JP2007333543A - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP2007333543A
JP2007333543A JP2006165407A JP2006165407A JP2007333543A JP 2007333543 A JP2007333543 A JP 2007333543A JP 2006165407 A JP2006165407 A JP 2006165407A JP 2006165407 A JP2006165407 A JP 2006165407A JP 2007333543 A JP2007333543 A JP 2007333543A
Authority
JP
Japan
Prior art keywords
detector
sample
temperature
switching valve
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006165407A
Other languages
Japanese (ja)
Inventor
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006165407A priority Critical patent/JP2007333543A/en
Publication of JP2007333543A publication Critical patent/JP2007333543A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent destruction of the functions and the structure of a catalytic analyzer and the hazards to a person measuring caused by the ignition of a sample contained in ignitable components of high concentration. <P>SOLUTION: In this analyzer, a switching valve 21 and an ignitable component detector 22 of a prinsiple that will not cause the risk of ignition caused by volatile components in the sample are arranged on the downstream side of a sample inlet port 1 and the switching valve 21 is first changed over toward a flow channel C while preparatory measurement for confirming that there is no hazard of ignition, when the sample is introduced into a combustion furnace 3 is performed by an ignitable component detector 22. Thereafter, the switching valve 21 is changed-over toward a switching valve 2, and the final measurement by a detector 9 is performed. When the hazard of ignition is not recognized by the preparatory measurement, the switching valve 21 is fixed in the direction of the ignitable component detector 22 or is changed-over, to a position where both directions of the switching valve 2 and the ignitable component detector 22 are closed and final measurement is stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は分析計測分野において使用される、揮発性有機炭素分析計などの触媒式分析計に関する。   The present invention relates to a catalytic analyzer such as a volatile organic carbon analyzer used in the field of analytical measurement.

以下、検出器としてNDIR(非分散赤外分析計)を用いた触媒酸化方式の揮発性有機炭素分析計(以下、揮発性有機炭素をVOC、揮発性有機炭素分析計をVOC計と記載する)を例として従来の触媒酸化式分析計の背景技術を説明する。この方式のVOC計(たとえば特許文献1参照)は、最初に流体試料(以下、試料と略記する)を高温に加熱された酸化触媒中を通過させ、試料中の揮発性有機炭素(以下、VOCと略記する)の全量を二酸化炭素(以下、COと記載する)に変換し、生じたCO濃度をNDIRにより検出し、VOC濃度に換算して出力としている。NDIRはCOに光源から赤外線を照射し、CO固有の波長の赤外線吸収量を測定する検出方法である。この方法により、VOCの高感度の連続測定が行われる。 Hereinafter, a catalytic oxidation type volatile organic carbon analyzer using NDIR (non-dispersive infrared analyzer) as a detector (hereinafter referred to as VOC and volatile organic carbon analyzer as VOC meter). As an example, the background art of a conventional catalytic oxidation analyzer will be described. In this type of VOC meter (see, for example, Patent Document 1), a fluid sample (hereinafter abbreviated as “sample”) is first passed through an oxidation catalyst heated to a high temperature, and volatile organic carbon (hereinafter referred to as “VOC”) in the sample is passed through. The total amount of carbon dioxide (hereinafter abbreviated as “CO 2” ) is converted into carbon dioxide (hereinafter referred to as “CO 2” ), and the resulting CO 2 concentration is detected by NDIR, converted into a VOC concentration, and output. NDIR is a detection method by irradiating infrared rays from the light source to the CO 2, to measure the infrared absorption of CO 2 specific wavelength. By this method, highly sensitive continuous measurement of VOC is performed.

図4において、1は試料導入口で、試料はここからVOC計に導入され、ポンプ6の吸引力により図の右方に流れる。切替弁2は試料導入口1からの流路を流路A方向または流路B方向の何れかに切り替える。切替弁2から流路Aのポンプ6、および流路Bのポンプ8に到る部分は試料前処理部Pを構成する。   In FIG. 4, reference numeral 1 denotes a sample introduction port, from which a sample is introduced into the VOC meter, and flows to the right in the figure by the suction force of the pump 6. The switching valve 2 switches the flow path from the sample introduction port 1 to either the flow path A direction or the flow path B direction. Portions from the switching valve 2 to the pump 6 in the flow path A and the pump 8 in the flow path B constitute a sample pretreatment unit P.

切替弁2の流路A側の下流には、触媒槽3Cを内蔵した燃焼炉3が配設されている。触媒槽3Cにはたとえば白金系などの酸化触媒(図示せず)が封入されている。測定時は燃焼炉3はヒータ3Hによって規定の温度に加熱され、試料中のVOCは高温の触媒槽3Cを通過する際にCOに変換される。試料によっては、触媒槽3C内で測定に影響を及ぼす塩化水素・フッ化水素が生成するが、これらの成分はハロゲンスクラバ4で除去される。気液分離器5は冷却器を内蔵し、試料中の水分を除去する。ポンプ6を通過した試料はNDIR方式の検出器9に導入される。試料には検出器9内のIR光源(図示せず)からの赤外光が照射され、CO固有の波長で生じる赤外線吸収量が測定される。切替弁2が流路B側に切り替えられているときには試料は燃焼炉3による変化を受けることなく、気液分離器7およびポンプ8を通過して検出器9に導入される。 A combustion furnace 3 incorporating a catalyst tank 3C is disposed downstream of the switching valve 2 on the flow path A side. For example, a platinum-based oxidation catalyst (not shown) is enclosed in the catalyst tank 3C. At the time of measurement, the combustion furnace 3 is heated to a specified temperature by the heater 3H, and the VOC in the sample is converted to CO 2 when passing through the high temperature catalyst tank 3C. Depending on the sample, hydrogen chloride / hydrogen fluoride which affects the measurement is generated in the catalyst tank 3C, but these components are removed by the halogen scrubber 4. The gas-liquid separator 5 has a built-in cooler to remove moisture in the sample. The sample that has passed through the pump 6 is introduced into an NDIR type detector 9. The sample is irradiated with infrared light from an IR light source (not shown) in the detector 9, and the amount of infrared absorption generated at a wavelength unique to CO 2 is measured. When the switching valve 2 is switched to the flow path B side, the sample passes through the gas-liquid separator 7 and the pump 8 without being changed by the combustion furnace 3 and is introduced into the detector 9.

測定時は切替弁2の切り替えにより、試料をまず流路Bを経由して検出器9に導き、測定値を演算部10に記憶する。この工程により試料中に最初から含まれているCOが測定・記憶される。この測定値をバックグラウンド値とする。次に試料を流路Aを経由して検出器9に導き、測定値を演算部10に記憶する。この測定値をトータル値とする。さらに演算部10において、トータル値からのバックグラウンド値の差し引き、差し引き後の測定値のVOC濃度への換算を行うことにより、試料中のVOC濃度に対応した出力が得られる。この出力は記録計11に表示・記録される。なお、切替弁2の周期的な自動切り替え(チョッピング)を行い、演算部10内で切替弁2の自動切り替えに同期した信号処理を行って、トータル値からのバックグラウンド値の差し引きを常時自動的に行い連続的に出力することも可能である。 At the time of measurement, the sample is first guided to the detector 9 via the flow path B by switching the switching valve 2, and the measured value is stored in the calculation unit 10. By this step, CO 2 contained from the beginning in the sample is measured and stored. This measured value is used as a background value. Next, the sample is guided to the detector 9 via the flow path A, and the measured value is stored in the calculation unit 10. This measured value is taken as the total value. Further, the calculation unit 10 subtracts the background value from the total value and converts the measured value after the subtraction into the VOC concentration, thereby obtaining an output corresponding to the VOC concentration in the sample. This output is displayed and recorded on the recorder 11. In addition, periodic automatic switching (chopping) of the switching valve 2 is performed, signal processing synchronized with the automatic switching of the switching valve 2 is performed in the arithmetic unit 10, and the background value is automatically subtracted from the total value at all times. It is also possible to output continuously.

特開平9−33509号公報JP 9-33509 A

従来のVOC計の構造は以上のとおりであるが、この構造はVOC計の安全性に課題がある。すなわち、VOC計における酸化触媒の酸化効率は95%以上が必要とされており、酸化効率の低下を防止し酸化触媒の寿命を延長するために酸化触媒は電気ヒータなどを使用して高温の雰囲気に保持されているが、測定対象の試料には揮発性有機化合物などの発火性成分が含まれており、高濃度の発火性成分が含まれている試料が酸化触媒に触れた場合に、もし酸化触媒の温度が発火性成分による試料の発火点を上回っているか、初期の酸化触媒の温度が発火点を上回っていなくても試料の酸化反応により酸化触媒の温度が一時的に上昇して発火点を上回った場合には試料が発火し、VOC計の機能・構造を損ない測定者に危険を生じる恐れがある。本発明はこのような問題点を解決する手段を提供することを目的とする。   The structure of the conventional VOC meter is as described above, but this structure has a problem in the safety of the VOC meter. That is, the oxidation efficiency of the oxidation catalyst in the VOC meter is required to be 95% or more, and the oxidation catalyst is used in a high-temperature atmosphere using an electric heater or the like in order to prevent a reduction in the oxidation efficiency and extend the life of the oxidation catalyst. However, if the sample to be measured contains ignitable components such as volatile organic compounds and a sample containing a high concentration of ignitable components touches the oxidation catalyst, Even if the temperature of the oxidation catalyst exceeds the ignition point of the sample due to the ignitable component or the initial oxidation catalyst temperature does not exceed the ignition point, the temperature of the oxidation catalyst temporarily rises due to the oxidation reaction of the sample, and ignition occurs. If the number of points is exceeded, the sample will ignite, which may impair the function and structure of the VOC meter and cause danger to the measurer. The object of the present invention is to provide means for solving such problems.

本発明は、上記課題を解決するために、流体試料の流路に配設された触媒処理用の高温の触媒槽とその下流に配設された検出器を備え、触媒槽で化学反応した流体試料を検出器で分析する分析装置において、前記検出器とは別個に、流体試料の発火性成分濃度を予備測定する発火成分検出器を設ける。また前記発火成分検出器によってあらかじめ定めた濃度以上の発火性成分濃度を流体試料中に検出した場合に流体試料の触媒槽への導入を停止する手段を設ける。また触媒槽の温度を監視し温度あるいは温度上昇の勾配があらかじめ定めた閾値を越えた場合に触媒槽の加熱を低減する手段を設ける。また前記触媒槽の上流側流路に接続された導入弁を介してガス導入口を設け、触媒槽の温度あるいは温度上昇の勾配があらかじめ定めた閾値を越えた場合に導入弁を開放してガス導入口から非引火性のガスを導入する手段を設ける。また前記触媒槽の上流側流路に、触媒の温度あるいは温度上昇の勾配が閾値を越えた場合に流体試料を遮断する遮断弁を設ける。   In order to solve the above-mentioned problems, the present invention includes a high-temperature catalyst tank for catalyst treatment disposed in a flow path of a fluid sample and a detector disposed downstream thereof, and a fluid chemically reacted in the catalyst tank. In an analyzer for analyzing a sample with a detector, an ignition component detector for preliminarily measuring the concentration of an ignitable component of a fluid sample is provided separately from the detector. Also, there is provided means for stopping the introduction of the fluid sample into the catalyst tank when the ignition component detector detects an ignitable component concentration higher than a predetermined concentration in the fluid sample. In addition, a means for monitoring the temperature of the catalyst tank and reducing the heating of the catalyst tank when the temperature or the gradient of the temperature rise exceeds a predetermined threshold value is provided. Also, a gas inlet is provided via an inlet valve connected to the upstream flow path of the catalyst tank, and when the temperature of the catalyst tank or the gradient of temperature rise exceeds a predetermined threshold, the inlet valve is opened and the gas is opened. A means for introducing non-flammable gas from the inlet is provided. A shut-off valve is provided in the upstream channel of the catalyst tank to shut off the fluid sample when the temperature of the catalyst or the gradient of temperature rise exceeds a threshold value.

本発明によれば、発火性のある高濃度の揮発性試料が吸入された場合に装置の発火・爆発の危険を回避し測定の安全性を改善することが可能になる。   According to the present invention, when a highly volatile sample having an ignitability is inhaled, it is possible to avoid the risk of ignition / explosion of the apparatus and improve the measurement safety.

本発明が提供する分析装置の第1の特徴は、流体試料の流路に配設された触媒処理用の高温の触媒槽とその下流に配設された検出器を備え、触媒槽で化学反応した流体試料を検出器で分析する分析装置において、前記検出器とは別個に、流体試料の発火性成分濃度を予備測定する発火成分検出器を設けた点であり、また第2の特徴は触媒槽の温度あるいは温度上昇の勾配があらかじめ定めた閾値を越えた場合に触媒槽の加熱を低減する手段を設けた点であり、第3の特徴は前記触媒槽の上流側流路に導入弁を介して非引火性のガスを導入するガス導入口および流体試料を遮断する遮断弁を設けた点であり、これらの特徴を備えた形態が最良の形態である。   The first feature of the analyzer provided by the present invention is that it comprises a high-temperature catalyst tank for catalyst treatment disposed in the flow path of the fluid sample and a detector disposed downstream thereof, and a chemical reaction is carried out in the catalyst tank. In the analysis apparatus for analyzing the fluid sample with a detector, an ignition component detector for preliminarily measuring the concentration of the ignitable component of the fluid sample is provided separately from the detector, and the second feature is a catalyst. A means for reducing the heating of the catalyst tank when the temperature of the tank or the gradient of the temperature rise exceeds a predetermined threshold is provided. A third feature is that an introduction valve is provided in the upstream flow path of the catalyst tank. A gas introduction port for introducing non-flammable gas and a shut-off valve for shutting off the fluid sample are provided, and the form having these features is the best form.

以下図示例にしたがって説明する。図1は本発明の実施例1の構成を示している。図1において図4と同一符号の部品の構造および作動は図4と同一である。試料導入口1から導入された試料は切替弁21によって切替弁2方向または流路C方向に導かれる。流路Cの下流には発火成分検出器22が配設されている。発火成分検出器22としては、たとえば半導体方式の可燃性ガス検知器のような試料中の発火性成分による発火が生じない原理のものを使用する。可燃ガス検知器は金属酸化物半導体への可燃性ガスの化学吸着による電気伝導度の変化を利用しており、酸化触媒−NDIR方式の検出方法とは異なり成分の定性は不可能でまた定量精度も劣るが、試料中の発火性成分が高濃度であっても発火の恐れなく発火性成分の濃度を測定することができる。したがって測定時に最初に切替弁21を流路C側に切り替えておき、発火成分検出器22により測定(以下、予備測定と記載する)をすることにより、試料を燃焼炉3内に導入した場合の発火の危険の有無を確認することができる。この確認が終了した後で切替弁21を切替弁2方向に切り替え、検出器9による測定(以下、本測定と記載する)を行う。切替弁2から右方の構造および本測定の手順は図4に示した従来の方法と同様であるので詳細説明を省略する。もし予備測定により発火の危険性が認められた場合は、切替弁21を流体試料の触媒槽への導入を停止する手段として操作し、予備測定の位置すなわち発火成分検出器22方向のままで固定するかまたは切替弁2および発火成分検出器22いずれの方向も閉止する位置に切り替え、本測定を中止する。試料濃度の低減処理など、必要な装置外方での試料前処理が実施された後、改めて予備測定に戻って工程が進められる。   This will be described with reference to the illustrated example. FIG. 1 shows the configuration of Embodiment 1 of the present invention. In FIG. 1, the structure and operation of components having the same reference numerals as in FIG. 4 are the same as those in FIG. The sample introduced from the sample introduction port 1 is guided to the switching valve 2 direction or the flow path C direction by the switching valve 21. An ignition component detector 22 is disposed downstream of the flow path C. As the ignition component detector 22, for example, a principle that does not cause ignition due to an inflammable component in a sample, such as a semiconductor-type combustible gas detector, is used. The combustible gas detector uses the change in electrical conductivity due to the chemisorption of combustible gas on the metal oxide semiconductor. Unlike the detection method of the oxidation catalyst-NDIR method, qualitative analysis of components is impossible and quantitative accuracy However, even if the ignitable component in the sample has a high concentration, the concentration of the ignitable component can be measured without fear of ignition. Therefore, when the sample is introduced into the combustion furnace 3 by first switching the switching valve 21 to the flow path C side at the time of measurement and performing measurement by the ignition component detector 22 (hereinafter referred to as preliminary measurement). You can check if there is a risk of ignition. After this confirmation is completed, the switching valve 21 is switched in the switching valve 2 direction, and measurement by the detector 9 (hereinafter referred to as main measurement) is performed. Since the structure on the right side of the switching valve 2 and the procedure of this measurement are the same as the conventional method shown in FIG. If the risk of ignition is recognized by the preliminary measurement, the switching valve 21 is operated as a means for stopping the introduction of the fluid sample into the catalyst tank, and is fixed at the preliminary measurement position, that is, in the direction of the ignition component detector 22. Or switch to a position where both the switching valve 2 and the ignition component detector 22 are closed, and the measurement is stopped. After necessary sample pretreatment such as sample concentration reduction processing is performed outside the apparatus, the process returns to preliminary measurement and proceeds.

図2は本発明の実施例2の構成を示している。図2において図4と同一符号の部品の構造および作動は図4と同一である。試料導入口1から導入された試料はポンプ6またはポンプ8の吸引力により図の右方に流れ、試料前処理部Pを経由して検出器9に導かれる。試料前処理部Pから検出器9までの構造は図4に類似であるので詳細説明は省略する。検出器9のさらに下流には実施例1に記した発火成分検出器22と同じ方式の発火成分検出器23が配設されており、試料は検出器9を通過した後にさらに発火成分検出器23を通過し外方に排出される。   FIG. 2 shows the configuration of Embodiment 2 of the present invention. In FIG. 2, the structure and operation of components having the same reference numerals as in FIG. 4 are the same as those in FIG. The sample introduced from the sample introduction port 1 flows to the right in the figure by the suction force of the pump 6 or the pump 8, and is guided to the detector 9 via the sample pretreatment part P. Since the structure from the sample pretreatment part P to the detector 9 is similar to that shown in FIG. An ignition component detector 23 of the same type as the ignition component detector 22 described in the first embodiment is disposed further downstream of the detector 9, and the sample further passes through the detector 9 and then the ignition component detector 23. It passes through and is discharged outward.

測定時は切替弁2の切り替えにより、試料をまず流路Bを経由して検出器9に導き、測定値を演算部10に記憶する。この工程と同時に試料は発火成分検出器23にも導入され実施例1と同目的の予備測定すなわち、試料を燃焼炉3内に導入した場合の発火の危険の有無の確認が行われる。予備測定で発火の危険が無いことを確認した場合は切替弁2は流路A側に切り替えられ、前記本測定が行われる。本測定は図4に示した従来の方法に準じて行われるので詳細説明は省くがこの場合、従来の方法において説明した流路B経由の測定はすでに予備測定段階で完了しているので、省略してもよい。予備測定で発火の危険があることを確認した場合切替弁2は、流体試料の触媒槽への導入を停止する手段として予備測定の位置すなわち流路B方向に固定されるか、または流路A、Bいずれの方向にも閉止される位置に切り替えられ、本測定は中止される。試料濃度の低減処理など、必要な装置外方での試料前処理が実施された後、改めて予備測定に戻って工程が進められる。   At the time of measurement, the sample is first guided to the detector 9 via the flow path B by switching the switching valve 2, and the measured value is stored in the calculation unit 10. Simultaneously with this step, the sample is also introduced into the ignition component detector 23, and preliminary measurement for the same purpose as in the first embodiment, that is, whether or not there is a risk of ignition when the sample is introduced into the combustion furnace 3 is confirmed. When it is confirmed in the preliminary measurement that there is no risk of ignition, the switching valve 2 is switched to the flow path A side and the main measurement is performed. Since this measurement is performed in accordance with the conventional method shown in FIG. 4, a detailed description is omitted. In this case, the measurement via the flow path B described in the conventional method has already been completed in the preliminary measurement stage, and therefore omitted. May be. When it is confirmed in the preliminary measurement that there is a risk of ignition, the switching valve 2 is fixed in the position of the preliminary measurement, that is, in the direction of the channel B as a means for stopping the introduction of the fluid sample into the catalyst tank, or the channel A , B are switched to a position that is closed in both directions, and the measurement is stopped. After necessary sample pretreatment such as sample concentration reduction processing is performed outside the apparatus, the process returns to preliminary measurement and proceeds.

図3は本発明の実施例3の構成を示している。図3において図4と同一符号の部品の構造および作動は図4と同一である。図3において試料は切替用弁24を経由して切替弁2に導かれる。切替弁2から流路Aのポンプ6、および流路Bのポンプ8に到る部分は試料前処理部PNを構成する。   FIG. 3 shows the configuration of Embodiment 3 of the present invention. In FIG. 3, the structure and operation of components having the same reference numerals as in FIG. 4 are the same as those in FIG. In FIG. 3, the sample is guided to the switching valve 2 via the switching valve 24. Portions from the switching valve 2 to the pump 6 in the channel A and the pump 8 in the channel B constitute a sample pretreatment unit PN.

燃焼炉26はヒータ26Hにより加熱されている。また燃焼炉26にはファン形式の冷却器27が装着されている。燃焼炉26中には触媒槽26Cがあり、触媒槽26Cの温度はたとえば熱電対などの温度計測手段で常時監視されている。測定時の燃焼炉26の温度は一定に保たれているが、触媒槽26Cの温度は燃焼炉26の温度および、試料と触媒槽26C内の酸化触媒(図示せず)の反応時の発熱量によって決まるので、揮発性成分濃度が過大であるときには反応による発熱量が特異的に大きくなり、触媒槽26Cの温度は一般の測定時に比較して急速に上昇する。この温度または温度上昇の勾配があらかじめ定めた閾値を越えた場合は発火の危険があると判定し、ヒータ26Hの通電を停止すると共に、触媒槽26Cの加熱を低減する手段である冷却器27を作動させて触媒槽26Cを冷却する。また非引火性のガスを導入する手段である切替用弁24、フィルタF、ガス導入口25を使用して、切替用弁24を試料導入口1側からフィルタF方向に切り替え、ガス導入口25からフィルタFを介して大気を導入し同時に試料の流れを遮断する。   The combustion furnace 26 is heated by a heater 26H. The combustion furnace 26 is equipped with a fan-type cooler 27. There is a catalyst tank 26C in the combustion furnace 26, and the temperature of the catalyst tank 26C is constantly monitored by temperature measuring means such as a thermocouple. Although the temperature of the combustion furnace 26 at the time of measurement is kept constant, the temperature of the catalyst tank 26C is the temperature of the combustion furnace 26 and the amount of heat generated during the reaction between the sample and the oxidation catalyst (not shown) in the catalyst tank 26C. Therefore, when the concentration of the volatile component is excessive, the amount of heat generated by the reaction is specifically increased, and the temperature of the catalyst tank 26C is rapidly increased as compared with the general measurement. When the temperature or the gradient of the temperature rise exceeds a predetermined threshold value, it is determined that there is a risk of ignition, the energization of the heater 26H is stopped, and the cooler 27, which is a means for reducing the heating of the catalyst tank 26C, is provided. Operate to cool the catalyst tank 26C. Further, the switching valve 24, which is a means for introducing non-flammable gas, the filter F, and the gas introduction port 25 are used to switch the switching valve 24 from the sample introduction port 1 side to the filter F direction, and the gas introduction port 25. Then, the air is introduced through the filter F and the flow of the sample is cut off at the same time.

本発明は上記の実施例に限定されるものではなく、さらに種々の変形実施例を挙げることができる。たとえば各実施例について、本測定の検出器9をNDIRで説明したが、検出器9はNDIRには限定されない。また予備測定で高濃度の発火性成分が検出された場合など、任意の工程で適切な光警報または音響警報を発生させることも可能である。また実施例3において切替用弁24の機能を2分割し、切替用弁24の位置に試料導入の遮断専用の遮断弁を、また切替弁2の上流側に大気導入の開始・停止の切り替え専用の導入弁を設け、必要に応じて上記どちらかの弁のみ、または双方の弁を作動させても良い。また非引火性のガスとしては大気を挙げているが、窒素など他の非引火性ガスを使用しても良い。フィルタFは外方からフィルタ経由で非発火性ガスが供給されているような場合には必要ではなく、本発明に必須ではない。また冷却器27としては冷却ファンによる強制空冷方式を例示・説明しているが、冷却器27の方式は冷却効果を有するものであれば強制空冷方式に限定されることはなく、冷媒を使用した急速冷却方式など、他の方式を使用しても良い。触媒槽26Cの温度または温度上昇の勾配の程度に応じて複数の閾値を設定し、冷却器27および切替用弁24の作動をそれぞれの閾値に応じて段階的に作動させることも考えられる。段階的作動は実施例1、2においても必要に応じて適用できる。たとえば実施例1において発火成分検出器22の出力に複数の閾値を設定し、その出力で切替弁2の下流に付加した流量調節弁(図1には示していない)による段階的な流量制御をすることもできる。また実施例1〜3において各要素の作動をそれぞれ連動・自動化して、発火の危険が確認された場合に自動的にただちに、または段階的に試料を遮断したり触媒槽26Cの温度を低減したりすることもでき、また実施例1〜3の各要素または手段を重畳して設けた分析計であっても良い。さらに上記各実施例はガス状のVOCについて説明したが、本発明は触媒処理用の高温の触媒槽を有する分析計であれば、液状試料に対しても適用できる。本発明はこれらをすべて包含する。   The present invention is not limited to the above-described embodiments, and various modified embodiments can be given. For example, for each of the examples, the detector 9 of this measurement has been described by NDIR, but the detector 9 is not limited to NDIR. It is also possible to generate an appropriate light alarm or acoustic alarm in any process, such as when a high concentration of ignitable components is detected in the preliminary measurement. Further, in the third embodiment, the function of the switching valve 24 is divided into two, a shut-off valve dedicated to shutting off the sample introduction is provided at the position of the switching valve 24, and a start / stop switching of the air introduction start / stop is provided upstream of the switching valve 2. These valves may be provided, and only one or both of the above valves may be operated as necessary. The non-flammable gas includes air, but other non-flammable gases such as nitrogen may be used. The filter F is not necessary when non-ignitable gas is supplied from the outside via the filter, and is not essential to the present invention. Moreover, although the forced air cooling system by a cooling fan is illustrated and demonstrated as the cooler 27, if the system of the cooler 27 has a cooling effect, it will not be limited to a forced air cooling system, and the refrigerant | coolant was used. Other methods such as a rapid cooling method may be used. It is also conceivable that a plurality of threshold values are set according to the temperature of the catalyst tank 26C or the gradient of temperature rise, and the operations of the cooler 27 and the switching valve 24 are operated stepwise according to the respective threshold values. Stepwise operation can be applied to Examples 1 and 2 as necessary. For example, in the first embodiment, a plurality of threshold values are set for the output of the ignition component detector 22, and stepwise flow control is performed by a flow rate control valve (not shown in FIG. 1) added downstream of the switching valve 2 with the output. You can also Also, in Examples 1 to 3, the operation of each element is linked and automated, and when the risk of ignition is confirmed, the sample is shut off immediately or stepwise or the temperature of the catalyst tank 26C is reduced. Moreover, the analyzer which overlap | superposed and provided each element or means of Examples 1-3 may be used. Furthermore, although each said Example demonstrated gaseous VOC, if this invention is an analyzer which has a high temperature catalyst tank for catalyst processing, it can be applied also to a liquid sample. The present invention includes all of these.

本発明は分析計測分野において使用される揮発性有機炭素分析計などの触媒式分析計に適用することができる。   The present invention can be applied to a catalytic analyzer such as a volatile organic carbon analyzer used in the analytical measurement field.

本発明の実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of this invention. 本発明の実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of this invention. 本発明の実施例3の構成を示す図である。It is a figure which shows the structure of Example 3 of this invention. 従来の分析装置の構成を示す図である。It is a figure which shows the structure of the conventional analyzer.

符号の説明Explanation of symbols

1 試料導入口
2 切替弁
3 燃焼炉
3C 触媒槽
3H ヒータ
4 ハロゲンスクラバ
5 気液分離器
6 ポンプ
7 気液分離器
8 ポンプ
9 検出器
10 演算部
11 記録計
21 切替弁
22 発火成分検出器
23 発火成分検出器
24 切替用弁
25 ガス導入口
26 燃焼炉
26C 触媒槽
26H ヒータ
27 冷却器
F フィルタ
P 試料前処理部
PN 試料前処理部
DESCRIPTION OF SYMBOLS 1 Sample inlet 2 Switching valve 3 Combustion furnace 3C Catalyst tank 3H Heater 4 Halogen scrubber 5 Gas-liquid separator 6 Pump 7 Gas-liquid separator 8 Pump 9 Detector 10 Calculation part 11 Recorder 21 Switching valve 22 Ignition component detector 23 Ignition component detector 24 Switching valve 25 Gas inlet 26 Combustion furnace 26C Catalyst tank 26H Heater 27 Cooler F Filter P Sample pretreatment unit PN Sample pretreatment unit

Claims (5)

流体試料の流路に配設された触媒処理用の高温の触媒槽とその下流に配設された検出器を備え、触媒槽で化学反応した流体試料を検出器で分析する分析装置において、前記検出器とは別個に、流体試料の発火性成分濃度を予備測定する発火成分検出器を設けたことを特徴とする分析装置。   An analysis apparatus comprising a high-temperature catalyst tank for catalyst treatment disposed in a flow path of a fluid sample and a detector disposed downstream thereof, wherein the fluid sample chemically reacted in the catalyst tank is analyzed by the detector. An analyzer comprising an ignition component detector for preliminarily measuring the concentration of an ignitable component of a fluid sample separately from the detector. 前記発火成分検出器によってあらかじめ定めた濃度以上の発火性成分濃度を流体試料中に検出した場合に、流体試料の触媒槽への導入を停止する手段を設けたことを特徴とする請求項1記載の分析装置。   2. A means for stopping introduction of a fluid sample into a catalyst tank when an ignitable component concentration equal to or higher than a predetermined concentration is detected in the fluid sample by the ignition component detector. Analysis equipment. 流体試料の流路に配設された触媒処理用の高温の触媒槽とその下流に配設された検出器を備え、触媒槽で化学反応した流体試料を検出器で分析する分析装置において、触媒槽の温度を監視し温度あるいは温度上昇の勾配があらかじめ定めた閾値を越えた場合に触媒槽の加熱を低減する手段を設けたことを特徴とする分析装置。   An analysis apparatus comprising a high-temperature catalyst tank for catalyst treatment disposed in a flow path of a fluid sample and a detector disposed downstream thereof, wherein the fluid sample chemically reacted in the catalyst tank is analyzed by the detector. An analyzer provided with means for monitoring the temperature of the tank and reducing the heating of the catalyst tank when the temperature or the gradient of temperature rise exceeds a predetermined threshold. 前記触媒槽の上流側流路に接続された導入弁を介してガス導入口を設け、触媒槽の温度があらかじめ定めた閾値を越えた場合に導入弁を開放してガス導入口から非引火性のガスを導入する手段を設けたことを特徴とする請求項3記載の分析装置。   A gas inlet is provided via an inlet valve connected to the upstream flow path of the catalyst tank, and when the temperature of the catalyst tank exceeds a predetermined threshold, the inlet valve is opened and non-flammable from the gas inlet. 4. The analyzer according to claim 3, further comprising means for introducing the gas. 前記触媒槽の上流側流路に、触媒の温度あるいは温度上昇の勾配が閾値を越えた場合に流体試料を遮断する遮断弁を設けたことを特徴とする請求項3、4記載の分析装置。   5. The analyzer according to claim 3, wherein a shut-off valve for shutting off a fluid sample when a temperature of the catalyst or a gradient of temperature rise exceeds a threshold value is provided in the upstream channel of the catalyst tank.
JP2006165407A 2006-06-14 2006-06-14 Analyzer Pending JP2007333543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165407A JP2007333543A (en) 2006-06-14 2006-06-14 Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165407A JP2007333543A (en) 2006-06-14 2006-06-14 Analyzer

Publications (1)

Publication Number Publication Date
JP2007333543A true JP2007333543A (en) 2007-12-27

Family

ID=38933155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165407A Pending JP2007333543A (en) 2006-06-14 2006-06-14 Analyzer

Country Status (1)

Country Link
JP (1) JP2007333543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207432A (en) * 2016-05-20 2017-11-24 三菱電機株式会社 Gas analyzing device and gas analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207432A (en) * 2016-05-20 2017-11-24 三菱電機株式会社 Gas analyzing device and gas analysis method

Similar Documents

Publication Publication Date Title
JP5527168B2 (en) Converter exhaust gas recovery device and converter exhaust gas recovery method
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
EP2413137A1 (en) Apparatus and method for combustion analysis of a sample
EP1962088B1 (en) Apparatus and method for detecting incomplete combustion in a combustion analyser
JP2012137377A (en) Analyzer
JP2011232333A (en) Extraction device for volatile substance in soil
JP2013185884A (en) Water quality analyzer
JP2011021925A (en) Analysis method for halogen and sulfur in organic and inorganic sample and automatic analyzer provided with two-step insertion system autosampler
JP2010032264A (en) Element analyzer
JP2007333543A (en) Analyzer
JP5968083B2 (en) Elemental analyzer
JP4838589B2 (en) Elemental analysis equipment for samples
JP2006284502A (en) Gas analysis apparatus, and control method of hydrogen flame ionization detector
US6484562B2 (en) Gas analyzer and a method for operating the same
JP2000241404A (en) Carbon fractionation analysis device
JP2008261865A (en) Instrument for measuring volatile organic compound
JP5035610B2 (en) Oil mist concentration measuring method and oil mist concentration measuring device
JP2000298096A (en) Water analyser
JP2005227045A (en) Analyzer for analyzing element in sample
JP7479328B2 (en) Gas in oil analyzers and electrical equipment
JP2013015434A (en) Gas analysis device
JP2010271082A (en) Catalyst evaluation method for exhaust gas cleaning, and device thereof
EP4230977B1 (en) Infrared spectrometer
JP2018185194A (en) Gas analyzer
JP2597240B2 (en) Odorant concentration measurement device for city gas