WO2018056168A1 - Glass capable of being chemically reinforced, and chemically reinforced glass - Google Patents

Glass capable of being chemically reinforced, and chemically reinforced glass Download PDF

Info

Publication number
WO2018056168A1
WO2018056168A1 PCT/JP2017/033282 JP2017033282W WO2018056168A1 WO 2018056168 A1 WO2018056168 A1 WO 2018056168A1 JP 2017033282 W JP2017033282 W JP 2017033282W WO 2018056168 A1 WO2018056168 A1 WO 2018056168A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
temperature
chemically strengthened
chemical strengthening
Prior art date
Application number
PCT/JP2017/033282
Other languages
French (fr)
Japanese (ja)
Inventor
健二 今北
円佳 小野
優 村山
和孝 小野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780057539.2A priority Critical patent/CN109715573B/en
Priority to CN202210674176.XA priority patent/CN115231820B/en
Publication of WO2018056168A1 publication Critical patent/WO2018056168A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to a chemically strengthened glass and a chemically strengthened glass.
  • a cover glass for display devices of mobile devices such as mobile phones and smartphones
  • a chemically strengthened glass that is thin but high in strength is used.
  • Patent Document 1 discloses a calculation formula showing the allowable limit of internal tensile stress of tempered glass, and it is said that chemically strengthened glass with less debris scattering can be obtained by strengthening within that range.
  • Patent Document 2 describes a chemically strengthened glass subjected to a two-stage ion exchange treatment as a chemically strengthened glass having high strength and less scattering of fragments.
  • An object of the present invention is to provide a chemically strengthened glass having high strength and less scattering of fragments when broken, and a glass for chemical strengthening useful for producing the chemically strengthened glass.
  • the present inventors considered that how to break chemically strengthened glass depends on the properties of the glass before chemical strengthening. Chemically tempered glass breaks when a crack generated in the glass reaches a portion where tensile stress is applied inside the glass. Since the part to which the tensile stress is applied is considered to be a part that is not ion-exchanged even by the chemical strengthening treatment, it was considered that the crushing characteristics of this part depend on the characteristics of the glass before chemical strengthening.
  • the present inventors have studied glass that cracks are difficult to branch by paying attention to the fact that a large number of cracks are generated when the number of crack branches increases when the glass breaks. As a result, it has been found that a glass having a large mirror constant has a small number of fragments when it is broken even when chemically strengthened. Moreover, the characteristic of glass with a large mirror constant was found.
  • the present invention has been made on the basis of the above findings, and is composed of a lithium aluminosilicate glass having a liquidus temperature T L of a temperature T 4 or less at which the viscosity is 10 4 dPa ⁇ s, and the fictive temperature is a glass transition.
  • a glass for chemical strengthening that is at least 30 ° C. below the point Tg and at most 25 ° C. below the Tg.
  • a mole percentage based on oxides SiO 2 68 ⁇ 72%, the Al 2 O 3 6 ⁇ 10% , 7 ⁇ 11% of Li 2 O, 4 ⁇ 7% of Na 2 O, K 2 O 0 to 3%, MgO 4 to 10%, CaO 0 to 3%, SrO 0 to 2%, BaO 0 to 2%, ZnO 0 to 2%, B 2 O 3 0 to 3%
  • SiO 2 is 60 to 80%
  • Al 2 O 3 is 4 to 25%
  • Li 2 O is 5 to 15%
  • Na 2 O is 1 to 15%
  • MgO 2-25% CaO 0-10%, SrO 0-10%, BaO 0-10%, ZnO 0-10%, B 2 O 3 0-10%
  • P 2 O 5 0-10% TiO 2 0-10% and ZrO 2 0-8%
  • the liquid phase temperature T L is a temperature T at which the viscosity becomes 10 4 dPa ⁇ s.
  • a method for producing a glass for chemical strengthening wherein 4 or less glasses are melted and cooled at an average cooling rate of 10 ° C / min to 300 ° C / min.
  • the stress pattern P1 on the glass inner layer side was extended to the glass surface.
  • the imaginary surface stress value CS1 obtained from the line is a chemically strengthened glass smaller than the surface compressive stress value CS2 obtained from the stress pattern P2 near the glass surface, and the CS1 is 200 MPa or more and the CS2 is 800 MPa.
  • a chemically tempered glass having the above and a mirror constant A of 2.0 MPa ⁇ m 1/2 or more.
  • the chemically tempered glass of the present invention is high in strength and does not break severely when it is broken. Moreover, according to a preferable aspect, devitrification hardly occurs.
  • FIG. 1 is a diagram schematically showing a stress profile of chemically strengthened glass, where the vertical axis represents the compressive stress value and the horizontal axis represents the depth from the glass surface.
  • FIG. 2 is a diagram schematically showing how the cracks around the fracture starting point occur when glass without residual stress is broken by uniform tensile stress.
  • FIG. 3 is a graph showing the relationship between the refractive index and the virtual temperature of the glass 1.
  • FIG. 4 is a schematic diagram showing a test method for a drop-on-sand test.
  • chemically tempered glass refers to glass after being subjected to chemical tempering treatment.
  • Chemical strengthening glass refers to glass before chemical strengthening treatment.
  • chemical strengthening glass is glass that can be chemically strengthened.
  • the mother composition of chemically strengthened glass is a glass composition of chemically strengthened glass. In chemically strengthened glass, a compressive stress layer by ion exchange is usually formed on the glass surface portion, so that the glass composition of the portion not ion-exchanged matches the mother composition of chemically strengthened glass.
  • the glass composition is expressed in terms of a mole percentage based on an oxide, and mol% may be simply described as%. “Substantially not contained” in the glass composition means that it is not contained except for inevitable impurities contained in raw materials and the like, that is, it is not intentionally contained. Specifically, for example, the content in the glass composition is less than 0.1 mol%.
  • the “stress profile” is a pattern representing a compressive stress value with the depth from the glass surface as a variable. A negative compressive stress value means tensile stress.
  • the “friability” of glass refers to a property in which fragments are easily scattered when glass is broken.
  • the chemically strengthened glass has a compressive stress layer formed on the surface by a chemical strengthening process (ion exchange process).
  • ion exchange process the surface of the glass is ion exchanged to form a surface layer in which compressive stress remains.
  • a metal ion typically Li ion, Na ion
  • a metal ion having a small ionic radius on the surface of the glass plate is ion-exchanged at a temperature below the glass transition point Tg (typically Li ion, Na ion).
  • Li ions are Na ions or K ions, and Na ions are substituted with K ions).
  • Chemically tempered glass having a large compressive stress value CS 0 on the glass surface is hard to break even if scratches occur on the surface because the scratches are not easily spread by being pressed by the surface compressive stress. Further, since the tensile stress applied to the outside of the curved surface when the glass plate is bent is offset by the surface compressive stress, it is difficult to break even when bent.
  • chemically strengthened glass having a large compressive stress depth DOL is less likely to break because the tip of a relatively deep flaw remains in the compressive stress layer. Therefore, chemically strengthened glass is considered to be harder to break as the CS 0 on the glass surface is larger and the DOL is larger.
  • CS 0 and DOL are increased simultaneously, the internal tensile stress value CT increases accordingly, and the friability tends to increase.
  • FIG. 1 is a graph schematically showing a stress profile of chemically strengthened glass which is one embodiment of the present invention, in which the vertical axis represents the compressive stress value and the horizontal axis represents the depth from the glass surface.
  • the thick solid line is a line obtained by approximating the stress pattern P1 on the glass inner layer side and the stress pattern P2 near the glass surface by a linear function.
  • the virtual surface compressive stress value CS1 obtained from the line (dotted line p1 in FIG. 1) obtained by extending the stress pattern P1 to the glass surface is smaller than the surface compressive stress value CS2 obtained from the stress pattern P2.
  • the actual surface compressive stress value CS 0 is approximately equal to CS2.
  • the depth DOL2 at which the stress value becomes zero on the line obtained by extending the stress pattern P2 (dotted line p2 in FIG. 1) is smaller than the depth DOL1 at which the stress value becomes zero in the stress pattern P1.
  • the actual compressive stress layer depth DOL is substantially equal to DOL1.
  • Such a stress profile is preferable because even if the compressive stress value on the glass surface is large, the internal tensile stress CT is relatively small.
  • Such a stress profile is obtained, for example, by a two-step chemical strengthening process.
  • CS1 is preferably 200 MPa or more.
  • CS 0 (and CS2) is preferably 800 MPa or more.
  • CS2 is, for example, preferably 2000 MPa or less, more preferably 1500 MPa or less, and further preferably 1000 MPa or less in order to suppress crushability.
  • CS2 that is the surface compressive stress value is increased, the internal tensile stress value CT is increased, so that the friability is increased.
  • the virtual surface stress value CS1 obtained from a line obtained by extending the stress pattern P1 on the glass inner layer side to the glass surface is obtained from the surface compressive stress obtained from the stress pattern P2 in the portion close to the glass surface.
  • Mirror constant A of chemically tempered glass of the present invention is preferably 2.0 MPa ⁇ m 1/2 or more, more preferably 2.1 MPa ⁇ m 1/2 or more, more preferably 2.3 MPa ⁇ m 1/2 or more.
  • Chemically tempered glass having a large mirror constant A has a small number of fragments when it is broken, so that its friability is not large even if the internal tensile stress CT is large.
  • FIG. 2 schematically shows how the glass without residual stress breaks around the fracture starting point when it is broken by uniform tensile stress (see ASTM C-1678-10).
  • the chemically strengthened glass has residual stress, the appearance around the fracture starting point of the chemically strengthened glass may be greatly different from that in FIG.
  • a smooth surface called a mirror surface is generated around the fracture starting point indicated by a black circle.
  • a slightly rough boundary surface called a mist surface is generated around the surface, and a rough surface called a hackle is generated at the tip.
  • Mirror constant A depends on glass composition and fictive temperature. The relationship between the mirror constant A and the glass composition and the relationship between the mirror constant A and the virtual temperature will be described in detail later.
  • Patent Document 1 discloses a formula indicating the allowable limit of the internal tensile stress CT of chemically strengthened glass.
  • CT is ⁇ 38.7 ⁇ ln (t) +48. It should be 2 [MPa] or less.
  • the chemically strengthened glass of one embodiment of the present invention has a large Miller constant A, even if the internal tensile stress value CT is larger than ⁇ 38.7 ⁇ ln (t) +48.2, fragments are not easily scattered.
  • SiO 2 is 60 to 80%
  • Al 2 O 3 is 4 to 25%
  • Li 2 O is 5 to 15%
  • This preferred glass composition will be described in detail later.
  • the glass for chemical strengthening of the present invention is preferably lithium aluminosilicate glass.
  • Lithium aluminosilicate glass undergoes ion exchange between Li ions in the glass and Na ions in the molten salt by an ion exchange treatment with a sodium salt such as sodium nitrate, so that a deep surface compression layer is easily formed.
  • ion exchange treatment with potassium salt for example, potassium nitrate
  • ion exchange treatment with a mixed salt of sodium salt and potassium salt for example, sodium nitrate-potassium nitrate mixed salt
  • the glass for chemical strengthening of the present invention preferably generates a surface compressive stress of 200 MPa or more by an ion exchange treatment with a sodium salt. Such glass is easy to obtain high strength by chemical strengthening.
  • the surface compressive stress when treated for 1 hour in 450 ° C. sodium nitrate is preferably 200 MPa or more, more preferably 250 MPa or more, and even more preferably 300 MPa or more.
  • the glass for chemical strengthening of the present invention preferably generates a surface compressive stress of 800 MPa or more by ion exchange treatment with a potassium salt.
  • the surface compressive stress at the time of immersion in 450 ° C. potassium nitrate for 6 hours is preferably 800 MPa or more, more preferably 850 MPa or more, and further preferably 900 MPa or more.
  • a preferred stress profile is obtained by chemically strengthening such chemically strengthened glass.
  • the liquid phase temperature TL of the glass for chemical strengthening is preferably a temperature T 4 or less at which the viscosity becomes 10 4 dPa ⁇ s.
  • T L is more preferably 10 ° C. lower temperature (T 4 -10 °C) less than T 4
  • T 4 is more preferably -30 ° C. or less, T 4 -50 ° C. or less Is even more preferable.
  • TL is preferably T 4 ⁇ 150 ° C. or higher, more preferably T 4 ⁇ 125 ° C. or higher, and further preferably T 4 ⁇ 100 ° C. or higher.
  • the mirror constant A of the glass for chemical strengthening is preferably 2.0 MPa ⁇ m 1/2 or more. Such a glass for chemical strengthening is less likely to splatter when broken after chemical strengthening.
  • Mirror constant A glass for chemical strengthening is more preferably 2.1 MPa ⁇ m 1/2 or more, more preferably 2.3 MPa ⁇ m 1/2 or more.
  • the mirror constant A tends to increase as the fictive temperature Tf of the glass decreases.
  • the fictive temperature Tf of the glass for chemical strengthening is preferably near the glass transition point Tg of the glass. Specifically, a temperature of 25 ° C. higher than Tg (described as Tg + 25 ° C.) or lower is preferable, Tg + 20 ° C. or lower is more preferable, and Tg + 15 ° C. or lower is more preferable.
  • the fictive temperature Tf is preferably as small as possible to increase the mirror constant A. However, if the fictive temperature Tf is significantly lower than Tg, cooling is performed at a very slow rate, resulting in poor glass productivity. Therefore, Tf is preferably at least 30 ° C. lower than Tg (Tg-30 ° C.), more preferably at least Tg-10 ° C., and even more preferably at least Tg.
  • the fictive temperature Tf of the glass becomes lower as the cooling rate after melting is smaller. Therefore, in order to obtain glass with a very low fictive temperature, it is necessary to cool slowly over a long period of time.
  • the fictive temperature Tf is preferably Tg-30 ° C. or higher, more preferably Tg-10 ° C. or higher, and further preferably Tg or higher, as described above.
  • the fictive temperature Tf is preferably Tg-30 ° C. or higher and Tg + 25 ° C. or lower, more preferably Tg ⁇ 10 ° C. or higher and Tg + 20 ° C. or lower, and further preferably Tg or higher and Tg + 15 ° C. or lower.
  • the fictive temperature Tf of glass can be experimentally determined from the refractive index of glass.
  • a plurality of glass pieces having the same glass composition and different fictive temperatures are prepared by a method of rapidly cooling glass held at a certain temperature from the temperature. Since the fictive temperature of these glass pieces is the temperature that was maintained before quenching, a calibration curve in which the refractive index is plotted against the fictive temperature can be created by measuring the refractive index of these glass pieces. An example is shown in FIG. Even if the cooling rate or the like is not clear, by measuring the refractive index, the virtual temperature can be obtained from the calibration curve created for the glass having the same composition.
  • Chemically strengthened glass of the present invention for example, a SiO 2 60 ⁇ 80%, the Al 2 O 3 4 ⁇ 25% , the Li 2 O 5 ⁇ 15%, a Na 2 O 1 ⁇ 15%, K 2 O 0-5%, MgO 2-25%, CaO 0-10%, SrO 0-10%, BaO 0-10%, ZnO 0-10%, B 2 O 3 0-10% the P 2 O 5 0 ⁇ 10% , Ti 2 O 0 to 10% and ZrO 2 are those containing 0-8% preferred.
  • Such glasses have excellent chemical strengthening properties.
  • the glass for chemical strengthening of the present invention is SiO 2 60-60%, Al 2 O 3 7-30%, Li 2 O 5-15%, Na 2 O 1-25%, K 2 O 0 ⁇ 5%, MgO 3 ⁇ 25%, CaO 0 ⁇ 10%, SrO 0 ⁇ 10%, BaO 0 ⁇ 10%, ZnO 0 ⁇ 10%, B 2 O 3 0 ⁇ 5%, P the 2 O 5 0 ⁇ 4%, it is preferable that the TiO 2 containing 0-10%.
  • Such glass has a large mirror constant A.
  • SiO 2 is 67 to 75%
  • Al 2 O 3 is 4 to 15%
  • Li 2 O is 5 to 15%
  • Na 2 O is 1 to 9%
  • K 2 O is 0 to 5%
  • MgO is 4%.
  • CaO 0 ⁇ 4%, SrO 0 ⁇ 5%, BaO 0 ⁇ 5%, ZnO 0 ⁇ 5%, B 2 O 3 0 ⁇ 10%, P 2 O 5 0 ⁇ 10 %, TiO 2 0 to 4%, and ZrO 2 0 to 8% are more preferable.
  • Such glass has excellent chemical strengthening properties, little scattering of fragments at the time of breakage, and devitrification hardly occurs.
  • SiO 2 is a component constituting the skeleton of glass. Moreover, it is a component which raises chemical durability, and is a component which reduces generation
  • the SiO 2 content is preferably 60% or more, more preferably 63% or more, further preferably 65% or more, further preferably 67% or more, and particularly preferably 68% or more.
  • the SiO 2 content is more than 80%, the meltability is remarkably lowered, so 80% or less is preferable. For ease of melting, it is more preferably 75% or less, still more preferably 72% or less, and particularly preferably 70% or less.
  • Al 2 O 3 is an effective component for improving the ion exchange performance during the chemical strengthening treatment and increasing the surface compressive stress value CS 0 after the chemical strengthening. Moreover, it is a component which has the effect of improving the mirror constant A of glass. Moreover, it is a component which raises Tg of glass, and is also a component which raises Young's modulus.
  • the Al 2 O 3 content is preferably 4% or more, and more preferably 6% or more.
  • the Al 2 O 3 content is preferably 7% or more, more preferably 10% or more, and further preferably 13% or more.
  • the Al 2 O 3 content is more than 30%, the acid resistance of the glass tends to decrease, or the devitrification temperature tends to increase. Moreover, there exists a possibility that the viscosity of glass may increase and a meltability may fall. Therefore, the Al 2 O 3 content is preferably 30% or less, more preferably 25% or less, still more preferably 20% or less, and particularly preferably 15% or less.
  • the content of Al 2 O 3 is preferably 11% or less, more preferably 10% or less, still more preferably 9% or less, and particularly preferably 8% or less.
  • Li 2 O is a component that forms a surface compressive stress layer by ion exchange during chemical strengthening treatment with Na salt.
  • the Li 2 O content is preferably 5% or more because the compressive stress generated by chemical strengthening is increased, and more Preferably it is 6% or more, More preferably, it is 7% or more.
  • the content of Li 2 O exceeds 15%, the acid resistance of the glass is significantly reduced. It is preferably 15% or less, more preferably 13% or less. 11% or less is more preferable.
  • Na 2 O is a component capable of forming a surface compressive stress layer by ion exchange during chemical strengthening treatment and improving the meltability of glass.
  • the content of Na 2 O is preferably 1% or more, more preferably 3% or more, still more preferably 4% or more, and particularly preferably 6% or more.
  • the surface compressive stress value CS 0 formed by ion exchange is remarkably lowered, so 15% or less is preferable.
  • the content of Na 2 O is more preferably 9% or less, still more preferably 6% or less, and particularly preferably 5% or less.
  • the content of Na 2 O is preferably 10 % Or less, more preferably 9% or less, further preferably 7% or less, particularly preferably 6% or less, and most preferably 5% or less. Further, the content of Na 2 O is preferably 2% or more, more preferably 3% or more, and further preferably 4% or more.
  • K 2 O may be contained to improve ion exchange performance during chemical strengthening treatment.
  • the content is preferably 0.5% or more, and more preferably 1% or more.
  • the content of K 2 O is more than 5%, the friability of the chemically strengthened glass is lowered, so the content of K 2 O is preferably 5% or less.
  • the content of K 2 O is more preferably 3% or less, and further preferably 2% or less.
  • MgO is preferably contained in order to increase the surface compressive stress value CS 0 of the chemically strengthened glass. In addition, there is an effect of improving the mirror constant A.
  • the content of MgO is preferably 2% or more, more preferably 3% or more, still more preferably 4% or more, and particularly preferably 5% or more.
  • the content of MgO is more than 25%, the glass for chemical strengthening tends to be devitrified when melted. Therefore, the content is preferably 25% or less.
  • the content of MgO is more preferably 15% or less, and further preferably 10% or less.
  • CaO is a component that improves the meltability of glass, has an effect of improving the mirror constant A, and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.2% or more, still more preferably 0.3% or more, and particularly preferably 0.4% or more. Preferably it is 0.5% or more.
  • the content exceeds 14%, the ion exchange performance at the time of chemical strengthening may be lowered, so 14% or less is preferable. More preferably, it is 10% or less, More preferably, it is 8% or less, More preferably, it is 4% or less, Most preferably, it is 3% or less. 1% or less is preferable.
  • SrO is a component that improves the meltability of glass, has the effect of improving the mirror constant A, and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.2% or more, further preferably 0.3% or more, particularly preferably 0.4% or more, and most preferably 0.5% or more.
  • the content exceeds 10%, the ion exchange performance at the time of chemical strengthening treatment may be lowered, so 10% or less is preferable.
  • the SrO content is more preferably 8% or less, further preferably 5% or less, particularly preferably 2% or less, and most preferably 1% or less.
  • BaO is a component that improves the meltability of glass, has an effect of improving the mirror constant A, and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.2% or more, still more preferably 0.3% or more, and particularly preferably 0.4% or more. Preferably it is 0.5% or more.
  • the BaO content exceeds 10%, the ion exchange performance at the time of chemical strengthening treatment decreases, so 10% or less is preferable.
  • the content of BaO is more preferably 8% or less, further preferably 5% or less, particularly preferably 2% or less, and most preferably 1% or less.
  • ZnO is a component that improves the meltability of the glass and may be contained. Content in the case of containing ZnO becomes like this. Preferably it is 0.25% or more, More preferably, it is 0.5% or more. On the other hand, when the ZnO content exceeds 10%, the weather resistance of the glass is significantly lowered.
  • the content of ZnO is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less, still more preferably 2% or less, and particularly preferably 1% or less.
  • B 2 O 3 is a component that improves the meltability. Moreover, it is a component which improves the chipping resistance of glass.
  • B 2 O 3 is not essential, but the content in the case of containing B 2 O 3 is preferably 0.5% or more, more preferably 1% or more, further preferably, in order to improve the meltability. 2% or more.
  • the content of B 2 O 3 exceeds 10%, striae are generated at the time of melting, and the quality of the chemically strengthened glass tends to be lowered, so that it is preferably 10% or less.
  • the content of B 2 O 3 is more preferably 5% or less, still more preferably 3% or less, and particularly preferably 1% or less. In order to make acid resistance high, it is preferable not to contain substantially.
  • P 2 O 5 is a component that improves ion exchange performance and chipping resistance during chemical strengthening treatment.
  • P 2 O 5 is not essential, but the content when P 2 O 5 is contained is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more.
  • the content of P 2 O 5 is more than 10%, the acid resistance is remarkably lowered, so 10% or less is preferable.
  • the content of P 2 O 5 is more preferably 4% or less, further preferably 3% or less, still more preferably 2% or less, and particularly preferably 1% or less. In order to make acid resistance high, it is preferable not to contain substantially.
  • TiO 2 is a component that increases the surface compressive stress value CS 0 due to ion exchange during the chemical strengthening treatment, and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.15% or more, still more preferably 0.2% or more, and most preferably 0.5% or more.
  • the content is more than 10%, devitrification tends to occur at the time of melting, and the quality of chemically strengthened glass may be deteriorated, so 10% or less is preferable.
  • the content is more preferably 4% or less, further preferably 2% or less, and still more preferably 1% or less.
  • ZrO 2 is a component that increases the surface compressive stress value CS 0 due to ion exchange during the chemical strengthening treatment, and may be contained.
  • the content is preferably 0.5% or more, more preferably 1% or more.
  • the content is preferably 8% or less, more preferably 4% or less, still more preferably 3% or less, and particularly preferably 2% or less.
  • Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 may be included.
  • the content is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, particularly preferably 2% or more, most preferably Preferably it is 2.5% or more.
  • the contents of Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 are each over 8%, the glass tends to be devitrified at the time of melting, and the quality of the chemically strengthened glass may be deteriorated.
  • Y 2 O 3 , La 2 O 3 and Nb 2 O 5 are each preferably 8% or less, more preferably 6% or less, still more preferably 5% or less, and particularly preferably 4%. Or less, most preferably 3% or less.
  • Ta 2 O 5 and Gd 2 O 3 may be contained in a small amount in order to improve the crushability of chemically strengthened glass.
  • the refractive index and the reflectance are increased, so 1% or less is preferable, and 0.5% or less. Is more preferable, and it is still more preferable not to contain.
  • coloring and using glass you may add a coloring component in the range in which a desired chemical strengthening characteristic is acquired.
  • the coloring component include Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , TiO 2 , CeO 2 , and Er 2.
  • O 3 , Nd 2 O 3 and the like are preferable.
  • the content of the coloring components is preferably 7% or less in total because glass devitrification is suppressed. This content is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. When it is desired to increase the visible light transmittance of the glass, it is more preferable that these components are not substantially contained.
  • SO 3 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained. It is preferable not to contain As 2 O 3 . When containing Sb 2 O 3 content of preferably 0.3% or less, more preferably 0.1% or less, and most preferably substantially not contained.
  • fracture toughness of the glass for chemical strengthening preferably 0.70 MPa ⁇ m 1/2 or more, more preferably 0.75 MPa ⁇ m 1/2 or more, more preferably 0.77MPa ⁇ m 1/2 or more, particularly preferably 0.80 MPa ⁇ m 1/2 or higher, 0.82 MPa ⁇ m 1/2 or more is most preferred.
  • the fracture toughness value is 0.70 MPa ⁇ m 1/2 or more, the friability of the glass can be effectively suppressed.
  • the Young's modulus of the glass for chemical strengthening of the present invention is preferably 74 GPa or more, more preferably 78 GPa or more, and further preferably 82 GPa or more.
  • the upper limit of the Young's modulus is not particularly limited, but is, for example, 90 GPa or less, preferably 88 GPa or less.
  • the Young's modulus can be measured by, for example, an ultrasonic pulse method.
  • the liquid phase temperature TL of the glass for chemical strengthening of the present invention is preferably a temperature T 4 or less at which the viscosity becomes 10 4 dPa ⁇ s. In that case, it is easy to produce a glass plate by the float process.
  • T L is preferably not more than T 4 from 10 ° C. lower temperature (T 4 -10 °C), T 4 , more preferably -30 ° C. or less, T 4 -50 ° C. The following is more preferable.
  • TL is preferably T 4 ⁇ 150 ° C. or higher, more preferably T 4 ⁇ 125 ° C. or higher, and further preferably T 4 ⁇ 100 ° C. or higher.
  • the chemically strengthened glass can be produced, for example, as follows.
  • the glass for chemical strengthening treatment is preferably the glass for chemical strengthening of the present invention.
  • the chemical strengthening glass may be subjected to mechanical processing such as cutting, end surface processing, and drilling processing according to the application before chemical strengthening treatment is performed to obtain chemically strengthened glass. If the glass plate is cut or chamfered before the chemical strengthening treatment, a compressive stress layer is also formed on the end face by the subsequent chemical strengthening treatment, which is preferable.
  • the chemical strengthening treatment is performed, for example, by cutting the manufactured chemical strengthening glass into a desired size and then preheating the chemical strengthening glass to about 400 ° C., and in the molten salt, Li ions contained in the glass and the molten salt are contained in the molten salt.
  • the glass can be strengthened by ion exchange of Na ions or Na ions contained in the glass and K ions in the molten salt. Further, after ion exchange in a molten salt containing a specific salt, an acid treatment and an alkali treatment may be performed to obtain a chemically strengthened glass with higher strength.
  • the chemical strengthening treatment is performed, for example, by immersing the glass plate in a molten salt such as potassium nitrate heated to 360 to 600 ° C. for 0.1 to 500 hours. be able to.
  • the heating temperature of the molten salt is preferably 375 to 500 ° C.
  • the immersion time of the glass plate in the molten salt is preferably 0.3 to 200 hours.
  • Examples of molten salts for performing chemical strengthening treatment include nitrates, sulfates, carbonates, chloride salts and the like.
  • examples of the nitrate include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, and silver nitrate.
  • examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, and the like.
  • Examples of the carbonate include lithium carbonate, sodium carbonate, and potassium carbonate.
  • Examples of the chloride salt include lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride and the like.
  • Adjustment of surface compressive stress CS 0 of chemically strengthened glass for example the Na concentration in the molten potassium nitrate salt used in the ion-exchange, it is possible by adjusting the reinforced time and / or molten salt temperature.
  • the compression stress layer depth DOL can be adjusted by adjusting the Na concentration, the strengthening time and / or the molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain a higher DOL, the temperature of the molten salt may be increased.
  • Adjustment of CT of chemically strengthened glass is possible by adjusting CS 0 and DOL described above.
  • the chemical strengthening treatment may be performed only once, or multiple times of chemical strengthening treatment (multi-stage strengthening) may be performed under two or more different conditions.
  • multi-stage strengthening may be performed under two or more different conditions.
  • the first-stage chemical strengthening process after performing the chemical strengthening process under the condition that the CS is relatively low, the second-stage chemical strengthening process is performed under the condition that the CS is relatively high. Doing strengthening, while increasing the surface compressive stress CS 0 of chemically strengthened glass, it is possible to suppress the internal tensile stress CT.
  • the chemically strengthened glass of the present invention can be produced by subjecting the obtained glass plate to chemical strengthening treatment, followed by washing and drying.
  • Chemically tempered glass can be cut after chemical tempering treatment.
  • a cutting method scribing and breaking with a normal wheel tip cutter can be applied, and laser cutting is also possible.
  • the cutting edge may be chamfered after cutting.
  • the chamfering may be a mechanical grinding process or a method of treating with a chemical solution such as hydrofluoric acid.
  • the glass for chemical strengthening of the present invention is produced, for example, by appropriately preparing a glass raw material, heating and melting at about 1500 to 1700 ° C., molding and cooling.
  • Molten glass obtained by melting a glass raw material is usually formed by homogenization by defoaming, stirring, or the like.
  • a well-known float method, down draw method, press method or the like is used as a forming method when the glass for chemical strengthening is formed on a plate. Or you may cast, shape
  • the cooling rate in the molding step is preferably 300 ° C./min or less, more preferably 120 ° C./min or less, and further preferably 90 ° C./min or less in order to lower the fictive temperature.
  • the cooling rate is slow, not only the production efficiency of the glass plate is lowered, but the glass tends to be devitrified. In particular, lithium aluminosilicate glass is liable to be devitrified because lithium aluminosilicate crystals are likely to precipitate.
  • the cooling rate is preferably 10 ° C./min or more in order to suppress devitrification of the glass.
  • the chemically strengthened glass of the present invention is subjected to a polishing process as necessary, but the main surface of the chemically strengthened glass can be treated with a fluorine agent in addition to or in place of the polishing process.
  • the float process is preferable as the forming method, especially considering the production of a large glass for chemical strengthening. Then, it cut
  • the thickness t of the glass for chemical strengthening of the present invention is selected according to the application.
  • the thickness t is preferably 2.0 mm or less, more preferably 1.0 mm or less, and 0.75 mm or less. Is more preferable.
  • the thickness t is usually 0.1 mm or more.
  • the chemically strengthened glass of the present invention has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected. Specifically, it is particularly useful as a cover glass used for mobile devices such as mobile phones, smartphones, personal digital assistants (PDAs), and tablet terminals. Furthermore, non-portable products such as televisions (TVs), personal computers (PCs), cover glass for display devices such as touch panels, wall surfaces of elevators, wall surfaces of buildings such as houses and buildings (full display), and construction of window glass, etc. It is also useful for interior materials such as automobile materials, table tops, automobiles and airplanes.
  • TVs televisions
  • PCs personal computers
  • cover glass for display devices such as touch panels, wall surfaces of elevators, wall surfaces of buildings such as houses and buildings (full display), and construction of window glass, etc. It is also useful for interior materials such as automobile materials, table tops, automobiles and airplanes.
  • Glass transition point Tg The glass transition point Tg was determined from the thermal expansion curve obtained by the method described in JIS R3102 (1995). (Young's modulus, Poisson's ratio) The Young's modulus and Poisson's ratio of the glass plate obtained by the above procedure were measured by the ultrasonic pulse method.
  • the operation for examining the presence or absence of crystal precipitation was repeated while changing the holding temperature, and the lowest temperature at which no crystal was precipitated was defined as the liquidus temperature TL . From the relationship between temperature and viscosity obtained with a rotational viscometer, the viscosity at the liquidus temperature was obtained and defined as devitrification viscosity.
  • Glass 2 simulates the thermal history of glass produced by the fusion method, and the fictive temperature was Tg + 50 ° C.
  • Glass 3 simulates the thermal history of glass produced by the float process, and the fictive temperature was Tg + 30 ° C. (Mirror constant)
  • the mirror constant A was measured by the following procedure. However, Example 3 and Example 4 were calculated from a sample having a fictive temperature near Tg and a mirror constant of Tg + 60 ° C. It processed to the magnitude
  • a four-point bending test was performed on a glass plate which was scratched with the span of the four-point bending jig set to the load side (upper): 10 mm and the support side (lower): 30 mm. Apply the adhesive tape on the opposite side of the scratched and heat-treated glass, apply the load with the scratched surface down (the surface with the adhesive tape applied up), and the load when crushed It was measured. The stress at the time of crushing was calculated
  • (3F (Ls ⁇ Ll)) / (2wh 2 )
  • stress during crushing (MPa)
  • F load during crushing (N)
  • Ls distance between lower fulcrums (mm)
  • Ll distance between upper load points (mm)
  • H sample thickness (mm).
  • Glass 1 was subjected to chemical strengthening treatment at 450 ° C. for 1 hour using sodium nitrate, glass 2 was subjected to chemical treatment at 450 ° C. for 6 hours using potassium nitrate, and glass 3 was subjected to chemical strengthening treatment at 425 ° C. for 12 hours using potassium nitrate. .
  • the stress of the glass after chemical strengthening treatment was measured to determine CS 0 , DOL, and CT.
  • the glass used had a thickness t of 0.8 mm, and ⁇ 38.7 ⁇ ln (t) +48.2 was 56.5 MPa.
  • the number of glass fragments after chemical strengthening treatment was measured by the following method. Using a HMV micro Vickers hardness tester manufactured by SHIMADZU, a regular quadrangular pyramid-shaped 60 ° (face-to-face) indenter is pushed into the glass after chemical strengthening at the following indenter load speed, load 4 kgf, and indentation time 15 sec. If the glass is not crushed as a result of the indentation, the indentation load is increased by 0.5 kgf. The number of debris when crushed is taken as the number of crushed pieces. If the number of crushing is less than 10, it can be said that it is suitable for a cover glass of mobile devices, for example. Indenter loading speed: 260 ⁇ m / sec until touching the glass surface, 5 to 120 ⁇ m / sec after glass penetration
  • FIG. 4 is a schematic diagram showing a test method of a drop-on-sand test.
  • chemically tempered glass 13 50 mm ⁇ 50 mm ⁇ thickness 0.8 mm
  • sponge double-sided tape 12 # manufactured by Sekisui Chemical Co., Ltd.
  • a hard nylon mock plate 11 50 mm ⁇ 50 mm ⁇ thickness 18 mm, weight: 54 g
  • 2310, 50 mm ⁇ 50 mm ⁇ thickness 3 mm to prepare a measurement sample 10.
  • 1 g of silica sand 22 No.
  • Glasses 2 and 3 used in Examples C and D were severely crushed when a tensile stress exceeding the limit CT (56.8 MPa) shown in Patent Document 1 was applied.
  • the glass after chemical strengthening applied with an internal tensile stress exceeding the conventional limit CT (56.8 MPa) has a large number of fractures of 10 or more, and the result of the drop-on-sand test is not good. It was confirmed that the glasses of Examples C and D had a small mirror constant.
  • Examples A and B using glass 1 had a mirror constant of 2.0 MPa ⁇ m 1/2 or more.
  • Example A Even after chemically strengthened glass to which internal tensile stress exceeding the conventional limit CT (56.8 MPa) was applied, the number of fractures was small, and the results of a drop-on-sand test were also good. Moreover, when Example A and Example B are compared, even if it is the same glass composition, it turns out that a mirror constant is so large that virtual temperature is low.
  • Table 3 shows the results of measuring the refractive index for Examples 1 to 7 and obtaining the fictive temperature from the calibration curve prepared by the following method.
  • the calibration curve is created by holding glass plates of 15 mm ⁇ 15 mm ⁇ 0.8 mm thickness at a high temperature for each of the glass 1, 4, 5, 6, 7 and then rapidly cooling, each of the virtual temperatures being Tg + 50 ° C., The glass plates of Tg + 20 ° C., Tg + 5 ° C., Tg ⁇ 10 ° C., and Tg ⁇ 30 ° C. were adjusted, and the refractive index was measured to plot the relationship between the fictive temperature and the refractive index.
  • FIG. 3 is a calibration curve for the glass 1.
  • the glass whose fictive temperature was adjusted was obtained, for example, by maintaining the glass at a temperature higher by 50 ° C. than the Tg of the glass, and then quenching by putting it into water to obtain a glass plate having a fictive temperature of Tg + 50 ° C.
  • Example 4 since CS2 and DOL2 could not be measured, the surface was treated with a photoelastic scattering type stress analyzer (provisionally named SLPII) after treatment with a potassium nitrate molten salt at 450 ° C. for 48 hours.
  • the compressive stress value and the compressive stress layer depth are measured, and the surface compressive stress value does not depend on the processing time, and the compressive stress layer depth is proportional to the square root of the processing time.
  • CS2 and DOL2 when time processing was performed were calculated.
  • Example 1 surface compressive stress CS 0 higher by chemical strengthening is obtained and, devitrification was observed.
  • Example 4 T L is high glass than T 4, devitrification was severe. Comparing Example 1 and Example 5, it can be seen that even glasses having the same composition are easily devitrified when the cooling rate is very slow and the fictive temperature is low. In Example 7, which did not devitrify even when the cooling rate was very low, CS 0 and DOL did not increase. This is because the glass composition is different. When Example 1 and Example 7 are compared, Example 7 with a high fictive temperature even with the same glass composition has low CS2 and insufficient strength.
  • Measurement sample 11 Mock plate 12: Sponge double-sided tape 13: Chemically tempered glass 21: Metal plate 22: Silica sand

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The purpose of the present invention is to provide: a chemically reinforced glass which has high strength and undergoes the scattering of shards to a reduced extent upon breakage; and a glass capable of being chemically reinforced, which is useful for the production of the chemically reinforced glass. The present invention relates to a glass capable of being chemically reinforced, which is composed of a lithium aluminosilicate glass, wherein the liquidus temperature TL of the lithium aluminosilicate glass is equal to or lower than a temperature T4 at which the viscosity of the lithium aluminosilicate glass becomes 104 dPa·s, and the fictive temperature of the lithium aluminosilicate glass is equal to or higher than a temperature lower by 30°C than the glass transition temperature Tg of the lithium aluminosilicate glass and is equal to or lower than a temperature higher by 25°C than the Tg.

Description

化学強化用ガラスおよび化学強化ガラスChemically strengthened glass and chemically strengthened glass
 本発明は、化学強化用ガラスおよび化学強化ガラスに関する。 The present invention relates to a chemically strengthened glass and a chemically strengthened glass.
 携帯電話、スマートフォン等のモバイル機器のディスプレイ装置のカバーガラスとして、薄くても強度の高い化学強化ガラスが用いられている。 As a cover glass for display devices of mobile devices such as mobile phones and smartphones, a chemically strengthened glass that is thin but high in strength is used.
 化学強化ガラスにおいては、表面圧縮応力値(CS)が大きく、圧縮応力層の深さ(DOL)が大きいほど強度が高い傾向がある。一方で、表面圧縮応力との均衡を保つように、ガラス内部には内部引張応力(CT)が発生する。内部引張応力が大きいガラスが割れるときには、激しく割れて破片数が多くなり、破片が飛散する傾向がある。 In chemically strengthened glass, the strength tends to be higher as the surface compressive stress value (CS) is larger and the depth (DOL) of the compressive stress layer is larger. On the other hand, internal tensile stress (CT) is generated inside the glass so as to maintain a balance with the surface compressive stress. When a glass having a large internal tensile stress breaks, it tends to crack violently, increasing the number of fragments and causing the fragments to scatter.
 特許文献1は強化ガラスの内部引張応力の許容限界を示す計算式を開示し、その範囲内で強化することで破片の飛散が少ない化学強化ガラスが得られるとしている。 Patent Document 1 discloses a calculation formula showing the allowable limit of internal tensile stress of tempered glass, and it is said that chemically strengthened glass with less debris scattering can be obtained by strengthening within that range.
 また、特許文献2には、高強度でかつ破片の飛散が少ない化学強化ガラスとして、2段階のイオン交換処理を施した化学強化ガラスが記載されている。 Further, Patent Document 2 describes a chemically strengthened glass subjected to a two-stage ion exchange treatment as a chemically strengthened glass having high strength and less scattering of fragments.
米国特許第8075999号明細書U.S. Pat. No. 8,075,999 米国特許第9487434号明細書U.S. Pat. No. 9,487,434
 しかし、特許文献1に記載されたような許容限界内では、十分に高い強度が得られないことがある。すなわち、特許文献1や特許文献2に記載されている化学強化ガラスでは強度が不十分となる場合がある。
 本発明は、高い強度を有し、割れた場合の破片の飛散が少ない化学強化ガラス、及び該化学強化ガラスの作製に有用な化学強化用ガラスの提供を目的とする。
However, sufficiently high strength may not be obtained within the allowable limit described in Patent Document 1. That is, the strength of the chemically strengthened glass described in Patent Document 1 and Patent Document 2 may be insufficient.
An object of the present invention is to provide a chemically strengthened glass having high strength and less scattering of fragments when broken, and a glass for chemical strengthening useful for producing the chemically strengthened glass.
 本発明者らは、以下の考察から、化学強化ガラスの割れ方は、化学強化前のガラスの特性に依存すると考えた。
 化学強化ガラスは、ガラスに生じた亀裂がガラス内部の引張応力が印加されている部分にまで達したときに破壊する。引張応力の印加されている部分は、化学強化処理によってもイオン交換されていない部分であると考えられるから、この部分の破砕特性は化学強化前のガラスの特性に依存すると考えた。
 また、本発明者らは、ガラスが破壊するときに亀裂の分岐が多くなると、多数の破片が発生することに着目し、亀裂が分岐しにくいガラスについて研究した。その結果、ミラー定数が大きいガラスは、化学強化しても割れたときの破片数が少ないことを見出した。
 また、ミラー定数が大きいガラスの特徴を見出した。
From the following considerations, the present inventors considered that how to break chemically strengthened glass depends on the properties of the glass before chemical strengthening.
Chemically tempered glass breaks when a crack generated in the glass reaches a portion where tensile stress is applied inside the glass. Since the part to which the tensile stress is applied is considered to be a part that is not ion-exchanged even by the chemical strengthening treatment, it was considered that the crushing characteristics of this part depend on the characteristics of the glass before chemical strengthening.
In addition, the present inventors have studied glass that cracks are difficult to branch by paying attention to the fact that a large number of cracks are generated when the number of crack branches increases when the glass breaks. As a result, it has been found that a glass having a large mirror constant has a small number of fragments when it is broken even when chemically strengthened.
Moreover, the characteristic of glass with a large mirror constant was found.
 本発明は、上記の知見に基づいてなされたものであり、液相温度Tが、粘度が10dPa・sとなる温度T以下のリチウムアルミノシリケートガラスからなり、仮想温度が、ガラス転移点Tgより30℃低い温度以上、前記Tgより25℃高い温度以下である化学強化用ガラスを提供する。 The present invention has been made on the basis of the above findings, and is composed of a lithium aluminosilicate glass having a liquidus temperature T L of a temperature T 4 or less at which the viscosity is 10 4 dPa · s, and the fictive temperature is a glass transition. Provided is a glass for chemical strengthening that is at least 30 ° C. below the point Tg and at most 25 ° C. below the Tg.
 また、酸化物基準のモル百分率表示で、SiOを68~72%、Alを6~10%、LiOを7~11%、NaOを4~7%、KOを0~3%、MgOを4~10%、CaOを0~3%、SrOを0~2%、BaOを0~2%、ZnOを0~2%、Bを0~3%、Pを0~3%、TiOを0~2%、及びZrOを0~3%含有し、かつ仮想温度が、ガラス転移点Tgより25℃高い温度以下である化学強化用ガラスを提供する。 Furthermore, a mole percentage based on oxides, SiO 2 68 ~ 72%, the Al 2 O 3 6 ~ 10% , 7 ~ 11% of Li 2 O, 4 ~ 7% of Na 2 O, K 2 O 0 to 3%, MgO 4 to 10%, CaO 0 to 3%, SrO 0 to 2%, BaO 0 to 2%, ZnO 0 to 2%, B 2 O 3 0 to 3% For chemical strengthening containing 0 to 3% of P 2 O 5 , 0 to 2 % of TiO 2 and 0 to 3% of ZrO 2 and having a fictive temperature of 25 ° C. or lower than the glass transition point Tg Provide glass.
 また、酸化物基準のモル百分率表示で、SiOを60~80%、Alを4~25%、LiOを5~15%、NaOを1~15%、KOを0~5%、MgOを2~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~10%、Pを0~10%、TiOを0~10%、及びZrOを0~8%含有し、かつ、液相温度Tが、粘度が10dPa・sとなる温度T以下のガラスを溶融し、平均冷却速度を10℃/分~300℃/分として冷却する、化学強化用ガラスの製造方法を提供する。 Further, in terms of oxide-based molar percentage, SiO 2 is 60 to 80%, Al 2 O 3 is 4 to 25%, Li 2 O is 5 to 15%, Na 2 O is 1 to 15%, K 2 O. 0-5%, MgO 2-25%, CaO 0-10%, SrO 0-10%, BaO 0-10%, ZnO 0-10%, B 2 O 3 0-10% , P 2 O 5 0-10%, TiO 2 0-10% and ZrO 2 0-8%, and the liquid phase temperature T L is a temperature T at which the viscosity becomes 10 4 dPa · s. Provided is a method for producing a glass for chemical strengthening, wherein 4 or less glasses are melted and cooled at an average cooling rate of 10 ° C / min to 300 ° C / min.
 また、表面圧縮応力層を有し、ガラス表面に近い部分の応力パターンとガラス内層側の応力パターンをそれぞれ1次関数で近似したときに、ガラス内層側の応力パターンP1をガラス表面まで延長させたラインから求められる仮想的な表面応力値CS1が、ガラス表面に近い部分の応力パターンP2から得られる表面圧縮応力値CS2より小さい化学強化ガラスであって、前記CS1が200MPa以上、及び前記CS2が800MPa以上であり、かつ、ミラー定数Aが2.0MPa・m1/2以上である化学強化ガラスを提供する。 Moreover, when the surface compressive stress layer was provided and the stress pattern near the glass surface and the stress pattern on the glass inner layer side were approximated by a linear function, the stress pattern P1 on the glass inner layer side was extended to the glass surface. The imaginary surface stress value CS1 obtained from the line is a chemically strengthened glass smaller than the surface compressive stress value CS2 obtained from the stress pattern P2 near the glass surface, and the CS1 is 200 MPa or more and the CS2 is 800 MPa. There is provided a chemically tempered glass having the above and a mirror constant A of 2.0 MPa · m 1/2 or more.
 本発明の化学強化ガラスは、強度が高く、かつ、割れた時にも激しい破壊が生じない。また、好ましい態様によれば、失透が生じにくい。 The chemically tempered glass of the present invention is high in strength and does not break severely when it is broken. Moreover, according to a preferable aspect, devitrification hardly occurs.
図1は、化学強化ガラスの応力プロファイルを模式的に表した図であり、縦軸は圧縮応力値、横軸はガラス表面からの深さを表す。FIG. 1 is a diagram schematically showing a stress profile of chemically strengthened glass, where the vertical axis represents the compressive stress value and the horizontal axis represents the depth from the glass surface. 図2は、内部に残留応力のないガラスが一様な引張応力によって破壊した場合の破壊起点周辺の割れ方を模式的に示した図である。FIG. 2 is a diagram schematically showing how the cracks around the fracture starting point occur when glass without residual stress is broken by uniform tensile stress. 図3は、ガラス1の、屈折率と仮想温度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the refractive index and the virtual temperature of the glass 1. 図4は、砂上落下試験の試験方法を表す模式図である。FIG. 4 is a schematic diagram showing a test method for a drop-on-sand test.
 本明細書において、「化学強化ガラス」は、化学強化処理を施した後のガラスを指す。また、「化学強化用ガラス」は、化学強化処理を施す前のガラスを指す。「化学強化用ガラス」は、化学強化可能なガラスである。
 本明細書において、「化学強化ガラスの母組成」は、化学強化用ガラスのガラス組成である。化学強化ガラスでは通常、ガラス表面部分にイオン交換による圧縮応力層が形成されるので、イオン交換されていない部分のガラス組成は化学強化ガラスの母組成と一致する。
In the present specification, “chemically tempered glass” refers to glass after being subjected to chemical tempering treatment. “Chemical strengthening glass” refers to glass before chemical strengthening treatment. “Chemical strengthening glass” is glass that can be chemically strengthened.
In this specification, “the mother composition of chemically strengthened glass” is a glass composition of chemically strengthened glass. In chemically strengthened glass, a compressive stress layer by ion exchange is usually formed on the glass surface portion, so that the glass composition of the portion not ion-exchanged matches the mother composition of chemically strengthened glass.
 本明細書において、ガラス組成は酸化物基準のモル百分率表示で示し、モル%を単に%と記載することがある。
 ガラス組成において「実質的に含有しない」とは、原材料等に含まれる不可避の不純物を除いて含有しない、すなわち、意図的に含有させたものではないことを意味する。具体的には、たとえば、ガラス組成中の含有量が、0.1モル%未満である。
 本明細書において「応力プロファイル」は、ガラス表面からの深さを変数として圧縮応力値を表したパターンである。負の圧縮応力値は、引張応力を意味する。
 本明細書において、ガラスの「破砕性」とは、ガラスが破壊した際に破片が飛散しやすい性質をいう。
In the present specification, the glass composition is expressed in terms of a mole percentage based on an oxide, and mol% may be simply described as%.
“Substantially not contained” in the glass composition means that it is not contained except for inevitable impurities contained in raw materials and the like, that is, it is not intentionally contained. Specifically, for example, the content in the glass composition is less than 0.1 mol%.
In the present specification, the “stress profile” is a pattern representing a compressive stress value with the depth from the glass surface as a variable. A negative compressive stress value means tensile stress.
In the present specification, the “friability” of glass refers to a property in which fragments are easily scattered when glass is broken.
(化学強化ガラス)
 化学強化ガラスは、表面に化学強化処理(イオン交換処理)によって形成された圧縮応力層を有する。イオン交換処理では、ガラスの表面をイオン交換し、圧縮応力が残留する表面層を形成させる。具体的には、ガラス転移点Tg以下の温度でイオン交換によりガラス板表面のイオン半径が小さな金属イオン(典型的には、Liイオン、Naイオン)をイオン半径のより大きいイオン(典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に置換する。これにより、ガラスの表面に圧縮応力が生じ、ガラスの強度が向上する。
(Chemical tempered glass)
The chemically strengthened glass has a compressive stress layer formed on the surface by a chemical strengthening process (ion exchange process). In the ion exchange treatment, the surface of the glass is ion exchanged to form a surface layer in which compressive stress remains. Specifically, a metal ion (typically Li ion, Na ion) having a small ionic radius on the surface of the glass plate is ion-exchanged at a temperature below the glass transition point Tg (typically Li ion, Na ion). , Li ions are Na ions or K ions, and Na ions are substituted with K ions). Thereby, a compressive stress arises on the surface of glass and the intensity | strength of glass improves.
 ガラス表面の圧縮応力値CSが大きい化学強化ガラスは、表面に傷が生じても表面圧縮応力に押されて傷が広がりにくいために割れにくい。また、ガラス板を曲げた時に曲面の外側に加わる引張応力が表面圧縮応力によって相殺されるので、曲げた時にも割れにくい。一方、圧縮応力深さDOLが大きい化学強化ガラスは、比較的深い傷の先端も圧縮応力層内に留まることから、破壊しにくい。
 したがって、化学強化ガラスは、ガラス表面のCSが大きく、DOLが大きいほど、破壊しにくいと考えられる。しかし、CSとDOLとを同時に大きくすると、それに応じて内部引張応力値CTが大きくなり、破砕性が大きくなる傾向がある。
Chemically tempered glass having a large compressive stress value CS 0 on the glass surface is hard to break even if scratches occur on the surface because the scratches are not easily spread by being pressed by the surface compressive stress. Further, since the tensile stress applied to the outside of the curved surface when the glass plate is bent is offset by the surface compressive stress, it is difficult to break even when bent. On the other hand, chemically strengthened glass having a large compressive stress depth DOL is less likely to break because the tip of a relatively deep flaw remains in the compressive stress layer.
Therefore, chemically strengthened glass is considered to be harder to break as the CS 0 on the glass surface is larger and the DOL is larger. However, if CS 0 and DOL are increased simultaneously, the internal tensile stress value CT increases accordingly, and the friability tends to increase.
 図1は、本発明の一態様である化学強化ガラスの応力プロファイルを模式的に表したグラフであり、縦軸は圧縮応力値、横軸はガラス表面からの深さを表している。太い実線は、ガラス内層側の応力パターンP1とガラス表面に近い部分の応力パターンP2とをそれぞれ1次関数で近似した線である。
 本応力プロファイルにおいて、応力パターンP1をガラス表面まで延長させた線(図1中の点線p1)から求められる仮想的な表面圧縮応力値CS1は、応力パターンP2から得られる表面圧縮応力値CS2より小さい。なお、実際の表面圧縮応力値CSはCS2とほぼ等しい。
 また、応力パターンP2を延長させた線(図1中の点線p2)上で応力値がゼロとなる深さDOL2は、応力パターンP1において応力値がゼロとなる深さDOL1より小さい。なお、実際の圧縮応力層深さDOLはDOL1とほぼ等しい。
FIG. 1 is a graph schematically showing a stress profile of chemically strengthened glass which is one embodiment of the present invention, in which the vertical axis represents the compressive stress value and the horizontal axis represents the depth from the glass surface. The thick solid line is a line obtained by approximating the stress pattern P1 on the glass inner layer side and the stress pattern P2 near the glass surface by a linear function.
In this stress profile, the virtual surface compressive stress value CS1 obtained from the line (dotted line p1 in FIG. 1) obtained by extending the stress pattern P1 to the glass surface is smaller than the surface compressive stress value CS2 obtained from the stress pattern P2. . Note that the actual surface compressive stress value CS 0 is approximately equal to CS2.
Further, the depth DOL2 at which the stress value becomes zero on the line obtained by extending the stress pattern P2 (dotted line p2 in FIG. 1) is smaller than the depth DOL1 at which the stress value becomes zero in the stress pattern P1. The actual compressive stress layer depth DOL is substantially equal to DOL1.
 このような応力プロファイルであると、ガラス表面の圧縮応力値が大きくても、内部引張応力CTが比較的小さくなり好ましい。このような応力プロファイルは、たとえば2段階の化学強化処理によって得られる。
 本応力プロファイルにおいて、CS1は200MPa以上が好ましい。またCS(およびCS2)は800MPa以上が好ましい。
Such a stress profile is preferable because even if the compressive stress value on the glass surface is large, the internal tensile stress CT is relatively small. Such a stress profile is obtained, for example, by a two-step chemical strengthening process.
In this stress profile, CS1 is preferably 200 MPa or more. Further, CS 0 (and CS2) is preferably 800 MPa or more.
 一方、CS2は、破砕性を抑制するために、例えば2000MPa以下が好ましく、1500MPa以下がより好ましく、1000MPa以下がさらに好ましい。表面圧縮応力値であるCS2を大きくすると、内部引張応力値CTが大きくなるために、破砕性が増大する。 On the other hand, CS2 is, for example, preferably 2000 MPa or less, more preferably 1500 MPa or less, and further preferably 1000 MPa or less in order to suppress crushability. When CS2 that is the surface compressive stress value is increased, the internal tensile stress value CT is increased, so that the friability is increased.
 本態様の化学強化ガラスは、ガラス内層側の応力パターンP1をガラス表面まで延長させたラインから求められる仮想的な表面応力値CS1が、ガラス表面に近い部分の応力パターンP2から得られる表面圧縮応力値CS2より小さく、かつ、ミラー定数Aが2.0MPa・m1/2以上であることによって、表面圧縮応力CSと圧縮応力深さDOLとをどちらも大きくしても破砕性が抑制される。 In the chemically strengthened glass of this embodiment, the virtual surface stress value CS1 obtained from a line obtained by extending the stress pattern P1 on the glass inner layer side to the glass surface is obtained from the surface compressive stress obtained from the stress pattern P2 in the portion close to the glass surface. By being smaller than the value CS2 and the mirror constant A being 2.0 MPa · m 1/2 or more, the friability is suppressed even if both the surface compressive stress CS 0 and the compressive stress depth DOL are increased. .
 本発明の化学強化ガラスのミラー定数Aは、2.0MPa・m1/2以上が好ましく、2.1MPa・m1/2以上がより好ましく、2.3MPa・m1/2以上がさらに好ましい。ミラー定数Aが大きい化学強化ガラスは、割れたときの破片数が少ないため、内部引張応力CTが大きくても破砕性は大きくない。 Mirror constant A of chemically tempered glass of the present invention is preferably 2.0 MPa · m 1/2 or more, more preferably 2.1 MPa · m 1/2 or more, more preferably 2.3 MPa · m 1/2 or more. Chemically tempered glass having a large mirror constant A has a small number of fragments when it is broken, so that its friability is not large even if the internal tensile stress CT is large.
 ここで、本発明の理解を助けるために、ミラー定数Aについて説明する。
 ガラスが割れた際、その破断面の形状は応力の大きさによって異なることが知られている。内部に残留応力のないガラスが、一様な引っ張り応力によって破壊した場合の破壊起点周辺の割れ方を、図2に模式的に示す(ASTM C-1678-10参照)。なお、化学強化ガラスには残留応力があるので、化学強化ガラスの破壊起点周辺の外観は、図2と大きく異なる場合がある。
 図2中、黒丸で示す破壊起点の周辺には、ミラー(mirror)面と呼ばれる平滑面が生じる。また、その周囲にはミスト(mist)面と呼ばれるややざらざらした境界面が生じ、その先にはハックル(hackle)と呼ばれる粗い面が生じる。図2において、黒丸で示す破壊起点からミラー(mirror)面と、ミスト(mist)面と、の境界までの距離をRとし、破壊を生じさせた応力をσとすると、σはRの平方根の逆数に比例することが知られており、その比例定数がミラー定数Aである。すなわち、下式に示す関係になる。
 σ=A/R1/2
 ミラー定数Aは、破壊時の応力σと、破壊起点からミラー面とミスト面との界面までの距離Rとを測定することで、実験的に求められる。
Here, in order to help understanding of the present invention, the mirror constant A will be described.
It is known that when the glass is broken, the shape of the fracture surface varies depending on the magnitude of the stress. FIG. 2 schematically shows how the glass without residual stress breaks around the fracture starting point when it is broken by uniform tensile stress (see ASTM C-1678-10). In addition, since the chemically strengthened glass has residual stress, the appearance around the fracture starting point of the chemically strengthened glass may be greatly different from that in FIG.
In FIG. 2, a smooth surface called a mirror surface is generated around the fracture starting point indicated by a black circle. In addition, a slightly rough boundary surface called a mist surface is generated around the surface, and a rough surface called a hackle is generated at the tip. In FIG. 2, when the distance from the fracture starting point indicated by the black circle to the boundary between the mirror surface and the mist surface is R, and the stress causing the fracture is σ, σ is the square root of R. It is known to be proportional to the reciprocal, and the proportionality constant is the Miller constant A. That is, the relationship is as shown in the following equation.
σ = A / R 1/2
The mirror constant A is experimentally obtained by measuring the stress σ at the time of fracture and the distance R from the fracture starting point to the interface between the mirror surface and the mist surface.
 ミラー定数Aは、ガラス組成と仮想温度とに依存する。ミラー定数Aとガラス組成との関係およびミラー定数Aと仮想温度との関係については、後に詳しく説明する。 Mirror constant A depends on glass composition and fictive temperature. The relationship between the mirror constant A and the glass composition and the relationship between the mirror constant A and the virtual temperature will be described in detail later.
 前述の特許文献1には化学強化ガラスの内部引張応力CTの許容限界を示す式が開示され、板厚をt[mm]とするとき、CTは、-38.7×ln(t)+48.2[MPa]以下にすべきとされている。
 しかし、本発明の一態様の化学強化ガラスは、ミラー定数Aが大きいので、内部引張応力値CTが-38.7×ln(t)+48.2より大きくても破片が飛び散りにくい。
The above-mentioned Patent Document 1 discloses a formula indicating the allowable limit of the internal tensile stress CT of chemically strengthened glass. When the plate thickness is t [mm], CT is −38.7 × ln (t) +48. It should be 2 [MPa] or less.
However, since the chemically strengthened glass of one embodiment of the present invention has a large Miller constant A, even if the internal tensile stress value CT is larger than −38.7 × ln (t) +48.2, fragments are not easily scattered.
 本発明の化学強化ガラスの母組成として、酸化物基準のモル百分率表示で、SiOを60~80%、Alを4~25%、LiOを5~15%、NaOを1~15%、KOを0~5%、MgOを2~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~10%、Pを0~10%、TiOを0~10%、及びZrOを0~8%を含有することが好ましい。この好ましいガラス組成については後に詳しく説明する。 As the mother composition of the chemically strengthened glass of the present invention, SiO 2 is 60 to 80%, Al 2 O 3 is 4 to 25%, Li 2 O is 5 to 15%, Na 2 O in terms of mole percentage based on oxide. 1 to 15%, K 2 O 0 to 5%, MgO 2 to 25%, CaO 0 to 10%, SrO 0 to 10%, BaO 0 to 10%, ZnO 0 to 10%, the B 2 O 3 0 ~ 10% , the P 2 O 5 0 ~ 10% , the TiO 2 0 ~ 10%, and it is preferred that the ZrO 2 containing 0-8%. This preferred glass composition will be described in detail later.
(化学強化用ガラス)
 本発明の化学強化用ガラスは、リチウムアルミノシリケートガラスが好ましい。リチウムアルミノシリケートガラスは、硝酸ナトリウム等のナトリウム塩によるイオン交換処理によって、ガラス中のLiイオンと溶融塩中のNaイオンとのイオン交換が生じ、深い表面圧縮層が形成されやすい。また、ナトリウム塩によるイオン交換処理の後にカリウム塩(たとえば硝酸カリウム)によるイオン交換処理を行った場合、またはナトリウム塩とカリウム塩との混合塩(たとえば硝酸ナトリウム-硝酸カリウム混合塩)によるイオン交換処理を行った場合等には、LiイオンとNaイオンとのイオン交換に加えて、NaイオンとKイオンとのイオン交換が生じるので、表面圧縮応力値CSが大きく、内部引張応力CTが比較的小さい化学強化ガラスが得られやすい。
(Chemical strengthening glass)
The glass for chemical strengthening of the present invention is preferably lithium aluminosilicate glass. Lithium aluminosilicate glass undergoes ion exchange between Li ions in the glass and Na ions in the molten salt by an ion exchange treatment with a sodium salt such as sodium nitrate, so that a deep surface compression layer is easily formed. Also, when ion exchange treatment with potassium salt (for example, potassium nitrate) is performed after ion exchange treatment with sodium salt, or ion exchange treatment with a mixed salt of sodium salt and potassium salt (for example, sodium nitrate-potassium nitrate mixed salt) is performed. In such a case, since ion exchange between Na ions and K ions occurs in addition to ion exchange between Li ions and Na ions, the surface compressive stress value CS 0 is large and the internal tensile stress CT is relatively small. Tempered glass is easily obtained.
 本発明の化学強化用ガラスは、ナトリウム塩によるイオン交換処理で200MPa以上の表面圧縮応力が発生することが好ましい。そのようなガラスは、化学強化によって高い強度が得られやすい。たとえば、450℃の硝酸ナトリウムに1時間浸す処理をした際の表面圧縮応力は、200MPa以上が好ましく、250MPa以上がより好ましく、300MPa以上がさらに好ましい。そのような化学強化用ガラスについて、ナトリウム塩によるイオン交換処理の後にカリウム塩によるイオン交換処理を行った場合、またはナトリウム塩とカリウム塩との混合塩によるイオン交換処理を行った場合等は、表面圧縮応力値CSが大きくても、内部引張応力値CTが比較的小さい化学強化ガラスが得られる。
 また本発明の化学強化用ガラスは、カリウム塩によるイオン交換処理で800MPa以上の表面圧縮応力が発生するものが好ましい。たとえば、450℃の硝酸カリウムに6時間浸す処理をした際の表面圧縮応力は800MPa以上が好ましく、850MPa以上がより好ましく、900MPa以上がさらに好ましい。そのような化学強化用ガラスを化学強化することによって好ましい応力プロファイルが得られる。
The glass for chemical strengthening of the present invention preferably generates a surface compressive stress of 200 MPa or more by an ion exchange treatment with a sodium salt. Such glass is easy to obtain high strength by chemical strengthening. For example, the surface compressive stress when treated for 1 hour in 450 ° C. sodium nitrate is preferably 200 MPa or more, more preferably 250 MPa or more, and even more preferably 300 MPa or more. For such chemically strengthened glass, when ion exchange treatment with potassium salt is performed after ion exchange treatment with sodium salt, or when ion exchange treatment with a mixed salt of sodium salt and potassium salt is performed, the surface Even if the compressive stress value CS 0 is large, a chemically strengthened glass having a relatively small internal tensile stress value CT can be obtained.
Moreover, the glass for chemical strengthening of the present invention preferably generates a surface compressive stress of 800 MPa or more by ion exchange treatment with a potassium salt. For example, the surface compressive stress at the time of immersion in 450 ° C. potassium nitrate for 6 hours is preferably 800 MPa or more, more preferably 850 MPa or more, and further preferably 900 MPa or more. A preferred stress profile is obtained by chemically strengthening such chemically strengthened glass.
 また、化学強化用ガラスの液相温度Tは、粘度が10dPa・sとなる温度T以下が好ましい。そのようなガラスは、フロート法を用いて板状に成形しやすい。フロート法での成形しやすさのために、TはTより10℃低い温度(T-10℃)以下がより好ましく、T-30℃以下がさらに好ましく、T-50℃以下がよりさらに好ましい。化学強化しやすさのためには、TはT-150℃以上が好ましく、T-125℃以上がより好ましく、T-100℃以上がさらに好ましい。 Moreover, the liquid phase temperature TL of the glass for chemical strengthening is preferably a temperature T 4 or less at which the viscosity becomes 10 4 dPa · s. Such glass is easy to be formed into a plate shape using a float process. For molding the ease of a float process, T L is more preferably 10 ° C. lower temperature (T 4 -10 ℃) less than T 4, T 4 is more preferably -30 ° C. or less, T 4 -50 ° C. or less Is even more preferable. For ease of chemical strengthening, TL is preferably T 4 −150 ° C. or higher, more preferably T 4 −125 ° C. or higher, and further preferably T 4 −100 ° C. or higher.
 化学強化用ガラスのミラー定数Aは、2.0MPa・m1/2以上が好ましい。そのような化学強化用ガラスは、化学強化後に、破壊した場合も破片が飛び散りにくい。
 化学強化用ガラスのミラー定数Aは2.1MPa・m1/2以上がより好ましく、2.3MPa・m1/2以上がさらに好ましい。
The mirror constant A of the glass for chemical strengthening is preferably 2.0 MPa · m 1/2 or more. Such a glass for chemical strengthening is less likely to splatter when broken after chemical strengthening.
Mirror constant A glass for chemical strengthening is more preferably 2.1 MPa · m 1/2 or more, more preferably 2.3 MPa · m 1/2 or more.
 ミラー定数Aは、ガラスの仮想温度Tfが低い程、大きい傾向がある。
 化学強化用ガラスの仮想温度Tfは、ミラー定数Aを大きくするためには、そのガラスのガラス転移点Tg付近が好ましい。具体的には、Tgより25℃高い温度(Tg+25℃と記載する)以下が好ましく、Tg+20℃以下がより好ましく、Tg+15℃以下がさらに好ましい。仮想温度Tfは、ミラー定数Aを大きくするためには小さいほど好ましいが、Tgより大幅に下げるためには、非常に遅い速度で冷却することになり、ガラスの生産性が悪くなる。そのためTfはTgより30℃低い温度(Tg-30℃)以上が好ましく、Tg-10℃以上がより好ましく、Tg以上がさらに好ましい。
The mirror constant A tends to increase as the fictive temperature Tf of the glass decreases.
In order to increase the mirror constant A, the fictive temperature Tf of the glass for chemical strengthening is preferably near the glass transition point Tg of the glass. Specifically, a temperature of 25 ° C. higher than Tg (described as Tg + 25 ° C.) or lower is preferable, Tg + 20 ° C. or lower is more preferable, and Tg + 15 ° C. or lower is more preferable. The fictive temperature Tf is preferably as small as possible to increase the mirror constant A. However, if the fictive temperature Tf is significantly lower than Tg, cooling is performed at a very slow rate, resulting in poor glass productivity. Therefore, Tf is preferably at least 30 ° C. lower than Tg (Tg-30 ° C.), more preferably at least Tg-10 ° C., and even more preferably at least Tg.
 ガラスの仮想温度Tfは、ガラス原料を高温で溶融して冷却する方法でガラスを得る場合には、溶融後の冷却速度が小さい程低くなる。そこで、仮想温度が非常に低いガラスを得るためには、長時間かけてゆっくりと冷却する必要がある。ガラスをゆっくりと冷却する場合、ガラス組成によっては、冷却中に結晶が析出する失透現象が起きやすくなる。
 ガラスの生産効率や失透現象の抑制を考慮すると、仮想温度Tfは前記と同様、Tg-30℃以上が好ましく、Tg-10℃以上がより好ましく、Tg以上がさらに好ましい。
When the glass is obtained by melting the glass raw material at a high temperature and cooling it, the fictive temperature Tf of the glass becomes lower as the cooling rate after melting is smaller. Therefore, in order to obtain glass with a very low fictive temperature, it is necessary to cool slowly over a long period of time. When glass is slowly cooled, depending on the glass composition, a devitrification phenomenon in which crystals precipitate during cooling tends to occur.
In consideration of glass production efficiency and suppression of devitrification, the fictive temperature Tf is preferably Tg-30 ° C. or higher, more preferably Tg-10 ° C. or higher, and further preferably Tg or higher, as described above.
 これらを総合すると、仮想温度TfはTg-30℃以上Tg+25℃以下が好ましく、Tg-10℃以上Tg+20℃以下がより好ましく、Tg以上Tg+15℃以下がさらに好ましい。 In summary, the fictive temperature Tf is preferably Tg-30 ° C. or higher and Tg + 25 ° C. or lower, more preferably Tg−10 ° C. or higher and Tg + 20 ° C. or lower, and further preferably Tg or higher and Tg + 15 ° C. or lower.
 ガラスの仮想温度Tfは、ガラスの屈折率から実験的に求めることができる。一定の温度において保持したガラスをその温度から急冷する方法で、同一ガラス組成で仮想温度が異なるガラス片を複数作製しておく。これらのガラス片の仮想温度は、急冷前に保持されていた温度であるから、これらのガラス片の屈折率を測定することで、仮想温度に対して屈折率をプロットした検量線を作成できる。一例を図3に示す。冷却速度等が不明のガラスであっても屈折率を測定することで、同一組成のガラスについて作成された検量線から仮想温度を求められる。 The fictive temperature Tf of glass can be experimentally determined from the refractive index of glass. A plurality of glass pieces having the same glass composition and different fictive temperatures are prepared by a method of rapidly cooling glass held at a certain temperature from the temperature. Since the fictive temperature of these glass pieces is the temperature that was maintained before quenching, a calibration curve in which the refractive index is plotted against the fictive temperature can be created by measuring the refractive index of these glass pieces. An example is shown in FIG. Even if the cooling rate or the like is not clear, by measuring the refractive index, the virtual temperature can be obtained from the calibration curve created for the glass having the same composition.
 本発明の化学強化用ガラスは、例えば、SiOを60~80%、Alを4~25%、LiOを5~15%、NaOを1~15%、KOを0~5%、MgOを2~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~10%、Pを0~10%、TiOを0~10%、及びZrOを0~8%含有するものが好ましい。そのようなガラスは、化学強化特性が優れる。 Chemically strengthened glass of the present invention, for example, a SiO 2 60 ~ 80%, the Al 2 O 3 4 ~ 25% , the Li 2 O 5 ~ 15%, a Na 2 O 1 ~ 15%, K 2 O 0-5%, MgO 2-25%, CaO 0-10%, SrO 0-10%, BaO 0-10%, ZnO 0-10%, B 2 O 3 0-10% the P 2 O 5 0 ~ 10% , Ti 2 O 0 to 10% and ZrO 2 are those containing 0-8% preferred. Such glasses have excellent chemical strengthening properties.
 本発明の化学強化用ガラスは、SiOを60~80%、Alを7~30%、LiOを5~15%、NaOを1~25%、KOを0~5%、MgOを3~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~5%、Pを0~4%、TiOを0~10%を含有することが好ましい。そのようなガラスはミラー定数Aが大きい。 The glass for chemical strengthening of the present invention is SiO 2 60-60%, Al 2 O 3 7-30%, Li 2 O 5-15%, Na 2 O 1-25%, K 2 O 0 ~ 5%, MgO 3 ~ 25%, CaO 0 ~ 10%, SrO 0 ~ 10%, BaO 0 ~ 10%, ZnO 0 ~ 10%, B 2 O 3 0 ~ 5%, P the 2 O 5 0 ~ 4%, it is preferable that the TiO 2 containing 0-10%. Such glass has a large mirror constant A.
 また、SiOを67~75%、Alを4~15%、LiOを5~15%、NaOを1~9%、KOを0~5%、MgOを4~15%、CaOを0~4%、SrOを0~5%、BaOを0~5%、ZnOを0~5%、Bを0~10%、Pを0~10%、TiOを0~4%、及びZrOを0~8%含有することがより好ましい。そのようなガラスは、優れた化学強化特性を備え、破壊時の破片の飛散が少なく、失透が生じにくい。 Also, SiO 2 is 67 to 75%, Al 2 O 3 is 4 to 15%, Li 2 O is 5 to 15%, Na 2 O is 1 to 9%, K 2 O is 0 to 5%, and MgO is 4%. ~ 15%, CaO 0 ~ 4%, SrO 0 ~ 5%, BaO 0 ~ 5%, ZnO 0 ~ 5%, B 2 O 3 0 ~ 10%, P 2 O 5 0 ~ 10 %, TiO 2 0 to 4%, and ZrO 2 0 to 8% are more preferable. Such glass has excellent chemical strengthening properties, little scattering of fragments at the time of breakage, and devitrification hardly occurs.
 さらに本発明の化学強化用ガラスは、SiOを68~72%、Alを6~10%、LiOを7~11%、NaOを4~7%、KOを0~3%、MgOを4~10%、CaOを0~3%、SrOを0~2%、BaOを0~2%、ZnOを0~2%、Bを0~3%、Pを0~3%、TiOを0~2%、及びZrOを0~3%含有し、かつ仮想温度がガラス転移点Tgより25℃高い温度以下であることが好ましい。このようなガラスは化学強化特性に優れる。 Further chemical strengthening glass of the present invention, the SiO 2 68 ~ 72%, the Al 2 O 3 6 ~ 10% , the Li 2 O 7 ~ 11%, a Na 2 O 4 ~ 7%, the K 2 O 0-3%, MgO 4-10%, CaO 0-3%, SrO 0-2%, BaO 0-2%, ZnO 0-2%, B 2 O 3 0-3%, It is preferable that P 2 O 5 is contained in an amount of 0 to 3%, TiO 2 is contained in an amount of 0 to 2%, and ZrO 2 is contained in an amount of 0 to 3%, and the fictive temperature is 25 ° C. or higher than the glass transition point Tg. Such glass has excellent chemical strengthening properties.
 ガラス組成における各成分について、以下に説明する。
 SiOはガラスの骨格を構成する成分である。また、化学的耐久性を上げる成分であり、ガラス表面に傷がついた時のクラックの発生を低減させる成分である。クラックの発生を抑制するために、SiO含有量は60%以上が好ましく、63%以上がより好ましく、65%以上がさらに好ましく、67%以上がさらに好ましく、68%以上が特に好ましいい。一方、SiO含有量が80%超であると溶融性が著しく低下するため、80%以下が好ましい。溶融しやすさのためには、より好ましくは75%以下、さらに好ましくは72%以下、特に好ましくは70%以下である。
Each component in the glass composition will be described below.
SiO 2 is a component constituting the skeleton of glass. Moreover, it is a component which raises chemical durability, and is a component which reduces generation | occurrence | production of the crack when a glass surface is damaged. In order to suppress the occurrence of cracks, the SiO 2 content is preferably 60% or more, more preferably 63% or more, further preferably 65% or more, further preferably 67% or more, and particularly preferably 68% or more. On the other hand, if the SiO 2 content is more than 80%, the meltability is remarkably lowered, so 80% or less is preferable. For ease of melting, it is more preferably 75% or less, still more preferably 72% or less, and particularly preferably 70% or less.
 Alは化学強化処理の際のイオン交換性能を向上させ、化学強化後の表面圧縮応力値CSを大きくするために有効な成分である。また、ガラスのミラー定数Aを向上する効果のある成分である。また、ガラスのTgを高くする成分であり、ヤング率を高くする成分でもある。化学強化特性を高めるためには、Al含有量は4%以上が好ましく、6%以上がより好ましい。またミラー定数を大きくするためにはAl含有量は7%以上が好ましく、より好ましくは10%以上、さらに好ましくは13%以上である。一方、Al含有量が30%超であるとガラスの耐酸性が低下し、または失透温度が高くなりやすい。また、ガラスの粘性が増大し溶融性が低下するおそれがある。したがって、Alの含有量は、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下、特に好ましくは15%以下である。 Al 2 O 3 is an effective component for improving the ion exchange performance during the chemical strengthening treatment and increasing the surface compressive stress value CS 0 after the chemical strengthening. Moreover, it is a component which has the effect of improving the mirror constant A of glass. Moreover, it is a component which raises Tg of glass, and is also a component which raises Young's modulus. In order to enhance the chemical strengthening characteristics, the Al 2 O 3 content is preferably 4% or more, and more preferably 6% or more. In order to increase the mirror constant, the Al 2 O 3 content is preferably 7% or more, more preferably 10% or more, and further preferably 13% or more. On the other hand, if the Al 2 O 3 content is more than 30%, the acid resistance of the glass tends to decrease, or the devitrification temperature tends to increase. Moreover, there exists a possibility that the viscosity of glass may increase and a meltability may fall. Therefore, the Al 2 O 3 content is preferably 30% or less, more preferably 25% or less, still more preferably 20% or less, and particularly preferably 15% or less.
 Al含有量が大きい場合はガラス溶融時の温度が大きくなり生産性が低下する。ガラスの生産性を重視する場合は、Alの含有量は好ましくは11%以下であり、より好ましくは10%以下、さらに好ましくは9%以下、特に好ましくは8%以下である。 When the Al 2 O 3 content is large, the temperature at the time of melting the glass increases and the productivity decreases. When emphasizing the productivity of glass, the content of Al 2 O 3 is preferably 11% or less, more preferably 10% or less, still more preferably 9% or less, and particularly preferably 8% or less.
 LiOは、Na塩による化学強化処理時にイオン交換により表面圧縮応力層を形成させる成分である。
 Na塩を用いてガラス表面のLiイオンをNaイオンに交換する化学強化処理を行う場合、LiOの含有量は、5%以上であると化学強化によって生じる圧縮応力が大きくなるので好ましく、より好ましくは6%以上、さらに好ましくは7%以上である。一方、LiOの含有量が15%超ではガラスの耐酸性が著しく低下する。15%以下であることが好ましく、より好ましくは13%以下である。11%以下がさらに好ましい。
Li 2 O is a component that forms a surface compressive stress layer by ion exchange during chemical strengthening treatment with Na salt.
When performing chemical strengthening treatment in which Li ions on the glass surface are exchanged with Na ions using Na salt, the Li 2 O content is preferably 5% or more because the compressive stress generated by chemical strengthening is increased, and more Preferably it is 6% or more, More preferably, it is 7% or more. On the other hand, if the content of Li 2 O exceeds 15%, the acid resistance of the glass is significantly reduced. It is preferably 15% or less, more preferably 13% or less. 11% or less is more preferable.
 NaOは、化学強化処理時にイオン交換により表面圧縮応力層を形成させ、またガラスの溶融性を向上させ得る成分である。
 NaOの含有量は、1%以上が好ましく、より好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは6%以上である。一方、NaOの含有量が15%超ではイオン交換により形成される表面圧縮応力値CSが著しく低下するため、15%以下が好ましい。NaOの含有量は、より好ましくは9%以下であり、さらに好ましくは6%以下、特に好ましくは5%以下である。
Na 2 O is a component capable of forming a surface compressive stress layer by ion exchange during chemical strengthening treatment and improving the meltability of glass.
The content of Na 2 O is preferably 1% or more, more preferably 3% or more, still more preferably 4% or more, and particularly preferably 6% or more. On the other hand, when the content of Na 2 O exceeds 15%, the surface compressive stress value CS 0 formed by ion exchange is remarkably lowered, so 15% or less is preferable. The content of Na 2 O is more preferably 9% or less, still more preferably 6% or less, and particularly preferably 5% or less.
 硝酸カリウムと硝酸ナトリウムの混合溶融塩に浸漬する等の方法により、ガラス表面のLiイオンとNaイオン、NaイオンとKイオンを同時にイオン交換する場合には、NaOの含有量は、好ましくは10%以下であり、より好ましくは9%以下、さらに好ましくは7%以下、特に好ましくは6%以下、最も好ましくは5%以下である。また、NaOの含有量は、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは4%以上である。 When Li ion and Na ion, and Na ion and K ion on the glass surface are simultaneously ion-exchanged by a method such as immersion in a mixed molten salt of potassium nitrate and sodium nitrate, the content of Na 2 O is preferably 10 % Or less, more preferably 9% or less, further preferably 7% or less, particularly preferably 6% or less, and most preferably 5% or less. Further, the content of Na 2 O is preferably 2% or more, more preferably 3% or more, and further preferably 4% or more.
 KOは、化学強化処理時のイオン交換性能を向上させる等のために含有させてもよい。KOを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。一方、KOの含有量が5%超であると、化学強化ガラスの破砕性が低下するため、KOの含有量は5%以下であることが好ましい。KOの含有量は、より好まし3%以下であり、さらに好ましくは2%以下である。 K 2 O may be contained to improve ion exchange performance during chemical strengthening treatment. When K 2 O is contained, the content is preferably 0.5% or more, and more preferably 1% or more. On the other hand, if the content of K 2 O is more than 5%, the friability of the chemically strengthened glass is lowered, so the content of K 2 O is preferably 5% or less. The content of K 2 O is more preferably 3% or less, and further preferably 2% or less.
 MgOは、化学強化ガラスの表面圧縮応力値CSを増大させるために、含有させることが好ましい。また、ミラー定数Aを向上する効果がある。MgOの含有量は、好ましくは2%以上であり、より好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは5%以上である。一方、MgOの含有量が25%超であると化学強化用ガラスが溶融時に失透しやすくなるため、25%以下であることが好ましい。MgOの含有量は15%以下であることがより好ましく、10%以下であることがさらに好ましい。 MgO is preferably contained in order to increase the surface compressive stress value CS 0 of the chemically strengthened glass. In addition, there is an effect of improving the mirror constant A. The content of MgO is preferably 2% or more, more preferably 3% or more, still more preferably 4% or more, and particularly preferably 5% or more. On the other hand, when the content of MgO is more than 25%, the glass for chemical strengthening tends to be devitrified when melted. Therefore, the content is preferably 25% or less. The content of MgO is more preferably 15% or less, and further preferably 10% or less.
 CaOは、ガラスの溶融性を向上させる成分であり、ミラー定数Aを向上する効果があり、含有させてもよい。CaOを含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.2%以上、さらに好ましくは0.3%以上であり、特に好ましくは0.4%以上、最も好ましくは0.5%以上である。一方、含有量が14%超となると化学強化処理時のイオン交換性能が低下するおそれがあるため、14%以下が好ましい。より好ましくは10%以下であり、さらに好ましくは8%以下、よりさらに好ましくは4%以下、特に好ましくは3%以下である。1%以下が好ましい。 CaO is a component that improves the meltability of glass, has an effect of improving the mirror constant A, and may be contained. When CaO is contained, the content is preferably 0.1% or more, more preferably 0.2% or more, still more preferably 0.3% or more, and particularly preferably 0.4% or more. Preferably it is 0.5% or more. On the other hand, if the content exceeds 14%, the ion exchange performance at the time of chemical strengthening may be lowered, so 14% or less is preferable. More preferably, it is 10% or less, More preferably, it is 8% or less, More preferably, it is 4% or less, Most preferably, it is 3% or less. 1% or less is preferable.
 SrOは、ガラスの溶融性を向上する成分であり、ミラー定数Aを向上する効果があり、含有させてもよい。含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.2%以上、さらに好ましくは0.3%以上であり、特に好ましくは0.4%以上、最も好ましくは0.5%以上である。一方、含有量が10%超となると化学強化処理時のイオン交換性能が低下するおそれがあるため、10%以下が好ましい。SrOの含有量の含有量は、より好ましくは8%以下であり、さらに好ましくは5%以下、特に好ましくは2%以下、最も好ましくは1%以下である。 SrO is a component that improves the meltability of glass, has the effect of improving the mirror constant A, and may be contained. When it is contained, the content is preferably 0.1% or more, more preferably 0.2% or more, further preferably 0.3% or more, particularly preferably 0.4% or more, and most preferably 0.5% or more. On the other hand, if the content exceeds 10%, the ion exchange performance at the time of chemical strengthening treatment may be lowered, so 10% or less is preferable. The SrO content is more preferably 8% or less, further preferably 5% or less, particularly preferably 2% or less, and most preferably 1% or less.
 BaOは、ガラスの溶融性を向上する成分であり、ミラー定数Aを向上する効果があり、含有させてもよい。BaOを含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.2%以上、さらに好ましくは0.3%以上であり、特に好ましくは0.4%以上、最も好ましくは0.5%以上である。一方、BaO含有量が10%超となると化学強化処理時のイオン交換性能が低下するため、10%以下が好ましい。BaOの含有量は8%以下であることがより好ましく、さらに好ましくは5%以下であり、特に好ましくは2%以下、最も好ましくは1%以下である。 BaO is a component that improves the meltability of glass, has an effect of improving the mirror constant A, and may be contained. When BaO is contained, the content is preferably 0.1% or more, more preferably 0.2% or more, still more preferably 0.3% or more, and particularly preferably 0.4% or more. Preferably it is 0.5% or more. On the other hand, if the BaO content exceeds 10%, the ion exchange performance at the time of chemical strengthening treatment decreases, so 10% or less is preferable. The content of BaO is more preferably 8% or less, further preferably 5% or less, particularly preferably 2% or less, and most preferably 1% or less.
 ZnOはガラスの溶融性を向上させる成分であり、含有させてもよい。ZnOを含有させる場合の含有量は、好ましくは0.25%以上であり、より好ましくは0.5%以上である。一方、ZnO含有量が10%超となるとガラスの耐候性が著しく低下する。ZnOの含有量は10%以下であることが好ましく、より好ましくは7%以下、さらに好ましくは5%以下であり、よりさらに好ましくは2%以下であり、特に好ましくは1%以下である。 ZnO is a component that improves the meltability of the glass and may be contained. Content in the case of containing ZnO becomes like this. Preferably it is 0.25% or more, More preferably, it is 0.5% or more. On the other hand, when the ZnO content exceeds 10%, the weather resistance of the glass is significantly lowered. The content of ZnO is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less, still more preferably 2% or less, and particularly preferably 1% or less.
 Bは、溶融性を向上させる成分である。また、ガラスのチッピング耐性を向上させる成分である。Bは必須ではないが、Bを含有させる場合の含有量は、溶融性を向上するために好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは2%以上である。一方、Bの含有量が10%を超えると溶融時に脈理が発生し化学強化ガラスの品質が低下しやすいため、10%以下が好ましい。Bの含有量は、より好ましくは5%以下、さらに好ましくは3%以下であり、特に好ましくは1%以下である。耐酸性を高くするためには実質的に含有しないことが好ましい。 B 2 O 3 is a component that improves the meltability. Moreover, it is a component which improves the chipping resistance of glass. B 2 O 3 is not essential, but the content in the case of containing B 2 O 3 is preferably 0.5% or more, more preferably 1% or more, further preferably, in order to improve the meltability. 2% or more. On the other hand, when the content of B 2 O 3 exceeds 10%, striae are generated at the time of melting, and the quality of the chemically strengthened glass tends to be lowered, so that it is preferably 10% or less. The content of B 2 O 3 is more preferably 5% or less, still more preferably 3% or less, and particularly preferably 1% or less. In order to make acid resistance high, it is preferable not to contain substantially.
 Pは、化学強化処理時のイオン交換性能、および、チッピング耐性を向上させる成分である。Pは必須ではないが、Pを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは2%以上である。一方、Pの含有量が10%超では、耐酸性が著しく低下するため、10%以下が好ましい。Pの含有量は、より好ましくは4%以下、さらに好ましくは3%以下、よりさらに好ましくは2%以下、特に好ましくは1%以下である。耐酸性を高くするためには実質的に含有しないことが好ましい。 P 2 O 5 is a component that improves ion exchange performance and chipping resistance during chemical strengthening treatment. P 2 O 5 is not essential, but the content when P 2 O 5 is contained is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more. On the other hand, if the content of P 2 O 5 is more than 10%, the acid resistance is remarkably lowered, so 10% or less is preferable. The content of P 2 O 5 is more preferably 4% or less, further preferably 3% or less, still more preferably 2% or less, and particularly preferably 1% or less. In order to make acid resistance high, it is preferable not to contain substantially.
 TiOは、化学強化処理時にイオン交換による表面圧縮応力値CSを増大させる成分であり、含有させてもよい。TiOを含有させる場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.15%以上、さらに好ましくは0.2%以上、最も好ましくは0.5%以上である。一方、含有量が10%超であると溶融時に失透しやすくなり、化学強化ガラスの品質が低下する恐れがあるため、10%以下が好ましい。その含有量は4%以下であることがより好ましく、さらに好ましくは2%以下、よりさらに好ましくは1%以下である。 TiO 2 is a component that increases the surface compressive stress value CS 0 due to ion exchange during the chemical strengthening treatment, and may be contained. When TiO 2 is contained, the content is preferably 0.1% or more, more preferably 0.15% or more, still more preferably 0.2% or more, and most preferably 0.5% or more. On the other hand, if the content is more than 10%, devitrification tends to occur at the time of melting, and the quality of chemically strengthened glass may be deteriorated, so 10% or less is preferable. The content is more preferably 4% or less, further preferably 2% or less, and still more preferably 1% or less.
 ZrOは、化学強化処理時にイオン交換による表面圧縮応力値CSを増大させる成分であり、含有させてもよい。これらを含有させる場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上である。一方、含有量が8%超であると溶融時に失透しやすくなり、化学強化ガラスの品質が低下する恐れがある。その含有量は8%以下であることが好ましく、より好ましくは4%以下であり、よりさらに好ましくは3%以下であり、特に好ましくは2%以下である。 ZrO 2 is a component that increases the surface compressive stress value CS 0 due to ion exchange during the chemical strengthening treatment, and may be contained. When these are contained, the content is preferably 0.5% or more, more preferably 1% or more. On the other hand, if the content exceeds 8%, devitrification tends to occur during melting, and the quality of the chemically strengthened glass may be deteriorated. The content is preferably 8% or less, more preferably 4% or less, still more preferably 3% or less, and particularly preferably 2% or less.
 Y、La、Nbを含有させてもよい。これらの成分を含有させる場合のそれぞれの含有量は、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上であり、特に好ましくは2%以上、最も好ましくは2.5%以上である。一方、Y、La、Nbの含有量はそれぞれ8%超であると溶融時にガラスが失透しやすくなり化学強化ガラスの品質が低下する恐れがある。Y、La、Nbの含有量はそれぞれ、8%以下であることが好ましく、より好ましくは6%以下、さらに好ましくは5%以下であり、特に好ましくは4%以下であり、最も好ましくは3%以下である。 Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 may be included. When each of these components is contained, the content is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, particularly preferably 2% or more, most preferably Preferably it is 2.5% or more. On the other hand, if the contents of Y 2 O 3 , La 2 O 3 , and Nb 2 O 5 are each over 8%, the glass tends to be devitrified at the time of melting, and the quality of the chemically strengthened glass may be deteriorated. The contents of Y 2 O 3 , La 2 O 3 and Nb 2 O 5 are each preferably 8% or less, more preferably 6% or less, still more preferably 5% or less, and particularly preferably 4%. Or less, most preferably 3% or less.
 Ta、Gdは、化学強化ガラスの破砕性を改善するために少量含有してもよいが、屈折率や反射率が高くなるので1%以下が好ましく、0.5%以下がより好ましく、含有しないことがさらに好ましい。 Ta 2 O 5 and Gd 2 O 3 may be contained in a small amount in order to improve the crushability of chemically strengthened glass. However, the refractive index and the reflectance are increased, so 1% or less is preferable, and 0.5% or less. Is more preferable, and it is still more preferable not to contain.
 さらに、ガラスに着色を行い使用する際は、所望の化学強化特性が得られる範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、TiO、CeO、Er、Nd等が好適なものとして挙げられる。 Furthermore, when coloring and using glass, you may add a coloring component in the range in which a desired chemical strengthening characteristic is acquired. Examples of the coloring component include Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , TiO 2 , CeO 2 , and Er 2. O 3 , Nd 2 O 3 and the like are preferable.
 着色成分の含有量は、合計で7%以下であるとガラスの失透が抑制されるので好ましい。この含有量は好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは1%以下である。ガラスの可視光透過率を高くしたい場合は、これらの成分は実質的に含有しないことがより好ましい。 The content of the coloring components is preferably 7% or less in total because glass devitrification is suppressed. This content is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. When it is desired to increase the visible light transmittance of the glass, it is more preferable that these components are not substantially contained.
 ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは含有しないことが好ましい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、実質的に含有しないことが最も好ましい。 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained. It is preferable not to contain As 2 O 3 . When containing Sb 2 O 3 content of preferably 0.3% or less, more preferably 0.1% or less, and most preferably substantially not contained.
 また、化学強化用ガラスの破壊靱性値は、0.70MPa・m1/2以上が好ましく、0.75MPa・m1/2以上がより好ましく、0.77MPa・m1/2以上がさらに好ましく、0.80MPa・m1/2以上が特に好ましく、0.82MPa・m1/2以上が最も好ましい。破壊靱性値が0.70MPa・m1/2以上であると、ガラスの破砕性を効果的に抑制できる。 Further, fracture toughness of the glass for chemical strengthening, preferably 0.70 MPa · m 1/2 or more, more preferably 0.75 MPa · m 1/2 or more, more preferably 0.77MPa · m 1/2 or more, particularly preferably 0.80 MPa · m 1/2 or higher, 0.82 MPa · m 1/2 or more is most preferred. When the fracture toughness value is 0.70 MPa · m 1/2 or more, the friability of the glass can be effectively suppressed.
 本発明の化学強化用ガラスのヤング率は、好ましくは74GPa以上、より好ましくは78GPa以上、さらに好ましくは82GPa以上である。ヤング率の上限は特に限定されるものではないが、例えば90GPa以下であり、好ましくは88GPa以下である。ヤング率は、たとえば超音波パルス法で測定できる。
 また、本発明の化学強化用ガラスの液相温度Tは、粘度が10dPa・sとなる温度T以下が好ましい。その場合は、フロート法でのガラス板製造が容易である。フロート法でのガラス成形をしやすくするためには、TはTより10℃低い温度(T-10℃)以下が好ましく、T-30℃以下がより好ましく、T-50℃以下がさらに好ましい。化学強化しやすさのためには、TはT-150℃以上が好ましく、T-125℃以上がより好ましく、T-100℃以上がさらに好ましい。
The Young's modulus of the glass for chemical strengthening of the present invention is preferably 74 GPa or more, more preferably 78 GPa or more, and further preferably 82 GPa or more. The upper limit of the Young's modulus is not particularly limited, but is, for example, 90 GPa or less, preferably 88 GPa or less. The Young's modulus can be measured by, for example, an ultrasonic pulse method.
Moreover, the liquid phase temperature TL of the glass for chemical strengthening of the present invention is preferably a temperature T 4 or less at which the viscosity becomes 10 4 dPa · s. In that case, it is easy to produce a glass plate by the float process. For ease of molding glass by a float method, T L is preferably not more than T 4 from 10 ° C. lower temperature (T 4 -10 ℃), T 4 , more preferably -30 ° C. or less, T 4 -50 ° C. The following is more preferable. For ease of chemical strengthening, TL is preferably T 4 −150 ° C. or higher, more preferably T 4 −125 ° C. or higher, and further preferably T 4 −100 ° C. or higher.
(化学強化ガラスの製造方法)
 化学強化ガラスは、例えば、以下のようにして製造できる。
(Method for producing chemically strengthened glass)
The chemically strengthened glass can be produced, for example, as follows.
 まず、化学強化処理に供するガラス(化学強化用ガラス)を用意する。化学強化処理に供するガラスは、本発明の化学強化用ガラスが好ましい。化学強化用ガラスには、化学強化処理を施して化学強化ガラスとする前に、用途に応じた形状加工、例えば、切断、端面加工および孔あけ加工などの機械的加工を行ってもよい。化学強化処理前にガラス板の切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されるため、好ましい。 First, prepare glass for chemical strengthening (chemical strengthening glass). The glass for chemical strengthening treatment is preferably the glass for chemical strengthening of the present invention. The chemical strengthening glass may be subjected to mechanical processing such as cutting, end surface processing, and drilling processing according to the application before chemical strengthening treatment is performed to obtain chemically strengthened glass. If the glass plate is cut or chamfered before the chemical strengthening treatment, a compressive stress layer is also formed on the end face by the subsequent chemical strengthening treatment, which is preferable.
 化学強化処理は、例えば、製造された化学強化用ガラスを所望のサイズに切断した後、化学強化用ガラスを400℃程度に予熱し、溶融塩内でガラスに含まれるLiイオンと溶融塩中のNaイオンとを、またはガラスに含まれるNaイオンと溶融塩中のKイオンとを、イオン交換することでガラスを強化できる。
 また、特定の塩を含む溶融塩内でイオン交換した後に、酸処理およびアルカリ処理を行うことで、さらに高強度の化学強化ガラスとしてもよい。
The chemical strengthening treatment is performed, for example, by cutting the manufactured chemical strengthening glass into a desired size and then preheating the chemical strengthening glass to about 400 ° C., and in the molten salt, Li ions contained in the glass and the molten salt are contained in the molten salt. The glass can be strengthened by ion exchange of Na ions or Na ions contained in the glass and K ions in the molten salt.
Further, after ion exchange in a molten salt containing a specific salt, an acid treatment and an alkali treatment may be performed to obtain a chemically strengthened glass with higher strength.
 本発明の化学強化ガラスにおいて、化学強化処理(イオン交換処理)は、例えば、360~600℃に加熱された硝酸カリウム等の溶融塩中に、ガラス板を0.1~500時間浸漬することによって行うことができる。なお、溶融塩の加熱温度としては、375~500℃が好ましく、また、溶融塩中へのガラス板の浸漬時間としては、0.3~200時間が好ましい。 In the chemically strengthened glass of the present invention, the chemical strengthening treatment (ion exchange treatment) is performed, for example, by immersing the glass plate in a molten salt such as potassium nitrate heated to 360 to 600 ° C. for 0.1 to 500 hours. be able to. The heating temperature of the molten salt is preferably 375 to 500 ° C., and the immersion time of the glass plate in the molten salt is preferably 0.3 to 200 hours.
 化学強化処理を行うための溶融塩としては、硝酸塩、硫酸塩、炭酸塩、塩化物塩などが挙げられる。このうち硝酸塩としては、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸銀などが挙げられる。硫酸塩としては、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、などが挙げられる。炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。塩化物塩としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化銀などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。また、化学強化特性を調整するために、その他の塩を混ぜてもよい。 Examples of molten salts for performing chemical strengthening treatment include nitrates, sulfates, carbonates, chloride salts and the like. Among these, examples of the nitrate include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, and silver nitrate. Examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, and the like. Examples of the carbonate include lithium carbonate, sodium carbonate, and potassium carbonate. Examples of the chloride salt include lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride and the like. These molten salts may be used alone or in combination of two or more. Further, other salts may be mixed in order to adjust the chemical strengthening characteristics.
 化学強化ガラスの表面圧縮応力CSの調整は、たとえばイオン交換に用いる溶融硝酸カリウム塩中のNa濃度、強化時間および/又は溶融塩温度を調整することによっても可能である。
 圧縮応力層深さDOLの調整は、イオン交換に用いる溶融硝酸カリウム塩中のNa濃度、強化時間および/又は溶融塩温度を調整することによっても可能である。より高いDOLを得るためには、溶融塩の温度を上げてもよい。
 化学強化ガラスのCTの調整は、上記したCS、DOLの調整により可能である。
Adjustment of surface compressive stress CS 0 of chemically strengthened glass, for example the Na concentration in the molten potassium nitrate salt used in the ion-exchange, it is possible by adjusting the reinforced time and / or molten salt temperature.
The compression stress layer depth DOL can be adjusted by adjusting the Na concentration, the strengthening time and / or the molten salt temperature in the molten potassium nitrate salt used for ion exchange. In order to obtain a higher DOL, the temperature of the molten salt may be increased.
Adjustment of CT of chemically strengthened glass is possible by adjusting CS 0 and DOL described above.
 また、本発明においては、化学強化処理を一回のみ行ってもよく、あるいは2以上の異なる条件で複数回の化学強化処理(多段強化)を行ってもよい。ここで、例えば、1段階目の化学強化処理として、CSが相対的に低くなる条件で化学強化処理を行った後に、2段階目の化学強化処理として、CSが相対的に高くなる条件で化学強化処理を行うと、化学強化ガラスの表面圧縮応力CSを高めつつ、内部引張応力CTを抑制できる。 In the present invention, the chemical strengthening treatment may be performed only once, or multiple times of chemical strengthening treatment (multi-stage strengthening) may be performed under two or more different conditions. Here, for example, as the first-stage chemical strengthening process, after performing the chemical strengthening process under the condition that the CS is relatively low, the second-stage chemical strengthening process is performed under the condition that the CS is relatively high. Doing strengthening, while increasing the surface compressive stress CS 0 of chemically strengthened glass, it is possible to suppress the internal tensile stress CT.
 得られたガラス板に化学強化処理を施した後、洗浄および乾燥することにより、本発明の化学強化ガラスを製造することができる。 The chemically strengthened glass of the present invention can be produced by subjecting the obtained glass plate to chemical strengthening treatment, followed by washing and drying.
 化学強化ガラスは、化学強化処理後に切断することが可能である。切断方法は、通常のホイールチップカッターによるスクライブとブレイクを適用することが可能であり、レーザーによる切断も可能である。ガラス板の強度を維持するため、切断後に切断エッジの面取り加工を施しても良い。面取りは、機械的な研削加工でもよいし、フッ酸等の薬液で処理する方法を用いることもできる。 Chemically tempered glass can be cut after chemical tempering treatment. As a cutting method, scribing and breaking with a normal wheel tip cutter can be applied, and laser cutting is also possible. In order to maintain the strength of the glass plate, the cutting edge may be chamfered after cutting. The chamfering may be a mechanical grinding process or a method of treating with a chemical solution such as hydrofluoric acid.
 本発明の化学強化用ガラスは、例えば、ガラス原料を適宜調製し、約1500~1700℃に加熱し溶融した後、成形および冷却して製造される。ガラス原料を溶融して得られる溶融ガラスは通常、脱泡、攪拌等により均質化して成形される。化学強化用ガラスを板上に成形する場合の成形方法としては、周知のフロート法、ダウンドロー法、プレス法等が用いられる。またはキャストしてブロック状に成形し、徐冷後所望のサイズに切断してもよい。 The glass for chemical strengthening of the present invention is produced, for example, by appropriately preparing a glass raw material, heating and melting at about 1500 to 1700 ° C., molding and cooling. Molten glass obtained by melting a glass raw material is usually formed by homogenization by defoaming, stirring, or the like. As a forming method when the glass for chemical strengthening is formed on a plate, a well-known float method, down draw method, press method or the like is used. Or you may cast, shape | mold into a block shape, and cut | disconnect to a desired size after slow cooling.
 たとえばフロート法、ダウンドロー法等によって板状に成形する場合、高温の溶融ガラスは、冷却されながら成形される。この場合、成形工程での冷却速度は、仮想温度を低くするために300℃/分以下が好ましく、120℃/分以下がより好ましく、90℃/分以下がさらに好ましい。
 一方、冷却速度が遅い場合には、ガラス板の生産効率が低下するだけでなく、ガラスが失透しやすくなる傾向がある。特にリチウムアルミノシリケートガラスは、リチウムアルミノシリケート結晶が析出しやすく、失透しやすい。
 冷却速度は、ガラスの失透を抑制するために10℃/分以上が好ましい。
For example, when forming into a plate shape by a float method, a down draw method, etc., high temperature molten glass is shape | molded, being cooled. In this case, the cooling rate in the molding step is preferably 300 ° C./min or less, more preferably 120 ° C./min or less, and further preferably 90 ° C./min or less in order to lower the fictive temperature.
On the other hand, when the cooling rate is slow, not only the production efficiency of the glass plate is lowered, but the glass tends to be devitrified. In particular, lithium aluminosilicate glass is liable to be devitrified because lithium aluminosilicate crystals are likely to precipitate.
The cooling rate is preferably 10 ° C./min or more in order to suppress devitrification of the glass.
 本発明の化学強化用ガラスは、必要に応じて研磨加工を施すが、研磨加工に加えてまたは研磨加工に代えて、化学強化用ガラスの主面をフッ素剤で処理することも可能である。本発明の化学強化用ガラスを安定して生産することを考慮すると、成形方法は、特に大型の化学強化用ガラスを生産することを考慮するとフロート法が好ましい。その後、必要に応じて切断される。一般的には矩形に切断されているが、円形または多角形などの他の形状でも問題なく、孔あけ加工が施されていてもよい。 The chemically strengthened glass of the present invention is subjected to a polishing process as necessary, but the main surface of the chemically strengthened glass can be treated with a fluorine agent in addition to or in place of the polishing process. Considering that the glass for chemical strengthening of the present invention is produced stably, the float process is preferable as the forming method, especially considering the production of a large glass for chemical strengthening. Then, it cut | disconnects as needed. Generally, it is cut into a rectangular shape, but other shapes such as a circular shape or a polygonal shape may be used without any problem and may be subjected to drilling.
 本発明の化学強化用ガラスの厚さtは用途に応じて選択される。例えば、携帯電話機等のディスプレイ部分ののカバーガラスとして使用する場合、厚さtは、2.0mm以下であることが好ましく、1.0mm以下であることがより好ましく、0.75mm以下であることがさらに好ましい。厚さtは、通常、0.1mm以上である。 The thickness t of the glass for chemical strengthening of the present invention is selected according to the application. For example, when used as a cover glass for a display part of a mobile phone or the like, the thickness t is preferably 2.0 mm or less, more preferably 1.0 mm or less, and 0.75 mm or less. Is more preferable. The thickness t is usually 0.1 mm or more.
 本発明の化学強化ガラスは、高い機械的強度を有することから、落下による衝撃や、他の物質との接触が予想される箇所への使用に好適である。
 具体的には、例えば、携帯電話、スマートフォン、携帯情報端末(PDA)、タブレット端末等のモバイル機器等に用いられるカバーガラスとして、特に有用である。さらに、携帯を目的としない、テレビ(TV)、パーソナルコンピュータ(PC)、タッチパネル等のディスプレイ装置のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等にも有用である。
Since the chemically strengthened glass of the present invention has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected.
Specifically, it is particularly useful as a cover glass used for mobile devices such as mobile phones, smartphones, personal digital assistants (PDAs), and tablet terminals. Furthermore, non-portable products such as televisions (TVs), personal computers (PCs), cover glass for display devices such as touch panels, wall surfaces of elevators, wall surfaces of buildings such as houses and buildings (full display), and construction of window glass, etc. It is also useful for interior materials such as automobile materials, table tops, automobiles and airplanes.
 以下、実施例を用いて本発明をさらに説明するが、本発明はこれに限定されない。
 ガラス原料を適宜調製し、加熱・溶融した後、脱泡、攪拌等により均質化し、板状に成形してガラス板を得た。冷却速度は70℃/分程度とした。実施例、比較例に用いたガラスの組成(モル%)を表1に示す。なお、表中に示していないが、P及びZnOはいずれのガラスにおいても「0.0」である(含まれていない)。また、ガラス2は特許文献1に記載されたガラスである。得られたガラスについて以下の特性を評価した。
EXAMPLES Hereinafter, although this invention is further demonstrated using an Example, this invention is not limited to this.
A glass material was appropriately prepared, heated and melted, homogenized by defoaming, stirring and the like, and formed into a plate shape to obtain a glass plate. The cooling rate was about 70 ° C./min. Table 1 shows the composition (mol%) of the glass used in Examples and Comparative Examples. Although not shown in the table, P 2 O 5 and ZnO are “0.0” (not included) in any glass. Glass 2 is the glass described in Patent Document 1. The obtained glass was evaluated for the following characteristics.
(ガラス転移点Tg)
 JIS R3102(1995年)に記載の方法で得られた熱膨張曲線からガラス転移点Tgを求めた。
(ヤング率、ポアソン比)
 上記の手順で得られたガラス板のヤング率とポアソン比を、超音波パルス法により測定した。
(Glass transition point Tg)
The glass transition point Tg was determined from the thermal expansion curve obtained by the method described in JIS R3102 (1995).
(Young's modulus, Poisson's ratio)
The Young's modulus and Poisson's ratio of the glass plate obtained by the above procedure were measured by the ultrasonic pulse method.
(T、T
 粘度が10dPa・sとなる温度Tおよび粘度が10dPa・sとなる温度Tを、回転粘度計を用いて測定した。
(液相温度T、失透粘性)
 平均粒径が500μm程度になるように粉砕したガラス5gを35mlの白金皿に入れ、所定温度の電気炉中に17時間保持した後、取り出して倍率10倍の光学顕微鏡で観察し、結晶析出の有無を調べた。800℃~1500℃の温度域で、保持する温度を変えながら結晶析出の有無を調べる操作を繰り返し、結晶が析出しない最低の温度を液相温度Tとした。
 回転粘度計で求めた、温度と粘性の関係から、液相温度における粘性を求めて、失透粘性とした。
(T 2 , T 4 )
The temperature T 4 to a temperature T 2 and viscosity viscosity becomes 10 2 dPa · s is 10 4 dPa · s, it was measured using a rotational viscometer.
(Liquid phase temperature T L , devitrification viscosity)
5 g of glass crushed so that the average particle size is about 500 μm is put in a 35 ml platinum dish, kept in an electric furnace at a predetermined temperature for 17 hours, and then taken out and observed with an optical microscope with a magnification of 10 times. The presence or absence was examined. In the temperature range of 800 ° C. to 1500 ° C., the operation for examining the presence or absence of crystal precipitation was repeated while changing the holding temperature, and the lowest temperature at which no crystal was precipitated was defined as the liquidus temperature TL .
From the relationship between temperature and viscosity obtained with a rotational viscometer, the viscosity at the liquidus temperature was obtained and defined as devitrification viscosity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <ミラー定数の影響>
(仮想温度の調整)
 得られたガラス1の板をガラス転移点Tgより30℃高い温度に1時間保持した後、1℃/分の冷却速度で精密徐冷することで、仮想温度がガラス転移点Tg以下のガラス板を得た。後述の方法で、仮想温度を測定すると、535℃であった。
 また、ガラス転移点より60℃高い温度に保持したのち急冷する処理を行うことで、仮想温度がTg+60℃のガラス板を得た。
 ガラス2、3については、商業生産工程で得られたガラス板を模擬した熱履歴を有するガラスを作って用いた。ガラス2はフュージョン法で製造されたガラスの熱履歴を模擬したものであり、仮想温度はTg+50℃であった。ガラス3はフロート法で製造されたガラスの熱履歴を模擬したものであり、仮想温度はTg+30℃であった。
(ミラー定数)
 下記手順でミラー定数Aを測定した。ただし例3と例4については、仮想温度がTg付近のサンプルとTg+60℃とのミラー定数から計算で求めた。
 40×6×3mmの大きさに加工し、表裏面と長手方向の端面(合わせて4面)を鏡面研磨した。
 ビッカース硬度計を用いて110°のダイヤモンド圧子を使用し、異なる荷重で圧子を押し込み、加傷した。押し込み荷重は、0.05kgf、0.1kgf、0.3kgf、0.5kgf、0.75kgf、1.0kgf、2.0kgf、3.0kgfとした。
 加傷による歪の影響を除去するために熱処理を行った。この熱処理は、仮想温度の調整を兼ねて、以下の手順で実施した。
 仮想温度がTg付近のサンプル:Tgより30℃高い温度で1時間保持し、1℃/minで室温まで下げることにより徐冷した。
 仮想温度がTg+60℃のサンプル:Tgより60℃高い温度で1時間保持し、空気中で急冷した。
<Influence of mirror constant>
(Adjustment of virtual temperature)
The obtained glass 1 plate is held at a temperature 30 ° C. higher than the glass transition point Tg for 1 hour, and then precisely annealed at a cooling rate of 1 ° C./min. Got. It was 535 degreeC when fictive temperature was measured by the below-mentioned method.
Moreover, the glass plate whose virtual temperature is Tg + 60 degreeC was obtained by performing the process which cools rapidly after hold | maintaining to the temperature 60 degreeC higher than a glass transition point.
Glasses 2 and 3 were produced by using a glass having a thermal history simulating a glass plate obtained in a commercial production process. Glass 2 simulates the thermal history of glass produced by the fusion method, and the fictive temperature was Tg + 50 ° C. Glass 3 simulates the thermal history of glass produced by the float process, and the fictive temperature was Tg + 30 ° C.
(Mirror constant)
The mirror constant A was measured by the following procedure. However, Example 3 and Example 4 were calculated from a sample having a fictive temperature near Tg and a mirror constant of Tg + 60 ° C.
It processed to the magnitude | size of 40x6x3 mm, and mirror-polished the front and back and the end surface (a total of 4 surfaces) of the longitudinal direction.
Using a 110 ° diamond indenter with a Vickers hardness tester, the indenter was pushed in under different loads to be injured. The indentation load was set to 0.05 kgf, 0.1 kgf, 0.3 kgf, 0.5 kgf, 0.75 kgf, 1.0 kgf, 2.0 kgf, and 3.0 kgf.
Heat treatment was performed to remove the influence of strain due to the scratch. This heat treatment was performed according to the following procedure also for adjusting the fictive temperature.
Sample having a fictive temperature near Tg: held for 1 hour at a temperature 30 ° C. higher than Tg, and gradually cooled by lowering to room temperature at 1 ° C./min.
Sample having a fictive temperature of Tg + 60 ° C .: held at a temperature 60 ° C. higher than Tg for 1 hour and rapidly cooled in air.
 4点曲げ用冶具のスパンを、負荷側(上):10mm、支持側(下):30mmとして加傷したガラス板について4点曲げ試験を行った。加傷および熱処理後のガラスの、加傷面の反対の面に粘着テープを貼り、加傷面を下(粘着テープを貼った面を上)にして荷重を印加し、破砕した時の荷重を測定した。以下の式を用いて、測定した荷重から破砕時の応力を求めた。
 σ=(3F(Ls-Ll))/(2wh
 ここで、σ:破砕時の応力(MPa)、F:破砕時の荷重(N)、Ls:下部支点間距離(mm)、Ll:上部荷重点間距離(mm)、w:サンプル幅(mm)、h:サンプル厚さ(mm)である。
 ついで、破断面をKEYENCE デジタルマイクロスコープVHX-5000を用いて観察し、破壊起点から、ミラー面とミスト面との界面までの距離Rを計測した。観察時は、サンプルと顕微鏡のレンズとを平行にし、20×150倍の倍率で観察を行った。
 上記の手順で得られた結果から、次の式を用いてミラー定数Aを求めた。
 σ=A/R1/2
A four-point bending test was performed on a glass plate which was scratched with the span of the four-point bending jig set to the load side (upper): 10 mm and the support side (lower): 30 mm. Apply the adhesive tape on the opposite side of the scratched and heat-treated glass, apply the load with the scratched surface down (the surface with the adhesive tape applied up), and the load when crushed It was measured. The stress at the time of crushing was calculated | required from the measured load using the following formula | equation.
σ = (3F (Ls−Ll)) / (2wh 2 )
Where σ: stress during crushing (MPa), F: load during crushing (N), Ls: distance between lower fulcrums (mm), Ll: distance between upper load points (mm), w: sample width (mm) ), H: sample thickness (mm).
Next, the fracture surface was observed using a KEYENCE digital microscope VHX-5000, and the distance R from the fracture starting point to the interface between the mirror surface and the mist surface was measured. At the time of observation, the sample and the lens of the microscope were made parallel and the observation was performed at a magnification of 20 × 150 times.
From the results obtained by the above procedure, the mirror constant A was determined using the following equation.
σ = A / R 1/2
 (化学強化特性)
 ガラス1については、硝酸ナトリウムを用いて450℃で1時間、ガラス2については硝酸カリウムを用いて450℃で6時間、ガラス3については硝酸カリウムを用いて425℃で12時間の化学強化処理を行った。
 化学強化処理後のガラスの応力を測定して、CS、DOL、CTを求めた。
 なお、用いたガラスの厚さtは0.8mmであり、-38.7×ln(t)+48.2は56.5MPaである。
(Chemical strengthening properties)
Glass 1 was subjected to chemical strengthening treatment at 450 ° C. for 1 hour using sodium nitrate, glass 2 was subjected to chemical treatment at 450 ° C. for 6 hours using potassium nitrate, and glass 3 was subjected to chemical strengthening treatment at 425 ° C. for 12 hours using potassium nitrate. .
The stress of the glass after chemical strengthening treatment was measured to determine CS 0 , DOL, and CT.
The glass used had a thickness t of 0.8 mm, and −38.7 × ln (t) +48.2 was 56.5 MPa.
(破砕数)
 化学強化処理後のガラスの破砕数の測定は次のような方法で行った。
 化学強化後のガラスに対して、SHIMADZU社製HMVマイクロビッカース硬度計を用いて、正四角錐状60°(対面角)圧子を下記圧子負荷速度、荷重4kgf、押し込み時間15secで押し込む。押し込んだ結果、ガラスが破砕しなければ押し込み荷重を0.5kgfずつ増加させる。破砕した際の破片の数を破砕数とする。破砕数が10個未満であれば、例えばモバイル機器のカバーガラスに適しているといえる。
 圧子負荷速度:ガラス表面に触れるまでは260μm/sec、ガラス侵入後は5~120μm/sec
(Number of crushing)
The number of glass fragments after chemical strengthening treatment was measured by the following method.
Using a HMV micro Vickers hardness tester manufactured by SHIMADZU, a regular quadrangular pyramid-shaped 60 ° (face-to-face) indenter is pushed into the glass after chemical strengthening at the following indenter load speed, load 4 kgf, and indentation time 15 sec. If the glass is not crushed as a result of the indentation, the indentation load is increased by 0.5 kgf. The number of debris when crushed is taken as the number of crushed pieces. If the number of crushing is less than 10, it can be said that it is suitable for a cover glass of mobile devices, for example.
Indenter loading speed: 260 μm / sec until touching the glass surface, 5 to 120 μm / sec after glass penetration
(砂上落下試験)
 化学強化処理後のガラスについて、以下の試験方法により砂上落下試験を行った。
 図4に砂上落下試験の試験方法を表す模式図を示す。
 まず、硬質ナイロン製のモック板11(50mm×50mm×厚さ18mm、重量:54g)に化学強化ガラス13(50mm×50mm×厚さ0.8mm)をスポンジ両面テープ12(積水化学社製の#2310、50mm×50mm×厚さ3mm)を介して貼り合わせ、測定試料10を作製した。次に、15cm×15cmのサイズの金属板21(SUS(ステンレススチール)製)上に、1gのけい砂22(竹折社製5号けい砂)を均一となるようにまき、作製した測定試料10を、化学強化ガラス13を下にして、けい砂22がまかれた金属板21の表面に所定の高さ(落下高さ)から落下させた。落下試験は、落下高さ:10mmから開始して、10mmずつ高さを上げて実施し、ガラス13が割れた高さを割れ高さ(単位mm)とした。落下試験は各例について5~10回実施し、落下試験での割れ高さの平均値を、平均割れ高さ(単位:mm)とした。これらの結果を表2に示す。
(Sand drop test)
About the glass after a chemical strengthening process, the drop test on sand was done with the following test methods.
FIG. 4 is a schematic diagram showing a test method of a drop-on-sand test.
First, chemically tempered glass 13 (50 mm × 50 mm × thickness 0.8 mm) and sponge double-sided tape 12 (# manufactured by Sekisui Chemical Co., Ltd.) are used on a hard nylon mock plate 11 (50 mm × 50 mm × thickness 18 mm, weight: 54 g). 2310, 50 mm × 50 mm × thickness 3 mm) to prepare a measurement sample 10. Next, 1 g of silica sand 22 (No. 5 silica sand made by Takefori Co., Ltd.) is uniformly spread on a metal plate 21 (SUS (stainless steel)) having a size of 15 cm × 15 cm, and a measurement sample is prepared. 10 was dropped from a predetermined height (falling height) onto the surface of the metal plate 21 on which the silica sand 22 was coated with the chemically strengthened glass 13 facing down. The drop test was carried out starting from a drop height of 10 mm and increasing the height by 10 mm. The height at which the glass 13 was broken was defined as the crack height (unit: mm). The drop test was carried out 5 to 10 times for each example, and the average crack height in the drop test was defined as the average crack height (unit: mm). These results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 例C、Dで使用したガラス2、3は、特許文献1に示された限界CT(56.8MPa)を超える引張応力を加えると、激しく破砕した。従来の限界CT(56.8MPa)を超える内部引張応力を加えた化学強化後のガラスは破砕数が10以上と多く、砂上落下試験の結果もよくなかった。例C、Dのガラスは、ミラー定数が小さいことが確認できた。
 ガラス1を使用した例A、Bは、ミラー定数が2.0MPa・m1/2以上であった。従来の限界CT(56.8MPa)を超える内部引張応力を加えた化学強化後のガラスでも破砕数が少なく、砂上落下試験の結果も良好であった。
 また、例Aと例Bとを比較すると、同じガラス組成であっても、仮想温度が低いほどミラー定数が大きいことがわかる。
Glasses 2 and 3 used in Examples C and D were severely crushed when a tensile stress exceeding the limit CT (56.8 MPa) shown in Patent Document 1 was applied. The glass after chemical strengthening applied with an internal tensile stress exceeding the conventional limit CT (56.8 MPa) has a large number of fractures of 10 or more, and the result of the drop-on-sand test is not good. It was confirmed that the glasses of Examples C and D had a small mirror constant.
Examples A and B using glass 1 had a mirror constant of 2.0 MPa · m 1/2 or more. Even after chemically strengthened glass to which internal tensile stress exceeding the conventional limit CT (56.8 MPa) was applied, the number of fractures was small, and the results of a drop-on-sand test were also good.
Moreover, when Example A and Example B are compared, even if it is the same glass composition, it turns out that a mirror constant is so large that virtual temperature is low.
<冷却速度とガラス組成の違い>
 ガラス1、4、5、6、7について、15mm×15mm×0.8mmtの板状サンプルを作製した。例1、2、3、4については、各ガラスのTgより30℃以上高い温度で5分間保持した後、70℃/分の冷却速度で室温付近まで冷却されるようにプログラムされたベルト炉を使って加熱処理した。例5、例6については、各ガラスのTgより60℃高い温度に1時間保持した後、0.5℃/分の冷却速度で室温まで冷却した。例7はTgより60℃高い温度に1時間保持した後、500℃/分で冷却した。
 例1~3は実施例、例4~7は比較例である。
<Difference between cooling rate and glass composition>
About glass 1, 4, 5, 6, 7, the plate-shaped sample of 15 mm x 15 mm x 0.8 mmt was produced. For Examples 1, 2, 3, and 4, a belt furnace programmed to be held at a temperature 30 ° C. higher than the Tg of each glass for 5 minutes and then cooled to near room temperature at a cooling rate of 70 ° C./min. Heat treated. About Example 5 and Example 6, after hold | maintaining at the temperature 60 degreeC higher than Tg of each glass for 1 hour, it cooled to room temperature with the cooling rate of 0.5 degreeC / min. Example 7 was held at a temperature 60 ° C. higher than Tg for 1 hour and then cooled at 500 ° C./min.
Examples 1 to 3 are examples, and examples 4 to 7 are comparative examples.
(仮想温度)
 例1~例7について屈折率を測定し、次の方法で作成した検量線から仮想温度を求めた結果を表3に示す。
 検量線の作成は、ガラス1、4、5、6、7のそれぞれについて、15mm×15mm×厚さ0.8mmのガラス板を高温に保持したのち急冷する方法で、仮想温度がそれぞれTg+50℃、Tg+20℃、Tg+5℃、Tg-10℃、Tg-30℃のガラス板を調整し、それぞれの屈折率を測定して仮想温度と屈折率の関係をプロットした。図3は、ガラス1についての検量線である。仮想温度を調整したガラスは、たとえば、そのガラスのTgより50℃高い温度に保持した後、水に投入して急冷する方法で仮想温度がTg+50℃であるガラス板を得た。
(Virtual temperature)
Table 3 shows the results of measuring the refractive index for Examples 1 to 7 and obtaining the fictive temperature from the calibration curve prepared by the following method.
The calibration curve is created by holding glass plates of 15 mm × 15 mm × 0.8 mm thickness at a high temperature for each of the glass 1, 4, 5, 6, 7 and then rapidly cooling, each of the virtual temperatures being Tg + 50 ° C., The glass plates of Tg + 20 ° C., Tg + 5 ° C., Tg−10 ° C., and Tg−30 ° C. were adjusted, and the refractive index was measured to plot the relationship between the fictive temperature and the refractive index. FIG. 3 is a calibration curve for the glass 1. The glass whose fictive temperature was adjusted was obtained, for example, by maintaining the glass at a temperature higher by 50 ° C. than the Tg of the glass, and then quenching by putting it into water to obtain a glass plate having a fictive temperature of Tg + 50 ° C.
(化学強化特性)
 例1~7の各ガラスについて、450℃の硝酸ナトリウム溶融塩に1時間浸すことでNa塩による化学強化処理を行った。冷却し、洗浄して乾燥した後、光弾性散乱方式の応力解析装置(折原製作所製、仮称SLPII)によってNa塩処理による表面圧縮応力値CS1と圧縮応力層深さDOL1を測定した。
 次に、450℃の硝酸カリウム溶融塩で6時間処理を行い、冷却し、洗浄して乾燥してから応力解析装置(折原製作所製FSM6000)でK塩による化学強化後の表面圧縮応力値CS2と圧縮応力層深さDOL2を測定した。
 例4については、CS2とDOL2が測定できなかったので450℃の硝酸カリウム溶融塩で48時間の処理を行ってから、光弾性散乱方式の応力解析装置(折原製作所製、仮称SLPII)を用いて表面圧縮応力値と圧縮応力層深さを測定し、表面圧縮応力値は処理時間に依存せず、圧縮応力層深さは処理時間の平方根に比例すると仮定して、450℃の硝酸カリウム溶融塩で6時間処理を行った場合のCS2とDOL2を算出した。
(Chemical strengthening properties)
Each glass of Examples 1 to 7 was subjected to chemical strengthening treatment with Na salt by immersing in sodium nitrate molten salt at 450 ° C. for 1 hour. After cooling, washing and drying, the surface compressive stress value CS1 and the compressive stress layer depth DOL1 by Na salt treatment were measured by a photoelastic scattering type stress analysis device (manufactured by Orihara Seisakusho, provisional name SLPII).
Next, it is treated with molten potassium nitrate at 450 ° C. for 6 hours, cooled, washed and dried, and then subjected to a stress analysis device (FSM6000 manufactured by Orihara Seisakusho Co., Ltd.) and the surface compressive stress value CS2 and compression after chemical strengthening with K salt. The stress layer depth DOL2 was measured.
In Example 4, since CS2 and DOL2 could not be measured, the surface was treated with a photoelastic scattering type stress analyzer (provisionally named SLPII) after treatment with a potassium nitrate molten salt at 450 ° C. for 48 hours. The compressive stress value and the compressive stress layer depth are measured, and the surface compressive stress value does not depend on the processing time, and the compressive stress layer depth is proportional to the square root of the processing time. CS2 and DOL2 when time processing was performed were calculated.
(失透特性)
 例1~例7のガラスを白金坩堝に入れて1500℃に3時間保持して溶融してから、所定の冷却速度で室温まで冷却し、白金坩堝から取り出して、目視にて失透の有無を観察した。
(Devitrification characteristics)
The glass of Examples 1 to 7 was put in a platinum crucible and held at 1500 ° C. for 3 hours to melt, then cooled to room temperature at a predetermined cooling rate, taken out from the platinum crucible, and visually checked for devitrification. Observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 例1~3は化学強化によって高い表面圧縮応力CSが得られ、かつ、失透が認められなかった。例4は、TがTより高いガラスであり、失透が激しかった。
 例1と例5を比較すると、同じ組成のガラスでも、冷却速度が非常に遅くて仮想温度が低い場合は、失透しやすいことがわかる。また冷却速度が非常に遅くても失透しなかった例7は、CSやDOLが大きくならなかった。ガラス組成が異なるためである。
 例1と例7を比較すると、同じガラス組成であっても仮想温度が高い例7は、CS2が低く、強度が不十分である。
Examples 1-3 surface compressive stress CS 0 higher by chemical strengthening is obtained and, devitrification was observed. Example 4, T L is high glass than T 4, devitrification was severe.
Comparing Example 1 and Example 5, it can be seen that even glasses having the same composition are easily devitrified when the cooling rate is very slow and the fictive temperature is low. In Example 7, which did not devitrify even when the cooling rate was very low, CS 0 and DOL did not increase. This is because the glass composition is different.
When Example 1 and Example 7 are compared, Example 7 with a high fictive temperature even with the same glass composition has low CS2 and insufficient strength.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年9月21日出願の日本特許出願(特願2016-183936)、2016年10月18日出願の日本特許出願(特願2016-204745)及び2017年7月20日出願の日本特許出願(特願2017-141284)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is a Japanese patent application filed on September 21, 2016 (Japanese Patent Application No. 2016-183936), a Japanese patent application filed on October 18, 2016 (Japanese Patent Application 2016-204745), and a Japanese patent application filed on July 20, 2017. This is based on a patent application (Japanese Patent Application No. 2017-141284), the contents of which are incorporated herein by reference.
 10:測定試料
 11:モック板
 12:スポンジ両面テープ
 13:化学強化ガラス
 21:金属板
 22:けい砂
10: Measurement sample 11: Mock plate 12: Sponge double-sided tape 13: Chemically tempered glass 21: Metal plate 22: Silica sand

Claims (8)

  1.  液相温度Tが、粘度が10dPa・sとなる温度T以下のリチウムアルミノシリケートガラスからなり、
     仮想温度が、ガラス転移点Tgより30℃低い温度以上、前記Tgより25℃高い温度以下である化学強化用ガラス。
    The liquid phase temperature T L is made of lithium aluminosilicate glass having a temperature T 4 or less at which the viscosity becomes 10 4 dPa · s,
    The glass for chemical strengthening whose fictive temperature is not less than a temperature 30 ° C. lower than the glass transition point Tg and not more than 25 ° C. higher than the Tg.
  2.  ミラー定数Aが2.0MPa・m1/2以上である請求項1に記載の化学強化用ガラス。 The glass for chemical strengthening according to claim 1, wherein the mirror constant A is 2.0 MPa · m 1/2 or more.
  3.  酸化物基準のモル百分率表示で、SiOを60~80%、Alを4~25%、LiOを5~15%、NaOを1~15%、KOを0~5%、MgOを2~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~10%、Pを0~10%、TiOを0~10%、及びZrOを0~8%含有する請求項1または2に記載の化学強化用ガラス。 Expressed in mole percentages based on oxide, SiO 2 is 60 to 80%, Al 2 O 3 is 4 to 25%, Li 2 O is 5 to 15%, Na 2 O is 1 to 15%, and K 2 O is 0. ~ 5%, MgO 2 ~ 25%, CaO 0 ~ 10%, SrO 0 ~ 10%, BaO 0 ~ 10%, ZnO 0 ~ 10%, B 2 O 3 0 ~ 10%, P 2 O 5 0 to 10% of TiO 2 0-10%, and chemically strengthened glass according to claim 1 or 2 ZrO 2 contains 0 to 8%.
  4.  酸化物基準のモル百分率表示で、SiOを67~75%、Alを4~15%、LiOを5~15%、NaOを1~9%、KOを0~5%、MgOを4~15%、CaOを0~4%、SrOを0~5%、BaOを0~5%、ZnOを0~5%、Bを0~10%、Pを0~10%、TiOを0~4%、及びZrOを0~8%含有する請求項1~3のいずれか一項に記載の化学強化用ガラス。 Expressed in oxide-based mole percentage, SiO 2 is 67 to 75%, Al 2 O 3 is 4 to 15%, Li 2 O is 5 to 15%, Na 2 O is 1 to 9%, and K 2 O is 0. ~ 5%, MgO 4 ~ 15%, CaO 0 ~ 4%, SrO 0 ~ 5%, BaO 0 ~ 5%, ZnO 0 ~ 5%, B 2 O 3 0 ~ 10%, P 2 O 5 0 to 10% of TiO 2 0 ~ 4% and chemically strengthened glass according to any one of claims 1 to 3, the ZrO 2 contains 0 to 8%.
  5.  酸化物基準のモル百分率表示で、SiOを68~72%、Alを6~10%、LiOを7~11%、NaOを4~7%、KOを0~3%、MgOを4~10%、CaOを0~3%、SrOを0~2%、BaOを0~2%、ZnOを0~2%、Bを0~3%、Pを0~3%、TiOを0~2%、及びZrOを0~3%含有し、かつ
     仮想温度がガラス転移点Tgより25℃高い温度以下である化学強化用ガラス。
    Expressed in molar percentage on oxide basis, SiO 2 is 68-72%, Al 2 O 3 is 6-10%, Li 2 O is 7-11%, Na 2 O is 4-7%, K 2 O is 0 ~ 3%, MgO 4 ~ 10%, CaO 0 ~ 3%, SrO 0 ~ 2%, BaO 0 ~ 2%, ZnO 0 ~ 2%, B 2 O 3 0 ~ 3%, P A glass for chemical strengthening containing 0 to 3% of 2 O 5 , 0 to 2 % of TiO 2 and 0 to 3% of ZrO 2 and having a fictive temperature of 25 ° C. or lower than the glass transition point Tg.
  6.  酸化物基準のモル百分率表示で、SiOを60~80%、Alを4~25%、LiOを5~15%、NaOを1~15%、KOを0~5%、MgOを2~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~10%、Pを0~10%、TiOを0~10%、及びZrOを0~8%含有し、かつ、液相温度Tが、粘度が10dPa・sとなる温度T以下のガラスを溶融し、
     平均冷却速度を10℃/分~300℃/分として冷却する、
     化学強化用ガラスの製造方法。
    Expressed in mole percentages based on oxide, SiO 2 is 60 to 80%, Al 2 O 3 is 4 to 25%, Li 2 O is 5 to 15%, Na 2 O is 1 to 15%, and K 2 O is 0. ~ 5%, MgO 2 ~ 25%, CaO 0 ~ 10%, SrO 0 ~ 10%, BaO 0 ~ 10%, ZnO 0 ~ 10%, B 2 O 3 0 ~ 10%, P 2 O 5 0 to 10%, TiO 2 0 to 10%, ZrO 2 0 to 8%, and the liquidus temperature T L is a temperature T 4 or less at which the viscosity becomes 10 4 dPa · s Melting glass of
    Cool at an average cooling rate of 10 ° C / min to 300 ° C / min.
    A method for producing chemically strengthened glass.
  7.  表面圧縮応力層を有し、
     ガラス表面に近い部分の応力パターンとガラス内層側の応力パターンをそれぞれ1次関数で近似したときに、前記ガラス内層側の応力パターンP1をガラス表面まで延長させたラインから求められる仮想的な表面応力値CS1が、前記ガラス表面に近い部分の応力パターンP2から得られる表面圧縮応力値CS2より小さい化学強化ガラスであって、
     前記CS1が200MPa以上、及び前記CS2が800MPa以上であり、
     かつ、ミラー定数Aが2.0MPa・m1/2以上である化学強化ガラス。
    Having a surface compressive stress layer,
    A virtual surface stress obtained from a line obtained by extending the stress pattern P1 on the glass inner layer side to the glass surface when the stress pattern near the glass surface and the stress pattern on the glass inner layer side are approximated by a linear function. The value CS1 is a chemically strengthened glass smaller than the surface compressive stress value CS2 obtained from the stress pattern P2 of the portion close to the glass surface,
    The CS1 is 200 MPa or more, and the CS2 is 800 MPa or more,
    And chemically strengthened glass whose mirror constant A is 2.0 Mpa * m < 1/2 > or more.
  8.  化学強化ガラスの母組成として、酸化物基準のモル百分率表示で、SiOを60~80%、Alを4~25%、LiOを5~15%、NaOを1~15%、KOを0~5%、MgOを2~25%、CaOを0~10%、SrOを0~10%、BaOを0~10%、ZnOを0~10%、Bを0~10%、Pを0~10%、TiOを0~10%、及びZrOを0~8%含有する請求項7に記載の化学強化ガラス。 As the mother composition of chemically strengthened glass, SiO 2 is 60 to 80%, Al 2 O 3 is 4 to 25%, Li 2 O is 5 to 15%, and Na 2 O is 1 to 2 in terms of mole percentage based on oxide. 15%, K 2 O 0-5%, MgO 2-25%, CaO 0-10%, SrO 0-10%, BaO 0-10%, ZnO 0-10%, B 2 O The chemically strengthened glass according to claim 7, comprising 0 to 10% of 3 ; 0 to 10% of P 2 O 5 ; 0 to 10% of TiO 2 ; and 0 to 8% of ZrO 2 .
PCT/JP2017/033282 2016-09-21 2017-09-14 Glass capable of being chemically reinforced, and chemically reinforced glass WO2018056168A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780057539.2A CN109715573B (en) 2016-09-21 2017-09-14 Glass for chemical strengthening and chemically strengthened glass
CN202210674176.XA CN115231820B (en) 2016-09-21 2017-09-14 Chemically strengthened glass and chemically strengthened glass

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016183936 2016-09-21
JP2016-183936 2016-09-21
JP2016-204745 2016-10-18
JP2016204745 2016-10-18
JP2017-141284 2017-07-20
JP2017141284 2017-07-20

Publications (1)

Publication Number Publication Date
WO2018056168A1 true WO2018056168A1 (en) 2018-03-29

Family

ID=61689546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033282 WO2018056168A1 (en) 2016-09-21 2017-09-14 Glass capable of being chemically reinforced, and chemically reinforced glass

Country Status (2)

Country Link
CN (2) CN115231820B (en)
WO (1) WO2018056168A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655322A (en) * 2018-06-29 2020-01-07 Hoya株式会社 Reheating pressing glass material, polishing glass, and method for producing same
JP2020097506A (en) * 2018-12-19 2020-06-25 日本電気硝子株式会社 Aluminosilicate glass
WO2020171091A1 (en) * 2019-02-22 2020-08-27 Agc株式会社 Contamination prevention layer-attched glass substrate and method for manufacturing contamination prevention layer-attached glass substrate
CN111847874A (en) * 2020-06-08 2020-10-30 宿州市灵显电子科技有限公司 Mobile phone touch rear cover strengthened silk-screen glass and silk-screen method thereof
CN112399964A (en) * 2018-07-03 2021-02-23 Agc株式会社 Chemically strengthened glass and method for producing same
CN112996759A (en) * 2018-09-11 2021-06-18 康宁股份有限公司 Glass-based articles with improved resistance to cracking
CN113480197A (en) * 2021-08-02 2021-10-08 四川虹科创新科技有限公司 Strengthening process for lithium silicate glass and strengthened glass
CN114007994A (en) * 2019-06-26 2022-02-01 Agc株式会社 Method for producing chemically strengthened glass, and chemically strengthened glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563337A (en) * 2019-09-09 2019-12-13 深圳精匠云创科技有限公司 Method for strengthening lithium aluminosilicate nanocrystalline glass ceramic
CN111995242B (en) * 2020-09-07 2022-04-15 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument
CN112441740A (en) * 2020-12-22 2021-03-05 中国洛阳浮法玻璃集团有限责任公司 Preparation method of high-transparency high-strength ultrathin medium-alumina glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187140A (en) * 1986-02-13 1987-08-15 Asahi Glass Co Ltd Production of tempered glass
JPH101329A (en) * 1996-06-14 1998-01-06 Nippon Sheet Glass Co Ltd Glass composition for chemical strengthening and chemically strengthed glass article
JPH1111974A (en) * 1997-06-20 1999-01-19 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium
JP2001026460A (en) * 1999-05-13 2001-01-30 Nippon Sheet Glass Co Ltd Glass substrate for information recording medium, its production and information recording medium
JP2002348141A (en) * 2001-05-29 2002-12-04 Nippon Sheet Glass Co Ltd Glass article and glass substrate for magnetic recording medium using the glass article
JP2011123924A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Method for manufacturing glass substrate for data storage medium and glass substrate
WO2016002888A1 (en) * 2014-07-04 2016-01-07 旭硝子株式会社 Glass for chemical strengthening, and chemically strengthened glass
WO2016136539A1 (en) * 2015-02-24 2016-09-01 旭硝子株式会社 Glass, chemically strengthened glass, and method for producing chemically strengthened glass

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137788A (en) * 2007-12-05 2009-06-25 Nippon Electric Glass Co Ltd Glass substrate for flat panel
JP5067223B2 (en) * 2008-03-24 2012-11-07 日本電気硝子株式会社 Evaluation method of flat glass for flat display device
JP2012232882A (en) * 2011-04-18 2012-11-29 Asahi Glass Co Ltd Method for producing chemically tempered glass, and glass for chemical tempering
US9150448B2 (en) * 2013-03-14 2015-10-06 Corning Incorporated Dimensionally-stable, damage-resistant, glass sheets
WO2017126605A1 (en) * 2016-01-21 2017-07-27 旭硝子株式会社 Chemically strengthened glass and method for manufacturing chemically strengthened glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187140A (en) * 1986-02-13 1987-08-15 Asahi Glass Co Ltd Production of tempered glass
JPH101329A (en) * 1996-06-14 1998-01-06 Nippon Sheet Glass Co Ltd Glass composition for chemical strengthening and chemically strengthed glass article
JPH1111974A (en) * 1997-06-20 1999-01-19 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium
JP2001026460A (en) * 1999-05-13 2001-01-30 Nippon Sheet Glass Co Ltd Glass substrate for information recording medium, its production and information recording medium
JP2002348141A (en) * 2001-05-29 2002-12-04 Nippon Sheet Glass Co Ltd Glass article and glass substrate for magnetic recording medium using the glass article
JP2011123924A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Method for manufacturing glass substrate for data storage medium and glass substrate
WO2016002888A1 (en) * 2014-07-04 2016-01-07 旭硝子株式会社 Glass for chemical strengthening, and chemically strengthened glass
WO2016136539A1 (en) * 2015-02-24 2016-09-01 旭硝子株式会社 Glass, chemically strengthened glass, and method for producing chemically strengthened glass

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655322A (en) * 2018-06-29 2020-01-07 Hoya株式会社 Reheating pressing glass material, polishing glass, and method for producing same
CN112399964B (en) * 2018-07-03 2022-11-15 Agc株式会社 Chemically strengthened glass and method for producing same
CN115716714B (en) * 2018-07-03 2024-02-13 Agc株式会社 Chemically strengthened glass and method for producing same
CN112399964A (en) * 2018-07-03 2021-02-23 Agc株式会社 Chemically strengthened glass and method for producing same
JPWO2020008901A1 (en) * 2018-07-03 2021-07-08 Agc株式会社 Chemically tempered glass and its manufacturing method
JP7255594B2 (en) 2018-07-03 2023-04-11 Agc株式会社 Chemically strengthened glass and its manufacturing method
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same
US11639310B2 (en) 2018-09-11 2023-05-02 Corning Incorporated Glass-based articles with improved fracture resistance
CN112996759A (en) * 2018-09-11 2021-06-18 康宁股份有限公司 Glass-based articles with improved resistance to cracking
JP2020097506A (en) * 2018-12-19 2020-06-25 日本電気硝子株式会社 Aluminosilicate glass
WO2020129578A1 (en) * 2018-12-19 2020-06-25 日本電気硝子株式会社 Aluminosilicate glass
CN113454040A (en) * 2019-02-22 2021-09-28 Agc株式会社 Glass substrate with stain-proofing layer and method for producing glass substrate with stain-proofing layer
CN113454040B (en) * 2019-02-22 2023-09-05 Agc株式会社 Glass substrate with antifouling layer and method for producing glass substrate with antifouling layer
WO2020171091A1 (en) * 2019-02-22 2020-08-27 Agc株式会社 Contamination prevention layer-attched glass substrate and method for manufacturing contamination prevention layer-attached glass substrate
CN114007994A (en) * 2019-06-26 2022-02-01 Agc株式会社 Method for producing chemically strengthened glass, and chemically strengthened glass
CN114007994B (en) * 2019-06-26 2023-09-12 Agc株式会社 Method for producing chemically strengthened glass, and chemically strengthened glass
CN111847874A (en) * 2020-06-08 2020-10-30 宿州市灵显电子科技有限公司 Mobile phone touch rear cover strengthened silk-screen glass and silk-screen method thereof
CN113480197B (en) * 2021-08-02 2023-03-21 四川虹科创新科技有限公司 Strengthening process for lithium silicate glass and strengthened glass
CN113480197A (en) * 2021-08-02 2021-10-08 四川虹科创新科技有限公司 Strengthening process for lithium silicate glass and strengthened glass

Also Published As

Publication number Publication date
CN109715573B (en) 2022-07-12
CN109715573A (en) 2019-05-03
CN115231820A (en) 2022-10-25
CN115231820B (en) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2018056168A1 (en) Glass capable of being chemically reinforced, and chemically reinforced glass
JP7327533B2 (en) Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass
JP6583583B2 (en) Chemically tempered glass and chemically strengthened glass
JP7136096B2 (en) Chemically strengthened glass, method for producing the same, and glass for chemical strengthening
JP7095686B2 (en) Chemically tempered glass
JP6798629B2 (en) Chemical strengthening glass
WO2017126605A1 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
WO2018199046A1 (en) Chemically strengthened glass, and glass for chemical strengthening purposes
TW201630839A (en) Glass and chemically strengthened glass
JP7136100B2 (en) tempered glass
JPWO2019194110A1 (en) Chemical strengthening glass
WO2017209139A1 (en) Glass for chemical strengthening and chemically strengthened glass
WO2018056170A1 (en) Chemically tempered glass and glass for chemical tempering
CN115605448A (en) Chemically strengthened glass article and method for producing same
WO2023243574A1 (en) Glass for chemical strengthening, and glass
TWI838347B (en) Chemically strengthened glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP