JP5527168B2 - Converter exhaust gas recovery device and converter exhaust gas recovery method - Google Patents

Converter exhaust gas recovery device and converter exhaust gas recovery method Download PDF

Info

Publication number
JP5527168B2
JP5527168B2 JP2010251939A JP2010251939A JP5527168B2 JP 5527168 B2 JP5527168 B2 JP 5527168B2 JP 2010251939 A JP2010251939 A JP 2010251939A JP 2010251939 A JP2010251939 A JP 2010251939A JP 5527168 B2 JP5527168 B2 JP 5527168B2
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
analyzer
converter
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010251939A
Other languages
Japanese (ja)
Other versions
JP2012102367A (en
Inventor
直樹 古河
晴雄 上瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010251939A priority Critical patent/JP5527168B2/en
Priority to US13/979,161 priority patent/US9052110B2/en
Publication of JP2012102367A publication Critical patent/JP2012102367A/en
Application granted granted Critical
Publication of JP5527168B2 publication Critical patent/JP5527168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転炉で発生した排ガスを集塵し、非燃焼で可燃性ガスを回収する転炉排ガス回収装置及び転炉排ガス回収方法に関するものである。   The present invention relates to a converter exhaust gas recovery apparatus and a converter exhaust gas recovery method that collects exhaust gas generated in a converter and recovers non-combustible combustible gas.

転炉精錬時に発生する排ガスは、一酸化炭素を高濃度に含むガスである。この転炉排ガスを処理する方法として、転炉炉頂で排ガス中の一酸化炭素を燃焼させた上でボイラーにてエネルギーを回収する燃焼型排ガス処理装置と、一酸化炭素を燃焼させずに回収する非燃焼型排ガス処理装置とがある。非燃焼型排ガス処理装置として、非特許文献1に記載のように、OG方式転炉排ガス回収装置が代表的に用いられる。図1にOG方式転炉排ガス回収装置の全体概略図を示す。OG方式転炉排ガス回収装置においては、転炉1の炉口部において転炉排ガスをフード2に導き、輻射部3でガス温度を低減した上で2段のベンチュリースクラバー4によって湿式集塵を行い、誘引送風機5でガスを誘引し、煙道11を経由し、転炉排ガスをガスホルダー10に回収する。   The exhaust gas generated during converter refining is a gas containing carbon monoxide at a high concentration. As a method of treating this converter exhaust gas, a combustion type exhaust gas treatment device that recovers energy with a boiler after burning carbon monoxide in the exhaust gas at the top of the converter furnace, and recovering without burning carbon monoxide And a non-combustion type exhaust gas treatment device. As described in Non-Patent Document 1, an OG-type converter exhaust gas recovery device is typically used as a non-combustion type exhaust gas treatment device. FIG. 1 shows an overall schematic diagram of an OG type converter exhaust gas recovery device. In the OG type converter exhaust gas recovery device, the converter exhaust gas is guided to the hood 2 at the furnace port of the converter 1 and the gas temperature is reduced by the radiant unit 3 and then wet dust collection is performed by the two-stage venturi scrubber 4. The gas is attracted by the induction blower 5, and the converter exhaust gas is collected in the gas holder 10 via the flue 11.

転炉での精錬においては、まず転炉に溶銑を装入し、転炉吹錬によって主に脱炭精錬を行う。精錬完了後に溶鋼を出鋼するとともにスラグを排滓し、次の精錬のために溶銑を装入する。以上のような転炉精錬サイクルの中で、高濃度の一酸化炭素を含む排ガスが多量に発生するのは転炉吹錬中である。非吹錬時には排ガスは発生しない。また、吹錬開始直後においては、排ガス発生量が急激に増大するが、排ガス中には高濃度の酸素が含まれている。吹錬開始から時間が経過するとともに、排ガス中の酸素濃度は低下し、一酸化炭素濃度が増大する。   In refining in a converter, hot metal is first charged into the converter, and decarburization refining is mainly performed by converter blowing. After the refining is completed, the molten steel is discharged and the slag is discharged, and the molten iron is charged for the next refining. In the converter refining cycle as described above, it is during converter blowing that a large amount of exhaust gas containing a high concentration of carbon monoxide is generated. No exhaust gas is generated during non-blowing. Further, immediately after the start of blowing, the amount of exhaust gas generated increases rapidly, but the exhaust gas contains high concentration of oxygen. As time elapses from the start of blowing, the oxygen concentration in the exhaust gas decreases and the carbon monoxide concentration increases.

吹錬開始直後、排ガス中の一酸化炭素濃度が高くない時点から排ガスを回収すると、回収した排ガスの燃料ガスとしての品位が低下するので好ましくない。そのため、特許文献1に記載のように、転炉吹錬開始時には排ガスを大気中に放散することとし、転炉炉頂の輻射部3の排ガス経路にガス中CO濃度分析計(炉頂CO分析計22)を設け、排ガス中の一酸化炭素濃度が一定濃度以上に上昇するまでは排ガスのガスホルダーへの回収を開始しない。   Immediately after the start of blowing, it is not preferable to collect the exhaust gas from a point in time when the concentration of carbon monoxide in the exhaust gas is not high, since the quality of the recovered exhaust gas as a fuel gas is reduced. Therefore, as described in Patent Document 1, exhaust gas is released into the atmosphere at the start of converter blowing, and a CO concentration analyzer in the gas (furnace top CO analysis) is connected to the exhaust gas path of the radiant section 3 at the top of the converter furnace. A total 22) is provided, and the recovery of the exhaust gas to the gas holder is not started until the carbon monoxide concentration in the exhaust gas rises above a certain concentration.

吹錬開始直後は排ガス中の酸素濃度が高い。また、排ガス経路中に破損などが生じて外気が混入すると排ガス中の酸素濃度が増大することがある。排ガス中の酸素濃度が高いときに排ガスを回収すると、排ガスの成分が爆発限界を超える可能性がある。そのため、転炉炉頂の輻射部3の排ガス経路にガス中酸素濃度分析計(炉頂酸素分析計21)を設け、さらに湿式集塵後の煙道11にガス中酸素濃度分析計(炉下酸素分析計23)を設け、該2箇所の排ガス中の酸素濃度が一定濃度以下である場合にのみ排ガスをガスホルダー10に回収している。   Immediately after the start of blowing, the oxygen concentration in the exhaust gas is high. Further, when the outside gas is mixed due to damage or the like in the exhaust gas path, the oxygen concentration in the exhaust gas may increase. If the exhaust gas is recovered when the oxygen concentration in the exhaust gas is high, the components of the exhaust gas may exceed the explosion limit. Therefore, a gas oxygen concentration analyzer (furnace top oxygen analyzer 21) is provided in the exhaust gas path of the radiant section 3 at the top of the converter furnace, and the gas oxygen concentration analyzer (under the furnace) is placed in the flue 11 after wet dust collection. An oxygen analyzer 23) is provided, and the exhaust gas is collected in the gas holder 10 only when the oxygen concentration in the exhaust gas at the two locations is below a certain concentration.

吹錬開始時には、回収弁9を閉とした上で、三方弁6の操作で煙道11からの排ガスを放散塔8に排出している。吹錬開始後、炉頂CO分析計22で計測した一酸化炭素濃度が一定濃度以上、例えば25%以上となるとともに、炉頂酸素分析計21と炉下酸素分析計23で計測した2箇所の排ガス中の酸素濃度が一定濃度以下、例えば2%以下となる条件が成立したときにはじめて、回収弁9を開とするとともに、三方弁6の操作で排ガス経路を切り換えて排ガスのガスホルダー10への回収を開始する。   At the start of blowing, the recovery valve 9 is closed, and the exhaust gas from the flue 11 is discharged to the diffusion tower 8 by operating the three-way valve 6. After the start of blowing, the carbon monoxide concentration measured by the furnace top CO analyzer 22 becomes a certain concentration or more, for example, 25% or more, and at two locations measured by the furnace top oxygen analyzer 21 and the furnace oxygen analyzer 23. The recovery valve 9 is opened only when the condition that the oxygen concentration in the exhaust gas is equal to or lower than a certain concentration, for example, 2% or less, and the exhaust gas path is switched by operating the three-way valve 6 to the exhaust gas holder 10. Start collecting.

転炉排ガス中の酸素濃度分析においては、煙道内のガスをサンプリングし、分析する方法が一般的である。例えば湿式サンプラを用いた磁気式酸素分析計が用いられている。水流を用いて煙道からガスをサンプリングし、ドレンセパレータ、ガスクーラー、さらにドレンセパレータを経由して磁気式酸素分析計にサンプルガスを導入し、サンプルガス中の酸素濃度を測定する。   In the analysis of oxygen concentration in converter exhaust gas, a method of sampling and analyzing the gas in the flue is common. For example, a magnetic oxygen analyzer using a wet sampler is used. The gas is sampled from the flue using a water flow, the sample gas is introduced into the magnetic oxygen analyzer via the drain separator, the gas cooler, and the drain separator, and the oxygen concentration in the sample gas is measured.

特開平5−209212号公報JP-A-5-209212 特開2002−277391号公報JP 2002-277391 A 特開2007−170841号公報JP 2007-170841 A

日本鉄鋼協会編「第3版鉄鋼便覧II製銑・製鋼」第462頁Edited by the Japan Iron and Steel Institute, “Third Edition Steel Handbook II Steelmaking and Steelmaking”, page 462

転炉排ガスが排ガス経路を移動し、炉頂酸素分析計21の位置を通過してから炉下酸素分析計23の位置を通過するまでに要する時間は30秒程度である。ところが、ガス分析計で分析したガス濃度の時間推移を転炉吹錬開始直後から比較すると、炉頂酸素分析計21で分析したガス中酸素濃度が2%以下となってから、炉下酸素分析計23で分析したガス中酸素濃度が2%以下となるまでに約110秒が経過していた。炉下酸素分析計23での酸素分析において、排ガス経路からガスをサンプリングしてから当該ガスの分析結果が出るまでの応答遅れが存在するためであると推定される。炉下酸素分析計23での分析応答遅れが存在するため、転炉吹錬開始後、排ガスをガスホルダー10に回収開始する時期が遅れてしまい、可燃性ガスである転炉排ガスを十分に有効利用できていなかった。   The time required for the converter exhaust gas to move through the exhaust gas path and pass the position of the furnace top oxygen analyzer 21 to pass the position of the furnace oxygen analyzer 23 is about 30 seconds. However, when the time transition of the gas concentration analyzed by the gas analyzer is compared immediately after the start of the converter blowing, the oxygen concentration in the gas analyzed by the furnace top oxygen analyzer 21 becomes 2% or less, and the oxygen analysis under the furnace About 110 seconds had elapsed until the oxygen concentration in the gas analyzed in total 23 became 2% or less. In the oxygen analysis by the in-furnace oxygen analyzer 23, it is presumed that there is a response delay from when the gas is sampled from the exhaust gas path until the analysis result of the gas is obtained. Since there is a delay in the analysis response in the in-furnace oxygen analyzer 23, the time to start collecting exhaust gas in the gas holder 10 after the start of converter blowing is delayed, and the converter exhaust gas, which is a combustible gas, is sufficiently effective. It was not available.

本発明は、転炉で発生した排ガスを集塵し、非燃焼で可燃性ガスを回収する転炉排ガス回収装置において、集塵後の排ガス経路におけるガス中酸素分析の分析応答遅れを低減し、転炉排ガスの回収量を増大することのできる転炉排ガス回収装置及び転炉排ガス回収方法を提供することを目的とする。   In the converter exhaust gas recovery device for collecting exhaust gas generated in the converter and recovering non-combustible combustible gas, the present invention reduces the analysis response delay of the oxygen analysis in the gas in the exhaust gas path after dust collection, An object of the present invention is to provide a converter exhaust gas recovery device and a converter exhaust gas recovery method capable of increasing the recovery amount of converter exhaust gas.

ガス分析計として、測定ガス中にレーザ光を照射し、そのレーザ光の光吸収による光量変化からガス濃度を測定するレーザ式ガス分析計が、例えば特許文献2、3に開示されている。管路中を流れる測定ガスに向けてレーザ光を照射し、測定空間を透過したレーザ光を検出してガス成分を検出する。転炉排ガス回収装置の炉下酸素分析計としてレーザ式ガス分析計を用いたところ、ガス中の酸素分析の応答遅れを低減可能であることが明らかになった。   As gas analyzers, for example, Patent Documents 2 and 3 disclose laser-type gas analyzers that irradiate a measurement gas with laser light and measure a gas concentration based on a change in light amount due to light absorption of the laser light. Laser light is irradiated toward the measurement gas flowing in the pipeline, and the gas component is detected by detecting the laser light transmitted through the measurement space. When a laser gas analyzer was used as the in-furnace oxygen analyzer of the converter exhaust gas recovery system, it became clear that the response delay of the oxygen analysis in the gas could be reduced.

本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)転炉で発生した排ガスを集塵し、非燃焼で可燃性ガスを回収する転炉排ガス回収装置であって、転炉炉頂の集塵前排ガス経路にガス中酸素濃度分析計(以下「炉頂酸素分析計21」という。)とガス中CO濃度分析計(以下「炉頂CO分析計22」という。)を有し、集塵後の排ガス経路にガス中酸素分析計(以下「炉下酸素分析計23」という。)を有し、炉下酸素分析計23として、煙道の排ガス中にレーザ光を照射し、そのレーザ光の光吸収による光量変化からガス濃度を測定するレーザ式ガス分析計25を用い
レーザ式ガス分析計25のレーザ照射部26側とレーザ検出器27側の一方または双方に、レーザ光30の光路を囲むようにインサーションチューブ28を煙道内に配置し、インサーションチューブ28内に窒素ガスを流すことを特徴とする転炉排ガス回収装置。
(2)上記(1)に記載の転炉排ガス回収装置を用いて行う転炉排ガス回収方法であって、転炉吹錬を開始するときには発生した転炉排ガスを大気に放散し、炉頂酸素分析計21と炉下酸素分析計23で測定したガス中酸素濃度が所定濃度以下となるとともに炉頂CO分析計22で測定したガス中CO濃度が所定濃度以上となったときに、ガスを大気放散からガスホルダー10への回収に切り換えることを特徴とする転炉排ガス回収方法。


This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) A converter exhaust gas recovery device that collects exhaust gas generated in a converter and recovers non-combustible combustible gas. Hereinafter referred to as “furnace top oxygen analyzer 21”) and gas CO concentration analyzer (hereinafter referred to as “furnace top CO analyzer 22”), and the gas oxygen analyzer (hereinafter referred to as “furnace top CO analyzer 22”) in the exhaust gas path after dust collection. As the furnace oxygen analyzer 23, the exhaust gas in the flue is irradiated with laser light, and the gas concentration is measured from the change in the amount of light due to the light absorption of the laser light. Using a laser gas analyzer 25 ,
An insertion tube 28 is disposed in the flue so as to surround the optical path of the laser beam 30 on one or both of the laser irradiation unit 26 side and the laser detector 27 side of the laser gas analyzer 25. A converter exhaust gas recovery device characterized by flowing nitrogen gas .
(2) A converter exhaust gas recovery method carried out using the converter exhaust gas recovery apparatus described in (1) above, wherein when the converter blowing is started, the generated converter exhaust gas is diffused into the atmosphere, When the oxygen concentration in the gas measured by the analyzer 21 and the in-furnace oxygen analyzer 23 is lower than the predetermined concentration and the CO concentration in the gas measured by the top CO analyzer 22 is higher than the predetermined concentration, the gas is discharged into the atmosphere. A converter exhaust gas recovery method characterized by switching from emission to recovery to the gas holder 10.


本発明は、転炉で発生した排ガスを集塵し、非燃焼で可燃性ガスを回収する転炉排ガス回収において、集塵後の排ガス経路に設ける炉下酸素分析計23としてレーザ式ガス分析計25を用いることにより、ガス中の酸素分析の応答遅れを低減することができ、転炉排ガスの回収量を増大することができる。   The present invention relates to a laser gas analyzer as an in-furnace oxygen analyzer 23 provided in an exhaust gas path after dust collection in the recovery of a converter exhaust gas that collects exhaust gas generated in a converter and recovers non-combustible combustible gas. By using 25, the response delay of the oxygen analysis in the gas can be reduced, and the recovery amount of the converter exhaust gas can be increased.

OG方式転炉排ガス回収装置の全体概略図である。It is the whole OG system converter exhaust gas recovery device schematic. 炉下酸素分析計としてレーザ式ガス分析計を用いた状況を示す図である。It is a figure which shows the condition which used the laser type gas analyzer as a furnace oxygen analyzer. 転炉吹錬開始後のガス分析計の分析結果の推移を示す図である。It is a figure which shows transition of the analysis result of the gas analyzer after a converter blowing start.

OG方式転炉排ガス回収装置の全体を図1に示す。   The whole of the OG type converter exhaust gas recovery device is shown in FIG.

転炉内で発生した排ガスは、転炉1の上部に配置されたフード2によって集められ、輻射部3でガスを冷却し、次いで2段のベンチュリースクラバー4によって湿式集塵される。湿式集塵後の排ガスは、煙道11の途中に設けられた誘引送風機5で送風され、三方弁6に至る。三方弁6で分岐した一方の経路は放散塔8に至り、この経路を流れた排ガスは大気中に放散される。三方弁6で分岐した他方の経路は、回収弁9を経由してガスホルダー10に至る。三方弁6の操作により、転炉1から排出された排ガスはガスホルダー10に導かれ、あるいは放散塔8から放散される。   The exhaust gas generated in the converter is collected by a hood 2 arranged at the upper part of the converter 1, the gas is cooled by a radiating section 3, and then wet dust is collected by a two-stage venturi scrubber 4. The exhaust gas after wet dust collection is blown by the induction blower 5 provided in the middle of the flue 11 and reaches the three-way valve 6. One path branched by the three-way valve 6 reaches the diffusion tower 8, and the exhaust gas flowing through this path is diffused into the atmosphere. The other path branched by the three-way valve 6 reaches the gas holder 10 via the recovery valve 9. By operating the three-way valve 6, the exhaust gas discharged from the converter 1 is guided to the gas holder 10 or diffused from the stripping tower 8.

転炉炉頂の湿式集塵前排ガス経路である輻射部3にガス中酸素濃度分析計(炉頂酸素分析計21)とガス中CO濃度分析計(炉頂CO分析計22)が配置される。また、湿式集塵後の排ガス経路である煙道11にガス中酸素分析計(炉下酸素分析計23)が配置される。通常、炉下酸素分析計23は誘引送風機5の下流側の煙道11に配置される。   A gas oxygen concentration analyzer (furnace top oxygen analyzer 21) and a gas CO concentration analyzer (furnace top CO analyzer 22) are arranged in the radiation section 3 which is the exhaust gas path before wet dust collection at the top of the converter furnace. . Further, an in-gas oxygen analyzer (under-furnace oxygen analyzer 23) is disposed in the flue 11 which is an exhaust gas path after wet dust collection. Usually, the in-furnace oxygen analyzer 23 is arranged in the flue 11 on the downstream side of the induction fan 5.

転炉排ガスをガスホルダー10に回収するかあるいは放散塔8を経由して大気中に放散するかの判断については、排ガスのガス分析結果によって行っている。炉頂CO分析計22で分析した排ガス中一酸化炭素濃度が例えば25%以上であり、炉頂酸素分析計21と炉下酸素分析計23で分析した排ガス中酸素濃度が両方とも例えば2%以下である場合に回収条件が成立し、排ガスをガスホルダー10に回収する。条件が一つでも外れた場合には回収条件が非成立となり、排ガスを放散塔8から放散する。転炉吹錬開始時には転炉排ガスを放散塔8から放散している。吹錬の経過とともに、炉頂酸素分析計21、炉下酸素分析計23で分析するガス中の酸素濃度が低下し、炉頂CO分析計22で分析するガス中の一酸化炭素濃度が上昇する。そして分析したガス成分が前記回収条件成立に至ったときに、三方弁6を回収側に操作するとともに開閉弁9を開とし、ガスホルダー10へのガス回収を開始する。   Whether the converter exhaust gas is collected in the gas holder 10 or is released into the atmosphere via the diffusion tower 8 is determined based on the gas analysis result of the exhaust gas. The carbon monoxide concentration in the exhaust gas analyzed by the furnace top CO analyzer 22 is 25% or more, for example, and the oxygen concentration in the exhaust gas analyzed by the furnace top oxygen analyzer 21 and the furnace oxygen analyzer 23 is both 2% or less, for example. In this case, the recovery condition is satisfied, and the exhaust gas is recovered in the gas holder 10. If even one of the conditions is not met, the recovery condition is not established, and the exhaust gas is diffused from the diffusion tower 8. At the start of converter blowing, the converter exhaust gas is released from the diffusion tower 8. With the progress of blowing, the oxygen concentration in the gas analyzed by the furnace top oxygen analyzer 21 and the furnace oxygen analyzer 23 decreases, and the carbon monoxide concentration in the gas analyzed by the furnace CO analyzer 22 increases. . When the analyzed gas component reaches the recovery condition, the three-way valve 6 is operated to the recovery side, the on-off valve 9 is opened, and gas recovery to the gas holder 10 is started.

本発明においては、炉下酸素分析計23として、煙道の排ガス中にレーザ光を照射し、そのレーザ光の光吸収による光量変化からガス濃度を測定するレーザ式ガス分析計25を用いる。レーザ式ガス分析計は、図2に示すように、測定したい空間に向けて測定用レーザ光を照射するレーザ照射部26と、測定空間を透過した測定用レーザ光30を検出するレーザ受光部27と、このレーザ受光部の出力信号を処理する演算処理装置31と、により構成される。レーザ照射部26から発するレーザ光30の波長を連続的に変化させながら測定用レーザ光を測定空間に照射しており、この結果得られるレーザ受光部27の出力信号を演算処理装置31で分析・演算することにより検出対象である分子・原子の平均濃度及び平均温度のデータを得る。測定ガス中に高濃度の粉塵を含んでいても、精度良くガス中の成分濃度を分析することができる。   In the present invention, as the in-furnace oxygen analyzer 23, a laser gas analyzer 25 is used which irradiates the flue gas with laser light and measures the gas concentration from the change in the amount of light due to light absorption of the laser light. As shown in FIG. 2, the laser gas analyzer includes a laser irradiation unit 26 that irradiates a measurement laser beam toward a space to be measured, and a laser light receiving unit 27 that detects the measurement laser beam 30 that has passed through the measurement space. And an arithmetic processing unit 31 for processing an output signal of the laser light receiving unit. The measurement laser light is irradiated to the measurement space while continuously changing the wavelength of the laser light 30 emitted from the laser irradiation unit 26, and the output signal of the laser light receiving unit 27 obtained as a result is analyzed and processed by the arithmetic processing unit 31. By calculating, the average concentration and average temperature data of the molecules / atoms to be detected are obtained. Even if the measurement gas contains high-concentration dust, the component concentration in the gas can be analyzed with high accuracy.

本発明においては、湿式集塵後の排ガス経路である煙道11に、炉下酸素分析計23としてレーザガス分析計25を設置する。通常は図1に示すように、誘引送風機の下流側の排ガス経路に設ける。図2(a)に示すように、煙道11の外側にレーザ照射部26を配置し、レーザ光30を煙道内の排ガスに向けて照射する。煙道11のレーザ照射部26と反対側の外側にレーザ受光部27を配置する。このように配置したレーザ式ガス分析計により、煙道中を流れる排ガスの酸素濃度を分析することができる。   In the present invention, a laser gas analyzer 25 is installed as an in-furnace oxygen analyzer 23 in the flue 11 which is an exhaust gas path after wet dust collection. Usually, as shown in FIG. 1, it provides in the exhaust gas path | route downstream of an induction fan. As shown in FIG. 2A, a laser irradiation unit 26 is disposed outside the flue 11, and the laser light 30 is emitted toward the exhaust gas in the flue. A laser light receiving unit 27 is disposed on the outer side of the flue 11 opposite to the laser irradiation unit 26. The laser gas analyzer arranged in this way can analyze the oxygen concentration of the exhaust gas flowing through the flue.

誘引送風機下流側の煙道11は、直径が2mを超える大口径である。レーザ照射部26からレーザ受光部27に至るレーザ光30の光路の長さは煙道11の直径と同等あるいはそれ以上となる。排ガス中にダストや水滴が多く存在する場合には、レーザ光30の光路が長すぎると、レーザ光がダストや水滴に散乱されて測定が困難になるときがある。このような場合には、図2(b)に示すように、レーザ照射部26側とレーザ検出器27側の一方または双方に、レーザ光30の光路を囲むようにインサーションチューブ28を配置することによって問題を解決することができる。インサーションチューブ28内には、炉内側のインサーションチューブ先端に向けて流れるようにパージガス29として窒素ガスを流す。これにより、インサーションチューブ内は常に清浄な窒素ガスで満たされる。測定ガスが流れる光路は、両側から延びるインサーションチューブ28の先端から先端までの間となる。インサーションチューブ28の設置によって、測定ガス中を通過するレーザ光路を短くすることができ、たとえ排ガス中にダストや水滴が含まれていても、良好にガス中酸素濃度を分析することが可能となる。   The flue 11 on the downstream side of the induction fan has a large diameter exceeding 2 m. The length of the optical path of the laser beam 30 from the laser irradiation unit 26 to the laser light receiving unit 27 is equal to or greater than the diameter of the flue 11. When there are a lot of dust and water droplets in the exhaust gas, if the optical path of the laser beam 30 is too long, the laser beam may be scattered by the dust and water droplets, making measurement difficult. In such a case, as shown in FIG. 2B, an insertion tube 28 is disposed so as to surround the optical path of the laser beam 30 on one or both of the laser irradiation unit 26 side and the laser detector 27 side. The problem can be solved. In the insertion tube 28, nitrogen gas is flowed as the purge gas 29 so as to flow toward the tip of the insertion tube inside the furnace. Thereby, the inside of the insertion tube is always filled with clean nitrogen gas. The optical path through which the measurement gas flows is between the tip of the insertion tube 28 extending from both sides. By installing the insertion tube 28, it is possible to shorten the laser light path passing through the measurement gas, and even if dust or water droplets are contained in the exhaust gas, it is possible to analyze the oxygen concentration in the gas satisfactorily. Become.

本発明において、炉頂酸素分析計21及び炉頂CO分析計22については、従来と同様の分析計を用いることとしてよい。従来、ガス分析の応答遅れが顕著だったのは炉下酸素分析計23であり、炉下酸素分析計23を磁気式酸素分析計からレーザ式ガス分析計25に変更するのみによって、転炉排ガスの回収開始時期を早めることができ、ガス回収量の増大を図ることができるからである。   In the present invention, the furnace top oxygen analyzer 21 and the furnace top CO analyzer 22 may be the same analyzer as in the past. Conventionally, the delay in response to gas analysis has been noticeable in the furnace oxygen analyzer 23. By simply changing the furnace oxygen analyzer 23 from a magnetic oxygen analyzer to a laser gas analyzer 25, the converter exhaust gas This is because the recovery start time of the gas can be advanced and the amount of recovered gas can be increased.

本発明の転炉排ガス回収方法においては、上記本発明の転炉排ガス回収装置を用い、転炉吹錬を開始するときには発生した転炉排ガスを大気に放散し、炉頂酸素分析計21と炉下酸素分析計23で測定したガス中酸素濃度が所定濃度以下となるとともに炉頂CO分析計22で測定したガス中CO濃度が所定濃度以上となったときに、ガスを大気放散からガスホルダー10への回収に切り換える。炉下酸素分析計23としてレーザガス分析計25を用いているので、転炉排ガスの回収開始時期を早めることができ、ガス回収量の増大を図ることができる。   In the converter exhaust gas recovery method of the present invention, the converter exhaust gas recovery apparatus of the present invention is used, and when the converter blowing is started, the generated converter exhaust gas is released to the atmosphere, and the furnace top oxygen analyzer 21 and the furnace When the oxygen concentration in the gas measured by the lower oxygen analyzer 23 is lower than the predetermined concentration and the CO concentration in the gas measured by the furnace top CO analyzer 22 is higher than the predetermined concentration, the gas is removed from the atmosphere to the gas holder 10. Switch to recovery. Since the laser gas analyzer 25 is used as the in-furnace oxygen analyzer 23, the recovery start time of the converter exhaust gas can be advanced, and the amount of gas recovered can be increased.

以上、OG方式転炉排ガス回収装置を例にとって説明してきたが、本発明は非燃焼式ガス回収装置で下流の酸素濃度を回収条件としている場合には他の方式であっても実施可能である。   The OG type converter exhaust gas recovery device has been described above as an example. However, the present invention can also be implemented with other methods when the downstream oxygen concentration is a recovery condition in the non-combustion type gas recovery device. .

300トン転炉のOG方式転炉排ガス回収装置において、本発明を適用した。OG方式転炉排ガス回収装置の全体は図1に示すとおりである。   The present invention was applied to an OG-type converter exhaust gas recovery apparatus for a 300-ton converter. The whole of the OG converter exhaust gas recovery device is as shown in FIG.

転炉炉頂の輻射部3の排ガス経路に炉頂酸素分析計21と炉頂CO分析計22を設置し、湿式集塵後の煙道11に炉下酸素分析計23を設置している。吹錬開始時には、回収弁9を閉とした上で、三方弁6の操作で煙道11からの排ガスを放散塔8に排出している。吹錬開始後、炉頂CO分析計22で計測した一酸化炭素濃度が25%以上となるとともに、炉頂酸素分析計21と炉下酸素分析計23で計測した2箇所の排ガス中の酸素濃度が2%以下となる条件が成立したときにはじめて、回収弁9を開とするとともに、三方弁6の操作で排ガス経路を切り換えて排ガスのガスホルダー10への回収を開始する。   A furnace top oxygen analyzer 21 and a furnace top CO analyzer 22 are installed in the exhaust gas path of the radiation section 3 at the top of the converter furnace, and a furnace oxygen analyzer 23 is installed in the flue 11 after wet dust collection. At the start of blowing, the recovery valve 9 is closed, and the exhaust gas from the flue 11 is discharged to the diffusion tower 8 by operating the three-way valve 6. After the start of blowing, the carbon monoxide concentration measured by the furnace top CO analyzer 22 is 25% or more, and the oxygen concentrations in the two exhaust gases measured by the furnace top oxygen analyzer 21 and the furnace oxygen analyzer 23 The recovery valve 9 is opened only when the condition of 2% or less is established, and the exhaust gas path is switched by operating the three-way valve 6 to start recovery of the exhaust gas to the gas holder 10.

従来例は炉頂酸素分析計21、炉下酸素分析計23には磁気式の分析計を用い、炉頂CO分析計22には赤外線式分析計を用いた。   In the conventional example, a magnetic analyzer was used for the furnace top oxygen analyzer 21 and the furnace oxygen analyzer 23, and an infrared analyzer was used for the furnace CO analyzer 22.

本発明例においては、炉下酸素分析計23のみについて、従来の磁気式酸素分析計からレーザ式ガス分析計25に変更した。誘引送風機5の下流側の煙道11に、図2(b)に示すようにレーザ式ガス分析計25を設置した。煙道11の外側にレーザ照射部26を配置し、レーザ光30を煙道内の排ガスに向けて照射するとともに、煙道11のレーザ照射部26と反対側の外側にレーザ受光部27を配置した。レーザ照射部26から発するレーザ光30の波長を連続的に変化させながら測定用レーザ光を測定空間に照射し、この結果得るレーザ受光部27の出力信号を演算処理装置31で分析・演算することにより、煙道内を通過する排ガス中の酸素濃度を分析する。煙道11は直径が2.4mと大きいため、図2(b)に示すようにインサーションチューブ28を設けた。インサーションチューブ28内には、炉内側のインサーションチューブ先端に向けて流れるようにパージガス29として窒素ガスを流す。両側から延びるインサーションチューブ28の先端から先端までの間隔を1mとした。これにより、排ガス中を通過するレーザ光30の光路の長さが1mとなり、排ガスが粉塵や水分を含んでいても問題なく排ガス中の酸素濃度を分析することができる。   In the present invention example, only the in-furnace oxygen analyzer 23 is changed from the conventional magnetic oxygen analyzer to the laser gas analyzer 25. A laser type gas analyzer 25 was installed in the flue 11 on the downstream side of the induction blower 5 as shown in FIG. A laser irradiation unit 26 is disposed outside the flue 11, the laser light 30 is irradiated toward the exhaust gas in the flue, and a laser light receiving unit 27 is disposed outside the flue 11 opposite to the laser irradiation unit 26. . A measurement laser beam is irradiated onto the measurement space while continuously changing the wavelength of the laser beam 30 emitted from the laser irradiation unit 26, and the output signal of the laser receiving unit 27 obtained as a result is analyzed and calculated by the arithmetic processing unit 31. To analyze the oxygen concentration in the exhaust gas passing through the flue. Since the flue 11 has a large diameter of 2.4 m, an insertion tube 28 is provided as shown in FIG. In the insertion tube 28, nitrogen gas is flowed as the purge gas 29 so as to flow toward the tip of the insertion tube inside the furnace. The interval from the tip of the insertion tube 28 extending from both sides to the tip was 1 m. Thereby, the length of the optical path of the laser beam 30 passing through the exhaust gas becomes 1 m, and the oxygen concentration in the exhaust gas can be analyzed without any problem even if the exhaust gas contains dust or moisture.

図3に、転炉1での吹錬を開始してからの時間経過と、炉頂酸素分析計21、炉頂CO分析計22、炉下酸素分析計23によるガス分析結果の時間推移を示している。炉下酸素分析計23については、磁気式分析計による従来データとレーザ式ガス分析計による本発明データをともに掲載している。図中には、炉頂CO分析計条件成立41、従来法における炉下酸素分析計条件成立42、本発明法における炉下酸素分析計条件成立43のタイミングを図示している。   FIG. 3 shows the passage of time since the start of blowing in the converter 1 and the time transition of the gas analysis results by the furnace top oxygen analyzer 21, the furnace top CO analyzer 22, and the furnace oxygen analyzer 23. ing. Regarding the in-furnace oxygen analyzer 23, both conventional data by a magnetic analyzer and data of the present invention by a laser gas analyzer are listed. In the figure, timings of the furnace top CO analyzer condition establishment 41, the furnace oxygen analyzer condition establishment 42 in the conventional method, and the furnace oxygen analyzer condition establishment 43 in the method of the present invention are illustrated.

図1の横軸が約20秒において吹錬を開始している。   The horizontal axis in FIG. 1 starts blowing in about 20 seconds.

従来例においては、まず炉頂酸素分析計の条件が成立し、さらに約90秒で炉頂CO分析計条件成立41となり、次いで約170秒で炉下酸素分析計条件成立42となる。この時点で「回収条件成立」であり、ガス回収に向けてのシーケンスが開始される。   In the conventional example, first, the condition of the furnace top oxygen analyzer is satisfied, and further, the furnace top CO analyzer condition is satisfied 41 after about 90 seconds, and then the furnace oxygen analyzer condition is satisfied 42 after about 170 seconds. At this time, “recovery conditions are met”, and a sequence for gas recovery is started.

本発明例においては、まず炉頂酸素分析計の条件成立とほぼ同時に約60秒で炉下酸素分析計条件成立43となり、次いで約90秒で炉頂CO分析計条件成立41となる。この時点で「回収条件成立」であり、ガス回収に向けてのシーケンスが開始される。従って、従来例に比較して本発明例は、回収条件成立が170秒から90秒になり、差し引き80秒の時間短縮を実現することができた。   In the example of the present invention, first, the furnace oxygen analyzer condition is satisfied 43 in about 60 seconds, and then the furnace CO analyzer condition 41 is satisfied in about 90 seconds. At this time, “recovery conditions are met”, and a sequence for gas recovery is started. Therefore, in comparison with the conventional example, in the example of the present invention, the recovery condition is satisfied from 170 seconds to 90 seconds, and the time reduction of 80 seconds can be realized.

1 転炉
2 フード
3 輻射部
4 ベンチュリースクラバー
5 誘引送風機
6 三方弁
7 バイパス弁
8 放散塔
9 回収弁
10 ガスホルダー
11 煙道
21 炉頂酸素分析計
22 炉頂CO分析計
23 炉下酸素分析計
25 レーザ式ガス分析計
26 レーザ照射部
27 レーザ受光部
28 インサーションチューブ
29 パージガス
30 レーザ光
31 演算処理装置
41 炉頂CO分析計条件成立
42 従来法における炉下酸素分析計条件成立
43 本発明法における炉下酸素分析計条件成立
DESCRIPTION OF SYMBOLS 1 Converter 2 Hood 3 Radiation part 4 Venturi scrubber 5 Induction fan 6 Three-way valve 7 Bypass valve 8 Exhaust tower 9 Recovery valve 10 Gas holder 11 Flue 21 Furnace top oxygen analyzer 22 Furnace top CO analyzer 23 Furnace oxygen analyzer 25 Laser type gas analyzer 26 Laser irradiation unit 27 Laser light receiving unit 28 Insertion tube 29 Purge gas 30 Laser beam 31 Arithmetic processing unit 41 Furnace top CO analyzer condition establishment 42 Conventional furnace analyzer condition establishment 43 Conventional method Of in-furnace oxygen analyzer conditions in Japan

Claims (2)

転炉で発生した排ガスを集塵し、非燃焼で可燃性ガスを回収する転炉排ガス回収装置であって、転炉炉頂の集塵前排ガス経路にガス中酸素濃度分析計(以下「炉頂酸素分析計」という。)とガス中CO濃度分析計(以下「炉頂CO分析計」という。)を有し、集塵後の排ガス経路にガス中酸素分析計(以下「炉下酸素分析計」という。)を有し、
前記炉下酸素分析計として、煙道の排ガス中にレーザ光を照射し、そのレーザ光の光吸収による光量変化からガス濃度を測定するレーザ式ガス分析計を用い
前記レーザ式ガス分析計のレーザ照射部側とレーザ検出器側の一方または双方に、レーザ光の光路を囲むようにインサーションチューブを煙道内に配置し、当該インサーションチューブ内に窒素ガスを流すことを特徴とする転炉排ガス回収装置。
A converter exhaust gas recovery device that collects exhaust gas generated in a converter and recovers flammable gas in a non-combustible manner. Gas oxygen concentration analyzer (hereinafter referred to as “furnace top CO analyzer”) and gas oxygen analyzer (hereinafter referred to as “furnace oxygen analysis”) in the exhaust gas path after dust collection. Called "total")
As the in-furnace oxygen analyzer, a laser gas analyzer is used that irradiates the flue gas with laser light and measures the gas concentration from the light quantity change due to light absorption of the laser light .
An insertion tube is disposed in the flue so as to surround the optical path of the laser beam on one or both of the laser irradiation part side and the laser detector side of the laser gas analyzer, and nitrogen gas is allowed to flow through the insertion tube. A converter exhaust gas recovery apparatus characterized by that.
請求項1に記載の転炉排ガス回収装置を用いて行う転炉排ガス回収方法であって、転炉吹錬を開始するときには発生した転炉排ガスを大気に放散し、炉頂酸素分析計と炉下酸素分析計で測定したガス中酸素濃度が所定濃度以下となるとともに炉頂CO分析計で測定したガス中CO濃度が所定濃度以上となったときに、ガスを大気放散からガスホルダーへの回収に切り換えることを特徴とする転炉排ガス回収方法。   A converter exhaust gas recovery method performed using the converter exhaust gas recovery apparatus according to claim 1, wherein when the converter blowing is started, the generated converter exhaust gas is diffused into the atmosphere, and a furnace top oxygen analyzer and a furnace When the oxygen concentration in the gas measured with the lower oxygen analyzer is lower than the predetermined concentration and the CO concentration in the gas measured with the furnace CO analyzer is higher than the predetermined concentration, the gas is recovered from the atmospheric discharge to the gas holder. The converter exhaust gas recovery method characterized by switching to.
JP2010251939A 2010-11-10 2010-11-10 Converter exhaust gas recovery device and converter exhaust gas recovery method Active JP5527168B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010251939A JP5527168B2 (en) 2010-11-10 2010-11-10 Converter exhaust gas recovery device and converter exhaust gas recovery method
US13/979,161 US9052110B2 (en) 2010-11-10 2012-05-30 Converter exhaust gas recovery apparatus and converter exhaust gas recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251939A JP5527168B2 (en) 2010-11-10 2010-11-10 Converter exhaust gas recovery device and converter exhaust gas recovery method

Publications (2)

Publication Number Publication Date
JP2012102367A JP2012102367A (en) 2012-05-31
JP5527168B2 true JP5527168B2 (en) 2014-06-18

Family

ID=46393099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251939A Active JP5527168B2 (en) 2010-11-10 2010-11-10 Converter exhaust gas recovery device and converter exhaust gas recovery method

Country Status (1)

Country Link
JP (1) JP5527168B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052110B2 (en) 2010-11-10 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Converter exhaust gas recovery apparatus and converter exhaust gas recovery method
KR101476572B1 (en) * 2012-05-30 2014-12-24 신닛테츠스미킨 카부시키카이샤 Apparatus for recovering waste gas of converter and method for recovering waste gas of converter
JP6451438B2 (en) * 2015-03-24 2019-01-16 新日鐵住金株式会社 Laser analyzer
CN108265154A (en) * 2018-03-04 2018-07-10 北京首钢国际工程技术有限公司 A kind of automatic control system for preventing converter smelting coal gas venting of dust explosion
KR102213975B1 (en) * 2019-08-23 2021-02-08 현대제철 주식회사 Apparatus for recoverying linz donawitz gas and method of recoverying linz donawitz gas using the same
CN111020101A (en) * 2019-11-29 2020-04-17 山东莱钢永锋钢铁有限公司 Method for controlling recovery termination of converter gas
CN111549199A (en) * 2020-04-14 2020-08-18 新兴铸管股份有限公司 Converter gas recovery system and recovery process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540687B2 (en) * 1992-01-30 1996-10-09 新日本製鐵株式会社 Converter gas recovery method
JP4232424B2 (en) * 2002-09-27 2009-03-04 Jfeスチール株式会社 Disturbance correction method for converter furnace pressure control system
JP4064269B2 (en) * 2003-03-13 2008-03-19 新日鉄エンジニアリング株式会社 Combustion control method in combustion chamber of waste melting furnace
JP2006125848A (en) * 2004-10-26 2006-05-18 Takuma Co Ltd Laser type analyzer

Also Published As

Publication number Publication date
JP2012102367A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5527168B2 (en) Converter exhaust gas recovery device and converter exhaust gas recovery method
KR101476572B1 (en) Apparatus for recovering waste gas of converter and method for recovering waste gas of converter
US7022992B2 (en) Method and apparatus for real-time monitoring of furnace flue gases
JP2020112567A (en) System and method for analyzing dust-containing industrial off-gas chemical constituent
JP2010017617A (en) System for recovery of carbon dioxide in exhaust gas
CA2644472A1 (en) Infrared light sensors for diagnosis and control of industrial furnaces
JPS5672332A (en) Analyzer for carbon in metal
US9052110B2 (en) Converter exhaust gas recovery apparatus and converter exhaust gas recovery method
CN105203470A (en) Method and device capable of continuously detecting atomic absorption (atomic fluorescence) spectrums in reaction process
JP2000055794A (en) Analyzer for element in sample
JP5968083B2 (en) Elemental analyzer
CN115201407A (en) Sulfur trioxide measuring device, flue gas analyzer and sulfur trioxide measuring method
JP2018091783A (en) Analytical method of gas component concentration, recovery method of exhaust gas, analyzer of gas component concentration and recovery facility of exhaust gas
JP6451438B2 (en) Laser analyzer
CN105510265A (en) Infrared gas analyzer and gas analysis method
JP2005009964A (en) Method of analyzing particulate matter in engine exhaust gas
JP2004149831A (en) Method for collecting dust in blast furnace gas
JP2005227045A (en) Analyzer for analyzing element in sample
JP2021025882A (en) Method for controlling furnace, and analyzer for implementing the same
RU2785701C1 (en) Method for detecting water leakage from melting furnaces in installations for production of metals or alloys and corresponding installation
JP2024022184A (en) Converter exhaust gas treatment equipment and converter exhaust gas treatment method
KR102213975B1 (en) Apparatus for recoverying linz donawitz gas and method of recoverying linz donawitz gas using the same
JP5423662B2 (en) Water quality analyzer
JP2007333543A (en) Analyzer
JP6102348B2 (en) Recovery method of converter exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5527168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350