WO2017209139A1 - Glass for chemical strengthening and chemically strengthened glass - Google Patents

Glass for chemical strengthening and chemically strengthened glass Download PDF

Info

Publication number
WO2017209139A1
WO2017209139A1 PCT/JP2017/020135 JP2017020135W WO2017209139A1 WO 2017209139 A1 WO2017209139 A1 WO 2017209139A1 JP 2017020135 W JP2017020135 W JP 2017020135W WO 2017209139 A1 WO2017209139 A1 WO 2017209139A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
chemical strengthening
tio
chemically strengthened
Prior art date
Application number
PCT/JP2017/020135
Other languages
French (fr)
Japanese (ja)
Inventor
公章 赤塚
盛輝 大原
林 英明
円佳 小野
雄一 山本
聡 沖
直樹 菅野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780033344.4A priority Critical patent/CN109219583A/en
Publication of WO2017209139A1 publication Critical patent/WO2017209139A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a glass for chemical strengthening, and more particularly, to a glass for chemical strengthening excellent in chemical strengthening characteristics capable of further improving the surface compressive stress (CS) during chemical strengthening.
  • the present invention also relates to a chemically strengthened glass obtained by chemically strengthening the chemical strengthening glass.
  • Chemically tempered glass is useful for display applications because of its high strength, and various studies have been made. For example, there is known a glass used for chemically strengthened glass that does not easily decrease in strength even if an indentation is formed (Patent Document 1). Moreover, the chemically strengthened glass which has the characteristic that it is hard to break even if big load is applied, and also is hard to be damaged is known (patent document 2).
  • the present invention relates to the following ⁇ 1> to ⁇ 12>.
  • ⁇ 3> The glass for chemical strengthening according to ⁇ 1> or ⁇ 2>, wherein [(MgO / 2 + Na 2 O + K 2 O ⁇ 2) / (TiO 2 + ZrO 2 )] is 53 to 150.
  • ⁇ 4> The glass for chemical strengthening according to any one of ⁇ 1> to ⁇ 3>, wherein a temperature T2 at which the glass has a viscosity of 10 2 dPa ⁇ s is 1660 ° C. or lower.
  • ⁇ 5> The glass for chemical strengthening according to any one of ⁇ 1> to ⁇ 4>, wherein a temperature T4 at which the glass has a viscosity of 10 4 dPa ⁇ s is 1255 ° C. or lower.
  • ⁇ 6> The glass for chemical strengthening according to any one of ⁇ 1> to ⁇ 5>, containing ZrO 2 in a molar percentage display based on an oxide of more than 0.11% and 4.0% or less.
  • ⁇ 7> The glass for chemical strengthening according to any one of ⁇ 1> to ⁇ 6>, wherein the mirror constant is 1.96 MPa ⁇ m 1/2 or more.
  • ⁇ 8> The ratio of the internal friction value tan [delta 200 in internal friction value tan [delta 0 and 200 ° C. at 0 °C (tan ⁇ 0 / tan ⁇ 200 ) is less than 1 or 2.5 ⁇ 1> to any one of ⁇ 7>
  • ⁇ 9> Any one of ⁇ 1> to ⁇ 8>, wherein the average abundance of S atoms in a depth region from the glass surface to 3 ⁇ m as measured by secondary ion mass spectrometry is 1.0E + 19 atoms / cm 3 or less
  • ⁇ 10> A chemically strengthened glass obtained by chemically strengthening the glass for chemical strengthening according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> The chemically strengthened glass according to ⁇ 10>, wherein the surface compressive stress value (CS) is 900 MPa or more.
  • CS surface compressive stress value
  • DOL compressive stress layer depth
  • the chemically strengthened glass according to the present invention is a chemically strengthened glass having a higher CS as compared with a conventional glass when chemically strengthened under predetermined chemical strengthening conditions. Therefore, it is very useful as a chemical strengthening glass used for display applications.
  • FIG. 1 is a diagram schematically showing how cracking occurs around a fracture starting point when glass without residual stress inside is broken by uniform tensile stress.
  • FIG. 2 is a schematic diagram showing a test method for internal friction.
  • FIG. 3 is a graph showing measurement results of internal friction.
  • the glass for chemical strengthening according to the present invention (hereinafter sometimes simply referred to as “glass”) is expressed in terms of mole percentage on an oxide basis, SiO 2 : 60 to 67%, Al 2 O 3 : 9 to 13.5. %, Na 2 O: 13.5 to 18.5%, K 2 O: 0.1 to 3%, MgO: 6 to 10.5%, and TiO 2 : more than 0% and 5% or less, [ (Na 2 O + K 2 O ⁇ 5) / (Al 2 O 3 + ZrO 2 + TiO 2 ⁇ 10)] is 2.55 or less, and Al 2 O 3 / K 2 O is more than 10.
  • another aspect of the glass for chemical strengthening according to the present invention is expressed in terms of mole percentage on the basis of oxide, SiO 2 : 60 to 67%, Al 2 O 3 : 9 to 13.5%, Na 2 O: 13 0.5 to 18.5%, K 2 O: 0.1 to 3%, MgO: 6 to 10.5%, TiO 2 : 0 to 1%, and Fe 2 O 3 : 0.01 to 5% [(Na 2 O + K 2 O ⁇ 5) / (Al 2 O 3 + ZrO 2 + TiO 2 ⁇ 10)] is 2.55 or less, and Al 2 O 3 / K 2 O is more than 10. Below, each component in a glass composition is demonstrated.
  • SiO 2 is a main component constituting the glass. Further, it is a component that reduces the occurrence of cracks when scratches (indentations) are made on the glass surface, or reduces the fracture rate when indentations are made after chemical strengthening. SiO 2 is also a component that increases the acid resistance of the glass and reduces the amount of sludge during etching (hydrofluoric acid resistance).
  • the productivity such as solubility and moldability SiO 2 content is too large the viscosity becomes too high tends to be low. Therefore, the SiO 2 content is 60 to 67%, preferably 62% or more, more preferably 63% or more, and preferably 66% or less, more preferably 65% or less.
  • the Al 2 O 3 content is 9 to 13.5%, preferably 9.5% or more, more preferably 10% or more, more preferably 12% or less, and even more preferably 11.5% or less.
  • Na 2 O is an essential component for forming a surface compressive stress layer by ion exchange, and has the effect of deepening the DOL. Moreover, it is a component which lowers
  • the Na 2 O content is 13.5 to 18.5%, preferably 14.5% or more, more preferably 15% or more, more preferably 17.5% or less, and more preferably 16.5% or less. preferable.
  • K 2 O is a component that increases the ion exchange rate, deepens the DOL, lowers the melting temperature of the glass, and increases non-crosslinked oxygen. Further, it is possible to avoid an increase in variation of surface compressive stress due NaNO 3 concentration in the potassium nitrate molten salt used during the chemical strengthening treatment. Furthermore, since a small amount of K 2 O has an effect of suppressing the intrusion amount of tin from the bottom surface at the time of molding by the float process, it is preferably contained when molding by the float process. In order to achieve the above effect, the content of K 2 O in the glass of the present invention is 0.1% or more, preferably 0.3% or more, and more preferably 0.4% or more.
  • the K 2 O content is 3% or less, preferably 2% or less, more preferably 1.3% or less, still more preferably 1% or less, and even more preferably 0.95% or less.
  • MgO is a component that can stabilize the glass, improve the solubility, and reduce the alkali metal content by adding this to suppress the increase in the coefficient of thermal expansion (CTE).
  • the content of MgO in the glass of the present invention is 6% or more, preferably 7% or more, and more preferably 7.5% or more.
  • the content of MgO is 10.5% or less, preferably 9.5% or less, and more preferably 9% or less.
  • TiO 2 is a component that improves DUV resistance for preventing a decrease in transmittance in a specific wavelength region with respect to ultraviolet rays in a wavelength region called Deep UV (DUV).
  • DUV decreases when TiO 2 is too large.
  • the TiO 2 content is more than 0% and 5% or less, and when not containing other coloring components described later, 0.01% or more is preferable, 0.03% or more is more preferable, and 3% The following is preferable, 1% or less is more preferable, 0.5% or less is further preferable, 0.4% or less is further more preferable, and 0.3% or less is particularly preferable.
  • the TiO 2 content is 0 to 1%, and TiO 2 may not be contained.
  • the amount of TiO 2 added is preferably 0.002% or more, and more preferably 0.005% or more. Moreover, 0.5% or less is preferable, 0.4% or less is more preferable, and 0.3% or less is further more preferable.
  • ZrO 2 is a component that imparts excellent DUV resistance and at the same time improves chemical durability, increases CS during chemical strengthening, and improves Vickers hardness after chemical strengthening, and can be contained.
  • the glass according to the present invention does not contain Fe 2 O 3 , it preferably contains both TiO 2 and ZrO 2 , and the content in the case of containing ZrO 2 is preferably 0.1% or more, 0.11% More than 0.12% is more preferable, 0.12% or more is further preferable, and 0.13% or more is more preferable.
  • the content of ZrO 2 is preferably 4.0% or less, more preferably 3% or less, and more preferably 2% or less from the viewpoint of suppressing devitrification during the production of glass and preventing a decrease in DOL during chemical strengthening. More preferably, it is more preferably 1.5% or less, and particularly preferably 1% or less.
  • chemically tempered glass according to the present invention Na 2 O, K 2 O , the content expressed by Al 2 O 3, ZrO 2, TiO 2 based on oxides molar percentages display, [(Na 2 O + K 2 O ⁇ 5) / (Al 2 O 3 + ZrO 2 + TiO 2 ⁇ 10)] satisfies a relationship of 2.55 or less.
  • Na 2 O and K 2 O are components that can deepen DOL while reducing CS and DUV resistance.
  • the temperature T2 at which the viscosity of the glass becomes 10 2 dPa ⁇ s and the temperature T4 at which the viscosity of the glass becomes 10 4 dPa ⁇ s can be lowered, and this component contributes to good productivity.
  • Al 2 O 3, ZrO 2 , and TiO 2 are components that reduce the DOL while increasing the CS and DUV resistance. Further, Al 2 O 3 is a component to increase the temperature T2 and the temperature T4, the productivity such as solubility and moldability too is reduced.
  • the value represented by [(Na 2 O + K 2 O ⁇ 5) / (Al 2 O 3 + ZrO 2 + TiO 2 ⁇ 10)] is 2.55 or less. Yes, preferably 2.0 or less, more preferably 1.9 or less, still more preferably 1.8 or less, still more preferably 1.75 or less, and particularly preferably 1.71 or less. Moreover, 0.1 or more are preferable, 0.5 or more are more preferable, and 1.0 or more are further more preferable.
  • the content of Al 2 O 3 and K 2 O expressed in terms of mole percentages based on oxides may be expressed as Al 2 O 3.
  • / K 2 O satisfies the relationship of more than 10.
  • Al 2 O 3 / K 2 O is preferably 10.3 or more, more preferably 10.5 or more, further preferably 11.5 or more, still more preferably 12.5 or more, and particularly preferably 14.0 or more, Most preferred is 15.0 or more.
  • the content expressed in terms of mole percentages based on oxides of MgO, Na 2 O, K 2 O, ZrO 2 and TiO 2 [(MgO / 2 + Na 2 O + K 2 O ⁇ 2) / (TiO 2 It is preferable that + ZrO 2 )] satisfy the relationship of 53 to 150 because the amount of sludge during etching described later can be reduced (hydrofluoric acid resistance improved).
  • the value represented by [(MgO / 2 + Na 2 O + K 2 O ⁇ 2) / (TiO 2 + ZrO 2 )] is preferably 140 or less, more preferably 130 or less, and further 125 or less. 120 or less is more preferable.
  • 55 or more are more preferable and 60 or more are further more preferable.
  • the composition of the glass can be measured by a fluorescent X-ray method.
  • B 2 O 3 is a component that promotes melting of the glass raw material and improves the brittleness and weather resistance of the glass.
  • B 2 O 3 does not have to be contained, and when it is contained, the content is 1% or more, so that the fracture rate when Vickers indentation is made after chemical strengthening can be reduced, or at a high temperature This improves the meltability.
  • the content of B 2 O 3 is preferably 15% or less, more preferably 10% or less, and more preferably 7.5%, in order not to cause inconvenience such as generation of striae due to volatilization and furnace wall erosion. % Or less is further preferable, 5% or less is more preferable, and 3% or less is particularly preferable.
  • P 2 O 5 is a component that improves damage resistance without hindering ion exchange performance.
  • P 2 O 5 does not have to be contained, and when it is contained, its content is preferably 1% or more, more preferably 2% or more, and even more preferably 2.5% or more.
  • a glass having a high (CIL) can be obtained. Further, by making the content of P 2 O 5 preferably 10% or less, more preferably 5% or less, and still more preferably 3% or less, a glass having particularly excellent acid resistance can be obtained.
  • CaO is a component that stabilizes glass, and can be contained because it has an effect of improving the solubility while preventing devitrification due to the presence of MgO and suppressing an increase in CTE.
  • the content of CaO is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 1%.
  • the content of CaO is 5% or less, a sufficient ion exchange rate is obtained, and a desired DOL is obtained.
  • the content of CaO is more preferably less than 1%, and particularly preferably 0.5% or less.
  • CaO / MgO is preferably 0.5 or less from the viewpoint of improving ion exchange performance in chemical strengthening and increasing the transmittance of the glass plate.
  • SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, SrO is not substantially contained or even if contained.
  • the content is preferably 3% or less.
  • it does not contain substantially means that it does not contain except an unavoidable impurity, for example, Preferably it is less than 0.05%, More preferably, it is less than 0.01%.
  • BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides. Therefore, BaO is not substantially contained or even if contained, its content is 3% or less. Preferably, it is preferably 1% or less, and more preferably 0.5% or less.
  • the total content thereof is preferably 3% or less, more preferably 1% or less, still more preferably 0.5% or less, and still more preferably 0.3%. Is less than.
  • the total content of these three components is preferably 3% or less, and more preferably less than 3%.
  • the total is 3% or less, a decrease in ion exchange rate can be avoided. More preferably, it is 1% or less, More preferably, it is 0.5% or less, Most preferably, it is less than 0.3%.
  • Li 2 O is a component that excessively lowers the strain point and the low-temperature viscosity to facilitate stress relaxation, and as a result the stress value of the compressive stress layer decreases.
  • Li 2 O may be eluted in a molten salt such as KNO 3 during chemical strengthening treatment, but when the chemical strengthening treatment is performed using a molten salt containing Li, the surface compressive stress is remarkably reduced. Therefore, Li 2 O is preferably substantially free from this point of view.
  • Li 2 O is preferably 100 ppm or less in terms of oxide-based weight percentage in order to improve chemical strengthening characteristics.
  • SnO 2 is a component that makes DUV resistance better.
  • SnO 2 may not be contained, and when it is contained, its content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.01% or more, and 0.02% The above is particularly preferable.
  • SnO 2 reduces solarization resistance, so 1% or less is preferable, 0.7% or less is more preferable, 0.5% or less is more preferable, 0.3% or less is further more preferable, and 0. 1% or less is particularly preferable.
  • coloring and using glass you may add a coloring component in the range which does not inhibit achievement of a desired chemical strengthening characteristic.
  • the coloring component include Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , TiO 2 , CeO 2 , and Er 2.
  • O 3 and Nd 2 O 3 are preferable.
  • CeO 2 is also a component that makes DUV resistance more excellent, but on the other hand it greatly reduces the resistance to solarization. CeO 2 is preferably less than 0.1%, more preferably less than 0.05%, further preferably less than 0.01%, and most preferably not substantially contained.
  • Fe 2 O 3 is a component that is inevitably contained because it is widely distributed in nature. Therefore, Fe 2 O 3 is usually 0.0005% or more, and 0.001% or more is more common. However, when it is desired to increase the transmittance, it is preferably less than 0.01%, more preferably 0.007% or less, and further preferably 0.004% or less. When added as a coloring component or the like, Fe 2 O 3 is preferably 0.01% or more, and more preferably 0.05% or more. In particular, when it is desired to be colored black, Fe 2 O 3 is preferably 0.1% or more, and more preferably 0.3% or more. Fe 2 O 3 is preferably in the range of 7% or less even when it is desired to be colored black. It can suppress that a glass devitrifies by setting it as 7% or less. Preferably it is 5% or less, More preferably, it is 3% or less, More preferably, it is 1% or less.
  • Co 3 O 4 and Fe 2 O 3 When it is desired to make the glass black, it is preferable to add Co 3 O 4 and Fe 2 O 3 .
  • the Co 3 O 4 and Fe 2 O 3 molar ratio Co 3 O 4 / Fe 2 O 3 is 0.01 or more, so is easily obtained effect of fining agent preferred.
  • Co 3 O 4 / Fe 2 O 3 is more preferably 0.05 or more, and further preferably 0.08 or more. If Co 3 O 4 / Fe 2 O 3 is too large, the number of bubbles may be increased. Therefore, 0.6 or less is preferable, and 0.3 or less is more preferable.
  • the content of the coloring component is preferably in the range of 7% or less in total in terms of oxide-based mole percentage even if it is desired to be colored.
  • This content is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. In order to increase the visible light transmittance of the glass, it is preferable that these components are not substantially contained.
  • SO 3 , chloride, fluoride, etc. may be appropriately contained in the range of 0 to 1%.
  • Sb 2 O 3 content preferably 0.3% or less, more preferably 0.1% or less, and most preferably not contained.
  • As 2 O 3 is a component that makes DUV resistance more excellent and promotes clarification of the glass batch, but has a high environmental load. Therefore, it is most preferable that As 2 O 3 is not substantially contained.
  • the average abundance of S atoms in the depth region of from the surface to 3 ⁇ m is preferably 1.0E + 19atoms / cm 3 or less, 8.0E + 18atoms / cm 3 or less is more preferable. By doing so, coloring can be suppressed.
  • the amount of the component in the vicinity of the surface is determined by SIMS (secondary ion mass spectrometry), and the quantitative standard is obtained by ion-implanting a certain amount of S element into SiO 2 .
  • the average abundance of Sn atoms in the depth region from the surface to 3 ⁇ m is preferably 1.0E + 19 atoms / cm 3 or less, more preferably 9.5E + 18 atoms / cm 3 or less. Warpage can be suppressed by reducing the difference in compressive stress during strengthening.
  • the analysis in the vicinity of the surface is performed by SIMS (secondary ion mass spectrometry), and the quantitative standard is obtained by ion-implanting a certain amount of Sn element into SiO 2 .
  • Float-formed glass has a Sn contact surface and a Sn non-contact surface, so that a lot of Sn exists near the surface of the Sn contact surface.
  • Sn concentration near the surface of the Sn contact surface is high, a difference occurs in the ion exchange behavior during chemical strengthening between the Sn contact surface and the Sn non-contact surface, and warpage due to a compressive stress difference occurs.
  • FIG. 1 schematically shows how a glass having no residual stress inside, that is, a glass not subjected to chemical strengthening, breaks around a fracture starting point when it is broken by a uniform tensile stress.
  • a smooth surface called a mirror surface 2 is generated around the fracture starting point 1 indicated by a black circle.
  • a slightly rough boundary surface called a mist surface 3 is generated around the surface, and a rough surface called a hackle surface 4 is formed beyond the boundary surface.
  • A / R 1/2
  • the mirror constant A is obtained experimentally by measuring the stress ⁇ at the time of fracture and the distance R from the fracture starting point 1 to the boundary surface between the mirror surface 2 and the mist surface 3.
  • a glass having a large mirror constant A has a small number of pieces when broken.
  • the mirror constant A is a parameter relating to glass that has not been chemically strengthened, but how to break the chemically strengthened glass depends on the properties of the glass before chemical strengthening (chemical strengthening glass). Therefore, glass (chemically tempered glass) obtained by subjecting glass having a large mirror constant A before chemical strengthening to chemical strengthening treatment has a small number of fragments even when it is broken, so that the fragments are not easily scattered and safety is high.
  • the glass for chemical strengthening of the present invention has a mirror constant A of preferably 1.96 MPa ⁇ m 1/2 or more, so that the number of fragments when broken after chemical strengthening is reduced. Therefore, even if it is destroyed, the fragments are not easily scattered and safety is high.
  • Chemically strengthened glass of the present invention are preferably mirror constant A is 2.0 MPa ⁇ m 1/2 or more, more preferably 2.07 MPa ⁇ m 1/2 or more, more preferably 2.1 MPa ⁇ m 1/2 or more 2.3 MPa ⁇ m 1/2 or more is particularly preferable.
  • the mirror constant can be measured, for example, by performing glass processing, scratching, heat treatment, bending test, and fracture surface observation according to the following procedure.
  • a sample having a fictive temperature near the glass transition temperature Tg and a sample having a Tg + 60 ° C. are prepared, and a mirror constant is measured for each sample, whereby a glass mirror having an arbitrary fictive temperature is obtained.
  • a constant can be estimated.
  • Glass processing The glass is processed into a size of 40 ⁇ 6 ⁇ 3 mm, and the front and back surfaces and the end surfaces in the longitudinal direction (four surfaces in total) are mirror-polished.
  • the indentation load is, for example, 0.05 kgf, 0.1 kgf, 0.3 kgf, 0.5 kgf, 0.75 kgf, 1.0 kgf, 2.0 kgf, and 3.0 kgf.
  • Heat treatment is performed to remove the influence of distortion due to the scratch. This heat treatment is performed according to the following procedure also for adjusting the fictive temperature. Sample with fictive temperature near Tg: Hold for 1 hour at a temperature 30 ° C. higher than Tg, and gradually cool by lowering to room temperature at 1 ° C./min. Sample with a fictive temperature of Tg + 60 ° C .: Hold at a temperature 60 ° C. higher than Tg for 1 hour and rapidly cool.
  • the fracture surface is observed using a microscope (for example, KEYENCE digital microscope VHX-5000), and the distance R from the fracture starting point to the boundary surface between the mirror surface and the mist surface is measured.
  • a microscope for example, KEYENCE digital microscope VHX-5000
  • the distance R from the fracture starting point to the boundary surface between the mirror surface and the mist surface is measured.
  • the sample and the lens of the microscope are made parallel, and observation is performed at a magnification of 20 ⁇ 150 times.
  • the glass according to the present invention has an appropriate chemical ratio because the ratio of the internal friction value at 0 ° C., which is an index of relaxation caused by sodium, and the internal friction value at 200 ° C., which is an index of relaxation caused by potassium, is in an appropriate range.
  • the ratio of the internal friction value tan ⁇ 200 is less than 1 to 2.5 in the internal friction value tan [delta 0 and 200 ° C. at 0 ° C., 1.5 or 2. Less than 0 is more preferable.
  • the internal friction tan ⁇ indicates the tangent of the phase shift of the stress response when strain is applied to the specimen of the glass material that is the measurement sample.
  • the change of the internal friction tan ⁇ with respect to the temperature is, for example, dynamic viscoelasticity measurement It can be measured by a device (DMA: Dynamic Mechanical Analysis).
  • a resonance method or a forced vibration method is known.
  • the resonance method an attenuation method, a half-width method, or the like is used, and measurement can be performed with a simple mechanism, which is widely used.
  • a phase difference method is used for the forced vibration method, and a slight displacement can be detected by measuring at a frequency of approximately 10 Hz or less.
  • the change of the internal friction tan ⁇ with respect to the temperature can be carried out, for example, by setting the plate-like test body 11 on a three-point bending measurement jig provided with support members 12A and 12B and a pressing member 13.
  • the plate-like test body 11 has a length l of 60 mm, a width (perpendicular to the paper surface of FIG. 2) of 5 mm, and a plate thickness d of 0.5 mm, for example.
  • the support members 12A and 12B have a mutual distance, that is, a support interval L of 50 mm along the length direction of the test body. To place.
  • both ends of the test body 11 set on the jig are supported from the lower surface side by the support members 12A and 12B. And the center part of the upper surface of the test body 11 can be applied by the pressing member 13 in the downward direction with a static load of 1N. At this time, it is preferable that the pressing member 13 is configured to simultaneously press the central portion between the support member 12A and the support member 12B.
  • the center portion of the upper surface of the test body 11 is periodically pressed so that the amplitude is 120 ⁇ m and the frequency is 1 Hz. 13, repeatedly pressing down and releasing the pressing.
  • the test body 11 can be strained, the stress when the strain is applied can be measured, and the internal friction tan ⁇ can be calculated from the measurement result.
  • the temperature serving as an example of the standard at the time of glass melting that is, the temperature T2 at which the viscosity of the glass is 10 2 dPa ⁇ s is preferably 1660 ° C. or less, more preferably 1650 ° C. or less, and more preferably 1645 ° C. or less. Even more preferred.
  • the temperature serving as an example of the standard at the time of glass forming that is, the temperature T4 at which the viscosity of the glass becomes 10 4 dPa ⁇ s is preferably 1255 ° C. or less, more preferably 1240 ° C. or less, and more preferably 1230 ° C. or less. More preferably, 1225 degrees C or less is still more preferable.
  • the temperature T2 and the temperature T4 can be measured using a rotary viscometer.
  • the glass may be etched for the purpose of adjusting the surface characteristics of the glass, but sludge (residue) is generated when the glass is etched.
  • sludge can affect the life of the etching solution, it is preferable from the viewpoint of productivity and the like that the sludge is small when the glass is etched.
  • the analysis method of sludge is shown below.
  • Etching solution is added to a glass plate as a sample and stirred.
  • the produced sludge is filtered with a filter paper and washed with water. After drying the sludge, weigh it and calculate the sludge weight.
  • the component analysis of sludge can be performed by XRD or SEM-EDX.
  • the amount of sludge varies depending on the etching conditions.
  • a glass plate as a sample is a glass plate of 2.5 cm ⁇ 2.5 cm ⁇ 0.55 mm, and 50 mL of an etching solution containing 7% by weight of HF and 20% by weight of HCl is used.
  • the amount of sludge when etched at 25 ° C. for 3 minutes is preferably 0.66 g or less, more preferably 0.65 g or less, and even more preferably 0.64 g or less per 1 g of glass.
  • the components of the sludge although different depending on the glass composition, for example, Na 2 SiF 6, NaMgAlF 6 , Na 2 MgAlF 7, KNaSiF 6 and KMgAlF 6, and the like.
  • the DUV resistance means that UV (DUV) with a wavelength of 100 to 280 nm is irradiated, that is, a low-pressure mercury lamp with main wavelengths of 185 nm and 254 nm, an Xe gas excimer lamp with a main wavelength of 172 nm, and an ArF excimer lamp with a main wavelength of 193 nm.
  • UV (DUV) with a wavelength of 100 to 280 nm is irradiated, that is, a low-pressure mercury lamp with main wavelengths of 185 nm and 254 nm, an Xe gas excimer lamp with a main wavelength of 172 nm, and an ArF excimer lamp with a main wavelength of 193 nm.
  • the transmittance in the wavelength region of 380 to 780 nm before UV irradiation on the short wavelength side is T0
  • the transmittance in the wavelength region of 380 to 780 nm after irradiation is T1.
  • the DUV-induced absorption ⁇ at each wavelength represented by the following formula is preferably 0.095 or less, more preferably 0.085 or less, and even more preferably 0.08 or less.
  • -ln (T1 / T0)
  • the glass according to the present invention is preferably a glass plate, and the thickness (plate thickness) of the glass plate is preferably 0.1 to 2 mm, more preferably 0.1 to 1.5 mm, and more preferably 0.1 to 1.5 mm. 1 mm is more preferable, 0.1 to 0.7 mm is still more preferable, and 0.1 to 0.5 mm is particularly preferable.
  • the glass transition temperature (Tg) of the glass according to the present invention is preferably 550 ° C. or higher, more preferably 580 ° C. or higher, further preferably 600 ° C. or higher, more preferably 620 ° C. or higher, and 700 ° C. or lower. preferable.
  • Tg is 550 ° C. or higher, it is advantageous in terms of suppression of stress relaxation and thermal warpage during chemical strengthening treatment.
  • Tg can be adjusted by adjusting the total amount of SiO 2 and Al 2 O 3 and the amount of alkali metal oxide and alkaline earth oxide.
  • the average thermal expansion coefficient ⁇ of the glass according to the present invention is preferably 65 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / K, more preferably 70 ⁇ 10 ⁇ 7 / K in the temperature range of 50 to 350 ° C. Or more, more preferably 80 ⁇ 10 ⁇ 7 / K or more, still more preferably 85 ⁇ 10 ⁇ 7 / K or more, still more preferably 100 ⁇ 10 ⁇ 7 / K or less, still more preferably 97 ⁇ 10 ⁇ 7 / K. It is as follows.
  • the average coefficient of thermal expansion ⁇ is 65 ⁇ 10 ⁇ 7 / K or more, it is advantageous in terms of matching the coefficient of thermal expansion with metals and other substances.
  • the average coefficient of thermal expansion can be adjusted by adjusting the amount of alkali metal oxide and alkaline earth oxide.
  • the specific gravity at room temperature of the glass according to the present invention is preferably 2.35 to 2.6 g / cm 3 , more preferably 2.38 g / cm 3 or more, and further preferably 2.40 g / cm 3 or more. , and more preferably 2.55 g / cm 3 or less, further preferably 2.50 g / cm 3 or less.
  • the Young's modulus E of the glass according to the present invention is preferably 60 GPa or more.
  • the glass has sufficient crack resistance and breaking strength. More preferably, it is 68 GPa or more, More preferably, it is 70 GPa or more.
  • the Poisson's ratio ⁇ of the glass of the present invention is preferably 0.28 or less.
  • the crack resistance of the glass is sufficient. More preferably, it is 0.25 or less.
  • the chemically strengthened glass of the present invention is a chemically strengthened glass obtained by chemically strengthening the above-described chemically strengthened glass.
  • it is a chemically strengthened glass having the composition of the glass for chemical strengthening of the present invention as a mother composition and having a compressive stress layer on the surface.
  • the mother composition of chemically strengthened glass is the composition of the glass (chemical strengthening glass) before chemical strengthening.
  • the part (henceforth a tensile-stress part) which has the tensile stress of chemically strengthened glass is a part which is not ion-exchanged. Since the tensile stress portion of the chemically strengthened glass has the same composition as the chemically strengthened glass, the composition of the tensile stress portion can be regarded as the mother composition.
  • the surface of the chemically strengthened glass is less likely to be scratched and a practically sufficient strength can be obtained.
  • the surface compressive stress value (CS) is preferably 900 MPa or more, more preferably 920 MPa or more, further preferably 950 MPa or more, and 1000 MPa or more. Even more preferable is 1100 MPa or more.
  • CS is preferably 1400 MPa or less, and more preferably 1300 MPa or less. More preferably, it is 1280 MPa or less.
  • the chemically strengthened glass may be easily broken, so the DOL is 30 ⁇ m or more. Is preferable, 31 ⁇ m or more is more preferable, 32 ⁇ m or more is further preferable, and 34 ⁇ m or more is more preferable.
  • the DOL is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the values of CS and DOL can be measured by a surface stress meter.
  • the CS and DOL of the chemically strengthened glass can be appropriately adjusted by adjusting the processing conditions of the chemical strengthening treatment, the composition of the glass for chemical strengthening, and the like.
  • the manufacturing method of the glass for chemical strengthening which concerns on this invention is not specifically limited,
  • molding molten glass is also not specifically limited.
  • a glass raw material is appropriately prepared, heated to about 1500-1700 ° C. and melted, and then homogenized by defoaming, stirring, etc., and plate-shaped by a well-known float method, downdraw method (fusion method, etc.), press method, etc. Or cast into a block shape, and after slow cooling, cut into a desired size to produce a glass plate.
  • polishing is performed as necessary, but it is also possible to treat the glass plate surface with a fluorine agent in addition to or instead of polishing.
  • the float method or downdraw method is preferred, and in particular, the float method is preferred in consideration of producing large glass plates.
  • the glass plate of the present invention is the size of a display such as a tablet PC or a smartphone or the size of a window glass of a building or a house.
  • the glass of the present invention is generally cut into a rectangle, but other shapes such as a circle or a polygon may be used without any problem, and a glass subjected to drilling is also included.
  • the glass of the present invention is preferably chemically strengthened. Prior to the chemical strengthening treatment, it is preferable to perform shape processing according to the application, for example, mechanical processing such as cutting, end surface processing and drilling processing.
  • the chemical strengthening treatment is performed by cutting the manufactured glass to a desired size to obtain a glass plate, and then preheating the glass plate to about 400 ° C., and in the molten salt, Na on the surface of the glass plate and K in the molten salt. Can be processed by ion exchange.
  • an acid treatment and an alkali treatment may be performed to obtain a chemically strengthened glass plate with higher strength.
  • molten salt for performing the ion exchange treatment examples include alkali nitrates such as potassium nitrate, potassium sulfate and potassium chloride, alkali sulfates and alkali chloride salts. These molten salts may be used alone or in combination of two or more. Further, a salt containing sodium may be mixed in order to adjust the chemical strengthening characteristics.
  • the CS of the chemically strengthened glass can be adjusted by adjusting the Na concentration, the strengthening time, and the molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain higher CS, the Na concentration in the molten potassium nitrate is reduced.
  • DOL can be adjusted by adjusting Na concentration, strengthening time and molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain a higher DOL, the temperature of the molten salt is increased.
  • Chemically tempered glass can be cut after chemical tempering treatment.
  • a cutting method scribing and breaking with a normal wheel tip cutter can be applied, and laser cutting is also possible.
  • the cutting edge may be chamfered after cutting.
  • the chamfering may be a mechanical grinding process or a method of treating with a chemical solution such as hydrofluoric acid.
  • the use of the glass of the present invention is not particularly limited. Since chemically strengthened glass has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected.
  • mobile phones including multifunctional information terminals such as smartphones
  • PHS, PDA, tablet terminals notebook personal computers, game machines, portable music / video players, electronic books, electronic terminals
  • Cover glass for display parts such as watches, cameras or GPS, and cover glass for touch panel operation monitors of these devices
  • cover glass for cookers such as microwave ovens and oven toasters
  • top plates such as electromagnetic cookers, meters
  • machines or devices such as cover glass for instruments such as gauges and glass plates for reading parts such as copying machines or scanners.
  • window glass for vehicles, ships, airplanes, etc. household or industrial lighting equipment, signals, guide lights, cover boards for electric bulletin boards, showcases, bulletproof glass, etc.
  • Examples include a cover glass for protecting a solar cell and a glass material for condensing for increasing the power generation efficiency of the solar cell.
  • glass for mirror surfaces there are various glass for mirror surfaces, and further, as a substrate for information storage media such as HDDs, and as a substrate for information recording media such as CDs, DVDs, and Blu-ray discs.
  • it can be used as a building material such as an aquarium, dishes such as dishes and cups, various cooking utensils such as bottles or chopping boards, cupboards, shelf boards and walls of refrigerators, roofs or partitions.
  • a building material such as an aquarium, dishes such as dishes and cups, various cooking utensils such as bottles or chopping boards, cupboards, shelf boards and walls of refrigerators, roofs or partitions.
  • chemically strengthened glass produced after the chemical strengthening treatment is optimal as a glass material for display incorporated in various image display devices such as liquid crystal, plasma, and organic EL.
  • Examples 1 to 5 and 7 to 9 are examples, and example 6 is a comparative example.
  • Table 1 values shown in parentheses are calculated values, and blanks indicate that they are not contained or not evaluated.
  • Fe 2 O 3 is not added in the compositions of Examples 1 to 6, it is blank, but since Fe 2 O 3 is an unavoidable component, it is estimated that it is contained at about 0.0018 mol%.
  • the raw materials are prepared so as to have the composition shown in Table 1 in terms of oxide-based mole percentage, put into a platinum crucible, put into a 1650 ° C. resistance heating electric furnace, melted for 3 hours, defoamed, Homogenized.
  • the obtained glass was poured into a mold material, held at a temperature of 680 ° C. for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min to obtain a glass block. Next, the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass having a predetermined size.
  • T4 > The temperature T2 at which the viscosity of the glass becomes 10 2 dPa ⁇ s and the temperature T4 at which the viscosity becomes 10 4 dPa ⁇ s were measured using a rotary viscometer.
  • ⁇ Sludge amount, sludge component> The amount of sludge was measured by etching the glass.
  • the glass used as a sample was a glass plate of 2.5 cm ⁇ 2.5 cm ⁇ 0.55 mm, and was etched by being immersed in 50 mL of an etching solution containing 7% by weight of HF and 20% by weight of HCl at 25 ° C. for 3 minutes.
  • the produced sludge was filtered with 5A filter paper, washed with water, dried, and the weight of the sludge was measured. The amount of sludge was converted per 1 g of glass.
  • Sludge components were identified by XRD measurement. Detailed measurement conditions are as follows. Device: Rigaku SmartLab, X-ray source: CuK ⁇ ray, X-ray output: 45 kV, 200 mA, optical system: BB, incident parallel slit: Soller slit 5 °, incident slit: 1/3 °, receiving parallel slit: Soller slit 5 °, Scan speed: 10 ° / min, sampling width: 0.02 °, measurement range: 20-60 °, analysis: PDXL (ver. 2.0.3.0)
  • Table 1 shows T2, T4, the amount of sludge, and the main components of the sludge of the obtained glass.
  • the glass according to the present invention was a glass having a smaller amount of sludge during etching than the glass of Example 6.
  • the values of CS (MPa) and DOL ( ⁇ m) of the obtained chemically strengthened glass plate were measured by a surface stress meter (manufactured by Orihara Seisakusho). The results are shown in Table 1.
  • the chemically strengthened glass according to the present invention had a higher CS than the chemically strengthened glass according to Example 6. .
  • each glass was heat-treated at (Tg + 50) ° C. for 1 hour, slowly cooled to room temperature at 1 ° C./minute, and then the glass polished to have the same plate thickness was left on the table horizontally.
  • a low-pressure mercury lamp PL21-200 manufactured by Sen Special Light Source, main wavelengths 185 nm and 254 nm
  • the transmittance at a wavelength of 380 nm was measured.
  • the illuminance at 254 nm at the place where the glass plate was installed was 8 mW / cm 2 (measured with an illuminance meter UV-M03A and a photoreceiver UV-SD25-M10 manufactured by Oak Manufacturing Co., Ltd.).
  • the transmittance was measured with a spectrophotometer (trade name U-4100) manufactured by Hitachi High-Technologies Corporation.
  • Example 1 was 2.18
  • Example 2 was 2.35
  • Example 3 was 2.08.
  • 4 is 2.09
  • Example 5 is 2.10
  • Example 6 is 2.06.
  • the mirror constants of Examples 7 to 9 are similar to those of Example 3.
  • the glass of the example has a large CS
  • the mirror constant is large, so it can be said that the risk of severe breakage is small.
  • FIG. 3A shows the value of tan ⁇ with respect to temperature for the glass of the example (Example 3) and B for the glass of the comparative example (Example 6).
  • the glass of Comparative Example 6 has a ratio of tan ⁇ 0 at 0 ° C. to tan ⁇ 200 at 200 ° C. (tan ⁇ 0 / tan ⁇ 200 ) of 0.4, and ion exchange of Na ions hardly occurs, and K ions It shows that the structural relaxation caused by is likely to occur. Such glass is difficult to obtain appropriate chemical strengthening properties.
  • the glass of Example 3 as an example has a ratio of tan ⁇ 0 at 0 ° C. to tan ⁇ 200 at 200 ° C. of 1.81, and appropriate chemical strengthening characteristics can be obtained.

Abstract

The purpose of the present invention is to provide glass for chemical strengthening that is capable of achieving a higher compressive stress when chemically strengthened under predetermined chemical strengthening conditions. The present invention relates to the glass for chemical strengthening that includes, in mol% on an oxide basis, 60 to 67% of SiO2, 9 to 13.5% of Al2O3, 13.5 to 18.5% of Na2O, 0.1 to 3% of K2O, 6 to 10.5% of MgO, and over 0 to 5% or less of TiO2, wherein [(Na2O+K2O×5)/(Al2O3+ZrO2+TiO2×10)] is 2.55 or less, and Al2O3/ K2O is over 10.

Description

化学強化用ガラス及び化学強化ガラスChemically strengthened glass and chemically strengthened glass
 本発明は化学強化用ガラスに関し、より詳細には、化学強化時の表面圧縮応力値(CS;Compressive Stress)の一層の向上が可能な化学強化特性に優れた化学強化用ガラスに関する。また、当該化学強化用ガラスを化学強化した化学強化ガラスにも関する。 The present invention relates to a glass for chemical strengthening, and more particularly, to a glass for chemical strengthening excellent in chemical strengthening characteristics capable of further improving the surface compressive stress (CS) during chemical strengthening. The present invention also relates to a chemically strengthened glass obtained by chemically strengthening the chemical strengthening glass.
 近年、携帯電話または携帯情報端末(PDA)、パーソナルコンピュータ、テレビ、車載ナビゲーション表示装置等のディスプレイにおいて、高強度なガラスが求められている。そのため、化学強化処理によりガラスを高強度化することが行われている(化学強化ガラス)。従来、ディスプレイ用途の化学強化用ガラスにはソーダライムガラスが広く用いられていたが、化学強化特性が不十分であり、化学強化後であっても強度が低い。そこで、化学強化特性が高く、高強度の実現が可能な化学強化用ガラスとして、アルミノシリケートガラス等が開発されている。 In recent years, high-strength glass has been demanded for displays such as mobile phones or personal digital assistants (PDAs), personal computers, televisions, and in-vehicle navigation display devices. For this reason, the glass is strengthened by chemical strengthening treatment (chemically strengthened glass). Conventionally, soda lime glass has been widely used as a glass for chemical strengthening for display applications, but its chemical strengthening characteristics are insufficient and the strength is low even after chemical strengthening. Therefore, aluminosilicate glass has been developed as a glass for chemical strengthening that has high chemical strengthening characteristics and can achieve high strength.
 化学強化ガラスは高強度であることからディスプレイ用途として有用であり、種々の検討がなされている。例えば、圧痕がついても強度が低下しにくい化学強化ガラスに用いられるガラスが知られている(特許文献1)。また、大きな負荷がかかっても割れにくく、さらに傷がつきにくいという特性を兼ね備えた化学強化ガラスが知られている(特許文献2)。 Chemically tempered glass is useful for display applications because of its high strength, and various studies have been made. For example, there is known a glass used for chemically strengthened glass that does not easily decrease in strength even if an indentation is formed (Patent Document 1). Moreover, the chemically strengthened glass which has the characteristic that it is hard to break even if big load is applied, and also is hard to be damaged is known (patent document 2).
国際公開第2012/043482号International Publication No. 2012/043482 国際公開第2013/073685号International Publication No. 2013/073585
 しかしながら、近年、表面圧縮応力値(CS)のさらなる向上が求められており、したがって、本発明では、所定の化学強化条件で化学強化した場合に、従来のガラスと比較して、より高いCSを実現可能な化学強化用ガラスを提供することを目的とする。 However, in recent years, there has been a demand for further improvement in the surface compressive stress value (CS). Therefore, in the present invention, when chemically strengthened under a predetermined chemical strengthening condition, a higher CS is obtained as compared with conventional glass. It aims at providing the glass for chemical strengthening which can be implement | achieved.
 本発明者らは、鋭意研鑽を積んだ結果、特定のガラス組成を採用することにより前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of earnest study, the present inventors have found that the above problems can be solved by adopting a specific glass composition, and have completed the present invention.
 すなわち、本発明は下記<1>~<12>に関するものである。
<1>酸化物基準のモル百分率表示で、
 SiO:60~67%、
 Al:9~13.5%、
 NaO:13.5~18.5%、
 KO:0.1~3%、
 MgO:6~10.5%、及び
 TiO:0%超5%以下を含有し、
 [(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下であり、Al/KOが10超である化学強化用ガラス。
<2>酸化物基準のモル百分率表示で、
 SiO:60~67%、
 Al:9~13.5%、
 NaO:13.5~18.5%、
 KO:0.1~3%、
 MgO:6~10.5%、
 TiO:0~1%、及び
 Fe:0.01~5%を含有し、
 [(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下であり、Al/KOが10超である化学強化用ガラス。
<3>[(MgO/2+NaO+KO×2)/(TiO+ZrO)]が53~150である<1>又は<2>に記載の化学強化用ガラス。
<4>ガラスの粘度が10dPa・sとなる温度T2が1660℃以下である<1>~<3>のいずれか1に記載の化学強化用ガラス。
<5>ガラスの粘度が10dPa・sとなる温度T4が1255℃以下である<1>~<4>のいずれか1に記載の化学強化用ガラス。
<6>酸化物基準のモル百分率表示でZrOを0.11%超4.0%以下含む、<1>~<5>のいずれか1に記載の化学強化用ガラス。
<7>ミラー定数が1.96MPa・m1/2以上である、<1>~<6>のいずれか1に記載の化学強化用ガラス。
<8>0℃における内部摩擦値tanδと200℃における内部摩擦値tanδ200の比(tanδ/tanδ200)が1以上2.5未満である<1>~<7>のいずれか1に記載の化学強化用ガラス。
<9>二次イオン質量分析法で測定されるガラス表面から3μmまでの深さ領域におけるS原子の平均存在量が1.0E+19atoms/cm以下である<1>~<8>のいずれか1に記載の化学強化用ガラス。
<10><1>~<9>のいずれか1に記載の化学強化用ガラスが化学強化された化学強化ガラス。
<11>表面圧縮応力値(CS)が900MPa以上である<10>に記載の化学強化ガラス。
<12>圧縮応力層深さ(DOL)が30μm以上である<10>又は<11>に記載の化学強化ガラス。
That is, the present invention relates to the following <1> to <12>.
<1> Oxide-based mole percentage display
SiO 2 : 60 to 67%,
Al 2 O 3 : 9 to 13.5%,
Na 2 O: 13.5 to 18.5%,
K 2 O: 0.1-3%,
MgO: 6 to 10.5%, and TiO 2 : more than 0% and 5% or less,
[(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less and Al 2 O 3 / K 2 O is more than 10 glass for chemical strengthening.
<2> Oxide-based mole percentage display
SiO 2 : 60 to 67%,
Al 2 O 3 : 9 to 13.5%,
Na 2 O: 13.5 to 18.5%,
K 2 O: 0.1-3%,
MgO: 6 to 10.5%,
TiO 2 : 0 to 1%, and Fe 2 O 3 : 0.01 to 5%,
[(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less and Al 2 O 3 / K 2 O is more than 10 glass for chemical strengthening.
<3> The glass for chemical strengthening according to <1> or <2>, wherein [(MgO / 2 + Na 2 O + K 2 O × 2) / (TiO 2 + ZrO 2 )] is 53 to 150.
<4> The glass for chemical strengthening according to any one of <1> to <3>, wherein a temperature T2 at which the glass has a viscosity of 10 2 dPa · s is 1660 ° C. or lower.
<5> The glass for chemical strengthening according to any one of <1> to <4>, wherein a temperature T4 at which the glass has a viscosity of 10 4 dPa · s is 1255 ° C. or lower.
<6> The glass for chemical strengthening according to any one of <1> to <5>, containing ZrO 2 in a molar percentage display based on an oxide of more than 0.11% and 4.0% or less.
<7> The glass for chemical strengthening according to any one of <1> to <6>, wherein the mirror constant is 1.96 MPa · m 1/2 or more.
<8> The ratio of the internal friction value tan [delta 200 in internal friction value tan [delta 0 and 200 ° C. at 0 ℃ (tanδ 0 / tanδ 200 ) is less than 1 or 2.5 <1> to any one of <7> The glass for chemical strengthening as described.
<9> Any one of <1> to <8>, wherein the average abundance of S atoms in a depth region from the glass surface to 3 μm as measured by secondary ion mass spectrometry is 1.0E + 19 atoms / cm 3 or less The glass for chemical strengthening as described in 2.
<10> A chemically strengthened glass obtained by chemically strengthening the glass for chemical strengthening according to any one of <1> to <9>.
<11> The chemically strengthened glass according to <10>, wherein the surface compressive stress value (CS) is 900 MPa or more.
<12> The chemically strengthened glass according to <10> or <11>, wherein the compressive stress layer depth (DOL) is 30 μm or more.
 本発明に係る化学強化用ガラスは、所定の化学強化条件で化学強化した場合に、従来のガラスと比較して、より高いCSを兼ね備えた化学強化ガラスとなる。そのため、ディスプレイ用途等に用いられる化学強化用ガラスとして非常に有用である。 The chemically strengthened glass according to the present invention is a chemically strengthened glass having a higher CS as compared with a conventional glass when chemically strengthened under predetermined chemical strengthening conditions. Therefore, it is very useful as a chemical strengthening glass used for display applications.
図1は、内部に残留応力のないガラスが一様な引っ張り応力によって破壊した場合の破壊起点周辺の割れ方を模式的に示した図である。FIG. 1 is a diagram schematically showing how cracking occurs around a fracture starting point when glass without residual stress inside is broken by uniform tensile stress. 図2は、内部摩擦の試験方法を表す模式図である。FIG. 2 is a schematic diagram showing a test method for internal friction. 図3は、内部摩擦の測定結果を示すグラフである。FIG. 3 is a graph showing measurement results of internal friction.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本明細書において単に「%」と記載した場合には「モル%」を意味し、「~」とはその下限の値以上、その上限の値以下であることを意味する。また、「重量百分率表示」と「質量百分率表示」、「重量%」と「質量%」とは、それぞれ同義である。 Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. In this specification, when “%” is simply described, it means “mol%”, and “˜” means that it is not less than the lower limit value and not more than the upper limit value. Further, “weight percentage display” and “mass percentage display”, “wt%” and “mass%” have the same meaning.
<化学強化用ガラス>
 本発明に係る化学強化用ガラス(以下、単に「ガラス」ともいう場合がある)は、酸化物基準のモル百分率表示で、SiO:60~67%、Al:9~13.5%、NaO:13.5~18.5%、KO:0.1~3%、MgO:6~10.5%、及びTiO:0%超5%以下を含有し、[(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下であり、Al/KOが10超である。
 また、本発明に係る化学強化用ガラスの別の態様は、酸化物基準のモル百分率表示で、SiO:60~67%、Al:9~13.5%、NaO:13.5~18.5%、KO:0.1~3%、MgO:6~10.5%、TiO:0~1%、及びFe:0.01~5%を含有し、[(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下であり、Al/KOが10超である。
 以下において、ガラス組成における各成分について説明する。
<Chemical strengthening glass>
The glass for chemical strengthening according to the present invention (hereinafter sometimes simply referred to as “glass”) is expressed in terms of mole percentage on an oxide basis, SiO 2 : 60 to 67%, Al 2 O 3 : 9 to 13.5. %, Na 2 O: 13.5 to 18.5%, K 2 O: 0.1 to 3%, MgO: 6 to 10.5%, and TiO 2 : more than 0% and 5% or less, [ (Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less, and Al 2 O 3 / K 2 O is more than 10.
Further, another aspect of the glass for chemical strengthening according to the present invention is expressed in terms of mole percentage on the basis of oxide, SiO 2 : 60 to 67%, Al 2 O 3 : 9 to 13.5%, Na 2 O: 13 0.5 to 18.5%, K 2 O: 0.1 to 3%, MgO: 6 to 10.5%, TiO 2 : 0 to 1%, and Fe 2 O 3 : 0.01 to 5% [(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less, and Al 2 O 3 / K 2 O is more than 10.
Below, each component in a glass composition is demonstrated.
 SiOは、ガラスを構成する主要成分である。また、ガラス表面に傷(圧痕)がついたときのクラックの発生を低減させ、あるいは化学強化後に圧痕をつけたときの破壊率を小さくする成分である。また、SiOはガラスの耐酸性を高め、またエッチング処理時のスラッジ量を減らす(耐フッ酸性)成分でもある。 SiO 2 is a main component constituting the glass. Further, it is a component that reduces the occurrence of cracks when scratches (indentations) are made on the glass surface, or reduces the fracture rate when indentations are made after chemical strengthening. SiO 2 is also a component that increases the acid resistance of the glass and reduces the amount of sludge during etching (hydrofluoric acid resistance).
 一方、SiO含有量が多すぎると粘性が高くなり過ぎて溶解性や成形性といった生産性が低くなる傾向がある。そのためSiO含有量は60~67%であり、62%以上が好ましく、63%以上がより好ましく、また、66%以下が好ましく、65%以下がより好ましい。 On the other hand, the productivity such as solubility and moldability SiO 2 content is too large the viscosity becomes too high tends to be low. Therefore, the SiO 2 content is 60 to 67%, preferably 62% or more, more preferably 63% or more, and preferably 66% or less, more preferably 65% or less.
 Alは多いほど化学強化処理時のCSを高くすることができる一方で、DOLが低下する。そのためAl含有量は9~13.5%であり、9.5%以上が好ましく、10%以上がより好ましく、また、12%以下が好ましく、11.5%以下がより好ましい。 The more Al 2 O 3 is, the higher the CS during the chemical strengthening treatment can be made, while the DOL is lowered. Therefore, the Al 2 O 3 content is 9 to 13.5%, preferably 9.5% or more, more preferably 10% or more, more preferably 12% or less, and even more preferably 11.5% or less.
 NaOはイオン交換により表面圧縮応力層を形成させる必須成分であり、DOLを深くする作用がある。また、ガラスの溶解温度と失透温度を下げ、ガラスの溶解性、成形性を向上させる成分である。NaOは非架橋酸素を生み出す成分であり、ガラス中の水分量が変動したときの化学強化特性の変動が少なくなる。 Na 2 O is an essential component for forming a surface compressive stress layer by ion exchange, and has the effect of deepening the DOL. Moreover, it is a component which lowers | hangs the melting temperature and devitrification temperature of glass, and improves the meltability and moldability of glass. Na 2 O is a component that generates non-crosslinked oxygen, and the variation in chemical strengthening characteristics when the amount of moisture in the glass varies is reduced.
 NaOは多いほど化学強化処理時のDOLを深くすることができる一方で、CSが低下する。また、NaOを構成する非架橋酸素(Non-Bridging Oxygen;NBO)によりDUV耐性が低くなることから、DUV耐性の観点からは非架橋酸素が少ないほど好ましい。 The more Na 2 O, the deeper the DOL during the chemical strengthening treatment, while the lower the CS. Further, since the DUV resistance is lowered by non-bridging oxygen (NBO) constituting Na 2 O, the less non-crosslinking oxygen is preferable from the viewpoint of DUV resistance.
 そのためNaO含有量は13.5~18.5%であり、14.5%以上が好ましく、15%以上がより好ましく、また、17.5%以下が好ましく、16.5%以下がより好ましい。 Therefore, the Na 2 O content is 13.5 to 18.5%, preferably 14.5% or more, more preferably 15% or more, more preferably 17.5% or less, and more preferably 16.5% or less. preferable.
 KOはイオン交換速度を増大しDOLを深くし、ガラスの溶解温度を下げる効果があり、非架橋酸素を増大させる成分である。また、化学強化処理時に用いる硝酸カリウム溶融塩中のNaNO濃度による表面圧縮応力の変化の増大を回避することができる。さらには、少量のKOは、フロート法による成形時にボトム面からの錫の侵入量を抑制する効果があるため、フロート法により成形する際には含有することが好ましい。上記効果を奏するために、本発明のガラスにおけるKOの含有量は0.1%以上であり、0.3%以上が好ましく、0.4%以上がより好ましい。 K 2 O is a component that increases the ion exchange rate, deepens the DOL, lowers the melting temperature of the glass, and increases non-crosslinked oxygen. Further, it is possible to avoid an increase in variation of surface compressive stress due NaNO 3 concentration in the potassium nitrate molten salt used during the chemical strengthening treatment. Furthermore, since a small amount of K 2 O has an effect of suppressing the intrusion amount of tin from the bottom surface at the time of molding by the float process, it is preferably contained when molding by the float process. In order to achieve the above effect, the content of K 2 O in the glass of the present invention is 0.1% or more, preferably 0.3% or more, and more preferably 0.4% or more.
 一方で、KOが多すぎるとCSが低下する。また、KOを構成する非架橋酸素(Non-Bridging Oxygen;NBO)によりDUV耐性が低くなることから、DUV耐性の観点からは非架橋酸素が少ないほど好ましい。これらの観点から、KO含有量は3%以下とし、2%以下が好ましく、1.3%以下がより好ましく、1%以下がさらに好ましく、0.95%以下がよりさらに好ましい。 On the other hand, if the amount of K 2 O is too large, the CS is lowered. Further, since DUV resistance is lowered by non-bridging oxygen (NBO) constituting K 2 O, from the viewpoint of DUV resistance, less non-crosslinking oxygen is preferable. From these viewpoints, the K 2 O content is 3% or less, preferably 2% or less, more preferably 1.3% or less, still more preferably 1% or less, and even more preferably 0.95% or less.
 MgOはガラスを安定化させ、溶解性を向上させ、かつこれを添加することでアルカリ金属の含有量を低下させて熱膨張率(CTE)の上昇を抑制することのできる成分である。上記効果を奏するために、本発明のガラスにおけるMgOの含有量は6%以上であり、7%以上が好ましく、7.5%以上がより好ましい。一方、DOLの維持を考慮すると、MgOの含有量は10.5%以下であり、9.5%以下が好ましく、9%以下がより好ましい。 MgO is a component that can stabilize the glass, improve the solubility, and reduce the alkali metal content by adding this to suppress the increase in the coefficient of thermal expansion (CTE). In order to achieve the above effects, the content of MgO in the glass of the present invention is 6% or more, preferably 7% or more, and more preferably 7.5% or more. On the other hand, considering the maintenance of DOL, the content of MgO is 10.5% or less, preferably 9.5% or less, and more preferably 9% or less.
 TiOはDeep UV(DUV)と呼ばれる波長領域の紫外線に対し、特定波長領域における透過率の低下を防止するためのDUV耐性を向上させる成分である。一方、TiOが多すぎるとDOLが低下する。また、ガラスが着色しやすくなる。そのため、TiO含有量は0%超5%以下であり、後述する他の着色成分を含有しない場合には、0.01%以上が好ましく、0.03%以上がより好ましく、また、3%以下が好ましく、1%以下がより好ましく、0.5%以下がさらに好ましく、0.4%以下がよりさらに好ましく、0.3%以下が特に好ましい。
 また、Feを着色成分等として0.01~5%加える場合には、TiO含有量は0~1%であり、TiOを含まなくてもよい。TiOを加える場合の添加量は0.002%以上が好ましく、より好ましくは0.005%以上である。また、0.5%以下が好ましく、0.4%以下がより好ましく、0.3%以下がさらに好ましい。
TiO 2 is a component that improves DUV resistance for preventing a decrease in transmittance in a specific wavelength region with respect to ultraviolet rays in a wavelength region called Deep UV (DUV). On the other hand, DOL decreases when TiO 2 is too large. Moreover, it becomes easy to color glass. Therefore, the TiO 2 content is more than 0% and 5% or less, and when not containing other coloring components described later, 0.01% or more is preferable, 0.03% or more is more preferable, and 3% The following is preferable, 1% or less is more preferable, 0.5% or less is further preferable, 0.4% or less is further more preferable, and 0.3% or less is particularly preferable.
In addition, when 0.01 to 5% of Fe 2 O 3 is added as a coloring component or the like, the TiO 2 content is 0 to 1%, and TiO 2 may not be contained. The amount of TiO 2 added is preferably 0.002% or more, and more preferably 0.005% or more. Moreover, 0.5% or less is preferable, 0.4% or less is more preferable, and 0.3% or less is further more preferable.
 ZrOは優れたDUV耐性を与えると同時に、化学的耐久性を向上させ、化学強化時のCSを増大させるとともに、化学強化後のビッカース硬度を向上させる成分であり、含有することができる。 ZrO 2 is a component that imparts excellent DUV resistance and at the same time improves chemical durability, increases CS during chemical strengthening, and improves Vickers hardness after chemical strengthening, and can be contained.
 本発明に係るガラスはFeを含まない場合、TiOとZrOを共に含有することが好ましく、ZrOを含有する場合の含有量は0.1%以上が好ましく、0.11%超がより好ましく、0.12%以上がさらに好ましく、0.13%以上がよりさらに好ましい。 When the glass according to the present invention does not contain Fe 2 O 3 , it preferably contains both TiO 2 and ZrO 2 , and the content in the case of containing ZrO 2 is preferably 0.1% or more, 0.11% More than 0.12% is more preferable, 0.12% or more is further preferable, and 0.13% or more is more preferable.
 一方、ガラスの製造時の失透を抑止し、化学強化時のDOL低下を防止する観点から、ZrOの含有量は4.0%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、1.5%以下がよりさらに好ましく、1%以下が特に好ましい。 On the other hand, the content of ZrO 2 is preferably 4.0% or less, more preferably 3% or less, and more preferably 2% or less from the viewpoint of suppressing devitrification during the production of glass and preventing a decrease in DOL during chemical strengthening. More preferably, it is more preferably 1.5% or less, and particularly preferably 1% or less.
 また、本発明に係る化学強化用ガラスは、NaO、KO、Al、ZrO、TiOの酸化物基準のモル百分率表示で表される含有量について、[(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下の関係を満たす。 Further, chemically tempered glass according to the present invention, Na 2 O, K 2 O , the content expressed by Al 2 O 3, ZrO 2, TiO 2 based on oxides molar percentages display, [(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] satisfies a relationship of 2.55 or less.
 上述したように、NaOとKOはDOLを深くすることができる一方で、CSやDUV耐性を低下させる成分である。また、ガラスの粘度が10dPa・sとなる温度T2や、ガラスの粘度が10dPa・sとなる温度T4を下げることができ、良好な生産性に寄与する成分である。 As described above, Na 2 O and K 2 O are components that can deepen DOL while reducing CS and DUV resistance. In addition, the temperature T2 at which the viscosity of the glass becomes 10 2 dPa · s and the temperature T4 at which the viscosity of the glass becomes 10 4 dPa · s can be lowered, and this component contributes to good productivity.
 また、Al3、ZrO、TiOはCSやDUV耐性を高くできる一方で、DOLを低下させる成分である。また、Alは温度T2や温度T4を高くする成分であり、多すぎると溶解性や成形性といった生産性が低下する。 Al 2 O 3, ZrO 2 , and TiO 2 are components that reduce the DOL while increasing the CS and DUV resistance. Further, Al 2 O 3 is a component to increase the temperature T2 and the temperature T4, the productivity such as solubility and moldability too is reduced.
 すなわち、CS、DOL、耐酸性、生産性のバランスから、[(NaO+KO×5)/(Al+ZrO+TiO×10)]で表される値は2.55以下であり、2.0以下が好ましく、1.9以下がより好ましく、1.8以下がさらに好ましく、1.75以下がよりさらに好ましく、1.71以下が特に好ましい。また、0.1以上が好ましく、0.5以上がより好ましく、1.0以上がさらに好ましい。 That is, from the balance of CS, DOL, acid resistance, and productivity, the value represented by [(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less. Yes, preferably 2.0 or less, more preferably 1.9 or less, still more preferably 1.8 or less, still more preferably 1.75 or less, and particularly preferably 1.71 or less. Moreover, 0.1 or more are preferable, 0.5 or more are more preferable, and 1.0 or more are further more preferable.
 また、本発明においては、特にCSを上げるため、また耐酸性を向上させるために、Al、KOの酸化物基準のモル百分率表示で表される含有量について、Al/KOが10超の関係を満たす。Al/KOは、10.3以上が好ましく、10.5以上がより好ましく、11.5以上がさらに好ましく、12.5以上がよりさらに好ましく、14.0以上が特に好ましく、15.0以上が最も好ましい。 In the present invention, in order to increase the CS and improve the acid resistance, the content of Al 2 O 3 and K 2 O expressed in terms of mole percentages based on oxides may be expressed as Al 2 O 3. / K 2 O satisfies the relationship of more than 10. Al 2 O 3 / K 2 O is preferably 10.3 or more, more preferably 10.5 or more, further preferably 11.5 or more, still more preferably 12.5 or more, and particularly preferably 14.0 or more, Most preferred is 15.0 or more.
 またさらに、MgO、NaO、KO、ZrO、TiOの酸化物基準のモル百分率表示で表される含有量について、[(MgO/2+NaO+KO×2)/(TiO+ZrO)]が53~150の関係を満たすことが、後述するエッチング時のスラッジ量を低減(耐フッ酸性向上)できることから好ましい。TiOを含有する場合には、[(MgO/2+NaO+KO×2)/(TiO+ZrO)]で表される値は140以下が好ましく、130以下がより好ましく、125以下がさらに好ましく、120以下がよりさらに好ましい。また、55以上がより好ましく、60以上がさらに好ましい。
 なお、ガラスの組成は蛍光X線法により測定することができる。
Furthermore, regarding the content expressed in terms of mole percentages based on oxides of MgO, Na 2 O, K 2 O, ZrO 2 and TiO 2 , [(MgO / 2 + Na 2 O + K 2 O × 2) / (TiO 2 It is preferable that + ZrO 2 )] satisfy the relationship of 53 to 150 because the amount of sludge during etching described later can be reduced (hydrofluoric acid resistance improved). When TiO 2 is contained, the value represented by [(MgO / 2 + Na 2 O + K 2 O × 2) / (TiO 2 + ZrO 2 )] is preferably 140 or less, more preferably 130 or less, and further 125 or less. 120 or less is more preferable. Moreover, 55 or more are more preferable and 60 or more are further more preferable.
The composition of the glass can be measured by a fluorescent X-ray method.
 また、本発明に係るガラスに含有されうるその他の成分を以下に示す。 Further, other components that can be contained in the glass according to the present invention are shown below.
 Bは、ガラス原料の溶融を促進し、ガラスの脆性や耐候性を向上させる成分である。Bは含有しなくてもよく、含有させる場合はその含有量が1%以上であることで、化学強化後にビッカース圧痕をつけた時の破壊率を小さくすることができる、または高温での溶融性が向上する。Bの含有量は、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が生じないために15%以下であることが好ましく、10%以下がより好ましく、7.5%以下がさらに好ましく、5%以下がよりさらに好ましく、3%以下が特に好ましい。 B 2 O 3 is a component that promotes melting of the glass raw material and improves the brittleness and weather resistance of the glass. B 2 O 3 does not have to be contained, and when it is contained, the content is 1% or more, so that the fracture rate when Vickers indentation is made after chemical strengthening can be reduced, or at a high temperature This improves the meltability. The content of B 2 O 3 is preferably 15% or less, more preferably 10% or less, and more preferably 7.5%, in order not to cause inconvenience such as generation of striae due to volatilization and furnace wall erosion. % Or less is further preferable, 5% or less is more preferable, and 3% or less is particularly preferable.
 Pは、イオン交換性能を阻害することなく耐損傷性を向上させる成分である。Pは含有しなくてもよく、含有させる場合はその含有量が好ましくは1%以上、より好ましくは2%以上、さらに好ましくは2.5%以上であることによって、クラック伸展開始荷重(CIL)が高いガラスを得ることができる。また、Pの含有量を好ましくは10%以下、より好ましくは5%以下、さらに好ましくは3%以下とすることにより、特に耐酸性に優れたガラスを得ることができる。 P 2 O 5 is a component that improves damage resistance without hindering ion exchange performance. P 2 O 5 does not have to be contained, and when it is contained, its content is preferably 1% or more, more preferably 2% or more, and even more preferably 2.5% or more. A glass having a high (CIL) can be obtained. Further, by making the content of P 2 O 5 preferably 10% or less, more preferably 5% or less, and still more preferably 3% or less, a glass having particularly excellent acid resistance can be obtained.
 CaOは、ガラスを安定化させる成分であり、MgOの存在による失透を防止し、かつCTEの上昇を抑制しながら溶解性を向上する効果を有するため含有できる。CaOの含有量は、0~5%が好ましく、0~3%がより好ましく、0~1%がさらに好ましい。CaOの含有量が5%以下であると、十分なイオン交換速度が得られ、所望のDOLが得られる。また、化学強化におけるイオン交換性能を特段に向上させたい場合には、CaOの含有量はよりさらに好ましくは1%未満であり、特に好ましくは0.5%以下である。 CaO is a component that stabilizes glass, and can be contained because it has an effect of improving the solubility while preventing devitrification due to the presence of MgO and suppressing an increase in CTE. The content of CaO is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 1%. When the content of CaO is 5% or less, a sufficient ion exchange rate is obtained, and a desired DOL is obtained. Moreover, when it is desired to particularly improve the ion exchange performance in chemical strengthening, the content of CaO is more preferably less than 1%, and particularly preferably 0.5% or less.
 CaO/MgOは、化学強化におけるイオン交換性能を向上させ、ガラス板の透過率を高める観点から、0.5以下であることが好ましい。 CaO / MgO is preferably 0.5 or less from the viewpoint of improving ion exchange performance in chemical strengthening and increasing the transmittance of the glass plate.
 SrOは必要に応じて含有してもよいが、MgO、CaOに比べてイオン交換速度を低下させる効果が大きいので、SrOは実質的に含有しないこととするか、含有する場合であってもその含有量は3%以下であることが好ましい。
 なお、本明細書において実質的に含有しないとは、不可避的不純物を除き含有しないことをいい、例えば、好ましくは0.05%未満、より好ましくは、0.01%未満である。
SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, SrO is not substantially contained or even if contained. The content is preferably 3% or less.
In addition, in this specification, it does not contain substantially means that it does not contain except an unavoidable impurity, for example, Preferably it is less than 0.05%, More preferably, it is less than 0.01%.
 BaOはアルカリ土類金属酸化物の中でイオン交換速度を低下させる効果が最も大きいので、BaOは実質的に含有しないこととするか、含有する場合であってもその含有量は3%以下であることが好ましく、1%以下がさらに好ましく、0.5%以下がよりさらに好ましい。 BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides. Therefore, BaO is not substantially contained or even if contained, its content is 3% or less. Preferably, it is preferably 1% or less, and more preferably 0.5% or less.
 SrOまたはBaOを含有する場合それらの含有量の合計は3%以下であることが好ましく、1%以下であることがより好ましく、さらに好ましくは0.5%以下、よりさらに好ましくは0.3%未満である。 When SrO or BaO is contained, the total content thereof is preferably 3% or less, more preferably 1% or less, still more preferably 0.5% or less, and still more preferably 0.3%. Is less than.
 CaO、SrO、BaOのいずれか1以上を含有する場合それら3成分の含有量の合計は3%以下が好ましく、3%未満であることがより好ましい。当該合計が3%以下であることによって、イオン交換速度の低下を回避できる。さらに好ましくは1%以下、よりさらに好ましくは0.5%以下、特に好ましくは0.3%未満である。 When one or more of CaO, SrO, and BaO are contained, the total content of these three components is preferably 3% or less, and more preferably less than 3%. When the total is 3% or less, a decrease in ion exchange rate can be avoided. More preferably, it is 1% or less, More preferably, it is 0.5% or less, Most preferably, it is less than 0.3%.
 LiOは歪点および低温粘性を過度に低くして応力緩和を起こりやすくし、その結果圧縮応力層の応力値が低下してしまう成分であるので実質的に含有しないことが好ましい。 Li 2 O is a component that excessively lowers the strain point and the low-temperature viscosity to facilitate stress relaxation, and as a result the stress value of the compressive stress layer decreases.
 また、LiOは化学強化処理時にKNOなどの溶融塩中に溶出することがあるが、Liを含有する溶融塩を用いて化学強化処理を行うと表面圧縮応力が著しく低下する。したがって、LiOはこの観点からも実質的に含有しないことが好ましい。ここで、本発明のガラスにおいて、LiOは、化学強化特性向上のため、酸化物基準の重量百分率表示で100ppm以下であることが好ましい。 In addition, Li 2 O may be eluted in a molten salt such as KNO 3 during chemical strengthening treatment, but when the chemical strengthening treatment is performed using a molten salt containing Li, the surface compressive stress is remarkably reduced. Therefore, Li 2 O is preferably substantially free from this point of view. Here, in the glass of the present invention, Li 2 O is preferably 100 ppm or less in terms of oxide-based weight percentage in order to improve chemical strengthening characteristics.
 SnOはDUV耐性をより優れたものとする成分である。SnOは含まれていなくてもよく、含まれる場合は、その含有量は0.001%以上が好ましく、0.005%以上がより好ましく、0.01%以上がさらに好ましく、0.02%以上が特に好ましい。一方でSnOは耐ソラリゼーション性を低下させることから、1%以下が好ましく、0.7%以下がより好ましく、0.5%以下がさらに好ましく、0.3%以下がよりさらに好ましく、0.1%以下が特に好ましい。 SnO 2 is a component that makes DUV resistance better. SnO 2 may not be contained, and when it is contained, its content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.01% or more, and 0.02% The above is particularly preferable. On the other hand, SnO 2 reduces solarization resistance, so 1% or less is preferable, 0.7% or less is more preferable, 0.5% or less is more preferable, 0.3% or less is further more preferable, and 0. 1% or less is particularly preferable.
 さらに、ガラスに着色を行い使用する際は、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、TiO、CeO、Er、Ndが好適なものとして挙げられる。 Furthermore, when coloring and using glass, you may add a coloring component in the range which does not inhibit achievement of a desired chemical strengthening characteristic. Examples of the coloring component include Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , TiO 2 , CeO 2 , and Er 2. O 3 and Nd 2 O 3 are preferable.
 CeOはDUV耐性をより優れたものとする成分でもあるが、一方で耐ソラリゼーション性を大きく低下させる。CeOは0.1%未満が好ましく、0.05%未満がより好ましく、0.01%未満がさらに好ましく、実質的に含有しないことが最も好ましい。 CeO 2 is also a component that makes DUV resistance more excellent, but on the other hand it greatly reduces the resistance to solarization. CeO 2 is preferably less than 0.1%, more preferably less than 0.05%, further preferably less than 0.01%, and most preferably not substantially contained.
 また、V(バナジウム)、Mn(マンガン)、Co(コバルト)、Cu(銅)、Mo(モリブデン)の合量X(=V+Mn+Co+Cu+Mo)は、透過率を高くしたい場合は、重量百分率表示で7ppm以下が好ましく、5ppm以下がより好ましく、3ppm以下がさらに好ましい。 The total amount X (= V + Mn + Co + Cu + Mo) of V (vanadium), Mn (manganese), Co (cobalt), Cu (copper), and Mo (molybdenum) is 7 ppm or less in terms of weight percentage when it is desired to increase the transmittance. Is preferable, 5 ppm or less is more preferable, and 3 ppm or less is more preferable.
 Feは、自然界に広く分布することから不可避的に含有される成分である。そのため、Feは通常0.0005%以上であり、0.001%以上がより一般的である。しかし透過率を高くしたい場合は、0.01%未満が好ましく、0.007%以下がより好ましく、0.004%以下がさらに好ましい。
 着色成分等として加える場合は、Feは0.01%以上が好ましく0.05%以上がより好ましい。特に黒色に着色したい場合は、Feは0.1%以上が好ましく、0.3%以上がより好ましい。Feは、黒色に着色したい場合でも、7%以下の範囲が好ましい。7%以下とすることによりガラスが失透するのを抑制することができる。好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは1%以下である。
Fe 2 O 3 is a component that is inevitably contained because it is widely distributed in nature. Therefore, Fe 2 O 3 is usually 0.0005% or more, and 0.001% or more is more common. However, when it is desired to increase the transmittance, it is preferably less than 0.01%, more preferably 0.007% or less, and further preferably 0.004% or less.
When added as a coloring component or the like, Fe 2 O 3 is preferably 0.01% or more, and more preferably 0.05% or more. In particular, when it is desired to be colored black, Fe 2 O 3 is preferably 0.1% or more, and more preferably 0.3% or more. Fe 2 O 3 is preferably in the range of 7% or less even when it is desired to be colored black. It can suppress that a glass devitrifies by setting it as 7% or less. Preferably it is 5% or less, More preferably, it is 3% or less, More preferably, it is 1% or less.
 ガラスを黒色にしたい場合は、CoとFeを加えることが好ましい。その場合、CoとFeのモル比Co/Feが0.01以上であると、清澄剤の効果が得られやすいので好ましい。Co/Feは、0.05以上がより好ましく、0.08以上がさらに好ましい。Co/Feは、大きすぎるとかえって泡数が多くなるおそれがあるので0.6以下が好ましく、0.3以下がより好ましい。 When it is desired to make the glass black, it is preferable to add Co 3 O 4 and Fe 2 O 3 . In that case, the Co 3 O 4 and Fe 2 O 3 molar ratio Co 3 O 4 / Fe 2 O 3 is 0.01 or more, so is easily obtained effect of fining agent preferred. Co 3 O 4 / Fe 2 O 3 is more preferably 0.05 or more, and further preferably 0.08 or more. If Co 3 O 4 / Fe 2 O 3 is too large, the number of bubbles may be increased. Therefore, 0.6 or less is preferable, and 0.3 or less is more preferable.
 着色成分の含有量は、着色したい場合でも、酸化物基準のモル百分率表示で、合計で7%以下の範囲が好ましい。7%以下とすることにより、ガラスが失透するのを抑制することができる。この含有量は好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは1%以下である。ガラスの可視光透過率を高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。 The content of the coloring component is preferably in the range of 7% or less in total in terms of oxide-based mole percentage even if it is desired to be colored. By setting the content to 7% or less, the glass can be prevented from devitrifying. This content is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. In order to increase the visible light transmittance of the glass, it is preferable that these components are not substantially contained.
 ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを0~1%の範囲で適宜含有してもよい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、含有しないことが最も好ましい。 As a fining agent for melting the glass, SO 3 , chloride, fluoride, etc. may be appropriately contained in the range of 0 to 1%. When containing Sb 2 O 3 content of preferably 0.3% or less, more preferably 0.1% or less, and most preferably not contained.
 AsはDUV耐性をより優れたものとし、ガラスバッチの清澄を促進する成分であるが、環境負荷が高い。そのためAsは実質的に含有しないことが最も好ましい。 As 2 O 3 is a component that makes DUV resistance more excellent and promotes clarification of the glass batch, but has a high environmental load. Therefore, it is most preferable that As 2 O 3 is not substantially contained.
 また、本発明のガラスでは、表面から3μmまでの深さ領域におけるS原子の平均存在量は1.0E+19atoms/cm以下が好ましく、8.0E+18atoms/cm以下がより好ましい。そのようにすることで着色を抑制できる。なお、表面近傍の成分量はSIMS(二次イオン質量分析)法にて、定量標準はSiOに一定量のS元素をイオン注入したものを用いて行う。 Further, the glass of the present invention, the average abundance of S atoms in the depth region of from the surface to 3μm is preferably 1.0E + 19atoms / cm 3 or less, 8.0E + 18atoms / cm 3 or less is more preferable. By doing so, coloring can be suppressed. The amount of the component in the vicinity of the surface is determined by SIMS (secondary ion mass spectrometry), and the quantitative standard is obtained by ion-implanting a certain amount of S element into SiO 2 .
 また、本発明のガラスでは、表面から3μmまでの深さ領域におけるSn原子の平均存在量を好ましくは1.0E+19atoms/cm以下、より好ましくは9.5E+18atoms/cm以下とすることで、化学強化時の圧縮応力差を小さくして反りを抑制できる。なお、表面近傍の分析はSIMS(二次イオン質量分析)法にて、定量標準はSiOに一定量のSn元素をイオン注入したものを用いて行う。 In the glass of the present invention, the average abundance of Sn atoms in the depth region from the surface to 3 μm is preferably 1.0E + 19 atoms / cm 3 or less, more preferably 9.5E + 18 atoms / cm 3 or less. Warpage can be suppressed by reducing the difference in compressive stress during strengthening. The analysis in the vicinity of the surface is performed by SIMS (secondary ion mass spectrometry), and the quantitative standard is obtained by ion-implanting a certain amount of Sn element into SiO 2 .
 フロート成形のガラスはSn接触面とSn非接触面が存在することから、Sn接触面の表面近傍でSnが多く存在する。Sn接触面の表面近傍Sn濃度が高いと、化学強化時のイオン交換挙動にSn接触面とSn非接触面で差が生じ、圧縮応力差による反りが生じてしまう。 Float-formed glass has a Sn contact surface and a Sn non-contact surface, so that a lot of Sn exists near the surface of the Sn contact surface. When the Sn concentration near the surface of the Sn contact surface is high, a difference occurs in the ion exchange behavior during chemical strengthening between the Sn contact surface and the Sn non-contact surface, and warpage due to a compressive stress difference occurs.
<ミラー定数>
 ガラスが割れた際、その破断面の形状は応力の大きさによって異なることが知られている。内部に残留応力のないガラス、すなわち、化学強化を施していないガラスが、一様な引っ張り応力によって破壊した場合の破壊起点周辺の割れ方を、図1に模式的に示す。
<Mirror constant>
It is known that when the glass is broken, the shape of the fracture surface varies depending on the magnitude of the stress. FIG. 1 schematically shows how a glass having no residual stress inside, that is, a glass not subjected to chemical strengthening, breaks around a fracture starting point when it is broken by a uniform tensile stress.
 図1中、黒丸で示す破壊起点1の周辺には、ミラー(mirror)面2と呼ばれる平滑面が生じる。また、その周囲にはミスト(mist)面3と呼ばれるややざらざらした境界面が生じ、その先にはハックル(hackle)面4と呼ばれる粗い面が生じる。 In FIG. 1, a smooth surface called a mirror surface 2 is generated around the fracture starting point 1 indicated by a black circle. In addition, a slightly rough boundary surface called a mist surface 3 is generated around the surface, and a rough surface called a hackle surface 4 is formed beyond the boundary surface.
 図1において、黒丸で示す破壊起点1から、ミラー(mirror)面2とミスト(mist)面3との境界面までの距離をRとし、破壊を生じさせた応力をσとすると、σはRの平方根の逆数に比例することが知られており、その比例定数がミラー定数Aである。すなわち、下記式に示す関係になる。 In FIG. 1, assuming that the distance from the fracture starting point 1 indicated by a black circle to the boundary surface between the mirror surface 2 and the mist surface 3 is R, and the stress causing the fracture is σ, σ is R It is known that it is proportional to the inverse of the square root of, and the proportionality constant is the Miller constant A. That is, the relationship is as shown in the following formula.
 σ=A/R1/2
 ミラー定数Aは、破壊時の応力σと、破壊起点1から、ミラー面2とミスト面3との境界面までの距離Rを測定することで、実験的に求められる。
σ = A / R 1/2
The mirror constant A is obtained experimentally by measuring the stress σ at the time of fracture and the distance R from the fracture starting point 1 to the boundary surface between the mirror surface 2 and the mist surface 3.
 上述したように、ミラー定数Aが大きいガラスは、割れたときの破片数が少ない。ミラー定数Aは、化学強化を施していないガラスに関するパラメータであるが、化学強化ガラスの割れ方は、化学強化前のガラス(化学強化用ガラス)の特性に依存する。そのため、化学強化前のミラー定数Aが大きいガラスに化学強化処理を施したガラス(化学強化ガラス)は、破壊した場合であっても破片数が少ないので、破片が飛び散りにくく、安全性が高い。 As described above, a glass having a large mirror constant A has a small number of pieces when broken. The mirror constant A is a parameter relating to glass that has not been chemically strengthened, but how to break the chemically strengthened glass depends on the properties of the glass before chemical strengthening (chemical strengthening glass). Therefore, glass (chemically tempered glass) obtained by subjecting glass having a large mirror constant A before chemical strengthening to chemical strengthening treatment has a small number of fragments even when it is broken, so that the fragments are not easily scattered and safety is high.
 本発明の化学強化用ガラスは、ミラー定数Aが好ましくは1.96MPa・m1/2以上であることにより、化学強化後にも割れたときの破片数が少なくなる。そのため、破壊した場合も破片が飛び散りにくく、安全性が高い。 The glass for chemical strengthening of the present invention has a mirror constant A of preferably 1.96 MPa · m 1/2 or more, so that the number of fragments when broken after chemical strengthening is reduced. Therefore, even if it is destroyed, the fragments are not easily scattered and safety is high.
 本発明の化学強化用ガラスは、ミラー定数Aが2.0MPa・m1/2以上が好ましく、2.07MPa・m1/2以上がより好ましく、2.1MPa・m1/2以上がさらに好ましく、2.3MPa・m1/2以上が特に好ましい。 Chemically strengthened glass of the present invention are preferably mirror constant A is 2.0 MPa · m 1/2 or more, more preferably 2.07 MPa · m 1/2 or more, more preferably 2.1 MPa · m 1/2 or more 2.3 MPa · m 1/2 or more is particularly preferable.
 ミラー定数はたとえば下記の手順でガラス加工、加傷、熱処理、曲げ試験、破壊面観察を実施することにより、測定できる。また、2通りの熱処理を行うことで、たとえば仮想温度がガラス転移温度Tg付近のサンプルとTg+60℃のサンプルを作製し、それぞれについてミラー定数を測定することにより、任意の仮想温度を有するガラスのミラー定数を推定することができる。 The mirror constant can be measured, for example, by performing glass processing, scratching, heat treatment, bending test, and fracture surface observation according to the following procedure. In addition, by performing two kinds of heat treatment, for example, a sample having a fictive temperature near the glass transition temperature Tg and a sample having a Tg + 60 ° C. are prepared, and a mirror constant is measured for each sample, whereby a glass mirror having an arbitrary fictive temperature is obtained. A constant can be estimated.
(ガラス加工)
 ガラスを40×6×3mmの大きさに加工し、表裏面と長手方向の端面(合わせて4面)を鏡面研磨する。
(Glass processing)
The glass is processed into a size of 40 × 6 × 3 mm, and the front and back surfaces and the end surfaces in the longitudinal direction (four surfaces in total) are mirror-polished.
(加傷)
 ビッカース硬度計を用いて110°のダイヤモンド圧子を使用し、異なる荷重で圧子を押し込み、加傷する。押し込み荷重は、たとえば0.05kgf、0.1kgf、0.3kgf、0.5kgf、0.75kgf、1.0kgf、2.0kgf、3.0kgfとする。
(Injury)
Using a 110 ° diamond indenter with a Vickers hardness tester, the indenter is pushed under different loads and is injured. The indentation load is, for example, 0.05 kgf, 0.1 kgf, 0.3 kgf, 0.5 kgf, 0.75 kgf, 1.0 kgf, 2.0 kgf, and 3.0 kgf.
(熱処理)
 加傷による歪の影響を除去するために加熱処理を行う。この熱処理は、仮想温度の調整を兼ねて、以下の手順で実施する。
 仮想温度がTg付近のサンプル:Tgより30℃高い温度で1時間保持し、1℃/minで室温まで下げることにより徐冷する。
 仮想温度がTg+60℃のサンプル:Tgより60℃高い温度で1時間保持し、急冷する。
(Heat treatment)
Heat treatment is performed to remove the influence of distortion due to the scratch. This heat treatment is performed according to the following procedure also for adjusting the fictive temperature.
Sample with fictive temperature near Tg: Hold for 1 hour at a temperature 30 ° C. higher than Tg, and gradually cool by lowering to room temperature at 1 ° C./min.
Sample with a fictive temperature of Tg + 60 ° C .: Hold at a temperature 60 ° C. higher than Tg for 1 hour and rapidly cool.
(曲げ試験)
 4点曲げ試験により、加傷および熱処理後のガラスの加傷面を下にして荷重を印加し、破砕した時の荷重を測定する。測定した荷重から破砕時の応力σを求める。
(Bending test)
In a four-point bending test, a load is applied with the scratched surface of the glass after scratching and heat treatment down, and the load when crushed is measured. The stress σ at the time of crushing is obtained from the measured load.
(破壊面観察)
 破断面を顕微鏡(たとえばKEYENCE デジタルマイクロスコープVHX-5000)を用いて観察し、破壊起点から、ミラー面とミスト面との境界面までの距離Rを計測する。観察時は、サンプルと顕微鏡のレンズとを平行にし、20×150倍の倍率で観察を行う。
(Fracture surface observation)
The fracture surface is observed using a microscope (for example, KEYENCE digital microscope VHX-5000), and the distance R from the fracture starting point to the boundary surface between the mirror surface and the mist surface is measured. At the time of observation, the sample and the lens of the microscope are made parallel, and observation is performed at a magnification of 20 × 150 times.
 上記の手順で得られた結果から、下記式を用いてミラー定数Aを求める。
 σ=A/R1/2
From the result obtained by the above procedure, the mirror constant A is obtained using the following equation.
σ = A / R 1/2
<内部摩擦(tanδ)>:
 本発明に係るガラスは、ナトリウム起因の緩和の指標となる0℃での内部摩擦値とカリウム起因の緩和の指標となる200℃の内部摩擦値の比が、適切な範囲にあるので適度な化学強化特性を有する。具体的には、0℃における内部摩擦値tanδと200℃における内部摩擦値tanδ200の比(tanδ/tanδ200)が1以上2.5未満であることが好ましく、1.5以上2.0未満がより好ましい。
<Internal friction (tan δ)>:
The glass according to the present invention has an appropriate chemical ratio because the ratio of the internal friction value at 0 ° C., which is an index of relaxation caused by sodium, and the internal friction value at 200 ° C., which is an index of relaxation caused by potassium, is in an appropriate range. Has reinforcing properties. Specifically, it is preferable that the ratio of the internal friction value tanδ 200 (tanδ 0 / tanδ 200 ) is less than 1 to 2.5 in the internal friction value tan [delta 0 and 200 ° C. at 0 ° C., 1.5 or 2. Less than 0 is more preferable.
 内部摩擦tanδは、測定試料であるガラス材料の試験体に対してひずみを与えた際の、応力の応答の位相ずれの正接を示し、温度に対する内部摩擦tanδの変化は、例えば動的粘弾性測定装置(DMA:Dynamic Mechanical Analysis)により測定できる。 The internal friction tan δ indicates the tangent of the phase shift of the stress response when strain is applied to the specimen of the glass material that is the measurement sample. The change of the internal friction tan δ with respect to the temperature is, for example, dynamic viscoelasticity measurement It can be measured by a device (DMA: Dynamic Mechanical Analysis).
 一般的な内部摩擦測定法として、共振法や強制振動法が知られている。共振法では減衰法や半値幅法などが用いられ、簡便な機構で測定できるため広く普及している。しかし、高温で共振法を用いた内部摩擦測定を行うと、偽振動が生じやすく正しい測定を行うことができない等の問題がある。これに対して、強制振動法は位相差法が用いられ、おおよそ10Hz以下の周波数で測定を行うことで僅かな変位を検出することが可能である。 As a general internal friction measurement method, a resonance method or a forced vibration method is known. In the resonance method, an attenuation method, a half-width method, or the like is used, and measurement can be performed with a simple mechanism, which is widely used. However, when the internal friction measurement using the resonance method is performed at a high temperature, there is a problem that false vibration is likely to occur and correct measurement cannot be performed. On the other hand, a phase difference method is used for the forced vibration method, and a slight displacement can be detected by measuring at a frequency of approximately 10 Hz or less.
 ここで、図2を用いて、動的粘弾性測定装置による、温度に対する内部摩擦tanδの変化の測定方法の一例を説明する。温度に対する内部摩擦tanδの変化は、例えば板状の試験体11を、支持部材12A、12B、及び押圧部材13を備えた三点曲げ測定治具にセットして実施できる。 Here, an example of a method for measuring a change in internal friction tan δ with respect to temperature using a dynamic viscoelasticity measuring apparatus will be described with reference to FIG. The change of the internal friction tan δ with respect to the temperature can be carried out, for example, by setting the plate-like test body 11 on a three-point bending measurement jig provided with support members 12A and 12B and a pressing member 13.
 板状の試験体11は、例えば長さlを60mm、幅(図2の紙面と垂直方向)を5mm、板厚dを0.5mmとする。そして、板状の試験体11を三点曲げ測定治具にセットする際、支持部材12A、12Bは、試験体の長さ方向に沿って、互いの距離、すなわち支持間隔Lが50mmとなるように配置する。 The plate-like test body 11 has a length l of 60 mm, a width (perpendicular to the paper surface of FIG. 2) of 5 mm, and a plate thickness d of 0.5 mm, for example. When the plate-shaped test body 11 is set on the three-point bending measurement jig, the support members 12A and 12B have a mutual distance, that is, a support interval L of 50 mm along the length direction of the test body. To place.
 図2に示すように、治具にセットした試験体11は、両端を、支持部材12A、12Bにより下面側から支持される。そして、試験体11の上面の中央部を、押圧部材13により、下方向に1Nの静荷重で印加できる。この際、押圧部材13は、同時に、支持部材12Aと、支持部材12Bとの間の中央部を押圧するように構成されることが好ましい。 As shown in FIG. 2, both ends of the test body 11 set on the jig are supported from the lower surface side by the support members 12A and 12B. And the center part of the upper surface of the test body 11 can be applied by the pressing member 13 in the downward direction with a static load of 1N. At this time, it is preferable that the pressing member 13 is configured to simultaneously press the central portion between the support member 12A and the support member 12B.
 そして、試験体11に静荷重を印加した状態で、試験体11を昇温しながら、さらに振幅120μm、かつ周波数1Hzとなるように周期的に、試験体11の上面の中央部を、押圧部材13により、下方向に押圧と、押圧の解放とを繰り返し実施する。このように、押圧部材13により、試験体11を押圧することで、試験体11にひずみを与えることができ、ひずみを与えた際の応力を測定し、測定結果から内部摩擦tanδを算出できる。 Then, with the static load applied to the test body 11, while the temperature of the test body 11 is increased, the center portion of the upper surface of the test body 11 is periodically pressed so that the amplitude is 120 μm and the frequency is 1 Hz. 13, repeatedly pressing down and releasing the pressing. Thus, by pressing the test body 11 with the pressing member 13, the test body 11 can be strained, the stress when the strain is applied can be measured, and the internal friction tan δ can be calculated from the measurement result.
<溶解性、成形性>
 本発明のガラスにおいて、ガラス溶解時の基準の例となる温度、すなわちガラスの粘度が10dPa・sとなる温度T2は、1660℃以下が好ましく、1650℃以下がより好ましく、1645℃以下がよりさらに好ましい。
<Solubility, moldability>
In the glass of the present invention, the temperature serving as an example of the standard at the time of glass melting, that is, the temperature T2 at which the viscosity of the glass is 10 2 dPa · s is preferably 1660 ° C. or less, more preferably 1650 ° C. or less, and more preferably 1645 ° C. or less. Even more preferred.
 本発明のガラスにおいて、ガラス成形時の基準の例となる温度、すなわちガラスの粘度が10dPa・sとなる温度T4は、1255℃以下が好ましく、1240℃以下がより好ましく、1230℃以下がさらに好ましく、1225℃以下がよりさらに好ましい。
 なお、温度T2及び温度T4は回転式粘度計を用いて測定することができる。
In the glass of the present invention, the temperature serving as an example of the standard at the time of glass forming, that is, the temperature T4 at which the viscosity of the glass becomes 10 4 dPa · s is preferably 1255 ° C. or less, more preferably 1240 ° C. or less, and more preferably 1230 ° C. or less. More preferably, 1225 degrees C or less is still more preferable.
The temperature T2 and the temperature T4 can be measured using a rotary viscometer.
<スラッジ量>
 ガラスの表面特性の調整等を目的として、ガラスをエッチング処理する場合があるが、ガラスをエッチングするとスラッジ(残渣)が発生する。ここで、スラッジはエッチング液寿命等に影響しうるため、ガラスをエッチングする際には、スラッジは少ないことが、生産性等の観点から好ましい。スラッジの分析方法を以下に示す。
<Sludge amount>
The glass may be etched for the purpose of adjusting the surface characteristics of the glass, but sludge (residue) is generated when the glass is etched. Here, since sludge can affect the life of the etching solution, it is preferable from the viewpoint of productivity and the like that the sludge is small when the glass is etched. The analysis method of sludge is shown below.
 試料となるガラス板にエッチング液を加えて攪拌し、ガラス溶解後静置する。生成したスラッジをろ紙にて濾過し、水で洗浄する。スラッジを乾燥後、重量測定し、スラッジ重量を算出する。なお、スラッジの成分分析はXRD、SEM-EDXにより行うことができる。 Etching solution is added to a glass plate as a sample and stirred. The produced sludge is filtered with a filter paper and washed with water. After drying the sludge, weigh it and calculate the sludge weight. The component analysis of sludge can be performed by XRD or SEM-EDX.
 スラッジ量はエッチング条件によっても異なるが、例えば、試料となるガラス板が2.5cm×2.5cm×0.55mmのガラス板であり、HF7重量%及びHCl20重量%を含むエッチング液50mLを用いて25℃で3分間エッチングした場合のスラッジ量は、ガラス1g当たり0.66g以下が好ましく、0.65g以下がより好ましく、0.64g以下がさらに好ましい。 The amount of sludge varies depending on the etching conditions. For example, a glass plate as a sample is a glass plate of 2.5 cm × 2.5 cm × 0.55 mm, and 50 mL of an etching solution containing 7% by weight of HF and 20% by weight of HCl is used. The amount of sludge when etched at 25 ° C. for 3 minutes is preferably 0.66 g or less, more preferably 0.65 g or less, and even more preferably 0.64 g or less per 1 g of glass.
 なお、スラッジの成分としては、ガラス組成によって異なるものの、例えば、NaSiF、NaMgAlF、NaMgAlF、KNaSiFおよびKMgAlF等が挙げられる。 As the components of the sludge, although different depending on the glass composition, for example, Na 2 SiF 6, NaMgAlF 6 , Na 2 MgAlF 7, KNaSiF 6 and KMgAlF 6, and the like.
<DUV耐性>
 本明細書においてDUV耐性とは、波長100~280nmのUV(DUV)を照射した場合、すなわち主波長185nmおよび254nmの低圧水銀ランプや主波長172nmのXeガスエキシマランプ、主波長193nmのArFエキシマランプ、主波長248nmのKrFエキシマランプ等を照射した場合に、380~780nmの波長における透過率の低下が抑制されることを意味する。この短波長側のUV照射は、基板のUV洗浄処理や表面改質、UV殺菌処理等に一般的に用いられるものである。
<DUV resistance>
In this specification, the DUV resistance means that UV (DUV) with a wavelength of 100 to 280 nm is irradiated, that is, a low-pressure mercury lamp with main wavelengths of 185 nm and 254 nm, an Xe gas excimer lamp with a main wavelength of 172 nm, and an ArF excimer lamp with a main wavelength of 193 nm. This means that when a KrF excimer lamp having a main wavelength of 248 nm is irradiated, a decrease in transmittance at a wavelength of 380 to 780 nm is suppressed. This UV irradiation on the short wavelength side is generally used for UV cleaning treatment, surface modification, UV sterilization treatment and the like of the substrate.
 本発明に係るガラスでは、DUV耐性として、短波長側のUV照射前の380~780nmの波長領域における透過率をT0とし、照射後の380~780nmの波長領域における透過率をT1としたときの、以下の式で表される各波長におけるDUV誘起吸収Δαが0.095以下であることが好ましく、0.085以下であることがより好ましく、0.08以下がさらに好ましい。
        Δα=-ln(T1/T0)
In the glass according to the present invention, as DUV resistance, the transmittance in the wavelength region of 380 to 780 nm before UV irradiation on the short wavelength side is T0, and the transmittance in the wavelength region of 380 to 780 nm after irradiation is T1. The DUV-induced absorption Δα at each wavelength represented by the following formula is preferably 0.095 or less, more preferably 0.085 or less, and even more preferably 0.08 or less.
Δα = -ln (T1 / T0)
<その他の特性等>
 本発明に係るガラスはガラス板とすることが好ましく、その際のガラス板の厚さ(板厚)は0.1~2mmが好ましく、0.1~1.5mmがより好ましく、0.1~1mmがさらに好ましく、0.1~0.7mmがよりさらに好ましく、0.1~0.5mmが特に好ましい。
<Other characteristics>
The glass according to the present invention is preferably a glass plate, and the thickness (plate thickness) of the glass plate is preferably 0.1 to 2 mm, more preferably 0.1 to 1.5 mm, and more preferably 0.1 to 1.5 mm. 1 mm is more preferable, 0.1 to 0.7 mm is still more preferable, and 0.1 to 0.5 mm is particularly preferable.
 本発明に係るガラスのガラス転移温度(Tg)は、550℃以上が好ましく、580℃以上がより好ましく、600℃以上がさらに好ましく、620℃以上がよりさらに好ましく、また700℃以下であることが好ましい。Tgが550℃以上であることにより、化学強化処理時の応力緩和の抑制、熱反りの抑制等の点で有利となる。Tgの調整は、SiO、Alの総量とアルカリ金属酸化物およびアルカリ土類酸化物の量を調整すること等により可能である。 The glass transition temperature (Tg) of the glass according to the present invention is preferably 550 ° C. or higher, more preferably 580 ° C. or higher, further preferably 600 ° C. or higher, more preferably 620 ° C. or higher, and 700 ° C. or lower. preferable. When Tg is 550 ° C. or higher, it is advantageous in terms of suppression of stress relaxation and thermal warpage during chemical strengthening treatment. Tg can be adjusted by adjusting the total amount of SiO 2 and Al 2 O 3 and the amount of alkali metal oxide and alkaline earth oxide.
 本発明に係るガラスの平均熱膨張係数αは、50~350℃の温度範囲において、好ましくは65×10-7~110×10-7/Kであり、より好ましくは70×10-7/K以上、さらに好ましくは80×10-7/K以上、よりさらに好ましくは85×10-7/K以上、またより好ましくは100×10-7/K以下、さらに好ましくは97×10-7/K以下である。 The average thermal expansion coefficient α of the glass according to the present invention is preferably 65 × 10 −7 to 110 × 10 −7 / K, more preferably 70 × 10 −7 / K in the temperature range of 50 to 350 ° C. Or more, more preferably 80 × 10 −7 / K or more, still more preferably 85 × 10 −7 / K or more, still more preferably 100 × 10 −7 / K or less, still more preferably 97 × 10 −7 / K. It is as follows.
 平均熱膨張係数αが65×10-7/K以上であることにより、金属や他の物質との熱膨張係数のマッチングの点で有利となる。また平均熱膨張係数の調整は、アルカリ金属酸化物およびアルカリ土類酸化物の量を調整すること等により可能である。 When the average coefficient of thermal expansion α is 65 × 10 −7 / K or more, it is advantageous in terms of matching the coefficient of thermal expansion with metals and other substances. The average coefficient of thermal expansion can be adjusted by adjusting the amount of alkali metal oxide and alkaline earth oxide.
 本発明に係るガラスの室温での比重は、好ましくは2.35~2.6g/cmであり、より好ましくは2.38g/cm以上、さらに好ましくは2.40g/cm以上であり、またより好ましくは2.55g/cm以下、さらに好ましくは2.50g/cm以下である。 The specific gravity at room temperature of the glass according to the present invention is preferably 2.35 to 2.6 g / cm 3 , more preferably 2.38 g / cm 3 or more, and further preferably 2.40 g / cm 3 or more. , and more preferably 2.55 g / cm 3 or less, further preferably 2.50 g / cm 3 or less.
 本発明に係るガラスのヤング率Eは60GPa以上であることが好ましい。ヤング率Eが60GPa以上であることにより、ガラスの耐クラック性や破壊強度が十分となる。より好ましくは68GPa以上、さらに好ましくは70GPa以上である。 The Young's modulus E of the glass according to the present invention is preferably 60 GPa or more. When the Young's modulus E is 60 GPa or more, the glass has sufficient crack resistance and breaking strength. More preferably, it is 68 GPa or more, More preferably, it is 70 GPa or more.
 本発明のガラスのポアソン比σは0.28以下であることが好ましい。ポアソン比σが0.28以下であることにより、ガラスの耐クラック性が十分となる。より好ましくは0.25以下である。 The Poisson's ratio σ of the glass of the present invention is preferably 0.28 or less. When the Poisson's ratio σ is 0.28 or less, the crack resistance of the glass is sufficient. More preferably, it is 0.25 or less.
<化学強化ガラス>
 本発明の化学強化ガラスは、上述した化学強化用ガラスが化学強化された化学強化ガラスである。換言すれば、本発明の化学強化用ガラスの組成を母組成とし、表面に圧縮応力層を有する化学強化ガラスである。
<Chemical tempered glass>
The chemically strengthened glass of the present invention is a chemically strengthened glass obtained by chemically strengthening the above-described chemically strengthened glass. In other words, it is a chemically strengthened glass having the composition of the glass for chemical strengthening of the present invention as a mother composition and having a compressive stress layer on the surface.
 すなわち、化学強化ガラスの母組成とは、化学強化前のガラス(化学強化用ガラス)の組成である。ここで、化学強化ガラスの引張応力を有する部分(以下、引張応力部分ともいう)はイオン交換されていない部分である。そして、化学強化ガラスの引張応力部分は、化学強化用ガラスと同じ組成を有しているので、引張応力部分の組成を母組成とみなすことができる。 That is, the mother composition of chemically strengthened glass is the composition of the glass (chemical strengthening glass) before chemical strengthening. Here, the part (henceforth a tensile-stress part) which has the tensile stress of chemically strengthened glass is a part which is not ion-exchanged. Since the tensile stress portion of the chemically strengthened glass has the same composition as the chemically strengthened glass, the composition of the tensile stress portion can be regarded as the mother composition.
 化学強化ガラスの表面に傷が生じにくく、実用上十分な強度が得られる点から、表面圧縮応力値(CS)は900MPa以上が好ましく、920MPa以上がより好ましく、950MPa以上がさらに好ましく、1000MPa以上がよりさらに好ましく、1100MPa以上が特に好ましい。 The surface of the chemically strengthened glass is less likely to be scratched and a practically sufficient strength can be obtained. The surface compressive stress value (CS) is preferably 900 MPa or more, more preferably 920 MPa or more, further preferably 950 MPa or more, and 1000 MPa or more. Even more preferable is 1100 MPa or more.
 一方、ガラス中央の引張応力値(CT;Center Tension)が大きくなり過ぎ、ガラスが破壊するときに粉砕するおそれがあることから、CSは1400MPa以下が好ましく、1300MPa以下がより好ましい。1280MPa以下がさらに好ましい。 On the other hand, since the tensile stress value (CT; Center Tension) at the center of the glass becomes too large and the glass may break when it breaks, CS is preferably 1400 MPa or less, and more preferably 1300 MPa or less. More preferably, it is 1280 MPa or less.
 また、化学強化ガラスの表面に傷が生じた場合に、その傷の深さが圧縮応力層深さ(DOL)を超えると化学強化ガラスが破壊され易くなるおそれがあることから、DOLは30μm以上が好ましく、31μm以上がより好ましく、32μm以上がさらに好ましく、34μm以上がよりさらに好ましい。 In addition, when scratches occur on the surface of the chemically strengthened glass, if the depth of the scratch exceeds the compressive stress layer depth (DOL), the chemically strengthened glass may be easily broken, so the DOL is 30 μm or more. Is preferable, 31 μm or more is more preferable, 32 μm or more is further preferable, and 34 μm or more is more preferable.
 一方、化学強化ガラス中央の引張応力値(CT)が大きくなり過ぎ、化学強化ガラスが破壊するときに粉砕するおそれがあることから、DOLは60μm以下が好ましく、50μm以下がより好ましい。 On the other hand, since the tensile stress value (CT) at the center of the chemically strengthened glass becomes too large and the chemically strengthened glass may be crushed when broken, the DOL is preferably 60 μm or less, and more preferably 50 μm or less.
 ここで、CS及びDOLの値は表面応力計により測定することができる。なお、化学強化ガラスのCS及びDOLは、化学強化処理の処理条件や化学強化用ガラスの組成等を調整することにより、適宜調整することができる。 Here, the values of CS and DOL can be measured by a surface stress meter. The CS and DOL of the chemically strengthened glass can be appropriately adjusted by adjusting the processing conditions of the chemical strengthening treatment, the composition of the glass for chemical strengthening, and the like.
<ガラスの製造方法>
 本発明に係る化学強化用ガラスの製造方法は特に限定されず、溶融ガラスを成形する方法も特に限定されない。例えば、ガラス原料を適宜調製し、約1500~1700℃に加熱し溶融した後、脱泡、攪拌等により均質化し、周知のフロート法、ダウンドロー法(フュージョン法等)、プレス法等によって板状に、またはキャストしてブロック状に成形し、徐冷後所望のサイズに切断し、ガラス板が製造される。
<Glass manufacturing method>
The manufacturing method of the glass for chemical strengthening which concerns on this invention is not specifically limited, The method of shape | molding molten glass is also not specifically limited. For example, a glass raw material is appropriately prepared, heated to about 1500-1700 ° C. and melted, and then homogenized by defoaming, stirring, etc., and plate-shaped by a well-known float method, downdraw method (fusion method, etc.), press method, etc. Or cast into a block shape, and after slow cooling, cut into a desired size to produce a glass plate.
 必要に応じて研磨加工を施すが、研磨加工に加えてまたは研磨加工に代えて、ガラス板表面をフッ素剤で処理することも可能である。ガラス板を安定して生産することを考慮すると、フロート法またはダウンドロー法が好ましく、特に大型のガラス板を生産することを考慮するとフロート法が好ましい。 研磨 Polishing is performed as necessary, but it is also possible to treat the glass plate surface with a fluorine agent in addition to or instead of polishing. In consideration of stable production of glass plates, the float method or downdraw method is preferred, and in particular, the float method is preferred in consideration of producing large glass plates.
 本発明のガラス板は、タブレットPCまたはスマートフォン等のディスプレイの大きさや、ビルまたは住宅の窓ガラスの大きさとなる。本発明のガラスは、一般的には矩形に切断されているが、円形または多角形などの他の形状でも問題なく、孔あけ加工を施したガラスも含まれる。 The glass plate of the present invention is the size of a display such as a tablet PC or a smartphone or the size of a window glass of a building or a house. The glass of the present invention is generally cut into a rectangle, but other shapes such as a circle or a polygon may be used without any problem, and a glass subjected to drilling is also included.
 本発明のガラスは、化学強化処理することが好ましい。化学強化処理の前に、用途に応じた形状加工、例えば、切断、端面加工および孔あけ加工などの機械的加工を行うことが好ましい。 The glass of the present invention is preferably chemically strengthened. Prior to the chemical strengthening treatment, it is preferable to perform shape processing according to the application, for example, mechanical processing such as cutting, end surface processing and drilling processing.
 化学強化処理は例えば、製造されたガラスを所望のサイズに切断してガラス板とした後、該ガラス板を400℃程度に予熱し、溶融塩内でガラス板表面のNaと溶融塩内のKとをイオン交換することで処理することができる。 For example, the chemical strengthening treatment is performed by cutting the manufactured glass to a desired size to obtain a glass plate, and then preheating the glass plate to about 400 ° C., and in the molten salt, Na on the surface of the glass plate and K in the molten salt. Can be processed by ion exchange.
 また、特定の塩を含む溶融塩内でイオン交換した後に、酸処理およびアルカリ処理を行うことで、さらに高強度の化学強化ガラス板としてもよい。 Moreover, after ion exchange in a molten salt containing a specific salt, an acid treatment and an alkali treatment may be performed to obtain a chemically strengthened glass plate with higher strength.
 イオン交換処理を行うための溶融塩としては、例えば、硝酸カリウム、硫酸カリウムおよび塩化カリウム等のアルカリ硝酸塩、アルカリ硫酸塩およびアルカリ塩化物塩などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。また、化学強化特性を調整するために、ナトリウムを含む塩を混ぜてもよい。 Examples of the molten salt for performing the ion exchange treatment include alkali nitrates such as potassium nitrate, potassium sulfate and potassium chloride, alkali sulfates and alkali chloride salts. These molten salts may be used alone or in combination of two or more. Further, a salt containing sodium may be mixed in order to adjust the chemical strengthening characteristics.
 化学強化ガラスのCSの調整は、イオン交換に用いる溶融硝酸カリウム塩中のNa濃度、強化時間および溶融塩温度を調整することにより可能である。より高いCSを得るためには、溶融硝酸カリウム塩中のNa濃度を低減する。 The CS of the chemically strengthened glass can be adjusted by adjusting the Na concentration, the strengthening time, and the molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain higher CS, the Na concentration in the molten potassium nitrate is reduced.
 DOLの調整は、イオン交換に用いる溶融硝酸カリウム塩中のNa濃度、強化時間および溶融塩温度を調整することにより可能である。より高いDOLを得るためには、溶融塩の温度を上げる。 DOL can be adjusted by adjusting Na concentration, strengthening time and molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain a higher DOL, the temperature of the molten salt is increased.
 化学強化ガラスは、化学強化処理後に切断することが可能である。切断方法は、通常のホイールチップカッターによるスクライブとブレイクを適用することが可能であり、レーザーによる切断も可能である。ガラス強度を維持するため、切断後に切断エッジの面取り加工を施してもよい。面取りは、機械的な研削加工でもよいし、フッ酸等の薬液で処理する方法を用いることもできる。 Chemically tempered glass can be cut after chemical tempering treatment. As a cutting method, scribing and breaking with a normal wheel tip cutter can be applied, and laser cutting is also possible. In order to maintain the glass strength, the cutting edge may be chamfered after cutting. The chamfering may be a mechanical grinding process or a method of treating with a chemical solution such as hydrofluoric acid.
 本発明のガラスの用途は、特段限定されない。化学強化されたガラスは高い機械的強度を有することから、落下による衝撃や、他の物質との接触が予想される箇所への使用に好適である。 The use of the glass of the present invention is not particularly limited. Since chemically strengthened glass has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected.
 具体的には、例えば、携帯電話機(スマートフォン等の多機能情報端末を含む。)、PHS、PDA、タブレット型端末、ノート型パーソナルコンピュータ、ゲーム機、携帯音楽・動画プレーヤー、電子ブック、電子端末、時計、カメラまたはGPS等のディスプレイ部分用のカバーガラス、及びこれらの機器のタッチパネル操作用モニターのカバーガラス、電子レンジ、オーブントースター等の調理器のカバーガラス、電磁調理器等のトッププレート、メーター、ゲージ等の計器類のカバーガラス並びにコピー機またはスキャナ等の読み取り部分用のガラス板等の機械または機器類の保護用途がある。 Specifically, for example, mobile phones (including multifunctional information terminals such as smartphones), PHS, PDA, tablet terminals, notebook personal computers, game machines, portable music / video players, electronic books, electronic terminals, Cover glass for display parts such as watches, cameras or GPS, and cover glass for touch panel operation monitors of these devices, cover glass for cookers such as microwave ovens and oven toasters, top plates such as electromagnetic cookers, meters, There are protection applications for machines or devices such as cover glass for instruments such as gauges and glass plates for reading parts such as copying machines or scanners.
 また、例えば、車両、船舶、航空機等の窓用ガラス、家庭用または産業用の照明機器、信号、誘導灯、電光掲示板のカバーガラス、ショーケースおよび防弾ガラス等の用途が挙げられる。太陽電池保護用のカバーガラスおよび太陽電池の発電効率を高めるための集光用のガラス材としての用途が挙げられる。 Also, for example, window glass for vehicles, ships, airplanes, etc., household or industrial lighting equipment, signals, guide lights, cover boards for electric bulletin boards, showcases, bulletproof glass, etc. can be mentioned. Examples include a cover glass for protecting a solar cell and a glass material for condensing for increasing the power generation efficiency of the solar cell.
 また、例えば、各種の鏡面用のガラス、さらには、HDD等の情報記憶媒体の基盤、CD、DVD、ブルーレイディスク等の情報記録媒体の基板としての用途がある。 Also, for example, there are various glass for mirror surfaces, and further, as a substrate for information storage media such as HDDs, and as a substrate for information recording media such as CDs, DVDs, and Blu-ray discs.
 また、例えば、水槽、皿やコップ等の食器、びん又はまな板等の各種の調理器具、食器棚、冷蔵庫の棚板及び壁、屋根または仕切り等の建材としての用途が挙げられる。 In addition, for example, it can be used as a building material such as an aquarium, dishes such as dishes and cups, various cooking utensils such as bottles or chopping boards, cupboards, shelf boards and walls of refrigerators, roofs or partitions.
 これらの用途に加え、化学強化処理を終えて製造される化学強化ガラスは、液晶、プラズマ、有機EL等の各種画像表示装置に組み込まれるディスプレイ用ガラス材として最適である。 In addition to these uses, chemically strengthened glass produced after the chemical strengthening treatment is optimal as a glass material for display incorporated in various image display devices such as liquid crystal, plasma, and organic EL.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。例1~5、及び例7~9は実施例、例6は比較例である。尚、表1において、カッコで示された値は計算値であり、空欄は非含有または未評価であることを示す。また、例1~6の組成においてFeは添加していないので空欄であるが、Feは不可避成分であることから、0.0018モル%程度含有するものと推測される。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. Examples 1 to 5 and 7 to 9 are examples, and example 6 is a comparative example. In Table 1, values shown in parentheses are calculated values, and blanks indicate that they are not contained or not evaluated. Further, although Fe 2 O 3 is not added in the compositions of Examples 1 to 6, it is blank, but since Fe 2 O 3 is an unavoidable component, it is estimated that it is contained at about 0.0018 mol%.
 酸化物基準のモル百分率表示で、表1に記載の組成となるように原料を調製し、白金製るつぼに入れ、1650℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した。
 得られたガラスを型材に流し込み、680℃の温度で1時間保持した後、1℃/分の速度で室温まで冷却し、ガラスブロックを得た。次いで、ガラスブロックを切断、研磨し、両面を鏡面加工することにより、所定のサイズを有するガラスを得た。
The raw materials are prepared so as to have the composition shown in Table 1 in terms of oxide-based mole percentage, put into a platinum crucible, put into a 1650 ° C. resistance heating electric furnace, melted for 3 hours, defoamed, Homogenized.
The obtained glass was poured into a mold material, held at a temperature of 680 ° C. for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min to obtain a glass block. Next, the glass block was cut and polished, and both surfaces were mirror-finished to obtain a glass having a predetermined size.
<T2、T4>
 ガラスの粘度が10dPa・sとなる温度T2及び10dPa・sとなる温度T4は回転式粘度計を用いて測定した。
<T2, T4>
The temperature T2 at which the viscosity of the glass becomes 10 2 dPa · s and the temperature T4 at which the viscosity becomes 10 4 dPa · s were measured using a rotary viscometer.
<スラッジ量、スラッジ成分>
 ガラスに対し、エッチングを行うことでスラッジ量の測定を行った。試料となるガラスは2.5cm×2.5cm×0.55mmのガラス板とし、HF7重量%及びHCl20重量%を含むエッチング液50mLに25℃で3分間浸漬することで、エッチングを行った。生成したスラッジを5Aろ紙にて濾過し、水で洗浄後、乾燥を行い、スラッジの重量を測定した。スラッジ量はガラス1g当たりに換算した。
<Sludge amount, sludge component>
The amount of sludge was measured by etching the glass. The glass used as a sample was a glass plate of 2.5 cm × 2.5 cm × 0.55 mm, and was etched by being immersed in 50 mL of an etching solution containing 7% by weight of HF and 20% by weight of HCl at 25 ° C. for 3 minutes. The produced sludge was filtered with 5A filter paper, washed with water, dried, and the weight of the sludge was measured. The amount of sludge was converted per 1 g of glass.
 また、スラッジの成分は、XRD測定により同定した。詳細な測定条件は以下のとおりである。
 装置:リガク製SmartLab、X線源:CuKα線、X線出力:45kV,200mA、光学系:BB、入射平行スリット:Soller slit5°、入射スリット:1/3°、受光平行スリット:Soller slit5°、スキャンスピード:10°/分、サンプリング幅:0.02°、測定範囲:20~60°、解析:PDXL(ver.2.0.3.0)
Sludge components were identified by XRD measurement. Detailed measurement conditions are as follows.
Device: Rigaku SmartLab, X-ray source: CuKα ray, X-ray output: 45 kV, 200 mA, optical system: BB, incident parallel slit: Soller slit 5 °, incident slit: 1/3 °, receiving parallel slit: Soller slit 5 °, Scan speed: 10 ° / min, sampling width: 0.02 °, measurement range: 20-60 °, analysis: PDXL (ver. 2.0.3.0)
 得られたガラスのT2、T4、スラッジ量、及びスラッジの主成分を表1に示す。 Table 1 shows T2, T4, the amount of sludge, and the main components of the sludge of the obtained glass.
 表1に示されるように、本発明に係るガラスは、例6のガラスに比較して、エッチング時のスラッジ量の少ないガラスであった。 As shown in Table 1, the glass according to the present invention was a glass having a smaller amount of sludge during etching than the glass of Example 6.
<化学強化特性>
 また、厚みが0.55mmであるガラス板を、濃度が100重量%で温度が425℃の溶融硝酸カリウム塩に6時間浸漬することで、化学強化処理を行った。得られた化学強化ガラス板のCS(MPa)及びDOL(μm)の値を表面応力計(折原製作所製)により測定した。結果を表1に示す。
<Chemical strengthening properties>
Further, a chemical strengthening treatment was performed by immersing a glass plate having a thickness of 0.55 mm in molten potassium nitrate having a concentration of 100% by weight and a temperature of 425 ° C. for 6 hours. The values of CS (MPa) and DOL (μm) of the obtained chemically strengthened glass plate were measured by a surface stress meter (manufactured by Orihara Seisakusho). The results are shown in Table 1.
 表1に示されるように、ガラスを同一の化学強化条件で化学強化した場合に、本発明に係る化学強化ガラスは、例6に係る化学強化ガラスと比較して、高いCSを有していた。 As shown in Table 1, when the glass was chemically strengthened under the same chemical strengthening conditions, the chemically strengthened glass according to the present invention had a higher CS than the chemically strengthened glass according to Example 6. .
<DUV耐性>
 各ガラスについて、DUV照射前とDUV照射後の透過率を測定した。すなわち、各ガラスを(Tg+50)℃で1時間熱処理し、1℃/分で室温まで徐冷した後、板厚を同等となるように研磨加工したガラスを台の上に水平に静置し、低圧水銀ランプ(セン特殊光源製PL21-200、主波長185nmおよび254nm)の光をガラス板の上方の5cm離れた位置から10分照射した後、波長380nmにおける透過率を測定した。なお、このときのガラス板の設置場所における254nmの照度は8mW/cmであった(オーク製作所製の照度計UV-M03Aおよび受光器UV-SD25-M10による測定)。透過率は日立ハイテクノロジーズ社製の分光光度計(商品名U-4100)により測定した。
<DUV resistance>
About each glass, the transmittance | permeability before DUV irradiation and after DUV irradiation was measured. That is, each glass was heat-treated at (Tg + 50) ° C. for 1 hour, slowly cooled to room temperature at 1 ° C./minute, and then the glass polished to have the same plate thickness was left on the table horizontally. After irradiating light from a low-pressure mercury lamp (PL21-200 manufactured by Sen Special Light Source, main wavelengths 185 nm and 254 nm) from a position 5 cm above the glass plate for 10 minutes, the transmittance at a wavelength of 380 nm was measured. At this time, the illuminance at 254 nm at the place where the glass plate was installed was 8 mW / cm 2 (measured with an illuminance meter UV-M03A and a photoreceiver UV-SD25-M10 manufactured by Oak Manufacturing Co., Ltd.). The transmittance was measured with a spectrophotometer (trade name U-4100) manufactured by Hitachi High-Technologies Corporation.
 光照射前の波長380nmにおける透過率をT0とし、光照射後の波長380nmにおける透過率をT1としたときの、以下の式で表されるDUV誘起吸収Δαを算出した。なお、DUV照射前後ともに、波長380~780nmにおける透過率のうち、波長380nmにおける透過率が最も低い。そのため、波長380nmにおいて所望の値以上の透過率が得られていれば、波長380~780nmにおいても所望の値以上の透過率が得られていると言える。
  Δα=-ln(T1/T0)
 DUV誘起吸収Δαが0.095未満であればDUV耐性に優れていると言える。
 結果を表1に示す。
The DUV-induced absorption Δα represented by the following formula was calculated, where T0 was the transmittance at a wavelength of 380 nm before light irradiation, and T1 was the transmittance at a wavelength of 380 nm after light irradiation. Note that the transmittance at a wavelength of 380 nm is the lowest among the transmittances at a wavelength of 380 to 780 nm both before and after the DUV irradiation. Therefore, if a transmittance of a desired value or more is obtained at a wavelength of 380 nm, it can be said that a transmittance of a desired value or more is obtained even at a wavelength of 380 to 780 nm.
Δα = -ln (T1 / T0)
If the DUV-induced absorption Δα is less than 0.095, it can be said that the DUV resistance is excellent.
The results are shown in Table 1.
<その他の特性>
 各ガラスについて、ガラス転移点(Tg)及び30~350℃での平均熱膨張係数を熱機械分析装置(TMA)により測定した。また、各ガラスの比重をアルキメデス法により測定した。また、各ガラスのヤング率を超音波パルス法により測定した。
<Other characteristics>
About each glass, the glass transition point (Tg) and the average thermal expansion coefficient in 30-350 degreeC were measured with the thermomechanical analyzer (TMA). Moreover, the specific gravity of each glass was measured by the Archimedes method. Further, the Young's modulus of each glass was measured by an ultrasonic pulse method.
 これらの結果を表1にあわせて示す。 These results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<ミラー定数>
 前術の方法で例1~6のガラスのミラー定数(単位:MPa・m1/2)を測定すると、例1は2.18、例2は2.35、例3は2.08、例4は2.09、例5は2.10、例6は2.06である。また、例7~9のミラー定数は例3と同程度である。実施例のガラスはCSが大きいにも関わらず、ミラー定数が大きいので激しい破壊のおそれは小さいといえる。
<Mirror constant>
When the mirror constant (unit: MPa · m 1/2 ) of the glasses of Examples 1 to 6 was measured by the previous method, Example 1 was 2.18, Example 2 was 2.35, and Example 3 was 2.08. 4 is 2.09, Example 5 is 2.10, and Example 6 is 2.06. In addition, the mirror constants of Examples 7 to 9 are similar to those of Example 3. Although the glass of the example has a large CS, the mirror constant is large, so it can be said that the risk of severe breakage is small.
<内部摩擦>
 本発明のガラス(例3)と特許文献1に記載されたガラス(例6)の内部摩擦を測定した結果を図3に示す。図3のAは実施例(例3)、Bは比較例(例6)のガラスについて、温度に対するtanδの値を示している。
<Internal friction>
The results of measuring the internal friction between the glass of the present invention (Example 3) and the glass described in Patent Document 1 (Example 6) are shown in FIG. 3A shows the value of tan δ with respect to temperature for the glass of the example (Example 3) and B for the glass of the comparative example (Example 6).
 比較例である例6のガラスは、0℃でのtanδと200℃でのtanδ200の比(tanδ/tanδ200)が0.4であり、Naイオンのイオン交換が起こりにくく、Kイオンに起因する構造緩和が起こりやすいことを示している。このようなガラスは、適切な化学強化特性が得られ難い。これに対し、実施例である例3のガラスは0℃でのtanδと200℃でのtanδ200の比が1.81であり適切な化学強化特性が得られる。 The glass of Comparative Example 6 has a ratio of tan δ 0 at 0 ° C. to tan δ 200 at 200 ° C. (tan δ 0 / tan δ 200 ) of 0.4, and ion exchange of Na ions hardly occurs, and K ions It shows that the structural relaxation caused by is likely to occur. Such glass is difficult to obtain appropriate chemical strengthening properties. On the other hand, the glass of Example 3 as an example has a ratio of tan δ 0 at 0 ° C. to tan δ 200 at 200 ° C. of 1.81, and appropriate chemical strengthening characteristics can be obtained.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年6月3日出願の日本特許出願(特願2016-112179)及び2016年10月7日出願の日本特許出願(特願2016-198952)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2016-112179) filed on June 3, 2016 and a Japanese patent application (Japanese Patent Application No. 2016-198952) filed on October 7, 2016, the contents of which are here Incorporated by reference.
1 破壊起点
2 ミラー(mirror)面
3 ミスト(mist)面
4 ハックル(hackle)面
11 試験体
12A,12B 支持部材
13 押圧部材
DESCRIPTION OF SYMBOLS 1 Fracture start point 2 Mirror surface 3 Mist surface 4 Hackle surface 11 Specimen 12A, 12B Support member 13 Press member

Claims (12)

  1.  酸化物基準のモル百分率表示で、
     SiO:60~67%、
     Al:9~13.5%、
     NaO:13.5~18.5%、
     KO:0.1~3%、
     MgO:6~10.5%、及び
     TiO:0%超5%以下を含有し、
     [(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下であり、Al/KOが10超である化学強化用ガラス。
    In mole percentage display on oxide basis,
    SiO 2 : 60 to 67%,
    Al 2 O 3 : 9 to 13.5%,
    Na 2 O: 13.5 to 18.5%,
    K 2 O: 0.1-3%,
    MgO: 6 to 10.5%, and TiO 2 : more than 0% and 5% or less,
    [(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less and Al 2 O 3 / K 2 O is more than 10 glass for chemical strengthening.
  2.  酸化物基準のモル百分率表示で、
     SiO:60~67%、
     Al:9~13.5%、
     NaO:13.5~18.5%、
     KO:0.1~3%、
     MgO:6~10.5%、
     TiO:0~1%、及び
     Fe:0.01~5%を含有し、
     [(NaO+KO×5)/(Al+ZrO+TiO×10)]が2.55以下であり、Al/KOが10超である化学強化用ガラス。
    In mole percentage display on oxide basis,
    SiO 2 : 60 to 67%,
    Al 2 O 3 : 9 to 13.5%,
    Na 2 O: 13.5 to 18.5%,
    K 2 O: 0.1-3%,
    MgO: 6 to 10.5%,
    TiO 2 : 0 to 1%, and Fe 2 O 3 : 0.01 to 5%,
    [(Na 2 O + K 2 O × 5) / (Al 2 O 3 + ZrO 2 + TiO 2 × 10)] is 2.55 or less and Al 2 O 3 / K 2 O is more than 10 glass for chemical strengthening.
  3.  [(MgO/2+NaO+KO×2)/(TiO+ZrO)]が53~150である請求項1または2に記載の化学強化用ガラス。 3. The glass for chemical strengthening according to claim 1, wherein [(MgO / 2 + Na 2 O + K 2 O × 2) / (TiO 2 + ZrO 2 )] is 53 to 150.
  4.  ガラスの粘度が10dPa・sとなる温度T2が1660℃以下である請求項1~3のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 3, wherein a temperature T2 at which the viscosity of the glass becomes 10 2 dPa · s is 1660 ° C or lower.
  5.  ガラスの粘度が10dPa・sとなる温度T4が1255℃以下である請求項1~4のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 4, wherein a temperature T4 at which the viscosity of the glass becomes 10 4 dPa · s is 1255 ° C or lower.
  6.  酸化物基準のモル百分率表示でZrOを0.11%超4.0%以下含む、請求項1~5のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 5, comprising ZrO 2 in a molar percentage display based on an oxide of more than 0.11% and 4.0% or less.
  7.  ミラー定数が1.96MPa・m1/2以上である、請求項1~6のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 6, wherein the mirror constant is 1.96 MPa · m 1/2 or more.
  8.  0℃における内部摩擦値tanδと200℃における内部摩擦値tanδ200の比(tanδ/tanδ200)が1以上2.5未満である請求項1~7のいずれか1項に記載の化学強化用ガラス。 Chemical strengthening according to any one of the internal friction value tan [delta 0 and the ratio of internal friction value tan [delta 200 at 200 ℃ (tanδ 0 / tanδ 200 ) the claims 1 to 7, is less than 1 to 2.5 at 0 ℃ Glass.
  9.  二次イオン質量分析法で測定されるガラス表面から3μmまでの深さ領域におけるS原子の平均存在量が1.0E+19atoms/cm以下である請求項1~8のいずれか1項に記載の化学強化用ガラス。 The chemistry according to any one of claims 1 to 8, wherein the average abundance of S atoms in a depth region from the glass surface to 3 µm as measured by secondary ion mass spectrometry is 1.0E + 19 atoms / cm 3 or less. Tempered glass.
  10.  請求項1~9のいずれか1項に記載の化学強化用ガラスが化学強化された化学強化ガラス。 A chemically strengthened glass obtained by chemically strengthening the glass for chemical strengthening according to any one of claims 1 to 9.
  11.  表面圧縮応力値(CS)が900MPa以上である請求項10に記載の化学強化ガラス。 The chemically strengthened glass according to claim 10, wherein the surface compressive stress value (CS) is 900 MPa or more.
  12.  圧縮応力層深さ(DOL)が30μm以上である請求項10又は11に記載の化学強化ガラス。 The chemically strengthened glass according to claim 10 or 11, wherein the compressive stress layer depth (DOL) is 30 µm or more.
PCT/JP2017/020135 2016-06-03 2017-05-30 Glass for chemical strengthening and chemically strengthened glass WO2017209139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780033344.4A CN109219583A (en) 2016-06-03 2017-05-30 Chemical strengthening glass and chemically reinforced glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016112179 2016-06-03
JP2016-112179 2016-06-03
JP2016198952 2016-10-07
JP2016-198952 2016-10-07

Publications (1)

Publication Number Publication Date
WO2017209139A1 true WO2017209139A1 (en) 2017-12-07

Family

ID=60477520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020135 WO2017209139A1 (en) 2016-06-03 2017-05-30 Glass for chemical strengthening and chemically strengthened glass

Country Status (3)

Country Link
CN (1) CN109219583A (en)
TW (1) TW201811696A (en)
WO (1) WO2017209139A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059457A1 (en) * 2018-09-18 2020-03-26 Agc株式会社 Glass substrate, black matrix substrate, and display panel
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120196110A1 (en) * 2011-01-19 2012-08-02 Takashi Murata Tempered glass and tempered glass sheet
JP2013047174A (en) * 2011-08-22 2013-03-07 Henan Guokong Yufei Electronic Glass Co Ltd Glass composition and glass made of the composition, preparation method and use of glass
JP2013513537A (en) * 2009-12-11 2013-04-22 ショット アクチエンゲゼルシャフト Aluminosilicate glass for touch panel
JP2013071878A (en) * 2011-09-29 2013-04-22 Central Glass Co Ltd Antibacterial glass, and method for manufacturing the same
JP2013116846A (en) * 2011-01-18 2013-06-13 Nippon Electric Glass Co Ltd Tempered glass, and tempered glass plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199150A1 (en) * 2014-06-27 2015-12-30 旭硝子株式会社 Glass and chemically toughened glass using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513537A (en) * 2009-12-11 2013-04-22 ショット アクチエンゲゼルシャフト Aluminosilicate glass for touch panel
JP2013116846A (en) * 2011-01-18 2013-06-13 Nippon Electric Glass Co Ltd Tempered glass, and tempered glass plate
US20120196110A1 (en) * 2011-01-19 2012-08-02 Takashi Murata Tempered glass and tempered glass sheet
JP2013047174A (en) * 2011-08-22 2013-03-07 Henan Guokong Yufei Electronic Glass Co Ltd Glass composition and glass made of the composition, preparation method and use of glass
JP2013071878A (en) * 2011-09-29 2013-04-22 Central Glass Co Ltd Antibacterial glass, and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same
CN115716714B (en) * 2018-07-03 2024-02-13 Agc株式会社 Chemically strengthened glass and method for producing same
WO2020059457A1 (en) * 2018-09-18 2020-03-26 Agc株式会社 Glass substrate, black matrix substrate, and display panel
CN112703172A (en) * 2018-09-18 2021-04-23 Agc株式会社 Glass substrate, black matrix substrate and display panel
JPWO2020059457A1 (en) * 2018-09-18 2021-09-24 Agc株式会社 Glass substrate, black matrix substrate and display panel
CN112703172B (en) * 2018-09-18 2023-03-31 Agc株式会社 Glass substrate, black matrix substrate and display panel
JP7375762B2 (en) 2018-09-18 2023-11-08 Agc株式会社 Glass substrate, black matrix substrate and display panel

Also Published As

Publication number Publication date
CN109219583A (en) 2019-01-15
TW201811696A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
KR102638938B1 (en) Crystallized glass and chemically strengthened glass
US20230234885A1 (en) Chemically strengthened glass, method for producing same, and glass for chemical strengthening
US9060435B2 (en) Glass plate for display device, plate glass for display device and production process thereof
CN106470951B (en) Glass for chemical strengthening and chemically strengthened glass
JP5796581B2 (en) Chemically strengthened glass, chemically strengthened glass and glass plate for display device
KR20200117993A (en) Chemically strengthened glass
WO2018056168A1 (en) Glass capable of being chemically reinforced, and chemically reinforced glass
CN107001109B (en) Glass for chemical strengthening, method for producing glass for chemical strengthening, chemically strengthened glass, and image display device provided with chemically strengthened glass
US20180265398A1 (en) Glass sheet
WO2012077796A1 (en) Process for manufactuing chemically strengthened glass
KR20200139156A (en) Chemically strengthened glass
WO2017209139A1 (en) Glass for chemical strengthening and chemically strengthened glass
KR20230049055A (en) Glass ceramic and chemically strengthened glass
CN115259658B (en) Chemically strengthened glass and chemically strengthened glass
CN108069592B (en) Glass for chemical strengthening and chemically strengthened glass
WO2018124084A1 (en) Glass plate for chemical tempering and method for producing chemically tempered glass plate
WO2017026450A1 (en) Glass having duv resistance
WO2018056170A1 (en) Chemically tempered glass and glass for chemical tempering
WO2023243574A1 (en) Glass for chemical strengthening, and glass
JP2024054788A (en) Glass, glass manufacturing method, chemically strengthened glass, and image display device including the same
EP3004004A1 (en) Novel soda lime silicate glass composition comprising colemanite and a process for the preparation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP