JP5525951B2 - Terminal for connection - Google Patents

Terminal for connection Download PDF

Info

Publication number
JP5525951B2
JP5525951B2 JP2010165145A JP2010165145A JP5525951B2 JP 5525951 B2 JP5525951 B2 JP 5525951B2 JP 2010165145 A JP2010165145 A JP 2010165145A JP 2010165145 A JP2010165145 A JP 2010165145A JP 5525951 B2 JP5525951 B2 JP 5525951B2
Authority
JP
Japan
Prior art keywords
plating layer
plating
terminal
hard
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010165145A
Other languages
Japanese (ja)
Other versions
JP2012028139A (en
Inventor
俊幸 三井
茂 伊関
昌泰 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Leadmikk Co Ltd
Original Assignee
Shinko Leadmikk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Leadmikk Co Ltd filed Critical Shinko Leadmikk Co Ltd
Priority to JP2010165145A priority Critical patent/JP5525951B2/en
Publication of JP2012028139A publication Critical patent/JP2012028139A/en
Application granted granted Critical
Publication of JP5525951B2 publication Critical patent/JP5525951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、主として自動車や家電製品(民生)に使用される端子やコネクタ等の接続用端子に関する。 The present invention relates to connection terminals such as terminals and connectors used mainly in automobiles and home appliances (consumer products).

自動車等の電線の接続に用いられるコネクタには、通常、銅合金にSnめっきを施したオス端子とメス端子の組み合わせからなる嵌合型端子が使用されている。この嵌合型端子が複数個集合したコネクタを、多極端子コネクタという。
自動車の電装化が進む中にあっては、このようなコネクタの極数、即ち、コネクタ中の端子の極数が増加する傾向にある。この端子の極数が増加するに伴って挿入力が大きくなるため、実装に際しては、道具が必要となったり、また人が挿入させる場合でも大きな力を必要とするようになり、組み立て作業の効率を低下させてしまう問題がある。
そのため、極数が増加しても、挿入力が従来よりも大きくならないような低挿入力端子が要求されている。
A connector used for connecting an electric wire of an automobile or the like usually uses a fitting type terminal composed of a combination of a male terminal and a female terminal obtained by applying Sn plating to a copper alloy. A connector in which a plurality of fitting-type terminals are assembled is called a multipolar terminal connector.
As automobiles become more and more electrical, the number of poles of such a connector, that is, the number of poles of terminals in the connector tends to increase. As the number of poles of this terminal increases, the insertion force increases, so tools are required for mounting, and even when a person inserts it, a large force is required. There is a problem of lowering.
Therefore, a low insertion force terminal is required so that the insertion force does not become larger than the conventional one even when the number of poles increases.

また、自動車には、エンジンの点火時期、燃料噴射の時期、及びスロットル開度等を、自動的に制御し、燃焼効率や燃費を適正化するための電子部品として、エンジンコントロールユニット(以下、ECUともいう)が搭載されている。このECUには、そのプリント基板上に上記した目的に合わせた多数のLSI等の電子部品が配置され、接続用端子であるPCB(Printed Circuit Board)コネクタ用端子(以下、単にPCB端子ともいう)が接続されて、電気信号の入出力を行っている。
なお、PCB端子は、多極の端子より構成され、導電性、めっき性、曲げ加工性、機械的強度等の特性を必要とすることから、PCB端子に銅又は銅合金からなる母材を用いることが多い。また、表面には、耐食性等の問題から通常Snめっきが施されている。
In addition, an automobile is equipped with an engine control unit (hereinafter referred to as an ECU) as an electronic component for automatically controlling the ignition timing of the engine, the timing of fuel injection, the throttle opening, etc., and optimizing combustion efficiency and fuel consumption. Also called). In this ECU, a large number of electronic components such as LSIs are arranged on the printed circuit board for the above-mentioned purpose, and a PCB (Printed Circuit Board) connector terminal (hereinafter also simply referred to as a PCB terminal) as a connection terminal. Are connected to input and output electrical signals.
In addition, since the PCB terminal is composed of multipolar terminals and requires characteristics such as conductivity, plating property, bending workability, mechanical strength, etc., a base material made of copper or a copper alloy is used for the PCB terminal. There are many cases. Moreover, Sn plating is normally given to the surface from problems, such as corrosion resistance.

このPCB端子は、一方側にオス端子としてコネクタのメス端子に挿入され、ECUへの電気信号の入出力回路を構成する端子嵌合部が、また他方側に、ECUのプリント基板のスルーホールに挿入され、はんだ付けや、プレスフィット等の機械的接続がなされる基板接続部が設けられている(例えば、特許文献1参照)。
この場合においても、端子嵌合部の低挿入力化は求められている。
例えば、このPCB端子の端子嵌合部をメス端子に挿入するに際しては、例えば、1端子あたり5N程度の挿入力が必要であるが、前記したように、PCB端子は多極の端子を有するため、例えば、20極の場合だと100N(10kg)程度の挿入力が必要となる。
このように、挿入力が高くなると組立て時における作業性等が悪くなる。そこで、摩擦係数を20%程度低減させ、総挿入力を80N以下にできる端子、具体的には、母材の表面に、Ni(ニッケル)めっき、Cu(銅)めっき、及びSnめっきを順次行い、更にリフロー処理により形成された表面被覆層を有する端子が提案されている(例えば、特許文献2参照)。
This PCB terminal is inserted into the female terminal of the connector as a male terminal on one side, and a terminal fitting portion that constitutes an input / output circuit for an electric signal to the ECU is also provided on the through hole of the printed circuit board of the ECU. A board connecting portion is provided which is inserted and mechanically connected by soldering, press-fit, or the like (see, for example, Patent Document 1).
Even in this case, a low insertion force of the terminal fitting portion is required.
For example, when inserting the terminal fitting portion of the PCB terminal into the female terminal, for example, an insertion force of about 5 N per terminal is required. However, as described above, the PCB terminal has multipolar terminals. For example, in the case of 20 poles, an insertion force of about 100 N (10 kg) is required.
Thus, when the insertion force increases, workability and the like during assembly deteriorate. Therefore, a terminal capable of reducing the friction coefficient by about 20% and reducing the total insertion force to 80 N or less, specifically, Ni (nickel) plating, Cu (copper) plating, and Sn plating are sequentially performed on the surface of the base material. Furthermore, a terminal having a surface coating layer formed by reflow treatment has been proposed (see, for example, Patent Document 2).

特開2008−287942号公報JP 2008-287942 A 特開2008−274364号公報JP 2008-274364 A

しかしながら、特許文献2に記載されたPCB端子であっても、端子の数(極数)が更に多くなれば、PCB端子の総挿入力が大きくなるため、総挿入力の更なる低減(即ち、1端子あたりの挿入力の低減)が求められていた。 However, even in the case of the PCB terminal described in Patent Document 2, if the number of terminals (the number of poles) is further increased, the total insertion force of the PCB terminal is increased, so that the total insertion force is further reduced (ie, (Reduction of insertion force per terminal) has been demanded.

本発明はかかる事情に鑑みてなされたもので、総挿入力の低減が図れ、更には安定した電気的な接続信頼性を備えることが可能な接続用端子を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a connection terminal capable of reducing the total insertion force and further having stable electrical connection reliability.

前記目的に沿う本発明に係る接続用端子は、Cu又はCu合金からなる母材の表面に、In又はInを80質量%以上100質量%未満含有する合金からなる表面めっき層が設けられ、該表面めっき層の下地に、該表面めっき層よりも硬い硬質めっき層が形成され、該硬質めっき層は、1)CuとInの金属間化合物、もしくは、2)Cu及びInに、更にNi、Co、Sn、Zn、P、及びBのいずれか1種又は2種以上を含む金属間化合物からなる。 The connection terminal according to the present invention that meets the above object is provided with a surface plating layer made of an alloy containing 80% by mass or more and less than 100% by mass of In or In on the surface of a base material made of Cu or Cu alloy, A hard plating layer harder than the surface plating layer is formed on the base of the surface plating layer. The hard plating layer is composed of 1) an intermetallic compound of Cu and In, or 2) Cu and In, and further, Ni, Co , Sn, Zn, P, and ing from any one or intermetallic compound containing two or more B.

本発明に係る接続用端子において、前記表面めっき層の平均厚みは0.05〜10μmであることが好ましい。 In the connection terminal according to the present invention, the average thickness of the surface plating layer is preferably 0.05 to 10 μm.

本発明に係る接続用端子において、前記硬質めっき層の平均厚みは0.05〜10μmであることが望ましい。 In connection terminal according to the present invention, the average thickness before Symbol hard plating layer is preferably a 0.05 to 10 [mu] m.

本発明に係る接続用端子において、前記硬質めっき層の下地に、Ni又はNi合金からなる下地めっき層を設けることが好ましい。
ここで、前記下地めっき層の平均厚みは10μm以下であることが好ましい。
In the connection terminal according to the present invention, it is preferable to provide a base plating layer made of Ni or Ni alloy on the base of the hard plating layer.
Here, the average thickness of the base plating layer is preferably 10 μm or less.

本発明に係る接続用端子において、前記表面めっき層は、電気めっき処理して、又は該電気めっき処理後にリフロー処理して形成されるのがよい。 In the connection terminal according to the present invention, the surface plating layer may be formed by electroplating or by reflowing after the electroplating.

本発明に係る接続用端子において、摩擦係数が0.1〜0.45であることが好ましい。 In the connection terminal according to the present invention, the friction coefficient is preferably 0.1 to 0.45.

本発明に係る接続用端子は、母材の表面に、In又はInを主体とする合金からなる表面めっき層が設けられ、この表面めっき層の下地に、この表面めっき層よりも硬い硬質めっき層が形成されているので、この相乗効果で摩擦係数を低減できる。即ち、端子の挿入力の低減が可能となる。
従って、総挿入力の低減を図ることが可能な接続用端子を提供できる。
In the connection terminal according to the present invention, a surface plating layer made of In or an alloy mainly composed of In is provided on the surface of the base material, and a hard plating layer harder than the surface plating layer is provided on the surface of the surface plating layer. Thus, the friction coefficient can be reduced by this synergistic effect. That is, the terminal insertion force can be reduced.
Therefore, a connection terminal capable of reducing the total insertion force can be provided.

ここで、表面めっき層の平均厚みを0.05〜10μmにする場合、表面めっき層の厚みを、表面めっき層による摩擦係数の低減効果が十分に得られる厚みに調整できる。 Here, when the average thickness of the surface plating layer is 0.05 to 10 μm, the thickness of the surface plating layer can be adjusted to a thickness at which the effect of reducing the friction coefficient by the surface plating layer is sufficiently obtained.

また、硬質めっき層を、1)CuとInの金属間化合物、もしくは、2)Cu及びInに、更にNi、Co、Sn、Zn、P、及びBのいずれか1種又は2種以上を含む金属間化合物で構成するので、これらのめっき層は熱的に安定しており、例えば、高温環境下において、母材元素の最表面への拡散を抑制でき、表面めっき層でのInとの合金化も抑制できる。更に、硬質めっき層の下地に下地めっき層を設ける場合も、高温環境下において、下地めっきの元素の拡散を抑制できる。
従って、安定した電気的な接続信頼性を備えることができる。
Further, the hard plating layer includes 1) an intermetallic compound of Cu and In, or 2) Cu and In, and further includes any one or more of Ni, Co, Sn, Zn, P, and B. since a metal intermetallic compound, these plating layers are thermally stable, for example, in a high-temperature environment can be suppressed from diffusing into the outermost surface of the base element, an alloy of in on the surface plating layer Can also be suppressed. Furthermore, even when the base plating layer is provided on the base of the hard plating layer, diffusion of the element of the base plating can be suppressed in a high temperature environment.
Therefore, stable electrical connection reliability can be provided.

そして、硬質めっき層の下地に、Ni又はNi合金からなる下地めっき層を設ける場合、硬質めっき層と下地めっき層により、経時による母材元素の拡散抑制が可能となり、長期に渡って接触抵抗の上昇を防止できる。また、CuとNiは相互に拡散し難いため、下地めっき層がバリア層となり、母材元素、特にCu元素が、硬質めっき層、表面めっき層、更には最表面へ拡散することを抑制でき、表面めっき層でのInとの合金化や、最表面での母材元素の酸化も抑制できる。
従って、下地めっき層を設けることで、製品の信頼性への効果がより大きくなる。
When a base plating layer made of Ni or Ni alloy is provided on the base of the hard plating layer, the hard plating layer and the base plating layer can suppress the diffusion of the base material element over time, and the contact resistance can be maintained over a long period of time. The rise can be prevented. Further, since Cu and Ni are difficult to diffuse each other, the base plating layer serves as a barrier layer, and the base metal element, particularly Cu element, can be suppressed from diffusing to the hard plating layer, the surface plating layer, and further to the outermost surface, Alloying with In in the surface plating layer and oxidation of the base material element on the outermost surface can also be suppressed.
Therefore, providing the base plating layer further increases the effect on the reliability of the product.

また、表面めっき層は、電気めっき処理して、又は電気めっき処理後にリフロー処理して形成されるのがよい。
上記した硬質めっき層と表面めっき層は、リフロー処理を施さない場合においても、In及びCuの相互拡散により常温域で自然に形成できる。しかし、例えば、下地めっき層の表面に、CuもしくはCu合金めっき層と、InもしくはIn合金めっき層を形成した後、リフロー処理することで、硬質めっき層と表面めっき層を容易に形成できる。ここで、硬質めっき層となるCu−In合金層は、金属間化合物となっているため、十分な硬さを有している。このため、硬い硬質めっき層の上面に軟らかい表面めっき層を設けた相乗効果で、摩擦係数の低減が十分可能となる。
The surface plating layer may be formed by electroplating or by reflowing after electroplating.
Even when the hard plating layer and the surface plating layer are not subjected to reflow treatment, they can be naturally formed in a normal temperature region by mutual diffusion of In and Cu. However, for example, a hard plating layer and a surface plating layer can be easily formed by forming a Cu or Cu alloy plating layer and an In or In alloy plating layer on the surface of the base plating layer and then performing a reflow treatment. Here, since the Cu-In alloy layer used as a hard plating layer is an intermetallic compound, it has sufficient hardness. For this reason, the friction coefficient can be sufficiently reduced by the synergistic effect of providing the soft surface plating layer on the upper surface of the hard hard plating layer.

(A)本発明の一実施の形態に係る接続用端子の部分側断面図、(B)は変形例に係る接続用端子の部分側断面図である。(A) The fragmentary sectional side view of the connecting terminal which concerns on one embodiment of this invention, (B) is the fragmentary sectional side view of the connecting terminal which concerns on a modification. 本発明の一実施の形態に係る接続用端子の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the terminal for connection which concerns on one embodiment of this invention. 接続用端子のInめっき厚さと摩擦係数との関係を示す説明図である。It is explanatory drawing which shows the relationship between In plating thickness of a terminal for a connection, and a friction coefficient. 接続用端子の表面めっき層であるIn厚さと摩擦係数との関係を示す説明図である。It is explanatory drawing which shows the relationship between In thickness which is a surface plating layer of the terminal for a connection, and a friction coefficient. 接続用端子の表面EDX組成分析によるIn/Cuの質量比と摩擦係数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the mass ratio of In / Cu by a surface EDX composition analysis of the terminal for a connection, and a friction coefficient. 接続用端子の接触信頼性を評価した結果の説明図である。It is explanatory drawing of the result of having evaluated the contact reliability of the terminal for a connection. (A)、(B)はそれぞれ接続用端子の微摺動磨耗特性を評価した結果の説明図である。(A), (B) is explanatory drawing of the result of having evaluated the fine sliding wear characteristic of the terminal for a connection, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1(A)、図2に示すように、本発明の一実施の形態に係る接続用端子10は、母材11の端子嵌合部の表面に、下地めっき層12と、硬質めっき層13と、表面めっき層14とを順次設けたものであり、例えば、工場等で使用される電子機器、航空機、船舶、自動車等の各種電子機器、特に自動車の電子制御装置(ECU)への使用に適したPCBコネクタ用端子や中継用端子等である。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1A and FIG. 2, a connection terminal 10 according to an embodiment of the present invention has a base plating layer 12 and a hard plating layer 13 on the surface of a terminal fitting portion of a base material 11. And a surface plating layer 14 are sequentially provided, for example, for use in electronic devices used in factories and the like, various electronic devices such as airplanes, ships and automobiles, especially in electronic control units (ECUs) of automobiles. Suitable PCB connector terminals, relay terminals, and the like. This will be described in detail below.

母材11は、Cu(銅)又はCu合金からなる板材(図示しない)を、接続用端子10と同一形状にプレス加工することにより得られる接続用端子材である。
この母材11の端子嵌合部の表面には、Ni(ニッケル)又はNi合金(例えば、Ni−P(ニッケル/リン)、Ni−B(ニッケル/ホウ素)、Ni−Co(ニッケル/コバルト)等)からなる下地めっき層12が設けられている。なお、Niめっきには、無光沢めっきや半光沢めっき、更には、緻密な光沢めっきを使用することができるが、リフロー処理を施す場合は、半光沢めっきもしくは無光沢めっきを施すことが好ましい。
この下地めっき層12は、母材11中のCu、及びその他のCu合金中元素の拡散を抑制するためのもの(バリア層)であり、その平均厚みは、10μm以下(好ましくは、下限を0.05μm)とするのがよい。ここで、下地めっき層の厚みに上限を設けたのは、厚みの増加に伴う拡散抑制効果が小さいことによる。なお、生産性の観点から、好ましくは、5μm以下、更には3μm以下とするのがよい。また、下地めっき層は形成しなくてもよい。
The base material 11 is a connection terminal material obtained by pressing a plate material (not shown) made of Cu (copper) or a Cu alloy into the same shape as the connection terminal 10.
On the surface of the terminal fitting portion of the base material 11, Ni (nickel) or an Ni alloy (for example, Ni-P (nickel / phosphorus), Ni-B (nickel / boron), Ni-Co (nickel / cobalt)) Etc.) is provided. The Ni plating can be matte plating, semi-gloss plating, or dense gloss plating. However, when reflow treatment is performed, it is preferable to perform semi-gloss plating or matte plating.
This base plating layer 12 is for suppressing the diffusion of Cu in the base material 11 and other elements in the Cu alloy (barrier layer), and the average thickness thereof is 10 μm or less (preferably, the lower limit is 0). .05 μm). Here, the reason why the upper limit is provided for the thickness of the underlying plating layer is that the effect of suppressing diffusion due to the increase in thickness is small. From the viewpoint of productivity, the thickness is preferably 5 μm or less, and more preferably 3 μm or less. Further, the base plating layer may not be formed.

下地めっき層12の表面には、Cu−In(銅/インジウム)の金属間化合物を主体とする硬質めっき層13と、表面めっき層14とが、順次設けられている。
なお、硬質めっき層は、Cu−In合金の代わりに、例えば、Cu−Sn(銅/錫)合金、In−Zn(インジウム/亜鉛)合金、In−Ni(インジウム/ニッケル)合金、In−Fe(インジウム/鉄)合金等の金属間化合物(合金層)等で構成することもできる。
ここで、硬質めっき層中の金属間化合物の含有量は、90質量%以上100質量%未満であればよい。
更に、硬質めっきにCu−Inの金属間化合物からなるCu−In合金層(金属間化合物の含有量:100質量%)を用いる場合、Cu−In合金層中に下地めっき元素や素材元素であるNi、Co、Sn、Zn(亜鉛)、P(リン)、及びB(ホウ素)のいずれか1種又は2種以上を含むこともできる。
A hard plating layer 13 mainly composed of an intermetallic compound of Cu—In (copper / indium) and a surface plating layer 14 are sequentially provided on the surface of the base plating layer 12.
In addition, the hard plating layer is formed of, for example, a Cu—Sn (copper / tin) alloy, an In—Zn (indium / zinc) alloy, an In—Ni (indium / nickel) alloy, or an In—Fe alloy instead of the Cu—In alloy. It can also be composed of an intermetallic compound (alloy layer) such as an (indium / iron) alloy.
Here, the content of the intermetallic compound in the hard plating layer may be 90% by mass or more and less than 100% by mass.
Further, when a Cu-In alloy layer (intermetallic compound content: 100% by mass) made of an intermetallic compound of Cu-In is used for hard plating, it is a base plating element or a material element in the Cu-In alloy layer. Any one or more of Ni, Co, Sn, Zn (zinc), P (phosphorus), and B (boron) may be included.

上記した硬質めっきの平均厚みは、0.05〜10μmであることが好ましい。
硬質めっきの平均厚みが0.05μm未満であると、下地めっきであるNi及び母材元素の拡散抑制効果が小さくなる。従って、望ましくは、0.1μm以上とするのがよい。
一方、硬質めっきの平均厚みが10μmを超えると、生産性を阻害させる。従って、望ましくは5μm以下とするのが良い。
表面めっき層は、In(インジウム及び不可避的不純物)で構成されることが好ましいが、表面めっき層中に、母材元素や下地めっきの元素、更には硬質めっきの元素が拡散して含まれる場合もある。
また、表面めっき層は、Inの代わりに、Inを主体とする合金めっきで構成することもできる。このIn合金めっきは、In含有量が40質量%以上(好ましくは60質量%以上、更に好ましくは80質量%以上)、100質量%未満であり、他は、Inの軟らかさを損なわない範囲で、添加元素及び不可避的不純物を含んでいる。
The average thickness of the hard plating is preferably 0.05 to 10 μm.
When the average thickness of the hard plating is less than 0.05 μm, the effect of suppressing the diffusion of Ni and the base material element as the base plating is reduced. Therefore, it is desirable that the thickness is 0.1 μm or more.
On the other hand, when the average thickness of the hard plating exceeds 10 μm, productivity is hindered. Therefore, the thickness is desirably 5 μm or less.
The surface plating layer is preferably composed of In (indium and unavoidable impurities), but the surface plating layer contains a base metal element, an element of the base plating, and further an element of hard plating diffused. There is also.
Further, the surface plating layer can be constituted by alloy plating mainly containing In instead of In. In the In alloy plating, the In content is 40% by mass or more (preferably 60% by mass or more, more preferably 80% by mass or more) and less than 100% by mass, and the other is within the range not impairing the softness of In. , Containing additional elements and inevitable impurities.

このように、接続用端子10は、下地めっき層12と表面めっき層14との間に、表面めっき層14よりも硬い硬質めっき層13が設けられている。このため、硬い硬質めっき層13の表面が、軟らかい表面めっき層14で覆われ、この表面めっき層14が接続用端子10の表面に露出した構成となり、硬質めっき層13と表面めっき層14の相乗効果で、接続用端子10の挿入力の低下が図れる。
ここで、表面めっき層をInで構成した場合に、Inのめっき厚さが摩擦係数μに及ぼす影響について、図3を参照しながら説明する。この図3で説明した接続用端子の試験片は、厚さ1μmのNiの下地めっき層(無光沢Niめっき)の上に、厚みの異なるCuのめっき層(0.1μm:◆、0.18μm:■、0.26μm:▲)と、Inのめっき層を順次形成し、これをリフロー処理して、Inの表面めっき層を形成したものである。なお、図3の横軸は、リフロー処理前のInのめっき厚みを示している。
As described above, the connection terminal 10 is provided with the hard plating layer 13 that is harder than the surface plating layer 14 between the base plating layer 12 and the surface plating layer 14. For this reason, the surface of the hard hard plating layer 13 is covered with the soft surface plating layer 14, and the surface plating layer 14 is exposed on the surface of the connection terminal 10, so that the hard plating layer 13 and the surface plating layer 14 are synergistic. As a result, the insertion force of the connection terminal 10 can be reduced.
Here, when the surface plating layer is made of In, the influence of the In plating thickness on the friction coefficient μ will be described with reference to FIG. The test piece of the connection terminal described in FIG. 3 is a Cu plating layer (0.1 μm: ◆, 0.18 μm) having a different thickness on a Ni base plating layer (matte Ni plating) having a thickness of 1 μm. : In, 0.26 μm: ▲), an In plating layer was sequentially formed, and this was reflowed to form an In surface plating layer. The horizontal axis in FIG. 3 indicates the In plating thickness before the reflow process.

図3に示すように、Inのめっき厚み(表面めっき層であるIn厚さとCu−In合金中のInの見かけの厚さの合計、以下同様)が厚くなると共に、試験片の摩擦係数が低下する傾向にあることが分かる。なお、前記した従来のSnめっき(リフロー処理済み)が設けられた端子の摩擦係数は、例えば0.5〜0.6程度であり、また、母材の表面に、Niめっき、Cuめっき、及びSnめっきを順次設けてリフロー処理した端子の摩擦係数は、例えば、0.4〜0.5程度である。
これら従来の端子の摩擦係数を考慮(目標値:摩擦係数0.4以下)すれば、Inの平均めっき厚みを0.4μm以上、更には0.45〜10μm(上限は、好ましくは5μm、更に好ましくは1.5μm)にすることが好ましい。ここで、Inのめっき厚みに上限を設けたのは、Inの使用量増加に伴う摩擦係数の低減効果が小さいことによる。
As shown in FIG. 3, as the In plating thickness (the sum of the In thickness as the surface plating layer and the apparent thickness of In in the Cu-In alloy, the same applies hereinafter) increases, the friction coefficient of the test piece decreases. It turns out that there is a tendency to. In addition, the friction coefficient of the terminal provided with the above-described conventional Sn plating (reflow treatment completed) is, for example, about 0.5 to 0.6, and Ni plating, Cu plating, and The coefficient of friction of the terminals that have been reflow-treated by sequentially providing Sn plating is, for example, about 0.4 to 0.5.
If the friction coefficient of these conventional terminals is taken into consideration (target value: friction coefficient 0.4 or less), the average plating thickness of In is 0.4 μm or more, further 0.45 to 10 μm (the upper limit is preferably 5 μm, and further Preferably it is 1.5 μm. Here, the reason why the upper limit is set for the In plating thickness is that the effect of reducing the friction coefficient accompanying the increase in the amount of In used is small.

次に、表面めっき層であるIn厚さと摩擦係数の関係を、図4に示す。なお、図4の横軸は、リフロー処理後の最表層のIn厚さである(Cu−In合金層中の見かけのIn厚さは含まない)。
図4より、表面めっき層であるIn厚さは、0μmで摩擦係数が0.4〜0.5程度であるのに対し、In厚さを0.05μmとすることで、摩擦係数を0.38〜0.45まで低減できる。更に、摩擦係数の目標値0.4以下を考慮すると、表面めっき層であるIn厚さは、0.15μm以上が望ましい。なお、摩擦係数の目標値は、端子使用時の表面めっき層とその接触部との接触性等を考慮すれば、現実的には0.1以上であるのがよい。
Next, FIG. 4 shows the relationship between the In thickness, which is the surface plating layer, and the friction coefficient. 4 represents the In thickness of the outermost layer after the reflow process (the apparent In thickness in the Cu—In alloy layer is not included).
As shown in FIG. 4, the surface thickness of the In plating layer is 0 μm, and the friction coefficient is about 0.4 to 0.5. It can be reduced to 38 to 0.45. Furthermore, considering the target value of 0.4 or less for the coefficient of friction, the In thickness as the surface plating layer is preferably 0.15 μm or more. It should be noted that the target value of the coefficient of friction is actually preferably 0.1 or more in consideration of the contact between the surface plating layer and its contact portion when the terminal is used.

続いて、硬質めっき層をCu−In合金で構成した場合に、端子材表面のEDX組成分析によるIn/Cuの質量比が摩擦係数μに及ぼす影響について、図5を参照しながら説明する。この図5は、図3の各試験片について、表面のIn/Cuの質量比を、EDX(エネルギー分散型X線分析法、加速電圧:10kV)を用いて分析し、摩擦係数とIn/Cuの質量比との関係に整理し直したものである。
図5に示すように、表面EDX組成分析で検出されるIn量が増加すると共に、摩擦係数が低下する傾向にあることが分かる。なお、上記した従来の端子の摩擦係数を考慮(目標値:摩擦係数0.4以下)すれば、Inの質量がCuの質量の0.8倍以上、更には1倍以上にすることが好ましい。
Next, the influence of the In / Cu mass ratio on the surface of the terminal material by the EDX composition analysis on the friction coefficient μ when the hard plating layer is made of a Cu—In alloy will be described with reference to FIG. FIG. 5 shows the analysis of the surface In / Cu mass ratio of each test piece of FIG. 3 using EDX (energy dispersive X-ray analysis, acceleration voltage: 10 kV). These are rearranged in relation to the mass ratio.
As shown in FIG. 5, it can be seen that the amount of In detected by surface EDX composition analysis tends to increase and the friction coefficient tends to decrease. In consideration of the friction coefficient of the conventional terminal described above (target value: friction coefficient 0.4 or less), the mass of In is preferably 0.8 times or more, more preferably 1 or more times that of Cu. .

以上に示した構成の接続用端子を用い、その接触信頼性を評価した結果について、図6を参照しながら説明する。ここでは、160℃の大気雰囲気下において、1000時間までの所定時間の加熱を行い、その後、接続用端子の試験片に5Nの荷重をかけながら試験片を1Hzの摺動周波数(周期)で往復摺動させ、時間経過と接触抵抗との関係について評価した。
なお、使用した実施例1〜3の試験片は、0.9μmのNi下地めっき層の上に、0.18μmのCuめっき層と、厚みの異なるInのめっき層(0.7μm:◆、0.9μm:■、1.1μm:▲)を順次形成し、これをリフロー処理して、Cu−In合金の硬質めっき層の上にInの表面めっき層を形成したものである。また、図6には、前記した従来のSnめっき(リフロー処理済み)が設けられた比較例1の試験片(○)と、母材の表面に、Niめっき、Cuめっき、及びSnめっきを順次設けてリフロー処理した比較例2の試験片(●)の各接触抵抗も示している。
The result of evaluating the contact reliability using the connection terminals having the above-described configuration will be described with reference to FIG. Here, heating is performed for a predetermined time up to 1000 hours in an atmospheric atmosphere of 160 ° C., and then the test piece is reciprocated at a sliding frequency (cycle) of 1 Hz while applying a 5 N load to the test piece of the connection terminal. The relationship between the passage of time and the contact resistance was evaluated.
The test pieces of Examples 1 to 3 used were a 0.18 μm Cu plating layer and a different In plating layer (0.7 μm: ◆, 0) on a 0.9 μm Ni undercoat layer. .9 μm: ■, 1.1 μm: ▲) were formed in sequence, and this was reflowed to form an In surface plating layer on the Cu—In alloy hard plating layer. Further, in FIG. 6, Ni plating, Cu plating, and Sn plating are sequentially applied to the surface of the test piece (◯) of Comparative Example 1 provided with the above-described conventional Sn plating (reflow treatment completed). Each contact resistance of the test piece (●) of Comparative Example 2 provided and reflow-treated is also shown.

図6から明らかなように、実施例1〜3の各試験片は、160℃の雰囲気下において、いずれも1000時間まで、ほぼ一定(0.5mΩ)の接触抵抗を示しており、接触抵抗の上昇はみられなかった。
一方、比較例1の試験片は、時間の経過と共に、接触抵抗が増加する傾向にあった。これは、時間の経過と共に、母材元素であるCuがSnめっき中に拡散し、更にめっき表面にも拡散してCu−O酸化物を形成し、このCu−O酸化物が接触抵抗の増加をもたらしたことによる。
また、比較例2の試験片の接触抵抗は、比較例1よりは優れるものの、接触抵抗の大きさは実施例1〜3の試験片の1〜2倍程度であった。
以上のことから、実施例1〜3の試験片は、安定した電気的な接続信頼性を備えることが分かった。
As is clear from FIG. 6, each of the test pieces of Examples 1 to 3 exhibited a substantially constant (0.5 mΩ) contact resistance up to 1000 hours in an atmosphere at 160 ° C. There was no increase.
On the other hand, the test piece of Comparative Example 1 tended to increase the contact resistance with time. This is because Cu, which is a base material element, diffuses during Sn plating over time and further diffuses to the plating surface to form Cu-O oxide, which increases the contact resistance. By bringing about.
Moreover, although the contact resistance of the test piece of Comparative Example 2 was superior to that of Comparative Example 1, the magnitude of the contact resistance was about 1 to 2 times that of the test pieces of Examples 1 to 3.
From the above, it was found that the test pieces of Examples 1 to 3 have stable electrical connection reliability.

そして、接続用端子を、例えば、メス端子に挿入した後、微摺動磨耗特性を評価した結果について、図7(A)、(B)を参照しながら説明する。ここでは、接続用端子の試験片に3Nの荷重をかけながら、試験片を摺動距離が50μm、摺動周波数が1Hzで往復摺動させ、摺動回数と接触抵抗との関係について評価した。
なお、使用した実施例の試験片は、0.9μmのNi下地めっき層の上に、0.18μmのCuめっき層と、0.9μmのInのめっき層を順次形成し、これをリフロー処理して、Cu−In合金の硬質めっき層の上にInの表面めっき層を形成したものである。また、図7(A)は、メス端子側に、前記した従来のSnめっき(リフロー処理済み)を設け、図7(B)は、メス端子側に、Niめっき、Cuめっき、及びSnめっきを順次設けてリフロー処理したものを使用した。
Then, for example, after inserting the connection terminal into the female terminal, the result of evaluating the fine sliding wear characteristic will be described with reference to FIGS. Here, the test piece was slid back and forth at a sliding distance of 50 μm and a sliding frequency of 1 Hz while applying a load of 3N to the connection terminal test piece, and the relationship between the number of sliding and the contact resistance was evaluated.
In addition, the test piece of the used example was formed by sequentially forming a 0.18 μm Cu plating layer and a 0.9 μm In plating layer on a 0.9 μm Ni undercoating layer, and then performing a reflow treatment. Then, an In surface plating layer is formed on a hard plating layer of a Cu-In alloy. 7A is provided with the conventional Sn plating (reflow treatment completed) on the female terminal side, and FIG. 7B is formed with Ni plating, Cu plating, and Sn plating on the female terminal side. The ones that were sequentially provided and reflowed were used.

図7(A)では、同一種類の試験片を用いて3回試験を行い、図7(B)では、同一種類の試験片を用いて2回試験を行ったが、いずれも同様の挙動を示した。具体的には、摺動回数が30回を超えたあたりから接触抵抗の最初の増大が現れ、その後低下し、摺動回数が500回を超えたあたりから接触抵抗の次の増大が現れた。ここで、接触抵抗の最初の増大は最表層のめっき層の酸化の影響によるものであり、次の接触抵抗の増大は、めっきが剥がれて母材が露出し、母材であるCuが酸化したことによるものである。
上記した接触抵抗の挙動は、試験片に従来のSnめっき(リフロー処理済み)を設け、メス端子側に、Niめっき、Cuめっき、及びSnめっきを順次設けてリフロー処理したものを用いて、微摺動磨耗試験を行った場合と同様の挙動を示した。
以上のことから、実施例の試験片は、Snと同程度の微摺動磨耗特性を備えることが分かった。
In FIG. 7A, the test was performed three times using the same type of test piece, and in FIG. 7B, the test was performed twice using the same type of test piece. Indicated. Specifically, the first increase in contact resistance appeared when the number of sliding operations exceeded 30 times, and then decreased, and the next increase in contact resistance appeared when the number of sliding operations exceeded 500 times. Here, the first increase in contact resistance is due to the effect of oxidation of the outermost plating layer, and the next increase in contact resistance is caused by peeling of the plating to expose the base material, and the base material Cu is oxidized. It is because.
The behavior of the contact resistance described above is based on the fact that conventional Sn plating (reflow treatment completed) is provided on the test piece, Ni plating, Cu plating, and Sn plating are sequentially provided on the female terminal side, and reflow treatment is performed. The same behavior as when the sliding wear test was performed was shown.
From the above, it was found that the test piece of the example had a fine sliding wear characteristic comparable to Sn.

続いて、本発明の一実施の形態に係る接続用端子10の製造方法について説明する。
まず、Cu又はCu合金からなる板材(素材)を、接続用端子10と同一形状にプレス加工することにより、母材11を形成する(以上、準備工程)。
次に、図2に示すように、母材11の端子嵌合部の表面に、Niめっきによる下地めっきを行い、Niめっき層15を形成する。なお、Niめっき層15の平均厚みは、10μm以下である(以上、Niめっき工程)。
そして、このNiめっき層15の表面にCuめっきを行い、Cuめっき層16を形成する。なお、Cuめっき層16の平均厚みは、例えば、0.03〜5μm程度である。ここで、Cuめっき層の厚みが0.03μm未満(特に、0.02μm程度)であり、下地めっき層にNiめっきを施した場合、Niの拡散により、合金層が急成長してしまい、更に加熱経時後の接触信頼性に悪影響を及ぼす。一方、Cuめっき層の厚みは、生産性の観点より5μm以下とするのがよい。
また、Niめっきを施さない場合は、Cuめっきを省略することもできる(以上、Cuめっき工程)。
Then, the manufacturing method of the terminal 10 for a connection which concerns on one embodiment of this invention is demonstrated.
First, a base material 11 is formed by pressing a plate material (material) made of Cu or a Cu alloy into the same shape as the connection terminal 10 (the preparation step).
Next, as shown in FIG. 2, base plating is performed by Ni plating on the surface of the terminal fitting portion of the base material 11 to form a Ni plating layer 15. Note that the average thickness of the Ni plating layer 15 is 10 μm or less (the Ni plating step).
Then, Cu plating is performed on the surface of the Ni plating layer 15 to form a Cu plating layer 16. In addition, the average thickness of the Cu plating layer 16 is, for example, about 0.03 to 5 μm. Here, when the thickness of the Cu plating layer is less than 0.03 μm (particularly about 0.02 μm), and Ni plating is applied to the base plating layer, the alloy layer grows rapidly due to the diffusion of Ni, and This adversely affects contact reliability after heating. On the other hand, the thickness of the Cu plating layer is preferably 5 μm or less from the viewpoint of productivity.
Moreover, when not performing Ni plating, Cu plating can also be abbreviate | omitted (above, Cu plating process).

更に、Cuめっき層16の表面に、InによるInめっきを行い、Inめっき層17を形成する。なお、Inめっき層17の平均厚みは、例えば、0.1〜10μm程度である(以上、Inめっき工程)。
以上に示した、各めっきは、電解めっきが好ましいが、無電解めっきや溶融めっきでもよい。
そして、上記したNiめっき層15、Cuめっき層16、及びInめっき層17が形成された母材11をリフロー処理する。この加熱方法には、例えば、熱風等による直接加熱、雰囲気加熱、又は高周波加熱等のいずれかの方法がある。
これにより、図1(A)、図2に示すように、母材11の端子嵌合部の表面に、Niの下地めっき層12、Cu−In合金の硬質めっき層13、及びInの表面めっき層14が順次設けられた接続用端子10を製造できる。なお、本端子をPCB端子として使用する場合、母材11の基盤接続部については、特に限定されるものではなく、例えば、Snめっき(はんだ付け時)やCu−Snの硬質めっき(プレスフィット時)がなされている。
Further, In plating with In is performed on the surface of the Cu plating layer 16 to form an In plating layer 17. In addition, the average thickness of the In plating layer 17 is, for example, about 0.1 to 10 μm (the In plating step).
Each plating shown above is preferably electrolytic plating, but may be electroless plating or hot dipping.
Then, the base material 11 on which the Ni plating layer 15, the Cu plating layer 16, and the In plating layer 17 are formed is subjected to a reflow process. As this heating method, for example, there is any method such as direct heating with hot air or the like, atmosphere heating, or high-frequency heating.
As a result, as shown in FIGS. 1A and 2, the Ni base plating layer 12, the Cu—In alloy hard plating layer 13, and the In surface plating on the surface of the terminal fitting portion of the base material 11. The connection terminal 10 in which the layers 14 are sequentially provided can be manufactured. In addition, when this terminal is used as a PCB terminal, the substrate connecting portion of the base material 11 is not particularly limited. For example, Sn plating (during soldering) or Cu-Sn hard plating (during press fitting) ) Has been made.

ここで、めっき処理された母材11をリフロー処理する場合の加熱温度と加熱時間は、母材11の表面に、Niの下地めっき層12、Cu−In合金の硬質めっき層13、及びInの表面めっき層14が形成されれば、特に限定されるものではない(Cu−In合金の硬質めっき層を短時間で形成させるため、Inの融点156℃よりも高い加熱温度、例えば、220〜280℃程度で加熱するのがよい)。
以上のように、Niめっき層15の上に、Cuめっき層16とInめっき層17を形成し、これらを加熱して、Cu−In合金の硬質めっき層13を形成しているので、比較的簡便に、端子嵌合部に硬質めっき層13とInの表面めっき層14を形成できる。
Here, the heating temperature and the heating time in the case of performing the reflow treatment on the plated base material 11 are as follows: Ni base plating layer 12, Cu—In alloy hard plating layer 13, and In If surface plating layer 14 is formed, it will not be limited in particular (in order to form a hard plating layer of Cu-In alloy in a short time, heating temperature higher than In melting point 156 ° C, for example, 220-280 It is better to heat at about ℃).
As described above, the Cu plating layer 16 and the In plating layer 17 are formed on the Ni plating layer 15, and these are heated to form the Cu-In alloy hard plating layer 13. The hard plating layer 13 and the In surface plating layer 14 can be easily formed on the terminal fitting portion.

なお、硬質めっき層と表面めっき層は、上記したように、めっき処理された母材を加熱して生成させるものに限定されるものではなく、例えば、図1(B)に示す接続用端子18のように、下地めっき層12の表面に合金の硬質めっき層19を形成させた後、表面めっき層20を形成させてもよい。また、リフロー処理等の加熱処理を施さない場合においても、常温域にて、Inめっき層中のInと、Cuめっき層中のCuは相互拡散して、金属間化合物層、即ち硬質めっき層を形成できる。
これにより、総挿入力の低減が図れ、更には安定した電気的な接続信頼性を備えることが可能な接続用端子を製造できる。
In addition, as described above, the hard plating layer and the surface plating layer are not limited to those generated by heating the plated base material. For example, the connection terminals 18 shown in FIG. As described above, the surface plating layer 20 may be formed after the hard plating layer 19 of the alloy is formed on the surface of the base plating layer 12. In addition, even when heat treatment such as reflow treatment is not performed, In in the In plating layer and Cu in the Cu plating layer are interdiffused in a normal temperature range, an intermetallic compound layer, that is, a hard plating layer is formed. Can be formed.
As a result, the total insertion force can be reduced, and a connection terminal capable of providing stable electrical connection reliability can be manufactured.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の接続用端子を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the connection terminal of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

10:接続用端子、11:母材、12:下地めっき層、13:硬質めっき層、14:表面めっき層、15:Niめっき層、16:Cuめっき層、17:Inめっき層、18:接続用端子、19:硬質めっき層、20:表面めっき層 10: Terminal for connection, 11: Base material, 12: Base plating layer, 13: Hard plating layer, 14: Surface plating layer, 15: Ni plating layer, 16: Cu plating layer, 17: In plating layer, 18: Connection Terminal, 19: hard plating layer, 20: surface plating layer

Claims (7)

Cu又はCu合金からなる母材の表面に、In又はInを80質量%以上100質量%未満含有する合金からなる表面めっき層が設けられ、該表面めっき層の下地に、該表面めっき層よりも硬い硬質めっき層が形成され、該硬質めっき層は、1)CuとInの金属間化合物、もしくは、2)Cu及びInに、更にNi、Co、Sn、Zn、P、及びBのいずれか1種又は2種以上を含む金属間化合物からなることを特徴とする接続用端子。 A surface plating layer made of an alloy containing 80% by mass or more and less than 100% by mass of In or In is provided on the surface of the base material made of Cu or Cu alloy, and the base of the surface plating layer is more than the surface plating layer. A hard hard plating layer is formed. The hard plating layer is either 1) an intermetallic compound of Cu and In, or 2) any one of Ni, Co, Sn, Zn, P, and B in addition to Cu and In. species or connection terminals, characterized in Rukoto such an intermetallic compound containing two or more kinds. 請求項1記載の接続用端子において、前記表面めっき層の平均厚みは0.05〜10μmであることを特徴とする接続用端子。 The connection terminal according to claim 1, wherein an average thickness of the surface plating layer is 0.05 to 10 μm. 請求項1又は2記載の接続用端子において、前記硬質めっき層の平均厚みは0.05〜10μmであることを特徴とする接続用端子。 3. The connection terminal according to claim 1, wherein the hard plating layer has an average thickness of 0.05 to 10 μm. 請求項1〜のいずれか1項に記載の接続用端子において、前記硬質めっき層の下地に、Ni又はNi合金からなる下地めっき層を設けたことを特徴とする接続用端子。 In connection terminal according to any one of claims 1 to 3, a base of the hard plating layer, connection terminals, characterized in that a base plating layer of Ni or Ni alloy. 請求項記載の接続用端子において、前記下地めっき層の平均厚みは10μm以下であることを特徴とする接続用端子。 The connection terminal according to claim 4 , wherein an average thickness of the base plating layer is 10 μm or less. 請求項1〜のいずれか1項に記載の接続用端子において、前記表面めっき層は、電気めっき処理して、又は該電気めっき処理後にリフロー処理して形成されていることを特徴とする接続用端子。 The connection terminal according to any one of claims 1 to 5 , wherein the surface plating layer is formed by electroplating or by reflowing after the electroplating. Terminal. 請求項1〜のいずれか1項に記載の接続用端子において、摩擦係数が0.1〜0.45であることを特徴とする接続用端子。 In connection terminal according to any one of claims 1 to 6 connecting terminals coefficient of friction, characterized in that a 0.1 to 0.45.
JP2010165145A 2010-07-22 2010-07-22 Terminal for connection Active JP5525951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165145A JP5525951B2 (en) 2010-07-22 2010-07-22 Terminal for connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165145A JP5525951B2 (en) 2010-07-22 2010-07-22 Terminal for connection

Publications (2)

Publication Number Publication Date
JP2012028139A JP2012028139A (en) 2012-02-09
JP5525951B2 true JP5525951B2 (en) 2014-06-18

Family

ID=45780844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165145A Active JP5525951B2 (en) 2010-07-22 2010-07-22 Terminal for connection

Country Status (1)

Country Link
JP (1) JP5525951B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091145B2 (en) * 2012-10-10 2017-03-08 日新製鋼株式会社 Surface-modified stainless steel sheet and manufacturing method thereof
US9413092B2 (en) * 2012-11-30 2016-08-09 Electric Power Research Institute, Inc. Electrical power line connector
JP2022128612A (en) * 2021-02-24 2022-09-05 株式会社オートネットワーク技術研究所 Metal material, connection terminal, and manufacturing method of metal material
WO2022196676A1 (en) * 2021-03-19 2022-09-22 株式会社オートネットワーク技術研究所 Terminal, terminal-equipped wire, and method for manufacturing terminal
JP7394086B2 (en) * 2021-04-13 2023-12-07 Jx金属株式会社 Male pin for connector and method for manufacturing male pin for connector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2005344188A (en) * 2004-06-04 2005-12-15 Furukawa Electric Co Ltd:The Method for producing plating material and electrical/electronic component using the plating material

Also Published As

Publication number Publication date
JP2012028139A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
KR100836540B1 (en) Metal-plated material and method for preparation thereof, and electric and electronic parts using the same
WO2009116602A1 (en) Terminal for connector and process for producing the terminal for connector
JP5525951B2 (en) Terminal for connection
JP2009079250A (en) Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
US20120285720A1 (en) Corrosion resistant electrical conductor
JP5956240B2 (en) Plating material and method for producing the same
JP3953169B2 (en) Manufacturing method of plating material for mating type connection terminal
WO2015068572A1 (en) Substrate terminal and substrate connector
JP5089451B2 (en) Metal material for connector and manufacturing method thereof
WO2014021219A1 (en) Connector terminal and material for connector terminals
WO2009116601A1 (en) Metallic material for connector and process for producing the metallic material for connector
JP5261278B2 (en) Connectors and metal materials for connectors
JP2005353542A (en) Conductive covering material, manufacturing method thereof, and connector terminal or contact using the covering material
WO2015174262A1 (en) Connector terminal
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2000144482A (en) Metallic material
CN109845041B (en) Connection terminal and method for manufacturing connection terminal
JP4043834B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP2009263785A (en) Connecting component metal material and method of manufacturing the same
JP4514061B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP2000169996A (en) Metallic material
JP2005105419A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JP2007204854A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP5415707B2 (en) Metal material for connector and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5525951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250