JP5527077B2 - Specimen production method for nondestructive inspection - Google Patents

Specimen production method for nondestructive inspection Download PDF

Info

Publication number
JP5527077B2
JP5527077B2 JP2010163695A JP2010163695A JP5527077B2 JP 5527077 B2 JP5527077 B2 JP 5527077B2 JP 2010163695 A JP2010163695 A JP 2010163695A JP 2010163695 A JP2010163695 A JP 2010163695A JP 5527077 B2 JP5527077 B2 JP 5527077B2
Authority
JP
Japan
Prior art keywords
crack
metal material
test
masking
nondestructive inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010163695A
Other languages
Japanese (ja)
Other versions
JP2012026784A (en
Inventor
正祐 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010163695A priority Critical patent/JP5527077B2/en
Publication of JP2012026784A publication Critical patent/JP2012026784A/en
Application granted granted Critical
Publication of JP5527077B2 publication Critical patent/JP5527077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、実機(調査対象部位)を非破壊検査すべく、実機を模した同じ金属材に基準となる亀裂を導入して校正用の試験体を製作する非破壊検査用の試験体製作方法に関するものである。   The present invention relates to a nondestructive inspection test body manufacturing method for manufacturing a test specimen for calibration by introducing a reference crack into the same metal material imitating an actual machine (non-destructive inspection) of an actual machine (part to be investigated). It is about.

原子炉配管等の実機においては、疲労や応力腐食割れによる亀裂が生じることがあり、亀裂の有無を検査して定期的に安全性を確認する必要がある。この検査は、超音波やX線を用いて亀裂の位置や大きさを測定する非破壊検査により行われる。   In actual equipment such as reactor piping, cracks due to fatigue or stress corrosion cracking may occur, and it is necessary to periodically check the presence of cracks and confirm safety. This inspection is performed by a nondestructive inspection in which the position and size of a crack are measured using ultrasonic waves or X-rays.

非破壊検査では、測定器の測定精度や分解能のバラツキ、温度ドリフト等の影響を除去するために、検出能力確認(校正)用の試験体により試験結果の校正を行うので、校正用の試験体が必要となる。   In non-destructive inspection, test results are calibrated using a test specimen for detection capability verification (calibration) to eliminate the influence of measurement accuracy, resolution variations, temperature drift, etc. Is required.

この試験体の製作方法としては、放電加工や機械加工により、実機を模した同じ金属材に人工欠陥を導入するのが一般的である。   As a manufacturing method of this test body, an artificial defect is generally introduced into the same metal material that simulates an actual machine by electric discharge machining or machining.

現状で比較的小さい人工欠陥を導入できると言われている放電加工であっても、導入される亀裂の幅は電極の厚み以上となり、亀裂の形状は開口したものとなる。その一方、実機に生じる疲労や応力腐食割れによる亀裂は、ほとんど幅を持たない。   Even in electrical discharge machining that is said to be able to introduce relatively small artificial defects at present, the width of the crack to be introduced is equal to or greater than the thickness of the electrode, and the shape of the crack is open. On the other hand, cracks due to fatigue and stress corrosion cracking that occur in actual machines have almost no width.

そのため、より精度良く検出能力を評価するためには、実機に生じうる疲労や応力腐食割れによる亀裂を導入した試験体が必要となる。   Therefore, in order to evaluate the detection capability with higher accuracy, a test body into which cracks due to fatigue or stress corrosion cracking that may occur in an actual machine are required is required.

特開平5−99806号公報JP-A-5-99806

しかしながら、疲労や応力腐食割れによる亀裂を導入する場合には、想定した箇所以外から亀裂が発生することがあり、亀裂の発生箇所を制御するのは困難であった。また、亀裂のサイズを制御することも困難であった。   However, when cracks due to fatigue or stress corrosion cracking are introduced, cracks may occur from places other than those assumed, and it is difficult to control the places where cracks occur. It was also difficult to control the crack size.

そのため、従来は想定した箇所に、想定したサイズの亀裂が導入されるまで、繰り返し試験体を製作していたので、試験体の製作時間がかかり、また多くの製作コストがかかってしまうと言う問題があった。   For this reason, the test specimen was manufactured repeatedly until a crack of the assumed size was introduced at the assumed location in the past, so it took a long time to manufacture the test specimen, and a lot of manufacturing cost would be required. was there.

そこで、本発明の目的は、想定した箇所に、想定したサイズの亀裂を導入することができ、試験体の製作歩留に優れた非破壊検査用の試験体製作方法を提供することにある。   Therefore, an object of the present invention is to provide a test body manufacturing method for nondestructive inspection that can introduce a crack of an assumed size at an assumed location and is excellent in manufacturing yield of the test body.

前記目的を達成するために創案された本発明は、実機を非破壊検査すべく、前記実機を模した同じ金属材に基準となる亀裂を導入して校正用の試験体を製作する非破壊検査用の試験体製作方法において、前記金属材の亀裂を導入したい箇所にマスキングした後に前記金属材の表面にピーニング処理を施すことにより、前記金属材の亀裂を導入したい箇所以外の表面に予め残留圧縮応力を付与しておき、前記マスキングを除去した後に前記金属材を疲労試験又は応力腐食割れ試験に供して、前記金属材の亀裂を導入したい箇所に基準となる亀裂を導入する非破壊検査用の試験体製作方法である。 The present invention created to achieve the above object is a non-destructive inspection in which a reference specimen is introduced into the same metal material imitating the actual machine to produce a test specimen for calibration in order to non-destructively inspect the actual machine. In the test body manufacturing method for the above, by masking a portion where the crack of the metal material is to be introduced and then performing a peening process on the surface of the metal material, residual compression is previously applied to the surface other than the portion where the crack of the metal material is to be introduced. Applying stress and removing the masking, then subjecting the metal material to a fatigue test or stress corrosion cracking test to introduce a reference crack at a location where the metal material is to be cracked for nondestructive inspection This is a test body manufacturing method.

前記マスキングは、導入する亀裂と同じサイズにすると良い。   The masking may be the same size as the crack to be introduced.

本発明によれば、想定した箇所に、想定したサイズの亀裂を導入することができ、試験体の製作歩留に優れた非破壊検査用の試験体製作方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the crack of the assumed size can be introduce | transduced into the assumed location and the test body manufacturing method for nondestructive inspection excellent in the manufacture yield of the test body can be provided.

本発明により得られる非破壊検査用の試験体を示す概略図である。It is the schematic which shows the test body for nondestructive inspection obtained by this invention. 本発明に係る非破壊検査用の試験体製作方法を説明する図である。It is a figure explaining the test body manufacturing method for nondestructive inspection concerning the present invention.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の好適な実施の形態に係る非破壊検査用の試験体製作方法により得られる校正用の試験体を示す概略図であり、図2はその試験体を得るための試験体製作方法を説明する図である。   FIG. 1 is a schematic view showing a test specimen for calibration obtained by a method for producing a test specimen for nondestructive inspection according to a preferred embodiment of the present invention, and FIG. 2 is a test specimen production for obtaining the test specimen. It is a figure explaining a method.

図1に示すように、本実施の形態に係る非破壊検査用の試験体製作方法により得られる校正用の試験体1は、実機を非破壊検査すべく用いられ、実機を模した同じ金属材2に基準となる亀裂3を、想定した箇所Aに導入したものである。検査対象の実機としては、例えば、原子炉配管等が挙げられる。   As shown in FIG. 1, a test specimen 1 for calibration obtained by the method for producing a test specimen for nondestructive inspection according to the present embodiment is used for nondestructive inspection of an actual machine, and the same metal material that simulates the actual machine In FIG. 2, a reference crack 3 is introduced at an assumed location A. Examples of the actual machine to be inspected include reactor piping.

この試験体1を得るための試験体製作方法は、疲労や応力腐食割れによる亀裂は圧縮の応力場では発生しにくいと言う性質を積極的に利用するものであり、金属材2の亀裂3を導入したい箇所A以外の表面Bに予め圧縮残留応力を付与しておき、その上で、金属材2を疲労試験又は応力腐食割れ試験に供して、金属材2の亀裂3を導入したい箇所Aに基準となる亀裂3を導入する方法である。   The test body manufacturing method for obtaining this test body 1 actively utilizes the property that cracks due to fatigue or stress corrosion cracking are unlikely to occur in a compressive stress field. A compressive residual stress is applied in advance to the surface B other than the location A to be introduced, and then the metal material 2 is subjected to a fatigue test or a stress corrosion cracking test, and the location A where the crack 3 of the metal material 2 is desired to be introduced This is a method of introducing a reference crack 3.

以下、試験体製作方法をその手順にしたがって具体的に説明する。   Hereinafter, the test body manufacturing method will be specifically described according to the procedure.

先ず、図2(a)に示すように、金属材2の亀裂3を導入したい箇所Aを選定する。この選定にあたっては、実機において亀裂が発生しやすい箇所を選択すると良い。例えば、溶接により接合された実機においては、溶接時に印加された引張応力が残留する溶接部の近傍で亀裂が発生しやすくなっており、この部分を箇所Aとして選定する。また、疲労亀裂を想定している場合には、疲労亀裂は試験体1の端部から生じることが多いので、この部分を箇所Aとして選定する。   First, as shown in FIG. 2A, a location A where the crack 3 of the metal material 2 is to be introduced is selected. In this selection, it is preferable to select a location where cracks are likely to occur in the actual machine. For example, in an actual machine joined by welding, cracks are likely to occur in the vicinity of the welded portion where the tensile stress applied during welding remains, and this portion is selected as the location A. Further, when a fatigue crack is assumed, since the fatigue crack often occurs from the end portion of the test body 1, this portion is selected as the location A.

その後、図2(b)に示すように、金属材2の亀裂3を導入したい箇所AにマスキングMする。このマスキングMは、例えば、粘着テープや樹脂等により行うと良い。このとき、マスキングMは、導入する亀裂3と同じサイズにすると良い。   Thereafter, as shown in FIG. 2B, masking M is applied to a portion A where the crack 3 of the metal material 2 is desired to be introduced. This masking M may be performed with, for example, an adhesive tape or a resin. At this time, the masking M is preferably the same size as the crack 3 to be introduced.

そして、図2(c)に示すように、金属材2の亀裂3を導入したい箇所A以外の表面Bにピーニング処理を施して、表面Bに残留圧縮応力を付与する。ピーニング処理は、例えば、ショットピーニング、レーザーピーニング、超音波ピーニング等により実施すると良い。   Then, as shown in FIG. 2 (c), a peening process is performed on the surface B other than the portion A where the crack 3 of the metal material 2 is to be introduced, and a residual compressive stress is applied to the surface B. The peening process is preferably performed by, for example, shot peening, laser peening, ultrasonic peening or the like.

ピーニング処理が終わったら、図2(d)に示すように、マスキングMを除去し、金属材2を疲労試験又は応力腐食割れ試験に供して、亀裂3を導入する。   When the peening process is finished, as shown in FIG. 2D, the masking M is removed, and the metal material 2 is subjected to a fatigue test or a stress corrosion cracking test to introduce a crack 3.

このようにして試験体1を製作することで、金属材2の亀裂3を導入したい箇所Aには、圧縮残留応力が導入されないため、試験応力や試験環境が一定であれば、マスキングMした部分から優先的に亀裂3が発生する。このようにすることにより、亀裂3の発生位置を自由に制御することが可能となり、試験体1の中央部、端部、溶接部近傍、或いは隣接した複数の亀裂等も導入可能である。また、マスキングMのサイズを限定すれば、亀裂3の幅もある程度制御することが可能である。   By manufacturing the test body 1 in this way, the compressive residual stress is not introduced into the portion A where the crack 3 of the metal material 2 is to be introduced. Therefore, if the test stress and the test environment are constant, the masked portion M Therefore, crack 3 is preferentially generated. By doing in this way, it becomes possible to control the generation | occurrence | production position of the crack 3 freely, and the center part of the test body 1, an edge part, the welding part vicinity, or several adjacent cracks etc. can also be introduce | transduced. Further, if the size of the masking M is limited, the width of the crack 3 can be controlled to some extent.

従来、多数の試験体を用意して試行錯誤を重ね、意図した通りに亀裂3が導入できた試験体のみを採用していたのに対し、本実施の形態に係る非破壊検査用の試験体製作方法によれば、確実に想定した箇所に、想定したサイズの亀裂を導入することができ、試験体1の製作歩留を向上させることができる。そのため、試験体1の製作にかかるコストを大幅に削減することが可能となる。   Conventionally, a large number of test specimens were prepared and repeated trial and error, and only the test specimen in which the crack 3 could be introduced as intended was adopted, whereas the test specimen for nondestructive inspection according to the present embodiment According to the production method, it is possible to introduce a crack of an assumed size into a certain assumed place, and to improve the production yield of the test body 1. Therefore, the cost for manufacturing the test body 1 can be greatly reduced.

実際の非破壊検査では、この非破壊検査用の試験体製作方法により亀裂3の大きさ等が異なる複数の試験体を製作しておき、実機から得られた検出結果を各試験体で校正することで、高精度に亀裂を検出することができる。   In actual nondestructive inspection, a plurality of test bodies having different sizes of the cracks 3 and the like are manufactured by the method of manufacturing a test body for nondestructive inspection, and the detection results obtained from the actual machine are calibrated with each test body. Thus, a crack can be detected with high accuracy.

1 試験体
2 金属材
3 亀裂
A 亀裂を導入したい箇所
B 亀裂を導入したい箇所以外の表面
M マスキング
1 Specimen 2 Metal material 3 Crack A Location where the crack is to be introduced B Surface M other than the location where the crack is to be introduced Masking

Claims (2)

実機を非破壊検査すべく、前記実機を模した同じ金属材に基準となる亀裂を導入して校正用の試験体を製作する非破壊検査用の試験体製作方法において、
前記金属材の亀裂を導入したい箇所にマスキングした後に前記金属材の表面にピーニング処理を施すことにより、前記金属材の亀裂を導入したい箇所以外の表面に予め残留圧縮応力を付与しておき、前記マスキングを除去した後に前記金属材を疲労試験又は応力腐食割れ試験に供して、前記金属材の亀裂を導入したい箇所に基準となる亀裂を導入することを特徴とする非破壊検査用の試験体製作方法。
In the non-destructive inspection test body manufacturing method for producing a test specimen for calibration by introducing a crack as a reference to the same metal material imitating the real machine in order to perform non-destructive inspection of the actual machine,
By applying a peening treatment to the surface of the metal material after masking the location where the metal material is to be cracked, a residual compressive stress is previously applied to the surface other than the location where the metal material is desired to be cracked, After the masking is removed, the metal material is subjected to a fatigue test or a stress corrosion cracking test, and a test specimen for nondestructive inspection is produced , wherein a reference crack is introduced at a position where the metal material is desired to be cracked. Method.
前記マスキングは、導入する亀裂と同じサイズにする請求項1に記載の非破壊検査用の試験体製作方法。 The test body manufacturing method for non-destructive inspection according to claim 1, wherein the masking has the same size as a crack to be introduced.
JP2010163695A 2010-07-21 2010-07-21 Specimen production method for nondestructive inspection Expired - Fee Related JP5527077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163695A JP5527077B2 (en) 2010-07-21 2010-07-21 Specimen production method for nondestructive inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163695A JP5527077B2 (en) 2010-07-21 2010-07-21 Specimen production method for nondestructive inspection

Publications (2)

Publication Number Publication Date
JP2012026784A JP2012026784A (en) 2012-02-09
JP5527077B2 true JP5527077B2 (en) 2014-06-18

Family

ID=45779906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163695A Expired - Fee Related JP5527077B2 (en) 2010-07-21 2010-07-21 Specimen production method for nondestructive inspection

Country Status (1)

Country Link
JP (1) JP5527077B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104127202B (en) * 2013-05-03 2016-12-28 上海西门子医疗器械有限公司 The localization method of compressor and positioner and gastrointestinal X-ray machine
KR101499643B1 (en) * 2013-05-30 2015-03-06 한국원자력연구원 Preparing method of specimen having intergranular stress corrosion cracking and the specimen having intergranular stress corrosion cracking thereby
CN104597137B (en) * 2014-12-31 2017-03-22 广西南南铝加工有限公司 Ultrasonic testing block group for residual stress of aluminum alloy prestretching plate and application method thereof
DE102015114831A1 (en) * 2015-09-04 2017-03-09 Aktien-Gesellschaft der Dillinger Hüttenwerke Method for producing a calibration body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199417B2 (en) * 1991-10-12 2001-08-20 佐藤 靖子 Standard specimen for non-destructive inspection of piping
FI109555B (en) * 1998-11-16 2002-08-30 Trueflaw Oy Procedure for generating defects and residual stresses
JP4055278B2 (en) * 1999-01-22 2008-03-05 株式会社Ihi Method for manufacturing non-destructive test specimen and non-destructive test method
JP4706814B2 (en) * 2001-07-18 2011-06-22 株式会社Ihi Method and apparatus for forming stress corrosion cracks on pipe inner surface
JP2005031013A (en) * 2003-07-10 2005-02-03 Masao Yoshida Reference gauge for crack inspection, and processing method therefor
US8557063B2 (en) * 2006-01-05 2013-10-15 General Electric Company Method for heat treating serviced turbine part
JP4929062B2 (en) * 2007-06-05 2012-05-09 三菱重工業株式会社 Specimen and method for producing specimen

Also Published As

Publication number Publication date
JP2012026784A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2016092869A1 (en) Method for evaluating state of member
JP5527077B2 (en) Specimen production method for nondestructive inspection
EP2477469A3 (en) Suitability determination method for determination standard value and method for specifying optimum value thereof, inspection system for substrate on which components are mounted, simulation method at production site, and simulation system
JP6197391B2 (en) Fatigue life evaluation method for structures
JP2009174859A (en) Remaining lifetime evaluation method of machine part
Russell et al. Development and implementation of a membrane-coupled conformable array transducer for use in the nuclear industry
JP5535296B2 (en) Test piece for eddy current testing, eddy current testing method using the same, and manufacturing method thereof
CN110376226B (en) Method for determining crack propagation characteristics of turbine engine rotor
CN111595498A (en) Method for measuring welding residual stress
Hopkins et al. Challenges and solutions for ultrasonic phased-array inspection of polymer-matrix composites at production rates
Cherry et al. Eddy current analysis of cracks grown from surface defects and non-metallic particles
JP4055278B2 (en) Method for manufacturing non-destructive test specimen and non-destructive test method
KR101083183B1 (en) Mehtod to manufacture mockup specimen for performance validation of nondestructive test about stress corrosion crack originated from PWR pressurizer heater sleeve nozzle in high temperature and pressure
Carvalho et al. Reliability of the manual and automatic ultrasonic technique in the detection of pipe weld defects
JP6077512B2 (en) Prediction method for heat transfer tube corrosion using eddy current inspection method
KR101001605B1 (en) Manufacturing Method for Socket Weld Specimen Containing the Fatigue Crack
Galleguillos et al. Computed Tomography and Digital Radiography for Additive Manufacturing process Quality Assurance and parameters definition
JP6746870B2 (en) Crack detection method
Sahebi et al. Using Advanced Inspection Method (Three-Dimentional Ultrasonic) In Recognition Of Defects In High Thickness Pipelines
Koskinen et al. Differences in ultrasonic indications–thermal fatigue cracks and EDM notches
JP2014190792A (en) Defect detection method and inspection method for turbine wing
JP4862696B2 (en) Stress corrosion cracking test specimen manufacturing method
Manai Residual Stresses Distribution Posterior to Welding and Cutting Processes
Ribay et al. Simulation-based POD study for welded pipe inspection
CN216132992U (en) Ultrasonic phased array detection reference block for petroleum high-pressure test elbow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

LAPS Cancellation because of no payment of annual fees