JP5537489B2 - Heat pump hot water supply air conditioner - Google Patents

Heat pump hot water supply air conditioner Download PDF

Info

Publication number
JP5537489B2
JP5537489B2 JP2011095637A JP2011095637A JP5537489B2 JP 5537489 B2 JP5537489 B2 JP 5537489B2 JP 2011095637 A JP2011095637 A JP 2011095637A JP 2011095637 A JP2011095637 A JP 2011095637A JP 5537489 B2 JP5537489 B2 JP 5537489B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011095637A
Other languages
Japanese (ja)
Other versions
JP2012225619A (en
Inventor
理史 伊藤
直希 小澤
誠彦 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011095637A priority Critical patent/JP5537489B2/en
Publication of JP2012225619A publication Critical patent/JP2012225619A/en
Application granted granted Critical
Publication of JP5537489B2 publication Critical patent/JP5537489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、ヒートポンプ空調機とヒートポンプ給湯機の2つの役割を担う機器により、冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行うことができるとともに、給湯側の水回路の変更や、室外側熱交換器を水またはブラインによる循環式として回路を追加することで運転効率を向上させることができ、さらに、複数台の室内側熱交換器による冷暖房運転を可能とする冷凍サイクル回路の構成に関する。   The present invention performs cooling operation, heating operation, hot water supply operation, cooling hot water supply operation, heating hot water supply operation, and hot water supply operation by recovering exhaust heat during the cooling operation, using devices that play two roles of a heat pump air conditioner and a heat pump water heater. In addition, it is possible to improve the operating efficiency by changing the water circuit on the hot water supply side, adding a circuit that uses an outdoor heat exchanger that circulates with water or brine, and further, heat exchange inside multiple units. The present invention relates to a configuration of a refrigeration cycle circuit that enables a cooling / heating operation by a cooler.

従来のヒートポンプ給湯空調機としては、特許文献1のように、冷房運転,冷房給湯運転,給湯運転を行うことのできる構成があるが、この場合、冷房給湯運転時は、凝縮器としての役割を果たすのは給湯側熱交換器のみであるため、冷房負荷が大きい場合には冷房能力を制限する必要がある。逆に、冷房負荷が小さい場合には、室外側熱交換器へ冷房能力を捨てることで室内の快適性を確保するとしている。   As a conventional heat pump hot water supply air conditioner, there is a configuration that can perform cooling operation, cooling hot water supply operation, and hot water supply operation as in Patent Document 1, but in this case, during the cooling hot water supply operation, it plays a role as a condenser. Since only the hot water supply side heat exchanger fulfills, it is necessary to limit the cooling capacity when the cooling load is large. On the contrary, when the cooling load is small, indoor comfort is secured by throwing away the cooling capacity to the outdoor heat exchanger.

冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転を行える従来のヒートポンプ給湯空調機としては、特許文献2があるが、暖房給湯運転時には、給湯側熱交換器と室内側熱交換器を直列に配置しており、室内側熱交換器での暖房能力の低下を抑制するため、給湯側熱交換器に水を供給する給水ポンプの循環量を制限するか、あるいは給水ポンプを停止させて、給湯能力を落としている。   As a conventional heat pump hot water supply air conditioner capable of performing a cooling operation, a heating operation, a hot water supply operation, a cooling hot water supply operation, and a heating hot water supply operation, there is Patent Document 2, but at the time of heating hot water supply operation, a hot water supply side heat exchanger and an indoor side heat exchanger are provided. Are arranged in series, and the circulation rate of the feed water pump that supplies water to the hot water supply side heat exchanger is limited or the feed water pump is stopped in order to suppress a decrease in heating capacity in the indoor heat exchanger. The hot water supply capacity is reduced.

特開2001−248937号公報JP 2001-248937 A 特開2005−249319号公報JP-A-2005-249319

ここで、特許文献1では、給湯側供給水の温度が上がることによる負荷の変動に関しては特に対応しておらず、加えて空調機としては暖房運転を行うことができない。また、特許文献2では、冷房運転時の排熱を回収できる冷凍サイクル回路となっていないため、冷媒の熱が大気に放出されて有効に活用されていないだけではなく、ヒートアイランド現象の要因となる。なお、両ヒートポンプ給湯空調機ともに、室内側熱交換器は1つであり、複数台の冷房運転,暖房運転を行うことはできない。   Here, in patent document 1, it does not respond | correspond in particular about the fluctuation | variation of the load by the temperature of the hot water supply side supply water rising, and in addition, heating operation cannot be performed as an air conditioner. Moreover, in patent document 2, since it is not the refrigeration cycle circuit which can collect | recover the waste heat at the time of air_conditionaing | cooling operation, not only the heat | fever of a refrigerant | coolant is discharge | released to air | atmosphere but is not utilized effectively, it becomes a factor of a heat island phenomenon. . Note that both the heat pump hot water supply air conditioners have one indoor heat exchanger, and a plurality of cooling and heating operations cannot be performed.

そこで本発明は、これらの問題点を解決し、冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行うことができるヒートポンプ給湯空調機を提供することを目的とする。   Therefore, the present invention solves these problems and provides a heat pump hot water supply air conditioner that can perform cooling operation, heating operation, hot water supply operation, cooling hot water supply operation, heating hot water supply operation, and hot water supply operation by exhaust heat recovery during cooling operation. The purpose is to provide.

本発明では、冷媒を圧縮する圧縮機1の吐出配管を第1四方弁6a,第2四方弁6bおよび給湯側熱交換器3へ分岐し、第2四方弁6bから室外側熱交換器2を、室外側電子膨張弁5aを介して冷媒量調節器4に接続し、上記部品と並列に給水ポンプ8により貯湯タンク9から供給される水を加熱する給湯側熱交換器3を、給湯側電子膨張弁5bを介して冷媒量調節器4に接続し、第1四方弁6aから室内側熱交換器10を、室内側電子膨張弁11を介して冷媒量調節器4に接続し、第1四方弁6aおよび第2四方弁6bを介して圧縮機1が冷媒を吸入する冷凍サイクル回路をもち、第1四方弁6a,第2四方弁6bの切替えにより、冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収の各運転を切替えることが可能である。   In the present invention, the discharge pipe of the compressor 1 that compresses the refrigerant branches to the first four-way valve 6a, the second four-way valve 6b, and the hot water supply side heat exchanger 3, and the outdoor heat exchanger 2 is connected from the second four-way valve 6b. The hot water supply side heat exchanger 3 that is connected to the refrigerant amount regulator 4 via the outdoor electronic expansion valve 5a and heats the water supplied from the hot water storage tank 9 by the water supply pump 8 in parallel with the above components is connected to the hot water supply side electronic device. Connected to the refrigerant quantity regulator 4 via the expansion valve 5b, connected the indoor heat exchanger 10 from the first four-way valve 6a to the refrigerant quantity regulator 4 via the indoor electronic expansion valve 11, and the first four-way The compressor 1 has a refrigeration cycle circuit that sucks refrigerant through the valve 6a and the second four-way valve 6b. By switching between the first four-way valve 6a and the second four-way valve 6b, the cooling operation, the heating operation, the hot water supply operation, and the cooling are performed. Switch between hot water supply operation, heating hot water supply operation and exhaust heat recovery operation during cooling operation Rukoto is possible.

本発明によれば、冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行うことができる。   According to the present invention, it is possible to perform a cooling operation, a heating operation, a hot water supply operation, a cooling hot water supply operation, a heating hot water supply operation, and a hot water supply operation by exhaust heat recovery during the cooling operation.

本実施例によるヒートポンプ給湯空調機の冷凍サイクル系統図。The refrigeration cycle system diagram of the heat pump hot water supply air conditioner by a present Example. 冷房運転時の冷媒の流れを示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation. 暖房運転時の冷媒の流れを示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows the flow of the refrigerant | coolant at the time of heating operation. 給湯運転時の冷媒の流れを示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows the flow of the refrigerant | coolant at the time of hot water supply driving | operation. 冷房給湯運転時の冷媒の流れを示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows the flow of the refrigerant | coolant at the time of air-conditioning hot-water supply driving | operation. 暖房給湯運転時の冷媒の流れを示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows the flow of the refrigerant | coolant at the time of heating hot-water supply driving | operation. 冷房運転時の排熱回収による給湯運転における冷媒の流れを示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows the flow of the refrigerant | coolant in the hot water supply operation by the waste heat recovery at the time of air_conditionaing | cooling operation. 実施例2の冷凍サイクル系統図。The refrigeration cycle system diagram of Example 2. FIG. 実施例3の冷凍サイクル系統図。The refrigeration cycle system diagram of Example 3. FIG. 実施例4の冷凍サイクル系統図。The refrigeration cycle system diagram of Example 4. FIG. 実施例5の冷凍サイクル系統図。The refrigeration cycle system diagram of Example 5. FIG. 実施例6の冷凍サイクル系統図。The refrigeration cycle system diagram of Example 6. FIG. 実施例7の冷凍サイクル系統図。The refrigeration cycle system diagram of Example 7. FIG.

以下、本発明の実施形態を、添付図面に基づいた実施例として詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the accompanying drawings.

本発明の実施例1によるヒートポンプ給湯空調機は、図1に示すように、圧縮機1の吐出側に第1四方弁6a,第2四方弁6b,給湯側熱交換器3を並列に設け、第1四方弁6aの先に室内側熱交換器10および室内側電子膨張弁11,第2四方弁6bの先に室外側熱交換器2および室外側電子膨張弁5a,給湯側熱交換器3の先に給湯側電子膨張弁5bを設け、上記三方向の合流する場所に冷媒量調節器4を設けた構造としている。給湯側については、給湯側熱交換器3と貯湯タンク9を水配管で接続しており、給湯側熱交換器3の一次側に給水ポンプ8を設けて、給湯側熱交換器3で温めた湯が貯湯タンク9に送られる構造となっている。ここで、各運転の切替えについては、第1四方弁6a,第2四方弁6bを切替えることにより行い、余計なところに冷媒が流れることがないよう、逆止弁A7a,逆止弁B7bを設けている。以下に、冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転の各運転について説明する。   As shown in FIG. 1, the heat pump hot water supply air conditioner according to the first embodiment of the present invention is provided with a first four-way valve 6a, a second four-way valve 6b, and a hot water supply side heat exchanger 3 in parallel on the discharge side of the compressor 1, The indoor side heat exchanger 10 and the indoor side electronic expansion valve 11 are provided at the tip of the first four-way valve 6a, and the outdoor side heat exchanger 2 and the outdoor side electronic expansion valve 5a and the hot water supply side heat exchanger 3 are provided at the tip of the second four-way valve 6b. The hot water supply-side electronic expansion valve 5b is provided at the tip of the first and the refrigerant amount regulator 4 is provided at the place where the three directions meet. On the hot water supply side, the hot water supply side heat exchanger 3 and the hot water storage tank 9 are connected by a water pipe, a water supply pump 8 is provided on the primary side of the hot water supply side heat exchanger 3, and the hot water supply side heat exchanger 3 is heated. The hot water is sent to the hot water storage tank 9. Here, each operation is switched by switching the first four-way valve 6a and the second four-way valve 6b, and a check valve A7a and a check valve B7b are provided so that the refrigerant does not flow in an excessive place. ing. Hereinafter, each operation of the cooling operation, the heating operation, the hot water supply operation, the cooling hot water supply operation, the heating hot water supply operation, and the hot water supply operation by exhaust heat recovery during the cooling operation will be described.

冷房運転を行う場合は、図2に示すように、圧縮機1から吐出した高温高圧のガス冷媒を、第2四方弁6bを介し、室外側熱交換器2にて放熱することで冷媒を凝縮させ、冷媒量調節器4に一旦溜める。その後、室内側電子膨張弁11にて断熱膨張され、低温低圧になった冷媒を室内側熱交換器10にて周囲の空気から熱を吸熱させることで蒸発させ、低温低圧のガス冷媒として、第1四方弁6a,第2四方弁6bを介し、圧縮機1の吸入側に流れるようになっている。このとき、室内側熱交換器10にて冷やされた空気をファンにより送風することで冷房している。   When performing the cooling operation, as shown in FIG. 2, the refrigerant is condensed by dissipating the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 through the second four-way valve 6b in the outdoor heat exchanger 2. And once stored in the refrigerant amount regulator 4. Thereafter, the refrigerant which has been adiabatically expanded by the indoor electronic expansion valve 11 and has become a low temperature and low pressure is evaporated by absorbing heat from the surrounding air in the indoor heat exchanger 10, and is used as a low temperature and low pressure gas refrigerant. The first four-way valve 6a and the second four-way valve 6b flow to the suction side of the compressor 1. At this time, the air cooled by the indoor heat exchanger 10 is cooled by blowing air with a fan.

暖房運転を行う場合は、図3に示すように、圧縮機1から吐出した高温高圧のガス冷媒を、第1四方弁6aを介し、室内側熱交換器10にて周囲の空気に放熱することで冷媒を凝縮させ、冷媒量調節器4に一旦溜める。その後、室外側電子膨張弁5aにて断熱膨張され、低温低圧となった冷媒を室外側熱交換器2にて周囲の熱を吸熱させることで蒸発させ、低温低圧のガス冷媒として、第2四方弁6b,第1四方弁6aを介し、圧縮機1の吸入側に流れるようになっている。このとき、室内側熱交換器10にて暖められた空気をファンにより送風することで暖房している。   When performing the heating operation, as shown in FIG. 3, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is radiated to the surrounding air by the indoor heat exchanger 10 through the first four-way valve 6a. Then, the refrigerant is condensed and temporarily stored in the refrigerant quantity regulator 4. Thereafter, the refrigerant that has been adiabatically expanded by the outdoor electronic expansion valve 5a and has become a low-temperature and low-pressure is evaporated by absorbing the ambient heat in the outdoor heat exchanger 2 and is used as a low-temperature and low-pressure gas refrigerant. It flows to the suction side of the compressor 1 through the valve 6b and the first four-way valve 6a. At this time, the air heated by the indoor heat exchanger 10 is heated by blowing air with a fan.

なお、上記の冷房運転および暖房運転では、給湯側熱交換器3を使用しないため、給湯側電子膨張弁5bにて冷媒の流れを閉止している。   In the above cooling operation and heating operation, since the hot water supply side heat exchanger 3 is not used, the flow of the refrigerant is closed by the hot water supply side electronic expansion valve 5b.

給湯運転の場合は、図4に示すように、圧縮機1から吐出した高温高圧のガス冷媒を給湯側熱交換器3にて給水ポンプ8で送られてくる水に放熱することで冷媒を凝縮させ、冷媒量調節器4に一旦溜める。その後、室外側電子膨張弁5aにて断熱膨張され、低温低圧となった冷媒を室外側熱交換器2にて周囲の熱を吸熱させることで蒸発させ、低温低圧のガス冷媒として、第2四方弁6bを介し、圧縮機1の吸入側に流れるようになっている。このとき、給湯側熱交換器3により温められた湯は、給水ポンプ8により貯湯タンク9に送ることで貯湯している。また、給湯運転では、室内側熱交換器10を使用しないため、室内側電子膨張弁11で冷媒の流れを閉止している。   In the case of hot water supply operation, as shown in FIG. 4, the refrigerant is condensed by dissipating the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to the water sent by the water supply pump 8 in the hot water supply side heat exchanger 3. And once stored in the refrigerant amount regulator 4. Thereafter, the refrigerant that has been adiabatically expanded by the outdoor electronic expansion valve 5a and has become a low-temperature and low-pressure is evaporated by absorbing the ambient heat in the outdoor heat exchanger 2 and is used as a low-temperature and low-pressure gas refrigerant. It flows to the suction side of the compressor 1 through the valve 6b. At this time, hot water heated by the hot water supply side heat exchanger 3 is stored in hot water by being sent to the hot water storage tank 9 by the water supply pump 8. Further, in the hot water supply operation, since the indoor heat exchanger 10 is not used, the refrigerant flow is closed by the indoor electronic expansion valve 11.

冷房給湯運転の場合は、図5に示すように、圧縮機1から吐出した高温高圧のガス冷媒を給湯側熱交換器3にて給水ポンプ8で送られてくる水に放熱することで冷媒を凝縮させ、冷媒量調節器4に一旦溜める。その後、室内側電子膨張弁11および室外側電子膨張弁5aにて断熱膨張され、低温低圧となった冷媒を室内側熱交換器10および室外側熱交換器2にて周囲の熱を吸熱させることで蒸発させ、低温低圧のガス冷媒として、第1四方弁6aおよび第2四方弁6bを介し、圧縮機1の吸入側に流れるようになっている。   In the case of the cooling hot water supply operation, as shown in FIG. 5, the high temperature and high pressure gas refrigerant discharged from the compressor 1 is dissipated to the water sent by the water supply pump 8 in the hot water supply side heat exchanger 3 to thereby release the refrigerant. Condensate and temporarily accumulate in the refrigerant amount regulator 4. After that, the refrigerant which has been adiabatically expanded by the indoor electronic expansion valve 11 and the outdoor electronic expansion valve 5a and has become a low temperature and low pressure is absorbed by the indoor heat exchanger 10 and the outdoor heat exchanger 2 with ambient heat. The low-temperature and low-pressure gas refrigerant flows to the suction side of the compressor 1 through the first four-way valve 6a and the second four-way valve 6b.

なお、室内側熱交換器10と室外側熱交換器2を流れる冷媒量については、必要な冷房能力や給湯能力に応じて、室内側電子膨張弁11および室外側電子膨張弁5aによりコントロールしている。このとき、室内側熱交換器10にて冷やされた空気をファンにより送風することで冷房し、給湯側熱交換器3により温められた湯は、給水ポンプ8により貯湯タンク9に送ることで貯湯している。   The amount of refrigerant flowing through the indoor heat exchanger 10 and the outdoor heat exchanger 2 is controlled by the indoor electronic expansion valve 11 and the outdoor electronic expansion valve 5a according to the required cooling capacity and hot water supply capacity. Yes. At this time, the air cooled by the indoor heat exchanger 10 is blown by a fan, and the hot water heated by the hot water supply heat exchanger 3 is sent to the hot water storage tank 9 by the water supply pump 8 to store the hot water. doing.

暖房給湯運転の場合は、図6に示すように、圧縮機1から吐出した高温高圧のガス冷媒を給湯側熱交換器3にて給水ポンプ8で送られてくる水に放熱することで冷媒を凝縮させ、また、第1四方弁6aを介し、室内側熱交換器10にて周囲の空気により放熱することで冷媒を凝縮させ、冷媒量調節器4にて合流させて一旦溜める。その後、室外側電子膨張弁5aにて断熱膨張され、低温低圧となった冷媒を室外側熱交換器2にて周囲の熱を吸熱させることで蒸発させ、低温低圧のガス冷媒として、第1四方弁6aおよび第2四方弁6bを介し、圧縮機1の吸入側に流れるようになっている。   In the case of heating and hot water supply operation, as shown in FIG. 6, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is dissipated to the water sent by the water supply pump 8 in the hot water supply side heat exchanger 3 so that the refrigerant is discharged. The refrigerant is condensed by radiating heat with ambient air in the indoor heat exchanger 10 via the first four-way valve 6 a, condensed in the refrigerant amount regulator 4, and temporarily accumulated. Thereafter, the refrigerant that has been adiabatically expanded by the outdoor electronic expansion valve 5a and has become a low-temperature and low-pressure is evaporated by absorbing the ambient heat in the outdoor heat exchanger 2, and is used as a low-temperature and low-pressure gas refrigerant in the first four directions. The air flows to the suction side of the compressor 1 through the valve 6a and the second four-way valve 6b.

なお、室内側熱交換器10および給湯側熱交換器3を流れる冷媒量については、必要な暖房能力や給湯能力に応じて、室内側電子膨張弁11と給湯側電子膨張弁5bにてコントロールしている。このとき、室内側熱交換器10により暖められた空気をファンにより送風することで暖房し、給湯側熱交換器3により温められた湯は、給水ポンプ8により貯湯タンク9に送ることで貯湯している。これらの暖房給湯運転で冷媒の凝縮側となる室内側熱交換器10と給湯側熱交換器3とは並列に配置されており、それぞれ室内側電子膨張弁11と給湯側電子膨張弁5bによって冷媒量をコントロールして、暖房能力や給湯能力を確保することができる。   The amount of refrigerant flowing through the indoor side heat exchanger 10 and the hot water supply side heat exchanger 3 is controlled by the indoor electronic expansion valve 11 and the hot water supply side electronic expansion valve 5b according to the required heating capacity and hot water supply capacity. ing. At this time, the air heated by the indoor heat exchanger 10 is heated by blowing with a fan, and the hot water heated by the hot water supply heat exchanger 3 is sent to the hot water storage tank 9 by the water supply pump 8 to store hot water. ing. The indoor side heat exchanger 10 and the hot water supply side heat exchanger 3 that become the refrigerant condensing side in these heating and hot water supply operations are arranged in parallel, and the refrigerant is formed by the indoor side electronic expansion valve 11 and the hot water supply side electronic expansion valve 5b, respectively. The amount can be controlled to ensure heating capacity and hot water supply capacity.

冷房運転時の排熱回収による給湯運転の場合は、図7に示すように、圧縮機1から吐出した高温高圧のガス冷媒を給湯側熱交換器3にて給水ポンプ8で送られてくる水に放熱することで冷媒を凝縮させ、冷媒量調節器4に一旦溜める。その後、室内側電子膨張弁11にて断熱膨張され、低温低圧になった冷媒を室内側熱交換器10にて周囲の熱を吸熱させることで蒸発させ、低温低圧のガス冷媒として、第1四方弁6aおよび第2四方弁6bを介し、圧縮機1の吸入側に流れるようになっている。   In the case of hot water supply operation by exhaust heat recovery during cooling operation, as shown in FIG. 7, high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent from the hot water supply side heat exchanger 3 by the water supply pump 8. The refrigerant is condensed by radiating heat to the refrigerant amount regulator 4 and temporarily stored in the refrigerant quantity regulator 4. Thereafter, the refrigerant which has been adiabatically expanded by the indoor electronic expansion valve 11 and has become a low-temperature and low-pressure is evaporated by absorbing the ambient heat in the indoor-side heat exchanger 10 and is used as a low-temperature and low-pressure gas refrigerant. The air flows to the suction side of the compressor 1 through the valve 6a and the second four-way valve 6b.

このとき、室内側熱交換器10にて冷やされた空気をファンにより送風することで冷房し、給湯側熱交換器3により温められた湯は、給水ポンプ8により貯湯タンク9に送ることで貯湯している。なお、必要な冷房能力が大きい場合、すなわち給湯側熱交換器3のみでは冷媒を完全に凝縮させることができない場合には、圧縮機1から吐出した高温高圧のガス冷媒を、第2四方弁6bを介し室外側熱交換器2にも流して放熱させて冷媒を凝縮するよう、室外側電子膨張弁5aをコントロールしている。   At this time, the air cooled by the indoor heat exchanger 10 is blown by a fan, and the hot water heated by the hot water supply heat exchanger 3 is sent to the hot water storage tank 9 by the water supply pump 8 to store the hot water. doing. When the required cooling capacity is large, that is, when the refrigerant cannot be completely condensed only by the hot water supply side heat exchanger 3, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is supplied to the second four-way valve 6b. The outdoor electronic expansion valve 5a is controlled so that the refrigerant flows through the outdoor heat exchanger 2 and is dissipated to condense the refrigerant.

このように冷房運転時の排熱回収による給湯運転では、圧縮機1から吐出した高温高圧のガス冷媒を給湯側熱交換器3に流し、給水ポンプ8により水を循環させることで給湯運転を行うことができ、ここで凝縮させた冷媒を室内側熱交換器10にて蒸発させることで冷房運転を行うことができる。   In this way, in the hot water supply operation by recovering exhaust heat during the cooling operation, the hot water supply operation is performed by flowing the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to the hot water supply side heat exchanger 3 and circulating the water by the water supply pump 8. The cooling operation can be performed by evaporating the refrigerant condensed here in the indoor heat exchanger 10.

ここで、必要な冷房能力が大きい場合には、給湯側電子膨張弁5bのみでなく室外側熱交換器2にも冷媒を流して凝縮させることにより、冷房能力を低下させることなく排熱回収による給湯運転を可能とする。また、必要な冷房能力が小さく、かつ、給湯能力を確保したい場合には、第2四方弁6bの切替えにより、室内側熱交換器10に加えて室外側熱交換器2も冷媒の吸熱側とする冷房給湯運転と同じ冷凍サイクル回路とし、給湯能力を増加させるよう室外側熱交換器2により冷媒の吸熱量を補助することができる。このように、必要な冷房能力の大小によって第2四方弁6bを切替え、室外側熱交換器2を冷媒の凝縮側としたり吸熱側としたりするのは、前述の冷房給湯運転においても有効である。   Here, when the required cooling capacity is large, the refrigerant is flowed and condensed not only in the hot water supply-side electronic expansion valve 5b but also in the outdoor heat exchanger 2, thereby performing exhaust heat recovery without reducing the cooling capacity. Allows hot water operation. In addition, when the required cooling capacity is small and it is desired to secure the hot water supply capacity, the outdoor heat exchanger 2 in addition to the indoor heat exchanger 10 is connected to the refrigerant heat absorption side by switching the second four-way valve 6b. The same refrigeration cycle circuit as the cooling hot water supply operation is performed, and the heat absorption amount of the refrigerant can be assisted by the outdoor heat exchanger 2 so as to increase the hot water supply capacity. Thus, switching the second four-way valve 6b depending on the required cooling capacity and setting the outdoor heat exchanger 2 to the refrigerant condensation side or the heat absorption side is also effective in the above-described cooling hot water supply operation. .

以上のように実施例1によれば、単一の冷凍サイクル構成で冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行うことのできる冷凍サイクル回路を得ることができる。この構成を採用することで、機器をコンパクトに設計することができ、また、冷房時の排熱回収による給湯運転によってヒートアイランド現象の抑制を図ることができる。   As described above, according to the first embodiment, the cooling operation, the heating operation, the hot water supply operation, the cooling hot water supply operation, the heating hot water supply operation, and the hot water supply operation by exhaust heat recovery during the cooling operation can be performed with a single refrigeration cycle configuration. A refrigeration cycle circuit can be obtained. By adopting this configuration, it is possible to design the device in a compact manner, and it is possible to suppress the heat island phenomenon by a hot water supply operation by exhaust heat recovery during cooling.

前述の実施例1にて説明した冷凍サイクル回路において、図8に示すように、室外側熱交換器2の熱交換媒体として水またはブラインを利用して循環式とした場合で、給湯側熱交換器3一次側の供給水を室外側熱交換器2二次側の熱交換媒体と熱交換させるためのバイパス回路と、室外側に調整弁A13および給湯側に調整弁B14を新しく設けてあり、室外側熱交換器2が冷媒の吸熱側となる給湯、冷房給湯および暖房給湯時に、給湯側熱交換器3一次側の供給水の温度を下げ、かつ、室外側熱交換器2二次側の熱交換媒体の温度を上げて、湯を温める効率がよくなるようコントロールする。   In the refrigeration cycle circuit described in the above-described first embodiment, as shown in FIG. 8, in the case of using a circulation system using water or brine as the heat exchange medium of the outdoor heat exchanger 2, the hot water supply side heat exchange is performed. A bypass circuit for exchanging heat from the water supplied to the primary side of the heat exchanger 3 with the heat exchange medium on the secondary side of the outdoor heat exchanger 2, a regulating valve A13 on the outdoor side, and a regulating valve B14 on the hot water supply side. At the time of hot water supply, cooling hot water supply and heating hot water supply where the outdoor heat exchanger 2 becomes the refrigerant heat absorption side, the temperature of the supply water on the primary side of the hot water supply side heat exchanger 3 is lowered, and the secondary side of the outdoor heat exchanger 2 is The temperature of the heat exchange medium is raised to control the efficiency of warming the hot water.

このように、室外側熱交換器2の熱交換媒体を水またはブラインとした場合には、給湯側熱交換器3一次側の供給水と室外側熱交換器2二次側の水またはブラインを熱交換させる回路を設けることにより、給湯側供給水の温度上昇や室外側の水またはブラインの温度低下に伴う効率低下を抑えることができる。   As described above, when the heat exchange medium of the outdoor heat exchanger 2 is water or brine, the supply water on the primary side of the hot water supply side heat exchanger 3 and the water or brine on the secondary side of the outdoor heat exchanger 2 are used. By providing a circuit for performing heat exchange, it is possible to suppress a decrease in efficiency due to a temperature increase in hot water supply water or a temperature decrease in outdoor water or brine.

実施例1にて説明した冷凍サイクル回路において、図9に示すように、給湯側熱交換器3の一次側に電磁弁16、二次側に逆止弁C17を設けてあり、実施例1にて説明した暖房運転中に給湯側熱交換器3での無駄な冷媒の放熱を防止し、高温高圧のガス冷媒すべてを室内側熱交換器10に流すことができる。   In the refrigeration cycle circuit described in the first embodiment, as shown in FIG. 9, a solenoid valve 16 is provided on the primary side of the hot water supply side heat exchanger 3, and a check valve C17 is provided on the secondary side. During the heating operation described above, it is possible to prevent wasteful heat dissipation of the refrigerant in the hot water supply side heat exchanger 3, and to flow all the high-temperature and high-pressure gas refrigerant to the indoor side heat exchanger 10.

このように給湯側熱交換器3を使用しない暖房運転において、給湯側熱交換器3へつながる余計な冷媒流路を遮断することにより、高温高圧のガス冷媒が給湯側熱交換器3に流れて放熱してしまうのを防止し、暖房効率の向上を図ることができる。   Thus, in the heating operation that does not use the hot water supply side heat exchanger 3, by shutting off an unnecessary refrigerant flow path connected to the hot water supply side heat exchanger 3, high-temperature and high-pressure gas refrigerant flows into the hot water supply side heat exchanger 3. It is possible to prevent heat dissipation and improve heating efficiency.

実施例1にて説明した冷凍サイクル回路において、図10に示すように、給湯側熱交換器3の二次側の湯を電気品箱18に設けた電気部品の放熱用のヒートシンク19内に通す回路と調整弁C15を新しく設け、湯を温める給湯運転,冷房給湯運転,暖房給湯運転において、一般に高温となるインバータなどの電気品からの発熱を利用して給湯側熱交換器3の二次側の湯をさらに温める構造とし、かつ、電気品箱18内の温度を下げるようにコントロールする。   In the refrigeration cycle circuit described in the first embodiment, as shown in FIG. 10, the hot water on the secondary side of the hot water supply side heat exchanger 3 is passed through the heat sink 19 for heat dissipation of the electrical components provided in the electrical component box 18. A circuit and a regulating valve C15 are newly provided, and in the hot water supply operation for heating hot water, the cooling hot water supply operation, and the heating hot water supply operation, the secondary side of the hot water supply side heat exchanger 3 is utilized by using heat generated from an electric product such as an inverter that is generally at a high temperature. The hot water is further heated, and the temperature in the electrical component box 18 is controlled to be lowered.

このように、電気品からの発熱を利用する回路を設けることで給湯運転により温められる湯の温度を上げることができ、さらに電気品箱内の温度は低く抑えることができる。   In this way, by providing a circuit that uses heat generated from the electrical product, the temperature of the hot water heated by the hot water supply operation can be increased, and the temperature in the electrical product box can be kept low.

実施例1にて説明した冷凍サイクル回路において、室外側熱交換器2の熱交換媒体として水またはブラインを利用して循環式とした場合で、図11に示すように、室外側熱交換器2二次側の熱交換媒体を電気品箱18に設けてある電気部品の放熱用のヒートシンク19内を通すバイパス回路と調整弁A13を新しく設けてあり、室外側熱交換器2が冷媒の吸熱側となる暖房運転,給湯運転,冷房給湯運転,暖房給湯運転時に、一般に高温となるインバータなどの電気品からの発熱を利用して室外側熱交換器2二次側の熱交換媒体の温度を効率のよい温度に上げられる構造とし、かつ、電気品箱18内の温度を下げるようにコントロールする。   In the refrigeration cycle circuit described in the first embodiment, the outdoor heat exchanger 2 is a circulation type using water or brine as the heat exchange medium of the outdoor heat exchanger 2 as shown in FIG. A bypass circuit for passing the secondary heat exchange medium in the heat sink 19 for heat dissipation of the electrical components provided in the electrical component box 18 and a regulating valve A13 are newly provided, and the outdoor heat exchanger 2 is provided on the refrigerant heat absorption side. During the heating operation, hot water supply operation, cooling hot water supply operation, and heating hot water supply operation, the heat generated from the electric components such as inverters, which are generally at high temperatures, is used to efficiently improve the temperature of the heat exchange medium on the secondary side of the outdoor heat exchanger 2 The temperature of the electrical component box 18 is controlled to be lowered.

このように、電気品からの発熱を利用する回路を設けることで、冷媒の吸熱側となる室外側熱交換器2を効率の良い状態で運転することができ、さらに電気品箱内の温度は低く抑えることができる。   In this way, by providing a circuit that uses heat generated from the electrical product, the outdoor heat exchanger 2 on the refrigerant heat absorption side can be operated in an efficient state, and the temperature in the electrical product box is It can be kept low.

実施例1にて説明した冷凍サイクル回路において、図12に示すように、給湯側熱交換器3一次側の供給水を室外側熱交換器2と熱交換させるためのバイパス回路と調整弁A13を新しく設けてあり、給湯側熱交換器3一次側の供給水の温度を効率のよい温度に下げるようにコントロールする。   In the refrigeration cycle circuit described in the first embodiment, as shown in FIG. 12, a bypass circuit and a regulating valve A13 for exchanging heat between the supply water on the primary side of the hot water supply side heat exchanger 3 and the outdoor heat exchanger 2 are provided. It is newly provided and is controlled so as to lower the temperature of the feed water on the primary side of the hot water supply side heat exchanger 3 to an efficient temperature.

このように、給湯側熱交換器3一次側の供給水の温度を低くすることで、給湯側供給水の温度上昇による給湯運転時の効率低下を抑えることができる。   Thus, by lowering the temperature of the supply water on the primary side of the hot water supply side heat exchanger 3, it is possible to suppress a decrease in efficiency during the hot water supply operation due to a rise in temperature of the hot water supply side supply water.

実施例1にて説明した冷凍サイクル回路において、図13に示すように、複数台(例えば3台)の室内側熱交換器10a〜cおよび室内側電子膨張弁11a〜cを並列に新しく配置してあり、室内側熱交換器10a〜cが設置された場所の各々の必要冷暖房能力に応じて室内側電子膨張弁11a〜cをコントロールすることで、複数台の室内側熱交換器による冷房運転,暖房運転を行えるようになっている。また、この場合でも実施例1と同様に冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行えるようになっている。   In the refrigeration cycle circuit described in the first embodiment, as shown in FIG. 13, a plurality of (for example, three) indoor heat exchangers 10a to 10c and indoor electronic expansion valves 11a to 11c are newly arranged in parallel. The cooling operation by a plurality of indoor heat exchangers is controlled by controlling the indoor electronic expansion valves 11a to 11c according to the required cooling and heating capacity of each of the places where the indoor heat exchangers 10a to 10c are installed. , Heating operation can be performed. Also in this case, similar to the first embodiment, the hot water supply operation by cooling heat supply operation, heating hot water supply operation, and exhaust heat recovery during the cooling operation can be performed.

以上、実施例によって、単一の冷凍サイクルで冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行うことの可能なヒートポンプ給湯空調機を提供することができる。さらに、必要な冷房能力の大小に関係なく冷房と給湯の同時運転ができ、給湯能力を制限することなく暖房給湯運転を行うことができ、また、様々な構成によって各運転の効率を上げることの可能な冷凍サイクル回路とすることができる。   As described above, according to the embodiment, the heat pump hot water supply air conditioner capable of performing the cooling operation, the heating operation, the hot water supply operation, the cooling hot water supply operation, the heating hot water supply operation, and the hot water supply operation by exhaust heat recovery during the cooling operation in a single refrigeration cycle. Can be provided. Furthermore, regardless of the required cooling capacity, the cooling and hot water supply can be operated simultaneously, the hot water supply operation can be performed without restricting the hot water supply capacity, and the efficiency of each operation can be improved by various configurations. A possible refrigeration cycle circuit can be obtained.

1 圧縮機
2 室外側熱交換器
3 給湯側熱交換器
4 冷媒量調節器
5a 室外側電子膨張弁
5b 給湯側電子膨張弁
6a 第1四方弁
6b 第2四方弁
7a 逆止弁A
7b 逆止弁B
8 給水ポンプ
9 貯湯タンク
10(a〜c) 室内側熱交換器
11(a〜c) 室内側電子膨張弁
12 循環ポンプ
13 調整弁A
14 調整弁B
15 調整弁C
16 電磁弁
17 逆止弁C
18 電気品箱
19 ヒートシンク
DESCRIPTION OF SYMBOLS 1 Compressor 2 Outdoor heat exchanger 3 Hot water supply side heat exchanger 4 Refrigerant amount regulator 5a Outdoor electronic expansion valve 5b Hot water supply side electronic expansion valve 6a First four-way valve 6b Second four-way valve 7a Check valve A
7b Check valve B
8 Water supply pump 9 Hot water storage tank
10 (ac) Indoor heat exchanger 11 (ac) Indoor electronic expansion valve 12 Circulating pump 13 Regulating valve A
14 Regulating valve B
15 Regulating valve C
16 Solenoid valve 17 Check valve C
18 Electrical box 19 Heat sink

Claims (8)

冷媒を圧縮する圧縮機1の吐出配管を第1四方弁6a,第2四方弁6bおよび給湯側熱交換器3へ分岐し、第2四方弁6bから室外側熱交換器2を、室外側電子膨張弁5aを介して冷媒量調節器4に接続し、上記部品と並列に給水ポンプ8により貯湯タンク9から供給される水を加熱する給湯側熱交換器3を、給湯側電子膨張弁5bを介して冷媒量調節器4に接続し、第1四方弁6aから室内側熱交換器10を、室内側電子膨張弁11を介して冷媒量調節器4に接続し、第1四方弁6aおよび第2四方弁6bを介して圧縮機1が冷媒を吸入する冷凍サイクル回路をもち、第1四方弁6a,第2四方弁6bの切替えにより、冷房運転,暖房運転,給湯運転,冷房給湯運転,暖房給湯運転および冷房運転時の排熱回収による給湯運転を行うことのできるヒートポンプ給湯空調機。   The discharge pipe of the compressor 1 that compresses the refrigerant branches to the first four-way valve 6a, the second four-way valve 6b, and the hot water supply side heat exchanger 3, and the outdoor heat exchanger 2 is connected to the outdoor electronic device from the second four-way valve 6b. A hot water supply side heat exchanger 3 for heating water supplied from the hot water storage tank 9 by a water supply pump 8 in parallel with the above components is connected to the refrigerant quantity regulator 4 via an expansion valve 5a, and a hot water supply side electronic expansion valve 5b is connected. To the refrigerant quantity regulator 4, and the indoor side heat exchanger 10 is connected from the first four-way valve 6 a to the refrigerant quantity regulator 4 via the indoor electronic expansion valve 11, and the first four-way valve 6 a and the second The compressor 1 has a refrigeration cycle circuit in which the refrigerant 1 sucks refrigerant through the two-way valve 6b. By switching between the first four-way valve 6a and the second four-way valve 6b, cooling operation, heating operation, hot water supply operation, cooling hot water supply operation, heating Hot water supply operation by exhaust heat recovery during hot water operation and cooling operation Heat pump hot water supply air conditioner that can. 請求項1において、
室外側熱交換器2の熱交換媒体として水またはブラインを利用し、熱交換した媒体を循環ポンプ12により給湯側熱交換器3一次側の供給水と熱交換させることで、供給水の温度を下げ、給湯運転時の効率を上げることのできるヒートポンプ給湯空調機。
In claim 1,
Water or brine is used as the heat exchange medium of the outdoor heat exchanger 2, and the heat exchange medium is heat-exchanged with the supply water on the hot water supply side heat exchanger 3 primary side by the circulation pump 12, so that the temperature of the supply water is changed. A heat pump hot water supply air conditioner that can lower the efficiency of hot water supply operation.
請求項1または2において、
室外側熱交換器2の熱交換媒体を循環式とした場合に、循環ポンプ12により給湯側熱交換器3一次側の供給水と熱交換させることで、室外側熱交換器2の循環媒体の温度を上げて運転効率を上げることのできるヒートポンプ給湯空調機。
In claim 1 or 2,
When the heat exchange medium of the outdoor heat exchanger 2 is a circulation type, the circulation pump 12 exchanges heat with the supply water on the primary side of the hot water supply side heat exchanger 3 so that the circulation medium of the outdoor heat exchanger 2 is changed. Heat pump hot water supply air conditioner that can raise the operating efficiency by raising the temperature.
請求項1において、
給湯側熱交換器3の一次側に電磁弁16、二次側に逆止弁C17を設けることで暖房効率を上げることのできるヒートポンプ給湯空調機。
In claim 1,
A heat pump hot water supply air conditioner that can increase heating efficiency by providing a solenoid valve 16 on the primary side of the hot water supply side heat exchanger 3 and a check valve C17 on the secondary side.
請求項1において、
給湯側熱交換器3の二次側の供給水を電気品箱18に設けてある排熱用のヒートシンク19内に通すことで、給湯側の出湯温度を上げ、かつ、電気品箱18内の温度を下げることができるヒートポンプ給湯空調機。
In claim 1,
By passing the supply water on the secondary side of the hot water supply side heat exchanger 3 through the heat sink 19 for exhaust heat provided in the electrical component box 18, the hot water temperature on the hot water supply side is raised, Heat pump hot water supply air conditioner that can lower the temperature.
請求項1において、
室外側熱交換器2の熱交換媒体として水またはブラインを利用した循環式とした場合、熱交換した媒体を循環ポンプ12により電気品箱18に設けてある排熱用のヒートシンク19内に通すことで、循環媒体の温度を上げて運転効率を上げることができ、かつ、電気品箱18内の温度を下げることのできるヒートポンプ給湯空調機。
In claim 1,
When the circulation type using water or brine is used as the heat exchange medium of the outdoor heat exchanger 2, the heat exchange medium is passed through the heat sink 19 for exhaust heat provided in the electrical component box 18 by the circulation pump 12. Thus, a heat pump hot water supply air conditioner that can raise the operating efficiency by raising the temperature of the circulating medium and can lower the temperature in the electrical component box 18.
請求項1において、
給湯側熱交換器3一次側の供給水を室外側熱交換器2の一部に通すことで、供給水の温度を下げ、給湯運転時の効率を上げることのできるヒートポンプ給湯空調機。
In claim 1,
A heat pump hot water supply air conditioner that lowers the temperature of the supplied water and increases the efficiency during hot water supply operation by passing the supplied water on the primary side of the hot water supply side heat exchanger 3 through a part of the outdoor heat exchanger 2.
請求項1において、
室内側熱交換器10,室内側電子膨張弁11を並列に複数設けることで、複数台の室内側熱交換器による冷房運転,暖房運転、および冷房給湯運転,暖房給湯運転を行うことのできるヒートポンプ給湯空調機。
In claim 1,
A heat pump that can perform cooling operation, heating operation, cooling hot water supply operation, and heating hot water supply operation by a plurality of indoor heat exchangers by providing a plurality of indoor heat exchangers 10 and indoor electronic expansion valves 11 in parallel. Hot water supply air conditioner.
JP2011095637A 2011-04-22 2011-04-22 Heat pump hot water supply air conditioner Expired - Fee Related JP5537489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095637A JP5537489B2 (en) 2011-04-22 2011-04-22 Heat pump hot water supply air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095637A JP5537489B2 (en) 2011-04-22 2011-04-22 Heat pump hot water supply air conditioner

Publications (2)

Publication Number Publication Date
JP2012225619A JP2012225619A (en) 2012-11-15
JP5537489B2 true JP5537489B2 (en) 2014-07-02

Family

ID=47275977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095637A Expired - Fee Related JP5537489B2 (en) 2011-04-22 2011-04-22 Heat pump hot water supply air conditioner

Country Status (1)

Country Link
JP (1) JP5537489B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644680B (en) * 2013-12-24 2016-08-17 深圳麦克维尔空调有限公司 A kind of total heat recovery unit
JPWO2015104815A1 (en) * 2014-01-09 2017-03-23 三菱電機株式会社 Air conditioning and hot water supply complex system
CN104075487A (en) * 2014-06-10 2014-10-01 烟台顿汉布什工业有限公司 Four-pipe multifunctional air-cooled cold and hot water unit
CN105299953A (en) * 2015-10-21 2016-02-03 珠海英伟特电子科技股份有限公司 Multifunctional variable frequency air source heat pump with energy distribution function
CN105783321A (en) * 2016-04-15 2016-07-20 广东纽恩泰新能源科技发展有限公司 Air source triple co-generation total heat recycling system
CN105928250A (en) * 2016-05-24 2016-09-07 浙江创能新能源科技有限公司 Multifunctional heat pump water heater
KR102486269B1 (en) * 2017-11-14 2023-01-10 엘지전자 주식회사 Air conditioner including heat storage tank and a method controlling the same
CN107883552A (en) * 2017-12-12 2018-04-06 珠海格力电器股份有限公司 Five-way valve, air-conditioner set and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074455A (en) * 1998-09-02 2000-03-14 Kyushu Electric Power Co Inc Heat storage/hot water supply air conditioner
JP2004218944A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat pump air conditioning and water heater
JP2005249319A (en) * 2004-03-05 2005-09-15 Fujitsu General Ltd Heat pump hot water supply air-conditioner

Also Published As

Publication number Publication date
JP2012225619A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5537489B2 (en) Heat pump hot water supply air conditioner
WO2013172166A1 (en) Heat pump device
JP2006292310A (en) Geothermal heat pump device, geothermal unit having it, and control method of geothermal heat pump device
WO2011045977A1 (en) Air conditioning apparatus
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2006292313A (en) Geothermal unit
JP4182494B2 (en) Large temperature difference air conditioning system
JP2019163892A (en) Geothermal heat pump device
WO2013061473A1 (en) Hot-water supply and air-conditioning device
KR100721420B1 (en) Heat pump system with means for heating and method for controlling thereof
JP4229881B2 (en) Heat pump system
KR20090102478A (en) Heat pump system for vehicles
KR100900441B1 (en) Heat pump airconditioning and heating equipement using geothermy
JP2013185741A (en) Heat pump type water heater
JP5988244B2 (en) Air conditioner
JP5615686B2 (en) Supercritical cycle heat pump equipment
KR100812777B1 (en) Heat pump system
TW201319492A (en) Heat recovered cooling system
KR101321545B1 (en) Air conditioner
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
JP2006017440A (en) Heat pump air conditioner
JP6143682B2 (en) Combined heat source heat pump device
JP5843630B2 (en) Cooling system
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees