmにおける透過率測定の結果を「UV未照射 380nm透過率(%)」として表1及び表2に示す。
 また、上記<DUV耐性>または<耐ソラリゼーション性>に記載の条件で測定された波長380nmにおける透過率測定の結果をそれぞれ「低圧水銀照射後 380nm透過率(%)」または「高圧水銀照射後 380nm透過率(%)」として表1及び表2に示す。
<Transparency>
The transmittance at a wavelength of 380 to 780 nm was measured for the glass not irradiated with UV. The measurement was performed using a spectrophotometer (trade name U-4100) manufactured by Hitachi High-Technologies Corporation. Tables 1 and 2 show the results of the transmittance measurement at 380 nm, which was the wavelength with the lowest transmittance, as “UV unirradiated 380 nm transmittance (%)”.
Further, the results of transmittance measurement at a wavelength of 380 nm measured under the conditions described in the above <DUV resistance> or <Solarization resistance> are respectively “380 nm transmittance after low-pressure mercury irradiation” or “380 nm after high-pressure mercury irradiation”. Table 1 and Table 2 show the "transmittance (%)".
 UV照射前の波長380nmにおける透過率が90%以上、長波長側のUV又はDUV照射後の波長380nmにおける透過率がいずれも80%以上であれば、透過性に優れ、かつ耐ソラリゼーション性及びDUV耐性に優れていると言える。 If the transmittance at a wavelength of 380 nm before UV irradiation is 90% or more, and the transmittance at a wavelength of 380 nm after UV irradiation or DUV irradiation at a long wavelength side is 80% or more, the transmittance is excellent, and solarization resistance and DUV It can be said that it is excellent in tolerance.
 また、1mmの厚さのガラスにDUVを照射する前後において、透過率が1%未満となる波長をそれぞれ測定した。結果を表1及び表2の「UV未照射 透過率<1%波長(nm)」及び「低圧水銀照射後 透過率<1%波長(nm)」に示した。透過率が1%未満となる波長が280nm以下であれば、波長380~780nmにおいて十分な透過率が得られ、またガラスの透過色の色味も低下しないことから好ましいと言える。 Also, before and after irradiating DUV to a glass with a thickness of 1 mm, the wavelength at which the transmittance was less than 1% was measured. The results are shown in “UV unirradiated transmittance <1% wavelength (nm)” and “Transmittance after low-pressure mercury irradiation <1% wavelength (nm)” in Tables 1 and 2. If the wavelength at which the transmittance is less than 1% is 280 nm or less, it can be said that a sufficient transmittance can be obtained at a wavelength of 380 to 780 nm, and the color of the transmitted color of the glass does not deteriorate.
<吸収係数>
 上記<透過性>に記載の方法によって得られた波長380~780nmにおける透過率を元に、UV未照射のガラスと、低圧水銀ランプ照射後のガラスについて、吸収係数αを計算した。計算結果を表1及び表2の「UV未照射 380nm吸収係数(cm-1)」及び「低圧水銀照射後 380nm吸収係数(cm-1)」にそれぞれ示す。
 吸収係数αは、780nmの吸収をゼロとみなし、以下のように計算した。
   α=2.303×log(T780/Ti)/d
   Ti:測定波長の透過率(%)
   T780:波長780nmにおける透過率(%)
   d:ガラスの厚み(cm)
 UV照射前の波長380nmにおける吸収係数が2.35×10-3cm-1以下、DUV照射後の波長380nmにおける吸収係数が1.35×10-2cm-1以下であれば、DUV耐性に優れていると言える。
<Absorption coefficient>
Based on the transmittance at a wavelength of 380 to 780 nm obtained by the method described in the above <Transparency>, the absorption coefficient α was calculated for the glass not irradiated with UV and the glass after irradiation with the low-pressure mercury lamp. The calculation results are shown in “UV non-irradiated 380 nm absorption coefficient (cm −1 )” and “low-pressure mercury irradiated 380 nm absorption coefficient (cm −1 )” in Tables 1 and 2, respectively.
The absorption coefficient α was calculated as follows, assuming that the absorption at 780 nm was zero.
α = 2.303 × log (T 780 / Ti) / d
Ti: Transmittance of measurement wavelength (%)
T780 : Transmittance (%) at a wavelength of 780 nm
d: Glass thickness (cm)
If the absorption coefficient at a wavelength of 380 nm before UV irradiation is 2.35 × 10 −3 cm −1 or less and the absorption coefficient at a wavelength of 380 nm after DUV irradiation is 1.35 × 10 −2 cm −1 or less, the DUV resistance is improved. It can be said that it is excellent.
<透過色>
 UV未照射のガラスと、DUV照射後のガラスについて、透過色L、a、及びbを、上記<透過性>に記載の方法によって得られた透過率の測定データをJIS Z8722:2009に基づき物体色の三刺激値X、Y、Zを計算し、それらの数値を元にL表色系に換算することで求めた。結果を表1及び表2の「UV未照射 透過色」及び「低圧水銀照射後 透過色」にそれぞれ示す。DUV照射後の色調bの値が2.0以下であることが好ましい。
<Transparent color>
The transmission data L * , a * , and b * of the glass not irradiated with UV and the glass after DUV irradiation, and the transmittance measurement data obtained by the method described in the above <Transparency> are JIS Z8722: 2009. The tristimulus values X, Y, and Z of the object color are calculated based on the above, and are calculated by converting them into the L * a * b * color system based on these numerical values. The results are shown in “UV unirradiated transmission color” and “Transmission color after low-pressure mercury irradiation” in Tables 1 and 2, respectively. The value of the color tone b * after DUV irradiation is preferably 2.0 or less.
<色度変化>
 DUVを照射する前後でのガラスの色度の差(色度変化)ΔEを下記式により求めた。式中L 、a 、b とは、上記<透過色>で得られたUV未照射の値であり、L、a、bとは上記<透過色>で得られたDUV照射後の値を用いた。結果を表1及び表2の「低圧水銀照射後 照射前後ΔE」に示す。ΔEは2以下であることが好ましい。
<Chromaticity change>
A difference (chromaticity change) ΔE in the chromaticity of the glass before and after irradiation with DUV was determined by the following formula. In the formula, L 0 * , a 0 * , and b 0 * are values of UV non-irradiation obtained in the above <transmission color>, and L * , a * , and b * are obtained in the above <transmission color>. The obtained value after DUV irradiation was used. The results are shown in Table 1 and Table 2 “After irradiation with low-pressure mercury and before and after irradiation ΔE”. ΔE is preferably 2 or less.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
<化学強化特性>
 試験例1~7、9、10、12~15のガラス板を、濃度が100%で温度が425℃の溶融硝酸カリウム塩に4時間浸漬し、化学強化処理を行った。試験例25~29のガラス板は、濃度が100%で温度が425℃の溶融硝酸カリウム塩に6時間浸漬し、化学強化処理を行った。得られた化学強化ガラス板のCS(MPa)及びDOL(μm)の値を表面応力計(折原製作所製)により計算値として算出した。結果を表1及び表2に示す。また、試験例1~7におけるTiO含有量と化学強化処理後のDOLとの関係を図7に示す。
 化学強化特性として、CSの値が650MPa以上、かつDOLの値が15μm以上であることが好ましい。TiOおよびZrO添加によるDOLの低下率は10%未満であることが好ましい。ガラスAの試験例1~15において、試験例1におけるガラスのDOLの値(25.1μm)を基準とし、該基準からのDOLの低下率を「DOL低下率(%)」とした。DOL低下率は10%未満であることが好ましい。ガラスDの試験例25~26において、試験例25におけるガラスのDOLの値(35.8μm)を基準とし、該基準からのDOLの低下率を「DOL低下率(%)」とした。DOL低下率は10%未満であることが好ましい。
<Chemical strengthening properties>
The glass plates of Test Examples 1 to 7, 9, 10, and 12 to 15 were immersed in molten potassium nitrate salt having a concentration of 100% and a temperature of 425 ° C. for 4 hours to perform chemical strengthening treatment. The glass plates of Test Examples 25 to 29 were immersed in molten potassium nitrate having a concentration of 100% and a temperature of 425 ° C. for 6 hours to perform chemical strengthening treatment. The value of CS (MPa) and DOL (μm) of the obtained chemically strengthened glass plate was calculated as a calculated value using a surface stress meter (manufactured by Orihara Seisakusho). The results are shown in Tables 1 and 2. FIG. 7 shows the relationship between the TiO 2 content and DOL after the chemical strengthening treatment in Test Examples 1 to 7.
As chemical strengthening characteristics, it is preferable that the CS value is 650 MPa or more and the DOL value is 15 μm or more. The reduction rate of DOL due to addition of TiO 2 and ZrO 2 is preferably less than 10%. In Test Examples 1 to 15 for Glass A, the DOL value (25.1 μm) of the glass in Test Example 1 was used as a reference, and the decrease rate of DOL from the reference was defined as “DOL decrease rate (%)”. The DOL reduction rate is preferably less than 10%. In Test Examples 25 to 26 of Glass D, the DOL value (35.8 μm) of the glass in Test Example 25 was used as a reference, and the DOL decrease rate from the reference was defined as “DOL decrease rate (%)”. The DOL reduction rate is preferably less than 10%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、図4及び図5に試験例1(比較例)のガラス及び試験例5(実施例)のガラスに低圧水銀ランプを照射した前後の透過率スペクトルをそれぞれ示した。その結果、ガラス中にTiOを含まない場合には波長380~780nmの全波長域に渡って透過率が低下するのに対し、TiOを含むことにより、透過率の低下を殆ど防ぐことができ、DUV耐性に優れていることが分かる。 4 and 5 show transmittance spectra before and after the glass of Test Example 1 (Comparative Example) and the glass of Test Example 5 (Example) were irradiated with a low-pressure mercury lamp, respectively. As a result, when the glass does not contain TiO 2 , the transmittance decreases over the entire wavelength range of 380 to 780 nm, whereas the inclusion of TiO 2 almost prevents the decrease in transmittance. It can be seen that it is excellent in DUV resistance.
 図6はガラスに低圧水銀ランプを照射した前後の波長380nmにおける透過率変化を、ガラス中のTiO含有量ごとに表すグラフであるが、TiOを0.011%以上含むことにより、低圧水銀ランプ照射後の透過率低下を良好に防ぐことができる。
 さらに、TiO含有量が増えるにしたがって化学強化後のDOLの値は小さくなる傾向にあるものの、TiO含有量が0.011~0.8%であれば、未添加時のDOLとほぼ同等の値が得られることが確認された。
Figure 6 is a transmittance change in the wavelength 380nm before and after irradiation with a low-pressure mercury lamp on the glass, is a graph representing every TiO 2 content in the glass by including TiO 2 0.011% or more, a low pressure mercury It is possible to satisfactorily prevent a decrease in transmittance after lamp irradiation.
Further, although the value of DOL after the chemical strengthening according TiO 2 content is increased tends to be low, if the content of TiO 2 is 0.011 to 0.8%, almost the DOL when not adding equivalent It was confirmed that the value of was obtained.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年8月12日出願の日本特許出願(特願2015-159455)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on August 12, 2015 (Japanese Patent Application No. 2015-159455), the contents of which are incorporated herein by reference.
 本発明によれば、DUV耐性、耐ソラリゼーション性に優れ、UV照射後においても高透過かつ色味変化の小さい化学強化特性に優れたガラスを得ることができる。そのため、ガラスを使用する前に各波長のUVを照射しても、呈色することなく高透過かつ高強度のガラスが得られ、ディスプレイ用途等、高透過が求められる化学強化ガラス板として非常に有用である。 According to the present invention, it is possible to obtain a glass having excellent DUV resistance and solarization resistance, and excellent chemical strengthening properties with high transmission and small color change even after UV irradiation. Therefore, even if UV of each wavelength is irradiated before using the glass, highly transparent and high-strength glass can be obtained without coloration. Useful.

Claims (10)

  1.  酸化物基準のモル百分率表示で、Fe:0.001~0.022%と、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方と、Al:7.5~18%とを含み、Asを含まず、かつ下記条件1で処理を実施した後の波長380~780nmにおける透過率が80%以上であるガラス。
    (条件1) ガラスを(Tg+40)℃で1時間熱処理し、0.5℃/分で室温まで徐冷した後、波長254nmかつ照度8mW/cmの低圧水銀ランプを10分間照射する。
    In terms of mole percentage based on oxide, at least one of Fe 2 O 3 : 0.001 to 0.022%, TiO 2 : 0.011 to 0.8%, and ZrO 2 : 0.7 to 4.0% On the other hand, Al 2 O 3 : 7.5 to 18%, As 2 O 3 is not included, and the transmittance at a wavelength of 380 to 780 nm after performing the treatment under the following condition 1 is 80% or more. Some glass.
    (Condition 1) The glass was heat-treated at (Tg + 40) ° C. for 1 hour, slowly cooled to room temperature at 0.5 ° C./minute, and then irradiated with a low-pressure mercury lamp having a wavelength of 254 nm and an illuminance of 8 mW / cm 2 for 10 minutes.
  2.  前記条件1で処理を実施した後の波長380~780nmにおける吸収係数αが1.35×10-2cm-1以下である請求項1に記載のガラス。 The glass according to claim 1, wherein the absorption coefficient α at a wavelength of 380 to 780 nm after the treatment under the condition 1 is 1.35 × 10 −2 cm −1 or less.
  3.  前記条件1で処理を実施した後のL表色系の色度座標における色調bが2.0以下である請求項1または2に記載のガラス。 The glass according to claim 1 or 2, wherein the color tone b * in the chromaticity coordinates of the L * a * b * color system after the treatment under the condition 1 is 2.0 or less.
  4.  酸化物基準のモル百分率表示で、SiOを50~80%含有し、かつLiO、NaO及びKOのいずれか一種以上を含有して、LiO、NaO及びKOの含有量の合計LiO+NaO+KOが5~25%である、請求項1~3のいずれか一項に記載のガラス。 In terms of oxide-based molar percentage, 50 to 80% of SiO 2 is contained, and at least one of Li 2 O, Na 2 O and K 2 O is contained, and Li 2 O, Na 2 O and K 2 O total Li 2 O + Na 2 O + K 2 O content of 5-25%, the glass according to any one of claims 1 to 3.
  5.  TiO及びFe以外の着色成分を実質的に含有しない請求項1~4のいずれか一項に記載のガラス。 The glass according to any one of claims 1 to 4, which contains substantially no coloring component other than TiO 2 and Fe 2 O 3 .
  6.  SnOを酸化物基準のモル百分率表示で0.001~1%含む請求項1~5のいずれか一項に記載のガラス。 The glass according to any one of claims 1 to 5, comprising SnO 2 in an amount of 0.001 to 1% in terms of a molar percentage based on an oxide.
  7.  SiOを含有し、LiOを含有せず、NaO、KO、Al及びSiOの酸化物基準のモル百分率表示で表される含有量が[2×(NaO+KO-Al)/SiO]≦0.5の関係を満たす請求項1~6のいずれか一項に記載のガラス。 The content represented by the mole percentage display based on oxides of Na 2 O, K 2 O, Al 2 O 3 and SiO 2 containing SiO 2 and not containing Li 2 O is [2 × (Na 2 The glass according to any one of claims 1 to 6, which satisfies a relationship of O + K 2 O-Al 2 O 3 ) / SiO 2 ] ≦ 0.5.
  8.  酸化物基準のモル百分率表示で、SiOを60~70%、Alを7.5~18%、LiO、NaO及びKOのいずれか一種以上を合計で5~25%、MgOを0~15%、CaOを0~5%、Feを0.001~0.022%、TiO:0.011~0.8%及びZrO:0.7~4.0%の少なくともいずれか一方を含有し、その他の成分の含有量が合計で3%以下であり、LiO、NaO、KO、Al及びSiOの酸化物基準のモル百分率表示で表される含有量が[2×(LiO+NaO+KO-Al)/SiO]≦0.5の関係を満たす請求項1~7のいずれか一項に記載のガラス。 In terms of oxide-based molar percentage, SiO 2 is 60 to 70%, Al 2 O 3 is 7.5 to 18%, and any one or more of Li 2 O, Na 2 O, and K 2 O is a total of 5 to 25%, MgO 0 to 15%, CaO 0 to 5%, Fe 2 O 3 0.001 to 0.022%, TiO 2 : 0.011 to 0.8% and ZrO 2 : 0.7 to 4.0% of at least one of the other components, and the total content of other components is 3% or less, and Li 2 O, Na 2 O, K 2 O, Al 2 O 3 and SiO 2 oxides The content represented by the standard molar percentage display satisfies the relationship of [2 × (Li 2 O + Na 2 O + K 2 O—Al 2 O 3 ) / SiO 2 ] ≦ 0.5. Glass according to item.
  9.  酸化物基準のモル百分率表示で、SiOを63~66%、Alを9~12%、NaOを14~17%、KOを0~1%、MgOを7~9%、CaOを0~1%、Feを0.001~0.022%、TiOを0.011~0.8%含有し、その他の成分の含有量が合計で3%以下である請求項1~7のいずれか一項に記載のガラス。 Expressed in mole percentages based on oxides, SiO 2 63-66%, Al 2 O 3 9-12%, Na 2 O 14-17%, K 2 O 0-1%, MgO 7-9 %, CaO 0 to 1%, Fe 2 O 3 0.001 to 0.022%, TiO 2 0.011 to 0.8%, and the total content of other components is 3% or less. The glass according to any one of claims 1 to 7.
  10.  請求項1~9のいずれか一項に記載のガラスが化学強化された化学強化ガラス。 A chemically strengthened glass obtained by chemically strengthening the glass according to any one of claims 1 to 9.
PCT/JP2016/073320 2015-08-12 2016-08-08 Glass having duv resistance WO2017026450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-159455 2015-08-12
JP2015159455 2015-08-12

Publications (1)

Publication Number Publication Date
WO2017026450A1 true WO2017026450A1 (en) 2017-02-16

Family

ID=57984222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073320 WO2017026450A1 (en) 2015-08-12 2016-08-08 Glass having duv resistance

Country Status (2)

Country Link
TW (1) TW201711975A (en)
WO (1) WO2017026450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367614B1 (en) 2020-09-04 2022-02-28 에이지씨 가부시키가이샤 Crystallized Glass and Chemically Tempered Glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515953A (en) * 2002-02-01 2005-06-02 カール−ツァイス−シュティフトゥング Alkaline earth aluminosilicate glass and use thereof
JP2008222542A (en) * 2007-02-16 2008-09-25 Nippon Electric Glass Co Ltd Glass substrate for solar battery
JP2010184816A (en) * 2009-01-16 2010-08-26 Asahi Glass Co Ltd Window glass of solid-state image sensor package
JP2010208906A (en) * 2009-03-11 2010-09-24 Asahi Glass Co Ltd Substrate glass for optical device
JP2012180262A (en) * 2011-02-10 2012-09-20 Nippon Electric Glass Co Ltd Reinforced glass plate
WO2013021975A1 (en) * 2011-08-10 2013-02-14 旭硝子株式会社 Glass to be chemically reinforced and glass housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515953A (en) * 2002-02-01 2005-06-02 カール−ツァイス−シュティフトゥング Alkaline earth aluminosilicate glass and use thereof
JP2008222542A (en) * 2007-02-16 2008-09-25 Nippon Electric Glass Co Ltd Glass substrate for solar battery
JP2010184816A (en) * 2009-01-16 2010-08-26 Asahi Glass Co Ltd Window glass of solid-state image sensor package
JP2010208906A (en) * 2009-03-11 2010-09-24 Asahi Glass Co Ltd Substrate glass for optical device
JP2012180262A (en) * 2011-02-10 2012-09-20 Nippon Electric Glass Co Ltd Reinforced glass plate
WO2013021975A1 (en) * 2011-08-10 2013-02-14 旭硝子株式会社 Glass to be chemically reinforced and glass housing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367614B1 (en) 2020-09-04 2022-02-28 에이지씨 가부시키가이샤 Crystallized Glass and Chemically Tempered Glass
US11505491B2 (en) 2020-09-04 2022-11-22 AGC Inc. Glass ceramic and chemically strengthened glass
KR20230049055A (en) 2020-09-04 2023-04-12 에이지씨 가부시키가이샤 Glass ceramic and chemically strengthened glass

Also Published As

Publication number Publication date
TW201711975A (en) 2017-04-01

Similar Documents

Publication Publication Date Title
KR102564323B1 (en) glass for chemical strengthening
US20230234885A1 (en) Chemically strengthened glass, method for producing same, and glass for chemical strengthening
CN115385571B (en) Chemically strengthened glass and chemically strengthened glass
JP5110236B2 (en) Colored glass enclosure
JP5682609B2 (en) Glass for chemical strengthening
CN106470951B (en) Glass for chemical strengthening and chemically strengthened glass
JP5621239B2 (en) GLASS PLATE FOR DISPLAY DEVICE, PLATE GLASS FOR DISPLAY DEVICE, AND METHOD FOR PRODUCING THE SAME
KR20240023715A (en) Crystallized glass and chemically strengthened glass
WO2015147092A1 (en) Glass for chemical strengthening, chemically strengthened glass, and method for manufacturing chemically strengthened glass
JP7248020B2 (en) glass for chemical strengthening
CN110234616B (en) Chemically strengthened glass
WO2016136539A1 (en) Glass, chemically strengthened glass, and method for producing chemically strengthened glass
JPWO2014042175A1 (en) Chemically strengthened glass and chemically strengthened glass
JPWO2016159362A1 (en) Glass article
CN114466828B (en) Glass ceramics and chemically strengthened glass
WO2022049823A1 (en) Crystallized glass and chemically strengthened glass
WO2017026450A1 (en) Glass having duv resistance
WO2017209139A1 (en) Glass for chemical strengthening and chemically strengthened glass
US20180134610A1 (en) Glass for chemical strengthening and chemically strengthened glass
CN115259658B (en) Chemically strengthened glass and chemically strengthened glass
WO2023243574A1 (en) Glass for chemical strengthening, and glass
JP2024054788A (en) Glass and method for producing glass, and chemically strengthened glass and image display device including the same
JP2023092780A (en) Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
KR20190035730A (en) Glass having resistance to light-blackening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP