JP5527932B2 - Design method of pier joint structure - Google Patents

Design method of pier joint structure Download PDF

Info

Publication number
JP5527932B2
JP5527932B2 JP2007270751A JP2007270751A JP5527932B2 JP 5527932 B2 JP5527932 B2 JP 5527932B2 JP 2007270751 A JP2007270751 A JP 2007270751A JP 2007270751 A JP2007270751 A JP 2007270751A JP 5527932 B2 JP5527932 B2 JP 5527932B2
Authority
JP
Japan
Prior art keywords
steel pipe
circular steel
concrete
reinforcing bar
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007270751A
Other languages
Japanese (ja)
Other versions
JP2009097257A (en
Inventor
浩一 田中
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007270751A priority Critical patent/JP5527932B2/en
Publication of JP2009097257A publication Critical patent/JP2009097257A/en
Application granted granted Critical
Publication of JP5527932B2 publication Critical patent/JP5527932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼製橋脚の下端をRC製フーチングに接合する橋脚接合構造の設計方法に関する。   The present invention relates to a design method for a pier joint structure in which a lower end of a steel pier is joined to an RC footing.

鋼製橋脚の下端を基礎に接合するにあたっては、アンカーフレームと呼ばれる鋼製フレームを予め製作した上、これを鉄筋コンクリート基礎であるフーチング内に埋設し、次いで、アンカーフレームから延びるアンカーボルトを利用して鋼製橋脚の下端をアンカーフレームにボルト接合する方法が従来から広く用いられている。   When joining the lower end of a steel pier to the foundation, a steel frame called an anchor frame is manufactured in advance, and then embedded in a footing that is a reinforced concrete foundation, and then using anchor bolts that extend from the anchor frame. A method of bolting the lower end of a steel pier to an anchor frame has been widely used.

最近では、かかる方法に加えて、地盤内に構築された基礎にソケット鋼管と呼ばれる太径の鋼管を設置し、次いで、該ソケット鋼管内に鋼製橋脚の下端を挿入した後、鋼製橋脚の外面とソケット鋼管の内面との間にコンクリートを充填することによって、鋼製橋脚の下端、ソケット鋼管及び基礎を一体化する方法も知られており、かかる方法によれば、急速施工が可能であることから、交通量の多い場所で短工期に工事を進めることが可能となる。   Recently, in addition to such a method, a steel pipe with a large diameter called a socket steel pipe is installed on the foundation constructed in the ground, and then the lower end of the steel pier is inserted into the socket steel pipe, and then the steel pier A method of integrating the lower end of the steel pier, the socket steel pipe and the foundation by filling concrete between the outer surface and the inner surface of the socket steel pipe is also known, and according to such a method, rapid construction is possible. Therefore, it is possible to proceed with construction in a short construction period in a place with a lot of traffic.

一方、アンカーフレームを用いた接合工法は、本来的にアンカーフレームの製作費が高いため、橋梁の規模が大きくなると、アンカーフレームの大型化や鋼材の高強度化によってその製作費用がますます高くなるとともに、ソケット鋼管を用いたいわゆる二重管工法も、鋼管を二重に用いることから必然的に施工費用が高くなる。   On the other hand, the joining method using an anchor frame is inherently expensive to produce an anchor frame. Therefore, when the size of a bridge is increased, the production cost is increased due to the increase in the size of the anchor frame and the strengthening of steel. In addition, the so-called double pipe construction method using the socket steel pipe inevitably increases the construction cost because the steel pipe is used twice.

特開平9−13320号公報JP-A-9-13320 特開平9−209308号公報JP-A-9-209308

このような状況下、コスト低減可能な接合工法が研究開発されており、例えば橋脚を構成する鋼管の内面にリブを設けるとともに該リブと対向する位置に鉄筋を配筋し、かかる状態で鋼管内にコンクリートを打設する工法(特許文献1,2)が開発されている。   Under such circumstances, a joint construction method capable of reducing costs has been researched and developed. For example, a rib is provided on the inner surface of a steel pipe constituting a pier and a reinforcing bar is arranged at a position facing the rib, and in this state, A construction method (Patent Documents 1 and 2) in which concrete is placed on the surface has been developed.

かかる従来工法によれば、鋼管内に充填されたコンクリートと該コンクリートに埋設定着された鉄筋が鋼管内に鉄筋コンクリート体を形成することとなり、鋼管から受ける引抜き荷重や橋脚頭部の水平変位による強制回転変形に抵抗する。   According to such a conventional construction method, the concrete filled in the steel pipe and the reinforcing bars embedded in the concrete form a reinforced concrete body in the steel pipe, and the forced rotation due to the pulling load received from the steel pipe and the horizontal displacement of the pier head Resist deformation.

したがって、アンカーフレームを使用せずとも鋼製橋脚をフーチングに強固に接合することが可能となるのみならず、鋼管によるコンクリートの拘束効果も期待することができる。また、コンクリート打設の際の型枠設置や脱型作業が必要なRC橋脚よりも有利な工法となる。   Therefore, not only the anchor frame but also the steel pier can be firmly joined to the footing, and a concrete restraining effect by the steel pipe can be expected. In addition, the construction method is more advantageous than RC piers that require formwork and demolding work when placing concrete.

しかしながら、かかる橋脚接合構造を実際に構築するにあたっては、設計指針の類が未だ存在しないのが現状であり、現実の橋脚施工に広く適用するにはおのずと限度があった。   However, in actual construction of such a pier joint structure, there is no design guideline yet, and there is a limit to its wide application to actual pier construction.

本発明は、上述した事情を考慮してなされたもので、鋼製橋脚の下端をRC製フーチングに接合する橋脚接合構造を実際に広く適用可能な橋脚接合構造の設計方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a method for designing a pier joint structure in which a pier joint structure in which the lower end of a steel pier is joined to an RC footing can be widely applied in practice. And

上記目的を達成するため、本発明に係る橋脚接合構造の設計方法は請求項1に記載したように、鉄筋コンクリートで形成されたフーチングと、該フーチングの上面との間に所定の隙間が形成されるように鉛直姿勢にて前記フーチングの上方に配置され内面にリブが形成された円形鋼管と、該円形鋼管内に充填されたコンクリート、一端が前記フーチングに他端が前記コンクリートにそれぞれ埋設定着され前記円形鋼管とほぼ同心状になるように前記円形鋼管の内面に沿って複数配置された鋼管接合用縦筋及び該鋼管接合用縦筋と直交するように周状に複数段配置され該鋼管接合用縦筋とともに鉄筋籠を形成する鋼管接合用横筋で形成された鉄筋コンクリート体とから構成されてなる橋脚接合構造を設計する方法であって、
前記円形鋼管に作用する設計引張力Tを定め、
前記コンクリートのうち、前記鉄筋籠と前記円形鋼管との間に拡がる円筒状のコンクリートが前記鉄筋籠から受ける圧力Piを、前記鉄筋籠と前記円形鋼管との間で継手として有効に作用する長さとして定義され前記鉄筋籠の高さL及び前記円形鋼管に引張力が作用したときに前記鉄筋籠との間に形成される圧縮ストラットの角度θによって決定される有効継手長さLeと、前記鉄筋籠の外径φiとを用いて、
Pi=T・tanθ/(φi・π・Le)
から算出することにより、前記Piが前記コンクリートの降伏強度以下又は破壊強度以下となるように、前記鉄筋籠の外径φi及び前記有効継手長さLeを決定し、又は前記コンクリートの配合を選定する一方、
前記有効継手長さLeと前記円形鋼管の厚さtoとを用いて、前記円形鋼管に生じる円周方向応力σHOを、
σHO=T・tanθ/(2π・Le・to)
から算出することにより、前記σHOが前記円形鋼管の降伏強度以下となるように、前記円形鋼管の厚さto及び前記有効継手長さLeを決定するものである。
In order to achieve the above object, according to the design method for a pier joint structure according to the present invention, a predetermined gap is formed between a footing formed of reinforced concrete and an upper surface of the footing. In the vertical position, a circular steel pipe disposed above the footing and having ribs formed on the inner surface thereof, concrete filled in the circular steel pipe, one end embedded in the footing and the other end embedded in the concrete A plurality of steel pipe joining vertical bars arranged along the inner surface of the circular steel pipe so as to be substantially concentric with the circular steel pipe, and a plurality of circumferentially arranged vertical stages perpendicular to the steel pipe joining vertical bars. A method for designing a bridge pier joint structure composed of a reinforced concrete body formed of a horizontal reinforcement for steel pipe joint that forms a reinforcing bar with a longitudinal bar,
A design tensile force T acting on the circular steel pipe is determined,
Of the concrete , the length of the cylindrical concrete that extends between the reinforcing bar and the circular steel pipe effectively acts as a joint between the reinforcing bar and the circular steel pipe. An effective joint length Le determined by a height L of the reinforcing bar rod and an angle θ of a compression strut formed between the reinforcing bar rod when a tensile force is applied to the circular steel pipe, and the reinforcing bar Using the outer diameter φi of the heel,
Pi = T · tanθ / (φi · π · Le)
By calculating from the above, the outer diameter φi and the effective joint length Le of the reinforcing bar are determined or the blending of the concrete is selected so that the Pi is less than the yield strength or the fracture strength of the concrete. on the other hand,
Using the effective joint length Le and the thickness to of the circular steel pipe, the circumferential stress σ HO generated in the circular steel pipe is
σ HO = T · tanθ / (2π · Le · to)
The thickness to of the circular steel pipe and the effective joint length Le are determined so that σ HO is equal to or less than the yield strength of the circular steel pipe.

また、本発明に係る橋脚接合構造の設計方法は、前記圧縮ストラットの角度θを45゜〜50゜としたものである。   In the design method of the pier joint structure according to the present invention, the compression strut angle θ is set to 45 ° to 50 °.

また、本発明に係る橋脚接合構造の設計方法は、前記圧縮ストラットの角度θを45゜とし、前記有効継手長さLeを、
Le=L−(φo−φi)/2
φo;円形鋼管の内径
としたものである。
Further, in the design method of the pier joint structure according to the present invention, the angle θ of the compression strut is 45 °, and the effective joint length Le is
Le = L− (φo−φi) / 2
φo: The inner diameter of the circular steel pipe.

本発明に係る橋脚接合構造の設計方法においては、円形鋼管に作用する設計引張力をTとしたとき、鉄筋籠と円形鋼管との間に拡がる円筒状のコンクリートには、その外周面で円形鋼管から引張力Tが上方に作用し、その内周面では、鉄筋籠から引張力Tと同じ大きさの反力Tが下方に作用する。   In the design method of the pier joint structure according to the present invention, when the design tensile force acting on the circular steel pipe is T, the cylindrical concrete extending between the reinforcing bar rod and the circular steel pipe has a circular steel pipe on its outer peripheral surface. The tensile force T acts on the upper side, and the reaction force T having the same magnitude as the tensile force T acts on the inner peripheral surface downward.

したがって、鉄筋籠の外径をφi、鉄筋籠と円形鋼管との有効継手長さをLeとしたとき、コンクリートと鉄筋籠との平均付着応力度τiは、鉄筋籠周面の面積に着目すれば、以下の式、
τi=T/(π・φi・Le) (1)
で算出できる。
Therefore, when the outer diameter of the reinforcing bar is φi and the effective joint length between the reinforcing bar and the circular steel pipe is Le, the average bond stress τi between the concrete and the reinforcing bar is as follows. , The following formula:
τi = T / (π · φi · Le) (1)
It can be calculated by

同様に、円形鋼管の内径をφoとしたとき、コンクリートと円形鋼管との平均付着応力度τoは、円形鋼管内面の面積に着目すれば、以下の式、
τo=T/(π・φo・Le) (2)
で算出できる。
Similarly, when the inner diameter of the circular steel pipe is φo, the average adhesion stress τo between the concrete and the circular steel pipe is expressed as
τo = T / (π · φo · Le) (2)
It can be calculated by

ここで、鉄筋籠と円形鋼管との有効継手長さLeは、鉄筋籠の長さLのうち、円形鋼管との間で継手として有効に作用する長さを意味するものであり、円形鋼管に引張力が作用したときに鉄筋籠との間に形成される圧縮ストラットの角度θによって決定される。   Here, the effective joint length Le between the reinforcing bar rod and the circular steel pipe means a length that effectively acts as a joint with the circular steel pipe among the length L of the reinforcing bar rod. It is determined by the angle θ of the compression strut formed between the reinforcing bar and the tensile force.

次に、コンクリートが鉄筋籠から受ける圧力Piは、
Pi=τi・tanθ (3)
となるので、これを(1)に代入して
Pi=T・tanθ/(π・φi・Le) (4)
が得られる。
Next, the pressure Pi that the concrete receives from the reinforcing bar is
Pi = τi · tanθ (3)
Therefore, this is substituted into (1) and Pi = T · tan θ / (π · φi · Le) (4)
Is obtained.

そして、コンクリートが円形鋼管から受ける圧力Poは、
Po=τo・tanθ (5)
となるので、これを(2)に代入して
Po=T・tanθ/(π・φo・Le) (6)
が得られる。
And the pressure Po which concrete receives from a circular steel pipe is
Po = τo · tanθ (5)
Therefore, by substituting this into (2), Po = T · tanθ / (π · φo · Le) (6)
Is obtained.

次に、圧力Poは、円形鋼管に生じる円周方向応力をσHO、円形鋼管の厚さをtoとすると、シェル薄肉理論により、
Po=σHO・to/(φo/2) (7)
となるから、
σHO=T・tanθ/(2π・Le・to) (8)
が得られる。
Next, the pressure Po is expressed by the shell thin wall theory, where σ HO is the circumferential stress generated in the circular steel pipe, and to is the thickness of the circular steel pipe,
Po = σ HO · to / (φo / 2) (7)
So,
σ HO = T · tanθ / (2π · Le · to) (8)
Is obtained.

すなわち、(4)式で得られるPiがコンクリートの降伏強度以下あるいは破壊強度以下となるように、鉄筋籠の外径φi及び有効継手長さLeを決定し、あるいはコンクリートの配合を選定する一方、(8)式で得られるσHOが円形鋼管の降伏強度以下となるように、円形鋼管の厚さto及び有効継手長さLeを決定することにより、合理的な橋脚接合構造を設計することが可能となる。 That is, the outer diameter φi and the effective joint length Le of the reinforcing bar are determined so that Pi obtained by the equation (4) is less than the yield strength or fracture strength of the concrete, or the concrete composition is selected. It is possible to design a rational pier joint structure by determining the thickness to and the effective joint length Le of the circular steel pipe so that σ HO obtained by the equation (8) is equal to or less than the yield strength of the circular steel pipe. It becomes possible.

なお、橋脚を構成する鋼管を鋼殻と称することも多いが、本発明では、便宜上、鋼殻も含める概念として鋼管と呼ぶこととする。   In addition, although the steel pipe which comprises a pier is often called a steel shell, in this invention, it shall call a steel pipe as a concept also including a steel shell for convenience.

フーチングは、鉄筋コンクリートで形成されたものであって、一般的には杭を伴う場合が多いが、本発明においては、フーチングだけで基礎構造が構成されるのか、杭とその頭部に接合されたフーチングとで基礎構造が構成されるのかは問わない。   The footing is made of reinforced concrete and generally accompanied by a pile, but in the present invention, the foundation structure is constituted only by the footing or it is joined to the pile and its head. It does not matter whether the foundation structure is composed of footing.

鋼管接合用縦筋は、一端がフーチングに埋設定着され、他端が鋼管内に充填形成されたコンクリート内に埋設定着されるものであり、例えば異形鉄筋で構成することができる。   The vertical reinforcing bar for joining steel pipes is one in which one end is embedded in the footing and the other end is embedded in concrete filled in the steel pipe, and can be constituted by a deformed reinforcing bar, for example.

以下、本発明に係る橋脚接合構造の設計方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a design method for a pier joint structure according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る設計方法の設計対象となる橋脚接合構造を示した図である。同図でわかるように、本実施形態で用いる橋脚接合構造1は、内面にリブ5が形成された円形鋼管2で構成された橋脚3を鉄筋コンクリートで形成されたフーチング4に接合してなる。   FIG. 1 is a view showing a pier joint structure to be designed by the design method according to the present embodiment. As can be seen from the figure, the pier joint structure 1 used in the present embodiment is formed by joining a pier 3 composed of a circular steel pipe 2 having ribs 5 formed on the inner surface thereof to a footing 4 formed of reinforced concrete.

円形鋼管2の下端とフーチング4の上面との間には、隙間hが形成されるように円形鋼管2を鉛直姿勢にてフーチング4の上方に配置してある。   Between the lower end of the circular steel pipe 2 and the upper surface of the footing 4, the circular steel pipe 2 is arranged above the footing 4 in a vertical posture so that a gap h is formed.

フーチング4には、鋼管接合用縦筋6aの一端を埋設定着してあり、該縦筋の他端は、円形鋼管2内に充填されたコンクリート7に埋設定着してある。   One end of the steel pipe joining vertical bar 6 a is embedded in the footing 4, and the other end of the vertical bar is embedded in the concrete 7 filled in the circular steel pipe 2.

鋼管接合用縦筋6aは図2に示すように、全体の外径φiが円形鋼管2の内径φoよりも小さくかつ円形鋼管2とほぼ同心状になるように、該円形鋼管の内面に沿って複数配置してあるとともに、環状の鋼管接合用横筋6bを、円形鋼管2内において鋼管接合用縦筋6aと直交するように該縦筋を取り囲んで配置してある。   As shown in FIG. 2, the steel pipe joining longitudinal bars 6a are formed along the inner surface of the circular steel pipe so that the entire outer diameter φi is smaller than the inner diameter φo of the circular steel pipe 2 and is substantially concentric with the circular steel pipe 2. A plurality of transverse bars 6b for annular steel pipe joining are arranged so as to surround the longitudinal bars in the circular steel pipe 2 so as to be orthogonal to the longitudinal bars 6a for joining steel pipes.

これら鋼管接合用縦筋6a及び鋼管接合用横筋6bは、外径がφiで高さがLの鉄筋籠6を円形鋼管2内に形成することとなる。ここで、鉄筋籠6には、フーチング4に埋設されない縦方向の補助鉄筋を必要に応じて適宜設けるのがよい。   These steel pipe joining vertical bars 6a and steel pipe joining horizontal bars 6b form a reinforcing bar 6 having an outer diameter φi and a height L in the circular steel pipe 2. Here, the reinforcing bar 6 is preferably provided with auxiliary reinforcing bars in the vertical direction that are not embedded in the footing 4 as necessary.

一方、鉄筋籠6は、円形鋼管2内に充填されたコンクリート7とともに鉄筋コンクリート体8を形成し、該鉄筋コンクリート体は、橋脚3から引抜き力が作用したとき、該引抜き力に抵抗してフーチング4に伝達するとともに、橋脚3の頭部に水平力が作用したとき、該水平力による鋼管2の回転変形に対して曲げ抵抗し、該水平力をフーチング4に伝達する役目を果たす。   On the other hand, the reinforcing bar 6 forms a reinforced concrete body 8 together with the concrete 7 filled in the circular steel pipe 2, and when the pulling force acts from the pier 3, the reinforced concrete body resists the pulling force and acts on the footing 4. In addition to transmitting, when a horizontal force acts on the head of the pier 3, it acts to bend and resist the rotational deformation of the steel pipe 2 due to the horizontal force and transmit the horizontal force to the footing 4.

本実施形態に係る橋脚接合構造1を設計するにあたっては、まず、円形鋼管2に作用する設計引張力Tを適宜定める。設計引張力Tは、例えば地震時における上部構造からの引抜き力が該当する。   In designing the pier joint structure 1 according to the present embodiment, first, a design tensile force T acting on the circular steel pipe 2 is appropriately determined. The design tensile force T corresponds to the pulling force from the superstructure at the time of an earthquake, for example.

次に、鉄筋籠6の外径をφi、鉄筋籠6と円形鋼管2との有効継手長さをLe、鉄筋籠6と円形鋼管2との間のコンクリートに形成される圧縮ストラットの角度をθとしたとき、コンクリートが鉄筋籠6から受ける圧力Piは、
Pi=T・tanθ/(φi・π・Le)
から算出することができる(図2(b)、(c)参照)。
Next, the outer diameter of the reinforcing bar 6 is φi, the effective joint length of the reinforcing bar 6 and the circular steel pipe 2 is Le, and the angle of the compression strut formed on the concrete between the reinforcing bar 6 and the circular steel pipe 2 is θ The pressure Pi that the concrete receives from the reinforcing bar 6 is
Pi = T · tanθ / (φi · π · Le)
(See FIGS. 2B and 2C).

同様に、円形鋼管2の内径をφoとしたとき、コンクリートが円形鋼管2から受ける圧力Poは、
Po=T・tanθ/(φo・π・Le)
から算出することができる(図2(b)、(c)参照)。
Similarly, when the inner diameter of the circular steel pipe 2 is φo, the pressure Po received by the concrete from the circular steel pipe 2 is
Po = T · tanθ / (φo · π · Le)
(See FIGS. 2B and 2C).

また、円形鋼管2に生じる円周方向応力σHOは、円形鋼管の厚さをtoとしたとき、
σHO=T・tanθ/(2π・Le・to)
から算出することができる(図2(d)参照)。
Further, the circumferential stress σ HO generated in the circular steel pipe 2 is expressed as follows when the thickness of the circular steel pipe is to:
σ HO = T · tanθ / (2π · Le · to)
(See FIG. 2 (d)).

上述の算定式は、以下の手順で導くことができる。すなわち、鉄筋籠6と円形鋼管2との間に拡がる円筒状のコンクリートと鉄筋籠6との平均付着応力度τi(図2(b)、(c))は、鉄筋籠6周面の面積に着目すれば、以下の式、
τi=T/(π・φi・Le) (1)
で算出できる。
The above calculation formula can be derived by the following procedure. That is, the average adhesion stress τi (FIGS. 2 (b) and 2 (c)) between the cylindrical concrete extending between the reinforcing bar 6 and the circular steel pipe 2 and the reinforcing bar 6 is determined by the area of the reinforcing bar 6 peripheral surface. If you pay attention, the following formula,
τi = T / (π · φi · Le) (1)
It can be calculated by

同様に、上述のコンクリートと円形鋼管2との平均付着応力度τoは、円形鋼管2の内面の面積に着目すれば、以下の式、
τo=T/(π・φo・Le) (2)
で算出できる。
Similarly, the average adhesion stress τo between the above-mentioned concrete and the circular steel pipe 2 can be expressed by the following equation when focusing on the area of the inner surface of the circular steel pipe 2:
τo = T / (π · φo · Le) (2)
It can be calculated by

ここで、鉄筋籠6と円形鋼管2との有効継手長さLeは、鉄筋籠6の長さLのうち、円形鋼管2との間で継手として有効に作用する長さを意味するものであり、円形鋼管2に引張力Tが作用したときに鉄筋籠6との間に形成される圧縮ストラットの角度θ(図2(c))によって決定される。   Here, the effective joint length Le between the reinforcing bar 6 and the circular steel pipe 2 means a length that effectively acts as a joint with the circular steel pipe 2 among the length L of the reinforcing bar 6. It is determined by the angle θ (FIG. 2 (c)) of the compression strut formed between the circular steel pipe 2 and the reinforcing bar 6 when the tensile force T acts on it.

圧縮ストラットの角度θは、例えば45゜〜50゜とすることができるが、安全側に55゜程度としてもかまわない。  The angle θ of the compression strut can be set to 45 ° to 50 °, for example, but may be about 55 ° on the safe side.

次に、上述のコンクリートが鉄筋籠6から受ける圧力Piは、
Pi=τi・tanθ (3)
となるので、これを(1)に代入して
Pi=T・tanθ/(π・φi・Le) (4)
が得られる。
Next, the pressure Pi that the above-mentioned concrete receives from the reinforcing bar 6 is
Pi = τi · tanθ (3)
Therefore, this is substituted into (1) and Pi = T · tan θ / (π · φi · Le) (4)
Is obtained.

同様に、コンクリートが円形鋼管から受ける圧力Poは、
Po=τo・tanθ (5)
となるので、これを(2)に代入して
Po=T・tanθ/(π・φo・Le) (6)F
が得られる。
Similarly, the pressure Po that concrete receives from a circular steel pipe is:
Po = τo · tanθ (5)
Therefore, by substituting this into (2), Po = T · tanθ / (π · φo · Le) (6) F
Is obtained.

次に、圧力Poは、円形鋼管2に生じる円周方向応力をσHO、円形鋼管の厚さをtoとすると、シェル薄肉理論により、
Po=σHO・to/(φo/2) (7)
となるから、
σHO=T・tanθ/(2π・Le・to) (8)
が得られる。
Next, the pressure Po is expressed by the shell thin wall theory, where σ HO is the circumferential stress generated in the circular steel pipe 2 and to is the thickness of the circular steel pipe,
Po = σ HO · to / (φo / 2) (7)
So,
σ HO = T · tanθ / (2π · Le · to) (8)
Is obtained.

次に、(4)式で得られたPiがコンクリートの降伏強度以下あるいは破壊強度以下となっているかどうかを判定し、これらの値を上回っているようであれば、鉄筋籠6の外径φi又は高さLを大きくすることにより、又はコンクリートの配合を変えて圧縮強度を高めることにより、
Pi < コンクリートの降伏強度又はコンクリートの破壊強度 (9)
となるまで、上述の演算を繰り返す。
Next, it is determined whether Pi obtained by the equation (4) is less than or equal to the yield strength or fracture strength of the concrete, and if it exceeds these values, the outer diameter φi of the reinforcing bar 6 Or by increasing the height L, or by increasing the compressive strength by changing the concrete mix,
Pi <Yield strength of concrete or fracture strength of concrete (9)
The above calculation is repeated until

一方、(8)式で得られたσHOが円形鋼管2の降伏強度以下となっているかどうかを判定し、これらの値を上回っているようであれば、円形鋼管2の厚さtoを大きくし、又は鉄筋籠6の高さLを大きくすることにより、
HO < 円形鋼管の降伏強度 (10)
となるまで、上述の演算を繰り返す。
On the other hand, it is determined whether or not σ HO obtained by equation (8) is less than or equal to the yield strength of the circular steel pipe 2, and if it exceeds these values, the thickness to of the circular steel pipe 2 is increased. Or by increasing the height L of the reinforcing bar 6
P HO <Yield strength of round steel pipe (10)
The above calculation is repeated until

本実施形態に係る橋脚とフーチングとの接合構造1を構築するには、まず図3に示すように、杭11を地盤(図示せず)に打ち込んだ後、該杭の頭部にフーチング4を形成するが、かかる基礎工事の際には、鋼管接合用縦筋6aの一端がフーチング4内に埋設定着されるように該フーチングを形成する。   In order to construct the joint structure 1 between the pier and the footing according to the present embodiment, first, as shown in FIG. 3, after the pile 11 is driven into the ground (not shown), the footing 4 is attached to the head of the pile. In the foundation work, the footing is formed so that one end of the steel pipe joining longitudinal bar 6 a is embedded in the footing 4.

次に図4に示すように、型枠材12をフーチング4の上面に載置する。型枠材12は、L状断面を有する環状フレームで構成してあり、内周側に形成された肩部13に円形鋼管2の下端を載せることにより、該円形鋼管の下端とフーチング4の上面との間の隙間hを塞ぐとともに、円形鋼管2の荷重を仮受けすることができるようになっている。   Next, as shown in FIG. 4, the mold material 12 is placed on the upper surface of the footing 4. The mold member 12 is composed of an annular frame having an L-shaped cross section, and the lower end of the circular steel pipe 2 and the upper surface of the footing 4 are mounted on the shoulder 13 formed on the inner peripheral side. In addition to closing the gap h, the load of the circular steel pipe 2 can be temporarily received.

次に、型枠材12の肩部13に円形鋼管2の下端を載せるようにして、円形鋼管2をフーチング4の上方に鉛直姿勢で吊り込み、型枠材12で仮受けする。   Next, the circular steel pipe 2 is suspended above the footing 4 in a vertical posture so that the lower end of the circular steel pipe 2 is placed on the shoulder 13 of the mold material 12, and temporarily received by the mold material 12.

次に、鉄筋籠6が埋設される高さまで、円形鋼管2内にコンクリート7を打設充填する。   Next, concrete 7 is cast and filled in the circular steel pipe 2 to a height at which the reinforcing bar 6 is embedded.

打設したコンクリート7が硬化したならば、最後に型枠材12を撤去する。   When the cast concrete 7 is hardened, the formwork 12 is finally removed.

以上説明したように、本実施形態に係る橋脚接合構造の設計方法によれば、(4)式で得られたPiがコンクリートの降伏強度以下あるいは破壊強度以下となっているかどうかを判定し、これらの値を上回っているようであれば、鉄筋籠6の外径φi又は高さLを大きくし、又はコンクリートの配合を変えて圧縮強度を高めることにより、
Pi < コンクリートの降伏強度又はコンクリートの破壊強度 (9)
となるまで、上述の演算を繰り返すとともに、(8)式で得られたσHOが円形鋼管2の降伏強度以下となっているかどうかを判定し、これらの値を上回っているようであれば、円形鋼管2の厚さtoを大きくし、又は鉄筋籠6の高さLを大きくすることにより、
HO < 円形鋼管の降伏強度 (10)
となるまで、上述の演算を繰り返すようにしたので、合理的な橋脚接合構造を設計することが可能となる。
As described above, according to the design method of the pier joint structure according to the present embodiment, it is determined whether Pi obtained by the equation (4) is less than the yield strength or the fracture strength of the concrete. If it exceeds the value of the above, by increasing the outer diameter φi or height L of the reinforcing bar 6, or by changing the blending of concrete to increase the compressive strength,
Pi <Yield strength of concrete or fracture strength of concrete (9)
Until the above calculation is repeated, it is determined whether σ HO obtained by the equation (8) is equal to or less than the yield strength of the circular steel pipe 2, and if these values are exceeded, By increasing the thickness to of the circular steel pipe 2 or increasing the height L of the reinforcing bar 6,
P HO <Yield strength of round steel pipe (10)
Since the above calculation is repeated until it becomes, it becomes possible to design a rational pier joint structure.

本実施形態で用いる橋脚接合構造1を示した図であり、(a)は縦断面図、(b)はA−A線に沿う横断面図。It is the figure which showed the pier joining structure 1 used by this embodiment, (a) is a longitudinal cross-sectional view, (b) is a cross-sectional view which follows an AA line. 本実施形態に係る橋脚接合構造の設計方法における算定根拠を示した略図。The schematic diagram which showed the calculation basis in the design method of the pier junction structure which concerns on this embodiment. 本実施形態で用いる橋脚接合構造1の構築手順を示した図。The figure which showed the construction procedure of the pier joining structure 1 used by this embodiment. 引き続き本実施形態で用いる橋脚接合構造1の構築手順を示した図。The figure which showed the construction procedure of the pier joining structure 1 used by this embodiment continuously.

Claims (3)

鉄筋コンクリートで形成されたフーチングと、該フーチングの上面との間に所定の隙間が形成されるように鉛直姿勢にて前記フーチングの上方に配置され内面にリブが形成された円形鋼管と、該円形鋼管内に充填されたコンクリート、一端が前記フーチングに他端が前記コンクリートにそれぞれ埋設定着され前記円形鋼管とほぼ同心状になるように前記円形鋼管の内面に沿って複数配置された鋼管接合用縦筋及び該鋼管接合用縦筋と直交するように周状に複数段配置され該鋼管接合用縦筋とともに鉄筋籠を形成する鋼管接合用横筋で形成された鉄筋コンクリート体とから構成されてなる橋脚接合構造を設計する方法であって、
前記円形鋼管に作用する設計引張力Tを定め、
前記コンクリートのうち、前記鉄筋籠と前記円形鋼管との間に拡がる円筒状のコンクリートが前記鉄筋籠から受ける圧力Piを、前記鉄筋籠と前記円形鋼管との間で継手として有効に作用する長さとして定義され前記鉄筋籠の高さL及び前記円形鋼管に引張力が作用したときに前記鉄筋籠との間に形成される圧縮ストラットの角度θによって決定される有効継手長さLeと、前記鉄筋籠の外径φiとを用いて、
Pi=T・tanθ/(φi・π・Le)
から算出することにより、前記Piが前記コンクリートの降伏強度以下又は破壊強度以下となるように、前記鉄筋籠の外径φi及び前記有効継手長さLeを決定し、又は前記コンクリートの配合を選定する一方、
前記有効継手長さLeと前記円形鋼管の厚さtoとを用いて、前記円形鋼管に生じる円周方向応力σHOを、
σHO=T・tanθ/(2π・Le・to)
から算出することにより、前記σHOが前記円形鋼管の降伏強度以下となるように、前記円形鋼管の厚さto及び前記有効継手長さLeを決定することを特徴とする橋脚接合構造の設計方法。
A circular steel pipe which is disposed above the footing in a vertical posture so that a predetermined gap is formed between the footing formed of reinforced concrete and the upper surface of the footing, and in which a rib is formed on the inner surface, and the circular steel pipe Concrete filled in, a plurality of longitudinal bars for joining steel pipes, one end of which is embedded in the footing and the other end is embedded in the concrete, and are arranged along the inner surface of the round steel pipe so as to be substantially concentric with the round steel pipe And a pier joint structure composed of a reinforced concrete body formed of a steel pipe joining horizontal bar that is arranged in a plurality of stages in a circumferential shape so as to be orthogonal to the steel pipe joining vertical bar and forms a reinforcing bar rod together with the steel pipe joining vertical bar A method of designing
A design tensile force T acting on the circular steel pipe is determined,
Of the concrete , the length of the cylindrical concrete that extends between the reinforcing bar and the circular steel pipe effectively acts as a joint between the reinforcing bar and the circular steel pipe. An effective joint length Le determined by a height L of the reinforcing bar rod and an angle θ of a compression strut formed between the reinforcing bar rod when a tensile force is applied to the circular steel pipe, and the reinforcing bar Using the outer diameter φi of the heel,
Pi = T · tanθ / (φi · π · Le)
By calculating from the above, the outer diameter φi and the effective joint length Le of the reinforcing bar are determined or the blending of the concrete is selected so that the Pi is less than the yield strength or the fracture strength of the concrete. on the other hand,
Using the effective joint length Le and the thickness to of the circular steel pipe, the circumferential stress σ HO generated in the circular steel pipe is
σ HO = T · tanθ / (2π · Le · to)
By calculating from the above, the thickness to of the circular steel pipe and the effective joint length Le are determined so that the σ HO is equal to or less than the yield strength of the circular steel pipe. .
前記圧縮ストラットの角度θを45゜〜50゜とした請求項1記載の橋脚接合構造の設計方法。 The method of designing a pier joint structure according to claim 1, wherein the angle θ of the compression strut is 45 ° to 50 °. 前記圧縮ストラットの角度θを45゜とし、前記有効継手長さLeを、
Le=L−(φo−φi)/2
φo;円形鋼管の内径
とした請求項2記載の橋脚接合構造の設計方法。
The angle θ of the compression strut is 45 °, and the effective joint length Le is
Le = L− (φo−φi) / 2
The method for designing a pier joint structure according to claim 2, wherein φo is an inner diameter of a circular steel pipe.
JP2007270751A 2007-10-17 2007-10-17 Design method of pier joint structure Expired - Fee Related JP5527932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270751A JP5527932B2 (en) 2007-10-17 2007-10-17 Design method of pier joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270751A JP5527932B2 (en) 2007-10-17 2007-10-17 Design method of pier joint structure

Publications (2)

Publication Number Publication Date
JP2009097257A JP2009097257A (en) 2009-05-07
JP5527932B2 true JP5527932B2 (en) 2014-06-25

Family

ID=40700521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270751A Expired - Fee Related JP5527932B2 (en) 2007-10-17 2007-10-17 Design method of pier joint structure

Country Status (1)

Country Link
JP (1) JP5527932B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423185B2 (en) * 2009-07-06 2014-02-19 Jfeスチール株式会社 Concrete-filled pier structure
CN103352573B (en) * 2013-07-08 2015-06-03 陕西煤业化工建设(集团)有限公司 Construction method for lifting butt joint of single cylindrical pier steel bar
CN104963279B (en) * 2015-06-25 2017-02-01 华侨大学 Novel box-type steel bridge pier
CN112942132A (en) * 2021-04-01 2021-06-11 中交二航局第二工程有限公司 Front supporting point composite hanging basket and shifting method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913320A (en) * 1995-06-30 1997-01-14 Ohbayashi Corp Construction method of bridge pier column and structure thereof
JP4346259B2 (en) * 2001-05-25 2009-10-21 新日鉄エンジニアリング株式会社 Reinforced concrete seismic column
JP2003253761A (en) * 2002-03-01 2003-09-10 Kurimoto Ltd Fiber-reinforced plastics concrete composite structural member
JP2003313950A (en) * 2002-04-22 2003-11-06 Takenaka Komuten Co Ltd Structure of steel pipe filled with concrete
JP4045994B2 (en) * 2003-04-02 2008-02-13 鹿島建設株式会社 Steel and concrete joint structure
JP4565258B2 (en) * 2004-05-07 2010-10-20 株式会社ニッコー Column base structure
JP4663563B2 (en) * 2006-03-22 2011-04-06 独立行政法人鉄道建設・運輸施設整備支援機構 Saddle structure for bridge

Also Published As

Publication number Publication date
JP2009097257A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
KR100654075B1 (en) Steel beam with capping shear connector and Composite Beam using the steel beam
KR101684771B1 (en) Method for connection structure for internally confined hollow rc column-foundation connection reinforced with external tube
JP5527932B2 (en) Design method of pier joint structure
JP4957418B2 (en) Structure and method for joining pier and footing
JP5207108B2 (en) Structure and method for joining pier and footing
JP3554299B2 (en) Composite segment in pipe burial method
KR101457080B1 (en) Reformed concrete filled tube column structure
JP6661495B2 (en) Pile
JP2006169787A (en) Structure for joining pile and footing together
JP5152689B2 (en) Structure and method for joining pier and footing
JP5036065B2 (en) Pile head joint structure
KR101166549B1 (en) Connection structure of Hollow reinforced concrete column with internal steeltube
JP5424761B2 (en) Seismic reinforcement method for existing buildings
JP2004353244A (en) Joint structure of steel pipe column and foundation
KR101458435B1 (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP5922993B2 (en) Structure and lining method using multiple fine crack type fiber reinforced cement composites
JP2004270416A (en) Pile with large-diameter bearing plate, and structure for joining pile head thereof
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP5253316B2 (en) Method for strengthening shear strength of ready-made concrete piles
JP2004270400A (en) Pedestal structure and precast segment
JP4451699B2 (en) Pile head joint structure
JP6461457B2 (en) Pile and pile construction method
JP3470697B2 (en) Exposed column base
JP5057565B2 (en) Movement limiter for bridge girder with improved integrity of steel pipe and internal concrete
JP5423134B2 (en) Foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5527932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees