JP5524761B2 - PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell - Google Patents

PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell Download PDF

Info

Publication number
JP5524761B2
JP5524761B2 JP2010177113A JP2010177113A JP5524761B2 JP 5524761 B2 JP5524761 B2 JP 5524761B2 JP 2010177113 A JP2010177113 A JP 2010177113A JP 2010177113 A JP2010177113 A JP 2010177113A JP 5524761 B2 JP5524761 B2 JP 5524761B2
Authority
JP
Japan
Prior art keywords
ptru
based alloy
catalyst
fuel cell
alloy catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010177113A
Other languages
Japanese (ja)
Other versions
JP2012038543A (en
Inventor
大剛 小野寺
英夫 大門
耕一 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Hitachi Maxell Energy Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Hitachi Maxell Energy Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2010177113A priority Critical patent/JP5524761B2/en
Publication of JP2012038543A publication Critical patent/JP2012038543A/en
Application granted granted Critical
Publication of JP5524761B2 publication Critical patent/JP5524761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池における長期的な負荷変動においても高い耐久性を示し、かつ高活性な燃料電池用PtRu系合金触媒、その製造方法、並びに、前記PtRu系合金触媒を用いた燃料電池用膜電極接合体および燃料電池に関するものである。   The present invention provides a PtRu-based alloy catalyst for a fuel cell that exhibits high durability even during long-term load fluctuations in the fuel cell, and a method for producing the same, and a membrane for a fuel cell using the PtRu-based alloy catalyst The present invention relates to an electrode assembly and a fuel cell.

昨今の原油高に加え、中国、インドなどの急速な経済発展により、化石燃料の枯渇と二酸化炭素の排出が世界的な問題となっている。このため、現在、脱石油化に向け、燃料電池を始め、リチウムイオン電池、バイオ燃料、太陽電池などの研究開発が活発に行われている。ナフィオン(登録商標)を代表とするプロトン導電膜を使用し、常温常圧の雰囲気で発電可能な燃料電池には、メタノールをアノード極燃料とする直接メタノール型燃料電池(Direct Methanol Fuel Cell:DMFC)と、水素ガスをアノード極燃料とする固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)とがある。   In addition to the recent rise in crude oil prices, rapid economic development in China, India and other countries has led to global problems of fossil fuel depletion and carbon dioxide emissions. For this reason, research and development of fuel cells, lithium-ion batteries, biofuels, solar cells, etc. are being actively carried out for the de-oiling. A direct methanol fuel cell (DMFC) using methanol as an anode fuel is used for a fuel cell that uses a proton conductive film typified by Nafion (registered trademark) and can generate power in an atmosphere of normal temperature and pressure. And a polymer polymer fuel cell (PEFC) using hydrogen gas as an anode fuel.

メタノールをアノード極燃料とするDMFCは、理論的体積エネルギー密度がリチウムイオン電池の約10倍と高く、発電システムも簡便で小型化が可能なことから、施設の非常用電源や、軍事、業務用の携帯機器の非常電源、ノートパソコンや携帯音楽プレーヤー、携帯電話などの充電器として期待が持たれている。   DMFC, which uses methanol as the anode fuel, has a theoretical volumetric energy density about 10 times that of lithium-ion batteries, and the power generation system is simple and can be downsized. It is expected to be used as an emergency power supply for portable devices, as a charger for notebook computers, portable music players, and mobile phones.

DMFCは、燃料にメタノールを使用し、アノード触媒層/プロトン導電膜/カソード触媒層から構成される膜電極接合体を導電性のガス拡散層で挟み、アノード極およびカソード極に設けた集電板により外部回路と繋いだ電池システムである。DMFCのアノード触媒層側に液体燃料であるメタノールを供給すると、下記式(1)に示す化学反応により、メタノールが酸化されて二酸化炭素(CO)に変化し、プロトン(H)と電子(e)とが発生する。
CHOH + HO = CO + 6H + 6e (1)
The DMFC uses methanol as a fuel, and sandwiches a membrane electrode assembly composed of an anode catalyst layer / proton conductive film / cathode catalyst layer between conductive gas diffusion layers, and a current collector plate provided on the anode and cathode electrodes This is a battery system connected to an external circuit. When methanol, which is a liquid fuel, is supplied to the anode catalyst layer side of the DMFC, the methanol is oxidized and converted into carbon dioxide (CO 2 ) by a chemical reaction represented by the following formula (1), and protons (H + ) and electrons ( e -) and is generated.
CH 3 OH + H 2 O = CO 2 + 6H + + 6e - (1)

この反応によって発生したプロトンと電子とは、カソード触媒層に供給される酸素ガスと下記式(2)の反応により、水(HO)を生成する。
+ 4H + 4e = 2H (2)
The protons and electrons generated by this reaction generate water (H 2 O) by the reaction of oxygen gas supplied to the cathode catalyst layer and the following formula (2).
O 2 + 4H + + 4e = 2H 2 O (2)

従って、電池全体として下記式(3)の反応が進行し、この際に発生する電子を外部回路で取り出して、電気エネルギーを得ることができる。
CHOH + 3/2O = CO + 2HO (3)
Therefore, the reaction of the following formula (3) proceeds as a whole battery, and electrons generated at this time can be taken out by an external circuit to obtain electric energy.
CH 3 OH + 3 / 2O 2 = CO 2 + 2H 2 O (3)

初期のDMFCのアノード触媒にはPt(白金)が使用されていたが、Pt単体をアノード触媒に用いると、下記式(4)に示すように、メタノール酸化反応の中間物である一酸化炭素(CO)がPt触媒表面に化学吸着し、Pt触媒が被毒して失活する問題があった。
Pt + CHOH = Pt−CO + 4H + 4e (4)
Although Pt (platinum) was used as the anode catalyst of the initial DMFC, when Pt alone was used as the anode catalyst, as shown in the following formula (4), carbon monoxide ( There was a problem that CO) was chemically adsorbed on the surface of the Pt catalyst, and the Pt catalyst was poisoned and deactivated.
Pt + CH 3 OH = Pt- CO + 4H + + 4e - (4)

この問題を解決するため、現在では、DMFCおよび微量のCOが含まれる改質水素ガスを使用するPEFCのアノード触媒には、PtRu(白金−ルテニウム)からなる触媒が一般的に使用されている(例えば、特許文献1)。Ru(ルテニウム)は親水性が高く、下記式(5)に示されるように水と反応して、Ru−OHを生成する。
Ru + HO = Ru−OH + H + e (5)
In order to solve this problem, at present, a catalyst made of PtRu (platinum-ruthenium) is generally used as an anode catalyst of PEFC using a reformed hydrogen gas containing DMFC and a small amount of CO ( For example, Patent Document 1). Ru (ruthenium) has high hydrophilicity and reacts with water as shown in the following formula (5) to produce Ru-OH.
Ru + H 2 O = Ru- OH + H + + e - (5)

生成したRu−OHは下記式(6)に従い、Pt表面に吸着したCOを速やかにCOに酸化する。
Pt−CO + Ru−OH
= CO + H + e+ Pt + Ru (6)
The produced Ru—OH quickly oxidizes CO adsorbed on the Pt surface to CO 2 according to the following formula (6).
Pt-CO + Ru-OH
= CO 2 + H + + e + Pt + Ru (6)

しかしながら、PtRu合金触媒の反応機構については未だ不明な点が多く、このような合金系の触媒を大量に使用しても、メタノールの酸化反応は遅く、高い出力を得ることは困難である。DMFCの理論電圧は1.21Vであるが、前記のPtRu合金触媒を使用した場合でもメタノール酸化反応の活性化エネルギーは大きく、その酸化反応の過電圧が大きいために、実効電圧は理論電圧を大きく下回っている。   However, there are still many unclear points about the reaction mechanism of the PtRu alloy catalyst, and even when such an alloy catalyst is used in large quantities, the oxidation reaction of methanol is slow and it is difficult to obtain a high output. Although the theoretical voltage of DMFC is 1.21V, even when the PtRu alloy catalyst is used, the activation energy of the methanol oxidation reaction is large and the overvoltage of the oxidation reaction is large, so the effective voltage is much lower than the theoretical voltage. ing.

また、現在、実用触媒としてDMFCおよびPEFCに使用されているPtおよびPtRu系合金触媒はレアメタルであり、かつ非常に高価であることから、触媒使用量の削減が必須の課題となっている。   In addition, since Pt and PtRu alloy catalysts currently used in DMFC and PEFC as practical catalysts are rare metals and are very expensive, it is an essential task to reduce the amount of catalyst used.

こうした問題を解決する手段として、例えば、触媒粒子の径を小さくし、触媒の比表面積を大きくすることで、触媒の単位質量あたりの活性(以下、「質量活性」という)を高め、これによって触媒使用量の削減を図る試みがなされている(特許文献2、3)。   As a means for solving such a problem, for example, by reducing the diameter of the catalyst particles and increasing the specific surface area of the catalyst, the activity per unit mass of the catalyst (hereinafter referred to as “mass activity”) is increased, thereby the catalyst. Attempts have been made to reduce the amount used (Patent Documents 2 and 3).

特開2003−308849号公報JP 2003-308849 A 特開2006−277992号公報JP 2006-277792 A 特開2007−190454号公報JP 2007-190454 A

特許文献2や特許文献3に記載の技術によって、触媒粒子の質量活性向上には一定の効果が認められる一方で、触媒粒子の粒子径を小さくすると、その表面エネルギーが増大して触媒粒子同士の凝集および粗大化が生じやすくなり、また、触媒粒子が溶出しやすくなる。そのため、粒子径の小さな触媒粒子を有する触媒では、初期性能が高い一方で、使用時間の経過に伴って活性が低下しやすく、耐久性の面で未だ改善の余地がある。   While the techniques described in Patent Document 2 and Patent Document 3 have a certain effect in improving the mass activity of the catalyst particles, when the particle diameter of the catalyst particles is reduced, the surface energy increases and Aggregation and coarsening are likely to occur, and catalyst particles are likely to be eluted. Therefore, a catalyst having catalyst particles with a small particle diameter has high initial performance, but its activity tends to decrease with the passage of time of use, and there is still room for improvement in terms of durability.

こうしたことから、燃料電池用のPtRu系合金触媒においては、触媒粒子の使用量を削減し得るように活性を高めつつ、所望の電池性能を長期にわたって維持し得るように耐久性を高める技術の開発が求められる。   Therefore, in PtRu-based alloy catalysts for fuel cells, the development of technology that enhances durability so that desired battery performance can be maintained over a long period of time while increasing activity so that the amount of catalyst particles used can be reduced. Is required.

本発明は、前記事情に鑑みてなされたものであり、その目的は、燃料電池における長期的な負荷変動においても高い耐久性を示し、かつ高活性な燃料電池用PtRu系合金触媒、その製造方法、並びに、前記PtRu系合金触媒を用いた燃料電池用膜電極接合体および燃料電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly active PtRu-based alloy catalyst for a fuel cell that exhibits high durability even in a long-term load fluctuation in the fuel cell, and a method for producing the same. The present invention also provides a fuel cell membrane electrode assembly and a fuel cell using the PtRu-based alloy catalyst.

前記目的を達成し得た本発明の燃料電池用PtRu系合金触媒は、少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子が担体に担持されてなるものであって、前記PtRu系合金触媒粒子は、担体に担持された状態で、非酸化雰囲気下で熱処理されて得られたものであり、前記PtRu系合金触媒粒子の平均粒子径は、10nmより大きく、20nm未満であり、前記PtRu系合金触媒粒子の比表面積は、30〜100m/gであり、触媒全体におけるPtとRuとの比率が、原子比で、30:70〜70:30であることを特徴とするものである。 The PtRu-based alloy catalyst for a fuel cell of the present invention that can achieve the above-mentioned object is one in which PtRu-based alloy catalyst particles containing at least Pt, Ru, and P are supported on a carrier, and the PtRu-based alloy catalyst The particles are obtained by heat treatment in a non-oxidizing atmosphere in a state of being supported on a support, and the average particle diameter of the PtRu-based alloy catalyst particles is greater than 10 nm and less than 20 nm, and the PtRu-based particles The specific surface area of the alloy catalyst particles is 30 to 100 m 2 / g, and the ratio of Pt and Ru in the whole catalyst is 30:70 to 70:30 in terms of atomic ratio.

また、本発明の燃料電池用PtRu系合金触媒の製造方法は、少なくともPt、RuおよびPを担体表面に還元析出させて、少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子を担体に担持させる工程と、担体に担持されたPtRu系合金触媒粒子を、非酸化雰囲気下で熱処理する工程とを有することを特徴とする。   The method for producing a PtRu-based alloy catalyst for a fuel cell according to the present invention comprises at least Pt, Ru and P are reduced and deposited on the surface of the support, and PtRu-based alloy catalyst particles containing at least Pt, Ru and P are supported on the support. And a step of heat-treating the PtRu-based alloy catalyst particles supported on the support in a non-oxidizing atmosphere.

更に、本発明の燃料電池用膜電極接合体は、アノード触媒層、カソード触媒層、および前記アノード触媒層と前記カソード触媒層との間に配されたプロトン導電膜を有する燃料電池用膜電極接合体であって、前記アノード触媒層用の触媒に、本発明の燃料電池用PtRu系合金触媒を用いたことを特徴とするものである。   Furthermore, the fuel cell membrane electrode assembly of the present invention comprises an anode catalyst layer, a cathode catalyst layer, and a fuel cell membrane electrode assembly having a proton conductive film disposed between the anode catalyst layer and the cathode catalyst layer. The PtRu alloy catalyst for fuel cells of the present invention is used as the catalyst for the anode catalyst layer.

また、本発明の燃料電池は、本発明の燃料電池用膜電極接合体を有することを特徴とするものである。   The fuel cell of the present invention is characterized by having the fuel cell membrane electrode assembly of the present invention.

本発明によれば、燃料電池における長期的な負荷変動においても高い耐久性を示し、かつ高活性な燃料電池用PtRu系合金触媒と、その製造方法とを提供することができる。また、本発明の燃料電池用膜電極接合体によれば、優れた電池特性を有し、その電池特性を長期にわたって維持し得る燃料電池を構成できる。更に、本発明の燃料電池は、優れた電池特性を有し、かつその電池特性を長期にわたって維持し得るものである。   According to the present invention, it is possible to provide a PtRu-based alloy catalyst for a fuel cell that exhibits high durability even during long-term load fluctuations in the fuel cell, and a method for producing the same. Moreover, according to the membrane electrode assembly for a fuel cell of the present invention, a fuel cell having excellent battery characteristics and capable of maintaining the battery characteristics over a long period can be configured. Furthermore, the fuel cell of the present invention has excellent battery characteristics and can maintain the battery characteristics over a long period of time.

実施例1、2および比較例1のPtRu系合金触媒の、耐久性試験におけるメタノール酸化活性の変化を表すグラフである。It is a graph showing the methanol oxidation activity change in the durability test of the PtRu-based alloy catalysts of Examples 1 and 2 and Comparative Example 1. 実施例1、2および比較例1のPtRu系合金触媒に係るPtRu系合金触媒粒子の、耐久性試験前後での電気化学的表面積の変化を表すグラフである。It is a graph showing the change of the electrochemical surface area before and behind a durability test of the PtRu type | system | group alloy catalyst particle | grains which concern on the PtRu type | system | group alloy catalyst of Example 1, 2 and the comparative example 1. FIG. 実施例1、2および比較例1のPtRu系合金触媒のメタノール酸化反応に対する質量活性を評価したグラフである。6 is a graph showing an evaluation of mass activity for methanol oxidation reactions of PtRu-based alloy catalysts of Examples 1 and 2 and Comparative Example 1. FIG. 実施例1、2および比較例1のPtRu系合金触媒に係るPtRu系合金触媒粒子の、担体表面での分散状態を観察した透過型電子顕微鏡写真である。4 is a transmission electron micrograph of the dispersion state of the PtRu-based alloy catalyst particles according to the PtRu-based alloy catalysts of Examples 1 and 2 and Comparative Example 1 on the support surface.

前記の通り、PtRu系合金触媒粒子を担体に担持させた構成のPtRu系合金触媒においては、触媒粒子の径を小さくすることで、触媒比表面積を向上させて触媒の質量活性および電池性能を向上させることができる。しかし、触媒粒子径を小さくすると、触媒粒子の表面エネルギーが増大して、凝集、粗大化しやすくなり、触媒活性が劣化しやすくなるというように、触媒の耐久性が低下する。一方、触媒の単位面積あたりの活性(以下、「面積活性」という)を向上させつつ触媒粒子を大きくすることができれば、実質的な触媒の質量活性を維持し、かつ触媒粒子の凝集および粗大化を抑制することが可能となり、触媒の耐久性を向上させることができる。   As described above, in a PtRu alloy catalyst having a structure in which PtRu alloy catalyst particles are supported on a carrier, the catalyst specific surface area is improved by reducing the diameter of the catalyst particles, thereby improving the catalyst mass activity and battery performance. Can be made. However, if the catalyst particle diameter is reduced, the surface energy of the catalyst particles increases, and the catalyst particles are liable to be aggregated and coarsened. As a result, the catalyst activity is likely to be deteriorated. On the other hand, if the catalyst particles can be enlarged while improving the activity per unit area of the catalyst (hereinafter referred to as “area activity”), the substantial mass activity of the catalyst can be maintained, and the catalyst particles can be aggregated and coarsened. And the durability of the catalyst can be improved.

しかしながら、従来の触媒およびその製造方法では、触媒粒子の径を大きくしても触媒の面積活性を向上させることはできず、実効的な触媒の比表面積のみが減少し、結果的に触媒の質量活性の低下が生じていた。従って、所望の触媒活性を備え、良好な電池特性と耐久性とを有する燃料電池を構成可能にするPtRu系合金触媒を得ることは困難であった。   However, in the conventional catalyst and its manufacturing method, even if the diameter of the catalyst particles is increased, the area activity of the catalyst cannot be improved, and only the effective specific surface area of the catalyst is reduced, resulting in the mass of the catalyst. A decrease in activity occurred. Therefore, it has been difficult to obtain a PtRu-based alloy catalyst that has a desired catalytic activity and that can constitute a fuel cell having good battery characteristics and durability.

本発明者らは鋭意検討を重ねた結果、少なくともPt、RuおよびPを含有する微細な形状のPtRu系合金触媒粒子を、担体に担持した状態で、非酸化雰囲気下で熱処理することで、触媒粒子の形態を、燃料電池の発電のための反応を継続しても凝集および粗大化を抑え得るような平均粒子径および比表面積に調整できるとともに、触媒の面積活性を高め得ることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have conducted heat treatment in a non-oxidizing atmosphere in a state where fine PtRu-based alloy catalyst particles containing at least Pt, Ru, and P are supported on a carrier, thereby obtaining a catalyst. It was found that the particle morphology can be adjusted to an average particle size and specific surface area that can suppress aggregation and coarsening even if the reaction for power generation of the fuel cell is continued, and the area activity of the catalyst can be increased. The invention has been completed.

本発明の燃料電池用PtRu系合金触媒(以下、単に「触媒」という場合がある。)は、少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子が担体に担持されて構成されている。本発明の触媒において、活性中心はPtであり、Ruは、前記のBi−faunctional mechanismによって触媒の耐CO被毒性を高める役割を担っている。また、Pは、PtRu系合金触媒を微粒子化する作用を有しており、担体表面に還元析出させた段階でのPtRu系合金触媒粒子が微細な形態となる(H.Daimon and Y.Kurobe、Catal.Today、2006年、第111巻、p.182)。本発明では、こうした微細な形態のPtRu系合金触媒粒子を非酸化雰囲気下で熱処理することで、PtRu系合金触媒粒子の形態の制御を可能としている。   The PtRu-based alloy catalyst for fuel cells of the present invention (hereinafter sometimes simply referred to as “catalyst”) is configured by supporting PtRu-based alloy catalyst particles containing at least Pt, Ru and P on a carrier. In the catalyst of the present invention, the active center is Pt, and Ru plays a role of increasing the CO poisoning resistance of the catalyst by the Bi-functional mechanism. Further, P has a function of making the PtRu-based alloy catalyst fine particles, and the PtRu-based alloy catalyst particles at the stage of reduction precipitation on the support surface are in a fine form (H. Daimon and Y. Kurube, Catal.Today, 2006, 111, p.182). In the present invention, such fine PtRu-based alloy catalyst particles are heat-treated in a non-oxidizing atmosphere, whereby the morphology of the PtRu-based alloy catalyst particles can be controlled.

本発明の触媒に係るPtRu系合金触媒粒子は、少なくともPt、RuおよびPを含有する合金により構成される粒子であり、Pt原子近傍にRu原子が配置しているため、RuによるPtのCO被毒を抑制する作用が効果的に機能することから、高い活性を有している。   The PtRu-based alloy catalyst particles according to the catalyst of the present invention are particles composed of an alloy containing at least Pt, Ru and P. Since Ru atoms are arranged in the vicinity of the Pt atoms, the CO coverage of Pt by Ru is reduced. Since the action of suppressing poison functions effectively, it has high activity.

本発明の触媒に係るPtRu系合金触媒粒子においては、反応による粒子の凝集および粗大化を抑制し、触媒の耐久性を高める観点から、その平均粒子径を10nmより大きくする。ただし、PtRu系合金触媒粒子の粒子径が大きすぎると、その反応表面積が減少し、触媒活性の低下を引き起こして所望の性能が得られない虞がある。よって、PtRu系合金触媒粒子の平均粒子径は、20nm未満であり、15nm以下であることが好ましい。   In the PtRu-based alloy catalyst particles according to the catalyst of the present invention, the average particle diameter is made larger than 10 nm from the viewpoint of suppressing particle aggregation and coarsening due to the reaction and enhancing the durability of the catalyst. However, if the particle diameter of the PtRu-based alloy catalyst particles is too large, the reaction surface area decreases, which may cause a decrease in catalyst activity and a desired performance may not be obtained. Therefore, the average particle size of the PtRu-based alloy catalyst particles is less than 20 nm and preferably 15 nm or less.

本明細書でいうPtRu系合金触媒粒子の平均粒子径は、透過型電子顕微鏡(TEM)を用いて100万倍の倍率で観察できるPtRu系合金微粒子100個の粒子径の平均値である。   The average particle diameter of the PtRu-based alloy catalyst particles referred to in this specification is an average value of the particle diameters of 100 PtRu-based alloy fine particles that can be observed at a magnification of 1,000,000 using a transmission electron microscope (TEM).

また、本発明の触媒に係るPtRu系合金触媒粒子は、触媒の質量活性を高める観点から、その比表面積が、30m/g以上である。ただし、PtRu系合金触媒粒子の比表面積が大きすぎると、通常、粒子径が小さくなって、触媒の面積活性向上効果が確保できず、また、触媒の耐久性も高めることができなくなる。よって、PtRu系合金触媒粒子の比表面積は、100m/g以下である。 Moreover, the specific surface area of the PtRu-based alloy catalyst particles according to the catalyst of the present invention is 30 m 2 / g or more from the viewpoint of increasing the mass activity of the catalyst. However, if the specific surface area of the PtRu-based alloy catalyst particles is too large, the particle diameter is usually small, and the effect of improving the area activity of the catalyst cannot be ensured, and the durability of the catalyst cannot be increased. Therefore, the specific surface area of the PtRu-based alloy catalyst particles is 100 m 2 / g or less.

本明細書でいうPtRu系合金触媒粒子の比表面積は、COパルス吸着法により測定した値である。   The specific surface area of the PtRu-based alloy catalyst particles referred to in this specification is a value measured by a CO pulse adsorption method.

本発明の触媒に係るPtRu系合金触媒粒子では、前述のようにPt表面のCO被毒抑制の観点から、触媒全体におけるPtとRuとの比率が、原子比で、30:70〜70:30であり、40:60〜60:40であることが好ましい。   In the PtRu-based alloy catalyst particles according to the catalyst of the present invention, from the viewpoint of suppressing CO poisoning on the Pt surface as described above, the ratio of Pt and Ru in the whole catalyst is 30:70 to 70:30 in terms of atomic ratio. It is preferable that it is 40: 60-60: 40.

また、本発明の触媒に係るPtRu系合金触媒粒子におけるPの量は、Pによる触媒粒子の微粒子化効果をより良好に確保する観点から、1原子%以上であることが好ましい。ただし、前記PtRu系合金触媒粒子中のPの量が多すぎても効果が飽和してしまうため、前記PtRu系合金触媒粒子におけるPの量は20原子%以下であることが好ましい。   In addition, the amount of P in the PtRu-based alloy catalyst particles according to the catalyst of the present invention is preferably 1 atomic% or more from the viewpoint of better ensuring the effect of finely forming the catalyst particles by P. However, since the effect is saturated even if the amount of P in the PtRu-based alloy catalyst particles is too large, the amount of P in the PtRu-based alloy catalyst particles is preferably 20 atomic% or less.

なお、本発明の触媒に係るPtRu系合金触媒粒子は、例えば、Pを除く残部がPtおよびRuであればよい(ただし、不可避不純物を含有していてもよい)。   In the PtRu-based alloy catalyst particles according to the catalyst of the present invention, for example, the balance other than P may be Pt and Ru (however, it may contain inevitable impurities).

本発明の触媒は、少なくともPt、RuおよびPを担体表面に還元析出させて、少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子を担体に担持させる工程と、担体に担持されたPtRu系合金触媒粒子を、非酸化雰囲気下で熱処理する工程とを有する本発明法により製造することができる。   The catalyst of the present invention includes a step of reducing and precipitating at least Pt, Ru and P on the surface of the support, and supporting the PtRu-based alloy catalyst particles containing at least Pt, Ru and P on the support, and a PtRu system supported on the support. The alloy catalyst particles can be produced by the method of the present invention having a step of heat-treating in a non-oxidizing atmosphere.

少なくともPt、RuおよびPを担体表面に還元析出させて、PtRu系合金触媒粒子を担体に担持させる工程は、例えば、次の(1)〜(3)のステップを有していることが好ましい。   The step of reducing and precipitating at least Pt, Ru, and P on the surface of the support and supporting the PtRu-based alloy catalyst particles on the support preferably includes, for example, the following steps (1) to (3).

(1)のステップでは、担体材料、Pt供給源、Ru供給源、錯化剤および次亜燐酸または次亜燐酸塩を水中に添加して溶液を調製する(なお、前記溶液において、一部の原材料は溶解せずに分散している)。   In step (1), a support material, a Pt source, a Ru source, a complexing agent and hypophosphorous acid or hypophosphite are added to water to prepare a solution ( The raw materials are dispersed without dissolving).

Pt供給源(以下、「Pt前駆体」という。)には、特に安価であることから、六塩化白金酸(HPtCl)が好ましく用いられる。また、六塩化白金酸カリウム(KPtCl)、四塩化白金酸(HPtCl)、四塩化白金酸カリウム(KPtCl)などもPt前駆体として用いることができる。これらのPt前駆体は、1種のみを用いてもよく、2種以上を併用してもよい。 As the Pt supply source (hereinafter referred to as “Pt precursor”), hexachloroplatinic acid (H 2 PtCl 6 ) is preferably used because it is particularly inexpensive. Further, potassium hexachloroplatinate (K 2 PtCl 6 ), platinum tetrachloride (H 2 PtCl 4 ), potassium tetrachloroplatinate (K 2 PtCl 4 ) and the like can also be used as the Pt precursor. These Pt precursors may be used alone or in combination of two or more.

Ru供給源(以下、「Ru前駆体」という。)には、特に安価であることから、塩化ルテニウム(RuCl)が好ましく用いられる。また、硝酸ルテニウム[Ru(NO]などもRu前駆体として用いることができる。これらのRu前駆体は、1種のみを用いてもよく、複数種を併用してもよい。 As the Ru supply source (hereinafter referred to as “Ru precursor”), ruthenium chloride (RuCl 3 ) is preferably used because it is particularly inexpensive. Further, ruthenium nitrate [Ru (NO 3 ) 3 ] can also be used as the Ru precursor. These Ru precursors may be used alone or in combination of two or more.

前記の通り、PtRu系合金触媒粒子では、Pt原子とRu原子とが十分に混合し、Pt原子とRu原子とが隣接した原子配列が望まれる。水系の化学還元合成法において、この原子混合の障害となるのが、PtイオンとRuイオンとの間に存在する還元電位差である。よって、(1)のステップで調製する溶液には錯化剤を添加して、前記の還元電位差を減少させることが好ましい。   As described above, in the PtRu-based alloy catalyst particles, an atomic arrangement in which Pt atoms and Ru atoms are sufficiently mixed and Pt atoms and Ru atoms are adjacent to each other is desired. In the aqueous chemical reduction synthesis method, an obstacle to the mixing of atoms is a reduction potential difference existing between Pt ions and Ru ions. Therefore, it is preferable to add a complexing agent to the solution prepared in the step (1) to reduce the reduction potential difference.

なお、錯化剤としては、クエン酸、コハク酸、リンゴ酸、酒石酸、マレイン酸、ニトリロ三酢酸、およびこれらの塩などが好ましい。錯化剤には、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。   As the complexing agent, citric acid, succinic acid, malic acid, tartaric acid, maleic acid, nitrilotriacetic acid, and salts thereof are preferable. Only 1 type of these may be used for a complexing agent, and 2 or more types may be used together.

溶液に添加した錯化剤は、溶液中のPtイオンとRuイオンに塩素イオンなどが配位した錯体と配位子置換し、新たな錯体に変化する。なお、前記錯化剤は二個以上のカルボキシル基を含有する多座配位子であり、キレート錯体を形成する。このキレート錯体形成により、錯体の安定度が増加してPtイオンとRuイオンとの還元電位が低下する。このとき、Ruキレート錯体よりもPtキレート錯体の方が、安定化の度合い(還元電位の減少の絶対値)が大きい。その結果、両キレート錯体間の還元電位差が、元の塩素イオンなどが配位した錯体に比べて減少する。この還元電位差の減少により、Ptの優先的還元が抑制され、Pt原子とRu原子とが十分に混合近接した触媒構造を得ることができる。従って、Pt原子近傍にRu原子を配置させることが可能となって、RuによるPtのCO被毒を抑制する作用が効果的に機能し、高い活性を有するPtRu系合金触媒粒子を得ることができる。   The complexing agent added to the solution undergoes ligand substitution with a complex in which chlorine ions or the like are coordinated to Pt ions and Ru ions in the solution, and changes to a new complex. The complexing agent is a multidentate ligand containing two or more carboxyl groups, and forms a chelate complex. By this chelate complex formation, the stability of the complex increases and the reduction potential of Pt ions and Ru ions decreases. At this time, the degree of stabilization (absolute value of reduction of the reduction potential) is greater in the Pt chelate complex than in the Ru chelate complex. As a result, the reduction potential difference between the two chelate complexes is reduced as compared with the complex coordinated with the original chloride ions. By reducing this reduction potential difference, preferential reduction of Pt is suppressed, and a catalyst structure in which Pt atoms and Ru atoms are sufficiently mixed and close can be obtained. Therefore, it becomes possible to arrange Ru atoms in the vicinity of the Pt atoms, and the action of suppressing the CO poisoning of Pt by Ru functions effectively, and PtRu-based alloy catalyst particles having high activity can be obtained. .

溶液に添加する錯化剤の量は、より安定なPtキレート錯体およびRuキレート錯体を形成する観点から、溶液中の貴金属イオン(PtイオンおよびRuイオン)の合計モル数に対して、0.01倍以上とすることが好ましい。ただし、溶液に添加する錯化剤の量が多すぎると、キレート効果による錯体の安定度が高まりすぎて、PtイオンおよびRuイオンの還元効率が低下する虞がある。よって、溶液に添加する錯化剤の量は、溶液中の貴金属イオンの合計モル数に対して、4.0倍以下とすることが好ましい。   The amount of the complexing agent added to the solution is 0.01 to the total number of moles of noble metal ions (Pt ions and Ru ions) in the solution from the viewpoint of forming a more stable Pt chelate complex and Ru chelate complex. It is preferable to make it more than twice. However, if the amount of the complexing agent added to the solution is too large, the stability of the complex due to the chelate effect is too high, and the reduction efficiency of Pt ions and Ru ions may be reduced. Therefore, the amount of the complexing agent added to the solution is preferably 4.0 times or less with respect to the total number of moles of noble metal ions in the solution.

(1)のステップで使用する担体材料としては、例えば、比表面積が20〜1000m/g程度のカーボンが好ましく、具体的には、カーボンブラック、アセチレンブラック、カーボンナノチューブなどが好適である。また、担体の酸化を考慮して、非酸化雰囲気下で熱処理され、グラファイト成分が増加したカーボンも好ましく用いることができる。 As the carrier material used in the step (1), for example, carbon having a specific surface area of about 20 to 1000 m 2 / g is preferable, and specifically, carbon black, acetylene black, carbon nanotube and the like are preferable. In consideration of the oxidation of the carrier, carbon that has been heat-treated in a non-oxidizing atmosphere and has an increased graphite component can also be preferably used.

なお、触媒の担持率(PtRu系合金触媒粒子と担体との合計100質量%中のPtRu系合金触媒粒子の量)は、50〜80質量%であることが好ましく、また、膜電極接合体に係る電極を薄膜化して反応物質の拡散を促進するためには、担持率がより高いと有利であることから、60〜80質量%であることがより好ましい。よって、前記の担体材料は、触媒が前記の担持率となる量で使用することが好ましい。   The catalyst loading ratio (the amount of PtRu-based alloy catalyst particles in a total of 100% by weight of the PtRu-based alloy catalyst particles and the carrier) is preferably 50 to 80% by weight. In order to promote the diffusion of the reactant by reducing the thickness of the electrode, it is advantageous that the loading ratio is higher, so 60-80% by mass is more preferable. Therefore, it is preferable to use the carrier material in an amount such that the catalyst has the loading rate.

溶液に添加する次亜燐酸または次亜燐酸塩は、合金触媒粒子におけるPの供給源となるものであり、前記の通り、触媒粒子を微粒子化する作用を有している。よって、担体表面に析出するPtRu系合金触媒粒子が粒径の小さな微粒子になり、これを非酸化雰囲気下で熱処理することで、PtRu系合金触媒粒子の平均粒子径および比表面積を前記の値に調整できる。また、次亜燐酸または次亜燐酸塩は、後述する(2)のステップにおいて、少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子を担体表面に還元析出させる際の還元析出反応における還元剤としても作用する。   Hypophosphorous acid or hypophosphite added to the solution serves as a supply source of P in the alloy catalyst particles, and has the effect of making the catalyst particles fine as described above. Therefore, the PtRu-based alloy catalyst particles deposited on the surface of the support become fine particles having a small particle size. By heat-treating them in a non-oxidizing atmosphere, the average particle size and specific surface area of the PtRu-based alloy catalyst particles are set to the above values. Can be adjusted. Further, hypophosphorous acid or hypophosphite is a reducing agent in the reduction precipitation reaction when PtRu-based alloy catalyst particles containing at least Pt, Ru and P are reduced and precipitated on the support surface in the step (2) described later. Also works.

なお、(1)のステップで調製する溶液には、次亜燐酸または次亜燐酸塩に加えて他の還元剤を添加してもよい。このような還元剤としては、例えば、水素化ホウ素ナトリウム、ホルマリン、ヒドラジンなどが挙げられる。   In addition to the hypophosphorous acid or hypophosphite, another reducing agent may be added to the solution prepared in the step (1). Examples of such a reducing agent include sodium borohydride, formalin, hydrazine and the like.

還元剤の使用量は、PtおよびRuを還元できる最小量論比を満たしていればよいが、多すぎると、溶液中で析出還元が起こり、浴が分解することで還元できなくなる虞があることから、PtとRuとの合計モル数に対して10倍以下とすることが好ましい。ただし、還元剤のうち、(1)のステップで調製する溶液における次亜燐酸または次亜燐酸塩の量は、製造される触媒において、PtRu系合金触媒粒子中のP量が前記の量となるように調整することがより好ましい。   The amount of the reducing agent used should satisfy the minimum stoichiometric ratio that can reduce Pt and Ru, but if it is too much, precipitation reduction occurs in the solution, and there is a possibility that the reduction may not be possible due to decomposition of the bath. Therefore, it is preferable to be 10 times or less with respect to the total number of moles of Pt and Ru. However, among the reducing agents, the amount of hypophosphorous acid or hypophosphite in the solution prepared in step (1) is such that the amount of P in the PtRu-based alloy catalyst particles is the above amount in the produced catalyst. It is more preferable to adjust so.

なお、(1)のステップにおいては、Pt前駆体とRu前駆体とを含む溶液中に錯化剤を添加した後、一定時間以上経過させることが好ましい。Pt前駆体に例えば六塩化白金酸を使用する場合、このPt前駆体は塩素イオンが配位した錯体であるが、これを含有する溶液中に錯化剤を添加しても、塩素イオン配位子との配位子置換反応が遅いことが分かっている(T.Onodera、S.Suzuki、Y.Takamori and H.Daimon、Appl.Cata.A、gen、2010年、第379巻、p.69)。前記の通り、Pt原子とRu原子とが十分に混合した高活性のPtRu系合金触媒粒子を得るためには、前記錯化剤の添加によって安定なキレート錯体を形成させ、PtイオンとRuイオンとの間に存在する還元電位差を減少させる必要がある。よって、Pt前駆体が六塩化白金酸のような塩化物の場合、溶液中に錯化剤を添加した後、塩素イオンとこれら錯化剤とを十分に置換させるため、一定時間以上経過させることが推奨される。これにより、置換反応速度が遅い場合でも、配位子置換反応を十分に進行させて、安定な錯体を形成することができる。その結果、PtイオンとRuイオンとの間に存在する還元電位差を減少させ、Pt原子とRu原子とが十分に混合し隣接したPtRu系合金触媒粒子を合成することができる。   In the step (1), it is preferable that a predetermined time or more elapses after the complexing agent is added to the solution containing the Pt precursor and the Ru precursor. For example, when hexachloroplatinic acid is used as the Pt precursor, this Pt precursor is a complex coordinated with chlorine ions. Even if a complexing agent is added to the solution containing this, the chloride ion coordination is performed. It has been found that the ligand substitution reaction with the child is slow (T. Onodera, S. Suzuki, Y. Takamori and H. Daimon, Appl. Cata. A, gen, 2010, vol. 379, p. 69). ). As described above, in order to obtain highly active PtRu-based alloy catalyst particles in which Pt atoms and Ru atoms are sufficiently mixed, a stable chelate complex is formed by adding the complexing agent, and Pt ions and Ru ions It is necessary to reduce the reduction potential difference existing between the two. Therefore, when the Pt precursor is a chloride such as hexachloroplatinic acid, after adding a complexing agent to the solution, the chloride ion and these complexing agents are sufficiently substituted, so that a certain period of time should elapse. Is recommended. Thereby, even when the substitution reaction rate is slow, the ligand substitution reaction can be sufficiently advanced to form a stable complex. As a result, the reduction potential difference existing between Pt ions and Ru ions can be reduced, and Pt atoms and Ru atoms can be sufficiently mixed to synthesize adjacent PtRu-based alloy catalyst particles.

Pt前駆体とRu前駆体とを含む溶液中に錯化剤を添加した後に経過させる時間は、1時間以上が好ましく、12時間以上がより好ましく、24時間以上が更に好ましい。   The time elapsed after adding the complexing agent to the solution containing the Pt precursor and the Ru precursor is preferably 1 hour or longer, more preferably 12 hours or longer, and still more preferably 24 hours or longer.

(2)のステップでは、(1)のステップで調製した溶液を加熱して、Pt、RuおよびPを担体表面に還元析出させ、PtRu系合金触媒粒子を担体に担持させる。なお、前記溶液の加熱温度は、還元剤の能力を十分に発揮させるために、60℃以上とすることが好ましく、80℃以上とすることがより好ましく、また、90℃以下とすることが好ましい。   In the step (2), the solution prepared in the step (1) is heated to cause Pt, Ru and P to be reduced and deposited on the surface of the support, and the PtRu-based alloy catalyst particles are supported on the support. The heating temperature of the solution is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and preferably 90 ° C. or lower in order to fully exhibit the ability of the reducing agent. .

(2)のステップにおいて、前記溶液のpHは適当な値に調整される。Ru3+イオンと水酸化物イオンの溶解度積は1×10−38〔mol/l〕と極めて小さく、溶液のpHをアルカリ側に設定した場合、Ru(OH)の沈殿が生成する。しかし、前記溶液にキレートを形成する錯化剤を添加した場合には、錯体が安定化するため、前記溶液のpHがアルカリ側の領域であっても、水酸化物の生成を抑え、安定した合成系を構築できる。勿論、本発明法では、前記溶液のpHが、水酸化物の沈殿が生成しない酸性側の領域であっても、PtRu系合金触媒粒子の合成を行うことができる。 In the step (2), the pH of the solution is adjusted to an appropriate value. The solubility product of Ru 3+ ions and hydroxide ions is as extremely low as 1 × 10 −38 [mol / l] 4. When the pH of the solution is set to the alkali side, a precipitate of Ru (OH) 3 is generated. However, when a complexing agent that forms a chelate is added to the solution, the complex is stabilized. Therefore, even when the pH of the solution is in the alkaline region, the formation of hydroxide is suppressed and stabilized. A synthetic system can be constructed. Of course, in the method of the present invention, PtRu-based alloy catalyst particles can be synthesized even when the pH of the solution is in the acidic region where no precipitate of hydroxide is generated.

なお、(2)のステップで溶液を加熱する時間は、例えば、1時間以上とすることが好ましく、また、生産性向上の観点から10時間以下とすることが好ましい。   The time for heating the solution in the step (2) is preferably, for example, 1 hour or longer, and preferably 10 hours or shorter from the viewpoint of improving productivity.

(3)のステップでは、(2)のステップで合成したPtRu系合金触媒を洗浄し、乾燥する。まず、(2)のステップを経て得られた溶液から、PtRu系合金触媒を濾過などによって取り出し、例えば、水(イオン交換水など)を用いて洗浄し、洗浄後のPtRu系合金触媒を乾燥する。乾燥は、例えば、オーブンなどを用いればよく、また、乾燥条件は、好ましくは100℃以下(より好ましくは70〜80℃程度)で、乾燥するまで(具体的は、12〜24時間程度)とすればよい。   In the step (3), the PtRu alloy catalyst synthesized in the step (2) is washed and dried. First, the PtRu-based alloy catalyst is taken out from the solution obtained through the step (2) by filtration or the like, washed with, for example, water (ion-exchanged water or the like), and the washed PtRu-based alloy catalyst is dried. . For drying, for example, an oven or the like may be used, and the drying conditions are preferably 100 ° C. or lower (more preferably about 70 to 80 ° C.) and until drying (specifically, about 12 to 24 hours). do it.

続いて、(3)のステップを経て得られたPtRu系合金触媒、すなわち担体に担持された状態のPtRu系合金触媒粒子を、非酸化雰囲気下で熱処理する。この熱処理によって、PtRu系合金触媒粒子の平均粒子径および比表面積を前記の値に調整して、触媒の耐久性を高めると共に、触媒の面積活性も高めることができる。   Subsequently, the PtRu-based alloy catalyst obtained through the step (3), that is, the PtRu-based alloy catalyst particles supported on the carrier is heat-treated in a non-oxidizing atmosphere. By this heat treatment, the average particle diameter and specific surface area of the PtRu-based alloy catalyst particles can be adjusted to the above-mentioned values, so that the durability of the catalyst can be enhanced and the area activity of the catalyst can be enhanced.

非酸化雰囲気下での熱処理によって触媒の面積活性が向上する理由は、現在、以下のように考えられる。熱力学的なPtとRuとの混合熱(Pt原子とRu原子との混ざりやすさ)は、−1kJ/molである。ここでは、PtとPtとの混合熱およびRuとRuとの混合熱を0kJ/molと決めている。一方、PtとPとの混合熱は−26kJ/molであり、RuとPとの混合熱は−22kJ/molである。これらの混合熱の値は、Pが共存する本発明のPtRu系合金触媒では、Pt−Pt、Ru−RuおよびPt−Ruの金属結合間にPが介入できることを示している。このことから、触媒表面近傍では、Pの共存によってPt原子団(クラスター)とRu原子団との分離が促進されて、前記式(4)から式(6)に示したBi−faunctional mechanismが一層高効率に機能し得る状態となり、通常のPtRu系合金触媒に比べてメタノール酸化の面積活性が高まったと考えられる。   The reason why the area activity of the catalyst is improved by heat treatment in a non-oxidizing atmosphere is considered as follows. Thermodynamic mixing heat of Pt and Ru (easy mixing of Pt atoms and Ru atoms) is −1 kJ / mol. Here, the mixing heat of Pt and Pt and the mixing heat of Ru and Ru are determined to be 0 kJ / mol. On the other hand, the heat of mixing of Pt and P is −26 kJ / mol, and the heat of mixing of Ru and P is −22 kJ / mol. These values of heat of mixing indicate that P can intervene between the metal bonds of Pt—Pt, Ru—Ru and Pt—Ru in the PtRu alloy catalyst of the present invention in which P coexists. From this, in the vicinity of the catalyst surface, separation of the Pt atomic group (cluster) and the Ru atomic group is promoted by the coexistence of P, and the Bi-functional mechanism shown in the above formulas (4) to (6) is further increased. It is considered that the area activity of methanol oxidation is increased as compared with a normal PtRu alloy catalyst.

熱処理する系内を非酸化雰囲気とするための非酸化性ガスとしては、例えば、水素ガス、窒素ガス、アルゴンガスなどが挙げられる。熱処理を行う系内は、これらの非酸化性ガスのうちの1種のみ(純水素ガス、純窒素ガス、純アルゴンガス)を含んでいてもよく、2種以上(水素を含有する窒素ガス、水素を含有するアルゴンガスなど)を含んでいてもよいが、純水素ガスを含む系内で熱処理することが特に好ましい。   Examples of the non-oxidizing gas for making the heat treatment system non-oxidizing atmosphere include hydrogen gas, nitrogen gas, and argon gas. The system for performing the heat treatment may contain only one of these non-oxidizing gases (pure hydrogen gas, pure nitrogen gas, pure argon gas), or two or more (nitrogen gas containing hydrogen, Argon gas containing hydrogen and the like may be contained, but it is particularly preferable to perform heat treatment in a system containing pure hydrogen gas.

熱処理温度は、触媒の面積活性を高め、かつPtRu系合金触媒粒子の形態を制御して良好な耐久性を確保する観点から、650℃以上とすることが好ましく、700℃以上とすることがより好ましい。すなわち、熱処理温度が低すぎると、例えばPtRu系合金触媒粒子の平均粒子径が前記の値より小さくなりやすく、良好な耐久性を確保し得ない虞がある。   The heat treatment temperature is preferably 650 ° C. or higher, more preferably 700 ° C. or higher, from the viewpoint of enhancing the area activity of the catalyst and controlling the form of the PtRu-based alloy catalyst particles to ensure good durability. preferable. That is, if the heat treatment temperature is too low, for example, the average particle diameter of the PtRu-based alloy catalyst particles tends to be smaller than the above value, and there is a possibility that good durability cannot be ensured.

ただし、熱処理温度が高すぎると、PtRu系合金触媒粒子が凝集、粗大化しやすく、実効的な触媒比表面積が減少して、所望の特性を得られない虞がある。よって、熱処理温度は1000℃以下であることが好ましく、950℃以下であることがより好ましい。   However, if the heat treatment temperature is too high, the PtRu-based alloy catalyst particles are likely to agglomerate and coarsen, the effective catalyst specific surface area decreases, and the desired characteristics may not be obtained. Therefore, the heat treatment temperature is preferably 1000 ° C. or lower, and more preferably 950 ° C. or lower.

熱処理の時間は、例えば、10分〜1時間とすることが好ましい。   The heat treatment time is preferably, for example, 10 minutes to 1 hour.

本発明法により製造されたPtRu系合金触媒(本発明の触媒)は、燃料電池(DMFCおよびPEFC)用膜電極接合体のアノード触媒層用の触媒として使用される。   The PtRu-based alloy catalyst (the catalyst of the present invention) produced by the method of the present invention is used as a catalyst for an anode catalyst layer of a membrane electrode assembly for fuel cells (DMFC and PEFC).

すなわち、本発明の燃料電池用膜電極接合体は、アノード触媒層用の触媒に、本発明の燃料電池用PtRu系合金触媒を用いたものであり、その他の構成および構造については、特に制限はなく、従来から知られている燃料電池(DMFCおよびPEFC)の膜電極接合体に採用されている構成および構造を適用することができる。   That is, the fuel cell membrane electrode assembly of the present invention uses the PtRu-based alloy catalyst for fuel cells of the present invention as the catalyst for the anode catalyst layer, and other configurations and structures are not particularly limited. In addition, it is possible to apply a configuration and a structure adopted in a membrane electrode assembly of conventionally known fuel cells (DMFC and PEFC).

また、本発明の燃料電池は、本発明の燃料電池用膜電極接合体を有していればよく、その他の構成および構造については、特に制限はなく、従来から知られている燃料電池(DMFCおよびPEFC)に採用されている構成および構造を適用することができる。   The fuel cell of the present invention only needs to have the fuel cell membrane electrode assembly of the present invention, and the other configurations and structures are not particularly limited, and a conventionally known fuel cell (DMFC) And the structure and structure adopted in PEFC) can be applied.

本発明の燃料電池用膜電極接合体は、従来の触媒よりも比表面積が小さく、比較的大きな粒子を有する触媒を使用しているにもかかわらず、高い質量活性と耐久性を有する本発明の触媒を用いていることから、高耐久性を有するアノード層の製造が可能となる。よって、このような膜電極接合体を有する本発明の燃料電池は、高い耐久性と良好な電池特性を有するものである。   The fuel cell membrane electrode assembly of the present invention has a specific surface area smaller than that of the conventional catalyst and uses a catalyst having relatively large particles, but has high mass activity and durability. Since the catalyst is used, an anode layer having high durability can be manufactured. Therefore, the fuel cell of the present invention having such a membrane electrode assembly has high durability and good battery characteristics.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
六塩化白金酸六水和物:1.69mmolと、塩化ルテニウム(III)水和物:1.69mmolとの混合水溶液に、錯化剤としてDL−酒石酸:0.1mmolを添加し、イオン交換水を加えて全体を300mlに調整して、水溶液を調製した。前記の水溶液を室温で30分攪拌した後、カーボンブラック担体であるケッチェンブラックEC粉末を0.5g加えて分散させた。その後、担体を分散させた前記の溶液に、還元剤でありかつP供給源である次亜燐酸を6.8mmol加え、全溶液量を1000mlにし、更に、2規定の水酸化ナトリウム水溶液を滴下して、溶液のpHを2に調整した後、浴温度90℃で溶液を攪拌し、PtRu系合金触媒粒子をカーボンブラック担体表面に還元析出させた。これにより得られたPtRu系合金触媒全体におけるPtとRuとの比率は、50:50(原子比)であった。
Example 1
DL-tartaric acid: 0.1 mmol as a complexing agent was added to a mixed aqueous solution of hexachloroplatinic acid hexahydrate: 1.69 mmol and ruthenium (III) chloride hydrate: 1.69 mmol, and ion-exchanged water Was added to adjust the whole to 300 ml to prepare an aqueous solution. After stirring the aqueous solution at room temperature for 30 minutes, 0.5 g of Ketjen Black EC powder, which is a carbon black carrier, was added and dispersed. Thereafter, 6.8 mmol of hypophosphorous acid, which is a reducing agent and a P supply source, is added to the above-mentioned solution in which the carrier is dispersed to make the total solution volume 1000 ml, and 2N aqueous sodium hydroxide solution is further added dropwise. After adjusting the pH of the solution to 2, the solution was stirred at a bath temperature of 90 ° C., and PtRu-based alloy catalyst particles were reduced and deposited on the surface of the carbon black support. The ratio of Pt and Ru in the whole PtRu-based alloy catalyst thus obtained was 50:50 (atomic ratio).

反応終了後の前記溶液からPtRu系合金触媒を濾過により取り出し、洗浄および乾燥した後、純水素中で、900℃で10分熱処理を行って、実施例1のPtRu系合金触媒を得た。   The PtRu-based alloy catalyst was removed from the solution after completion of the reaction by filtration, washed and dried, and then heat-treated at 900 ° C. for 10 minutes in pure hydrogen to obtain the PtRu-based alloy catalyst of Example 1.

実施例2
純水素中での熱処理温度を700℃に変更した以外は、実施例1と同様にしてPtRu系合金触媒を作製した。
Example 2
A PtRu-based alloy catalyst was produced in the same manner as in Example 1 except that the heat treatment temperature in pure hydrogen was changed to 700 ° C.

比較例1
純水素中での熱処理を行わなかった以外は、実施例1と同様にしてPtRu系合金触媒を作製した。
Comparative Example 1
A PtRu-based alloy catalyst was produced in the same manner as in Example 1 except that heat treatment in pure hydrogen was not performed.

実施例1、2および比較例1のPtRu系合金触媒について、蛍光X線分析(XRF)による組成分析、透過型電子顕微鏡(TEM)観察によるPtRu系合金触媒粒子の平均粒子径測定、およびCOパルス吸着測定によるPtRu系合金触媒粒子の比表面積測定を行った。これらの結果を表1に示す。   For the PtRu-based alloy catalysts of Examples 1 and 2 and Comparative Example 1, composition analysis by fluorescent X-ray analysis (XRF), measurement of the average particle diameter of PtRu-based alloy catalyst particles by transmission electron microscope (TEM) observation, and CO pulse The specific surface area of the PtRu-based alloy catalyst particles was measured by adsorption measurement. These results are shown in Table 1.

また、実施例1、2および比較例1のPtRu系合金触媒を用いて標準的な3電極セルを組み、それらの耐久性試験前後での触媒特性を評価した。これらの評価結果を図1および図2に示す。   Further, standard three-electrode cells were assembled using the PtRu-based alloy catalysts of Examples 1 and 2 and Comparative Example 1, and the catalyst characteristics before and after the durability test were evaluated. These evaluation results are shown in FIG. 1 and FIG.

まず、純水中に2mg/mlで分散させたPtRu系合金触媒をマイクロピペットで20μl取り、これをグラッシーカーボン電極上に塗布し、乾燥した後、この上にイオン伝導性ポリマー分散液[Aldrich社製「Nafion(登録商標)」]を5μl塗布し乾燥したものを作用極とした。また、対極にはPt線を、参照極にはAg/AgCl電極を用意した。そして、これらの作用極、対極および参照極を、0.5mol/l濃度の硫酸水溶液中に浸漬して3電極セルとし、5mVの電位走査速度で0.03Vから0.6Vの電位走査範囲でサイクリックボルタンメトリー(CV)測定を行い、耐久性試験前におけるPtRu系合金触媒の電気化学的表面積を評価した。   First, 20 μl of a PtRu-based alloy catalyst dispersed at 2 mg / ml in pure water was taken with a micropipette, applied onto a glassy carbon electrode, dried, and then an ion conductive polymer dispersion [Aldrich Co. A product obtained by applying 5 μl of “Nafion (registered trademark)” manufactured and drying was used as a working electrode. A Pt line was prepared for the counter electrode, and an Ag / AgCl electrode was prepared for the reference electrode. Then, these working electrode, counter electrode, and reference electrode are immersed in a 0.5 mol / l sulfuric acid aqueous solution to form a three-electrode cell in a potential scanning range of 0.03 V to 0.6 V at a potential scanning speed of 5 mV. Cyclic voltammetry (CV) measurement was performed to evaluate the electrochemical surface area of the PtRu alloy catalyst before the durability test.

更に、CV測定後の3電極セルに20vol.%のメタノールを添加して、35℃、窒素雰囲気中、5mV/sの電位走査速度でLinear sweep voltammetry(LSV)測定を行って、耐久性試験前におけるPtRu系合金触媒のメタノール酸化活性を測定した。   In addition, 20 vol. % Methanol was added, and a linear sweep voltammetry (LSV) measurement was performed at 35 ° C. in a nitrogen atmosphere at a potential scanning speed of 5 mV / s to measure the methanol oxidation activity of the PtRu-based alloy catalyst before the durability test. .

次に、耐久性試験前におけるPtRu系合金触媒のメタノール酸化活性測定に用いた作用極、対極および参照極を、0.5mol/l濃度の硫酸水溶液中に浸漬して3電極セルとし、0.1Vから0.7Vの範囲で1000mV/sの速度で電圧を掃引する電位付加サイクルを1000サイクル行う耐久性試験を実施した。   Next, the working electrode, counter electrode and reference electrode used for measuring the methanol oxidation activity of the PtRu-based alloy catalyst before the durability test were immersed in a 0.5 mol / l sulfuric acid aqueous solution to form a three-electrode cell. A durability test was performed in which a potential application cycle in which a voltage was swept at a rate of 1000 mV / s in a range of 1 V to 0.7 V was performed for 1000 cycles.

そして、耐久性試験後の3電極セルについて、5mVの電位走査速度で0.03Vから0.6Vの電位走査範囲でCV測定を行い、耐久性試験後におけるPtRu系合金触媒の電気化学的表面積を評価した。   Then, CV measurement is performed on the 3-electrode cell after the durability test at a potential scanning speed of 5 mV in a potential scanning range of 0.03 V to 0.6 V, and the electrochemical surface area of the PtRu alloy catalyst after the durability test is determined. evaluated.

更に、CV測定後の3電極セルに20vol.%のメタノールを添加し、35℃、窒素雰囲気中、5mV/sの電位走査速度でLSV測定を行って、耐久性試験後におけるPtRu系合金触媒のメタノール酸化活性を測定した。   In addition, 20 vol. % Methanol was added, LSV measurement was performed at 35 ° C. in a nitrogen atmosphere at a potential scanning speed of 5 mV / s, and the methanol oxidation activity of the PtRu-based alloy catalyst after the durability test was measured.

図1は、耐久性試験における各PtRu系合金触媒のメタノール酸化活性を表すグラフであり、横軸に電位付加サイクル数を、縦軸には、「メタノール酸化活性の変化」として、耐久性試験前のメタノール酸化活性を100%とした場合の相対値を示している。また、図2は、耐久性試験前後での各PtRu系合金触媒の電気化学的表面積を表すグラフであり、縦軸には、「表面積変化」として、CV測定により評価した耐久性試験前後での各触媒の電気化学的表面積を、耐久性試験前の値を100%とした場合の相対値で示している。   FIG. 1 is a graph showing the methanol oxidation activity of each PtRu-based alloy catalyst in the durability test. The horizontal axis represents the number of potential application cycles, and the vertical axis represents “change in methanol oxidation activity” before the durability test. The relative value is shown when the methanol oxidation activity is 100%. FIG. 2 is a graph showing the electrochemical surface area of each PtRu-based alloy catalyst before and after the durability test. The vertical axis indicates “surface area change” before and after the durability test evaluated by CV measurement. The electrochemical surface area of each catalyst is shown as a relative value when the value before the durability test is 100%.

図1および表1に示すように、非酸化雰囲気下での熱処理を行っておらず、平均粒子径が小さく比表面積が大きなPtRu系合金触媒粒子を有する比較例1のPtRu系合金触媒は、耐久性試験前でのメタノール酸化活性を100とした場合、耐久性試験後(電位付加サイクル数1000回目)でのメタノール酸化活性が70であり、30%の低下が認められる。   As shown in FIG. 1 and Table 1, the PtRu-based alloy catalyst of Comparative Example 1 that has not been heat-treated in a non-oxidizing atmosphere and has PtRu-based alloy catalyst particles having a small average particle size and a large specific surface area is durable. Assuming that the methanol oxidation activity before the durability test is 100, the methanol oxidation activity after the durability test (the number of potential application cycles is 1000) is 70, and a 30% decrease is observed.

これに対し、純水素ガス中で熱処理を行い、平均粒子径および比表面積が適正なPtRu系合金触媒粒子を有する実施例1、2のPtRu系合金触媒は、耐久性試験前でのメタノール酸化活性を100とした場合、耐久性試験後でのメタノール酸化活性が、それぞれ90、85であり、比較例1の触媒と比較して、高い耐久性を有していることが分かる。   On the other hand, the PtRu-based alloy catalysts of Examples 1 and 2 having PtRu-based alloy catalyst particles having an appropriate average particle diameter and specific surface area, which were heat-treated in pure hydrogen gas, had methanol oxidation activity before the durability test. When 100 is 100, the methanol oxidation activity after the durability test is 90 and 85, respectively, which is higher than that of the catalyst of Comparative Example 1.

また、図2に示すように、非酸化雰囲気下での熱処理を行っていない比較例1のPtRu系合金触媒は、耐久性試験前の電気化学的表面積100に対して、耐久性試験後の電気化学的表面積が50で、半分に減少している。   In addition, as shown in FIG. 2, the PtRu-based alloy catalyst of Comparative Example 1 that has not been heat-treated in a non-oxidizing atmosphere has an electrical surface after the durability test with respect to the electrochemical surface area 100 before the durability test. The chemical surface area is 50, reduced in half.

これに対し、純水素ガス中で熱処理を行った実施例1、2のPtRu系合金触媒は、耐久性試験前の電気化学的表面積100に対して、耐久性試験後の電気化学的表面積が、それぞれ95、90である。従って、前記の熱処理による触媒粒子の粒径増大効果によって、触媒粒子が安定化し、耐久性試験後においても触媒の電気化学的表面積が殆ど減少せず、反応表面積が維持されることが分かる。   In contrast, the PtRu-based alloy catalysts of Examples 1 and 2 that were heat-treated in pure hydrogen gas had an electrochemical surface area after the durability test with respect to the electrochemical surface area 100 before the durability test, They are 95 and 90, respectively. Therefore, it can be seen that due to the effect of increasing the particle size of the catalyst particles by the heat treatment, the catalyst particles are stabilized, and the electrochemical surface area of the catalyst is hardly reduced even after the durability test, and the reaction surface area is maintained.

また、図3には、実施例1および比較例1のPtRu系合金触媒について、前記の耐久性試験前におけるメタノール酸化活性の評価と同様にして評価したメタノール酸化反応に対する質量活性を表すグラフを示している。図3のグラフでは、横軸に電位を、縦軸にメタノール酸化反応による電流密度(PtRu系合金触媒粒子1mg当たりのメタノール酸化電流)を示しており、一定の電位で電流密度が大きいほど、その触媒のメタノール酸化活性が高いことを意味している。   FIG. 3 is a graph showing the mass activity for the methanol oxidation reaction evaluated for the PtRu-based alloy catalysts of Example 1 and Comparative Example 1 in the same manner as the evaluation of the methanol oxidation activity before the durability test. ing. In the graph of FIG. 3, the horizontal axis indicates the potential, and the vertical axis indicates the current density due to the methanol oxidation reaction (methanol oxidation current per 1 mg of PtRu-based alloy catalyst particles). This means that the catalyst has a high methanol oxidation activity.

純水素ガス中で900℃熱処理を行った実施例1の触媒では、0.5Vにおける質量活性は、電流密度(すなわち、質量活性)が50mA/mgである。実施例1の触媒は、熱処理によって触媒粒子径が増大し、比表面積が減少しているにも関わらず、非酸化雰囲気下で熱処理を行っておらず、比表面積が大きな触媒粒子を有する比較例1の触媒における電流密度48mA/mgと比べて、同等以上のメタノール酸化活性を有していることが分かる。   In the catalyst of Example 1 subjected to heat treatment at 900 ° C. in pure hydrogen gas, the mass activity at 0.5 V has a current density (that is, mass activity) of 50 mA / mg. The catalyst of Example 1 is a comparative example having catalyst particles with a large specific surface area that is not heat-treated in a non-oxidizing atmosphere, even though the catalyst particle diameter is increased by heat treatment and the specific surface area is decreased. It can be seen that the methanol oxidation activity is equal to or higher than the current density of 48 mA / mg in the catalyst No. 1.

触媒に係るPtRu系合金触媒粒子の平均粒子径は、比較例1が2.5nmで、実施例1は14.9nmであり、触媒粒子の幾何学的比表面積が、実施例1の触媒では比較例1の触媒の約1/6に減少している。従って、実施例1の触媒と比較例1の触媒とが同等のメタノール酸化活性を示すということは、実施例1の触媒の面積活性が、比較例1の触媒の約6倍に高まっていることを表している。   The average particle diameter of the PtRu-based alloy catalyst particles relating to the catalyst is 2.5 nm in Comparative Example 1 and 14.9 nm in Example 1, and the geometric specific surface area of the catalyst particles is compared with the catalyst of Example 1. It is reduced to about 1/6 of the catalyst of Example 1. Accordingly, the fact that the catalyst of Example 1 and the catalyst of Comparative Example 1 exhibit the same methanol oxidation activity means that the area activity of the catalyst of Example 1 is about 6 times that of the catalyst of Comparative Example 1. Represents.

また、図4には、実施例1、2および比較例1のPtRu系合金触媒の、担体表面でのPtRu系合金触媒粒子の分散状態をTEMにより観察した結果を示している。なお、図4における写真中のスケール(白線)は、10nmを表している。   FIG. 4 shows the results of TEM observation of the dispersion state of the PtRu-based alloy catalyst particles on the support surface of the PtRu-based alloy catalysts of Examples 1 and 2 and Comparative Example 1. In addition, the scale (white line) in the photograph in FIG. 4 represents 10 nm.

純水素ガス中で熱処理を行った実施例1、2のPtRu系合金触媒では、比較例1の触媒に比べてPtRu系合金触媒粒子の粒径の増大が認められる一方で、これらの触媒粒子の分散状態は、比較例1の触媒と同等の状態に保たれていることが分かる。   In the PtRu-based alloy catalysts of Examples 1 and 2 that were heat-treated in pure hydrogen gas, an increase in the particle size of the PtRu-based alloy catalyst particles was observed compared to the catalyst of Comparative Example 1, but It can be seen that the dispersed state is maintained in the same state as the catalyst of Comparative Example 1.

Claims (7)

少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子が担体に担持されてなる燃料電池用PtRu系合金触媒であって、
前記PtRu系合金触媒粒子は、担体に担持された状態で、非酸化雰囲気下で熱処理されて得られたものであり、
前記PtRu系合金触媒粒子の平均粒子径は、10nmより大きく、20nm未満であり、
前記PtRu系合金触媒粒子の比表面積は、30〜100m/gであり、
触媒全体におけるPtとRuとの比率が、原子比で、30:70〜70:30であり、
前記PtRu系合金触媒粒子におけるPの量が、1〜20原子%であることを特徴とする燃料電池用PtRu系合金触媒。
A PtRu-based alloy catalyst for a fuel cell in which PtRu-based alloy catalyst particles containing at least Pt, Ru and P are supported on a carrier,
The PtRu-based alloy catalyst particles are obtained by being heat-treated in a non-oxidizing atmosphere while being supported on a support,
The average particle diameter of the PtRu-based alloy catalyst particles is larger than 10 nm and smaller than 20 nm,
The PtRu-based alloy catalyst particles have a specific surface area of 30 to 100 m 2 / g,
The ratio of Pt and Ru in the entire catalyst, by atomic ratio, 30: 70-70: Ri 30 der,
The PtRu alloy the amount of P in the catalyst particles, 1-20 atomic% der Rukoto fuel cell PtRu alloy catalyst according to claim.
担体が、カーボンブラック、アセチレンブラック、カーボンナノチューブおよび非酸化雰囲気下で熱処理され、グラファイト成分が増加したカーボンよりなる群から選択される少なくとも1種である請求項1に記載の燃料電池用PtRu系合金触媒。   2. The PtRu-based alloy for fuel cells according to claim 1, wherein the support is at least one selected from the group consisting of carbon black, acetylene black, carbon nanotubes, and carbon that has been heat-treated in a non-oxidizing atmosphere and has an increased graphite component. catalyst. 請求項1または2に記載の燃料電池用PtRu系合金触媒を製造する方法であって、
少なくともPt、RuおよびPを担体表面に還元析出させて、少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子を担体に担持させる工程と、
担体に担持されたPtRu系合金触媒粒子を、非酸化雰囲気下で熱処理する工程とを有することを特徴とする燃料電池用PtRu系合金触媒の製造方法。
A method for producing a PtRu-based alloy catalyst for a fuel cell according to claim 1 or 2,
Reducing and precipitating at least Pt, Ru and P on the support surface, and supporting PtRu-based alloy catalyst particles containing at least Pt, Ru and P on the support;
A method for producing a PtRu-based alloy catalyst for a fuel cell, comprising a step of heat-treating PtRu-based alloy catalyst particles supported on a support in a non-oxidizing atmosphere.
非酸化雰囲気下での熱処理が、水素ガス、窒素ガス、水素を含有する窒素ガス、アルゴンガスまたは水素を含有するアルゴンガスを含む雰囲気下で行われる請求項に記載の燃料電池用PtRu系合金触媒の製造方法。 The PtRu-based alloy for fuel cells according to claim 3 , wherein the heat treatment in a non-oxidizing atmosphere is performed in an atmosphere containing hydrogen gas, nitrogen gas, nitrogen gas containing hydrogen, argon gas, or argon gas containing hydrogen. A method for producing a catalyst. 非酸化雰囲気下での熱処理温度が650〜1000℃である請求項またはに記載の燃料電池用PtRu系合金触媒の製造方法。 The method for producing a PtRu-based alloy catalyst for a fuel cell according to claim 3 or 4 , wherein a heat treatment temperature in a non-oxidizing atmosphere is 650 to 1000 ° C. アノード触媒層、カソード触媒層、および前記アノード触媒層と前記カソード触媒層との間に配されたプロトン導電膜を有する燃料電池用膜電極接合体であって、
前記アノード触媒層用の触媒に、請求項1または2に記載の燃料電池用PtRu系合金触媒を用いたことを特徴とする燃料電池用膜電極接合体。
A fuel cell membrane electrode assembly having an anode catalyst layer, a cathode catalyst layer, and a proton conductive film disposed between the anode catalyst layer and the cathode catalyst layer,
A membrane electrode assembly for a fuel cell, wherein the PtRu-based alloy catalyst for a fuel cell according to claim 1 or 2 is used as the catalyst for the anode catalyst layer.
請求項に記載の燃料電池用膜電極接合体を有することを特徴とする燃料電池。 A fuel cell comprising the fuel cell membrane electrode assembly according to claim 6 .
JP2010177113A 2010-08-06 2010-08-06 PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell Expired - Fee Related JP5524761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177113A JP5524761B2 (en) 2010-08-06 2010-08-06 PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177113A JP5524761B2 (en) 2010-08-06 2010-08-06 PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell

Publications (2)

Publication Number Publication Date
JP2012038543A JP2012038543A (en) 2012-02-23
JP5524761B2 true JP5524761B2 (en) 2014-06-18

Family

ID=45850341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177113A Expired - Fee Related JP5524761B2 (en) 2010-08-06 2010-08-06 PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP5524761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3107139A1 (en) 2015-06-16 2016-12-21 Panasonic Corporation Supported platinum catalyst and manufacturing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468379B2 (en) 2021-01-27 2024-04-16 トヨタ紡織株式会社 Manufacturing method of alloy fine particle supported catalyst, electrode, fuel cell, manufacturing method of alloy fine particle, manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359406A (en) * 1977-06-17 1982-11-16 Exxon Research And Engineering Co. Highly dispersed supported group VIII metal-phosphorus compounds, and highly dispersed, supported group VIII metal-arsenic and a process for making said compounds
JPH02303541A (en) * 1989-05-17 1990-12-17 Tanaka Kikinzoku Kogyo Kk Production of high-surface area metal-deposited catalyst
JP2002102699A (en) * 2000-09-29 2002-04-09 Toshiba Corp Alcohol-refining catalyst and fuel battery using it
EP1254711A1 (en) * 2001-05-05 2002-11-06 OMG AG & Co. KG Supported noble metal catalyst and preparation process thereof
JP4565961B2 (en) * 2004-10-14 2010-10-20 日立マクセル株式会社 Method for producing fuel electrode catalyst for fuel cell
JP2007059140A (en) * 2005-08-23 2007-03-08 Mitsubishi Chemicals Corp Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell
JP5251227B2 (en) * 2008-04-24 2013-07-31 トヨタ自動車株式会社 Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3107139A1 (en) 2015-06-16 2016-12-21 Panasonic Corporation Supported platinum catalyst and manufacturing method of the same
US9929412B2 (en) 2015-06-16 2018-03-27 Panasonic Corporation Supported platinum catalyst and manufacturing method of the same

Also Published As

Publication number Publication date
JP2012038543A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
Cai et al. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium
JP5348658B2 (en) Method for producing platinum-based alloy catalyst for fuel cell electrode material
Er et al. Novel carbon nanotube supported Co@ Ag@ Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method
KR20060080727A (en) Pt/ru alloy catalyst for fuel cell
Hameed Enhanced ethanol electro-oxidation reaction on carbon supported Pd-metal oxide electrocatalysts
Jing et al. Nanoporous carbon supported platinum-copper nanocomposites as anode catalysts for direct borohydride-hydrogen peroxide fuel cell
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
TWI474547B (en) Fuel cell and electrocatalyst
JP5158334B2 (en) Method for producing electrode catalyst for fuel cell
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
CN115704097A (en) M 1 M 2 Preparation method and application of diatomic catalyst with support structure
Yang et al. One-step synthesis in deep eutectic solvents of Pt3Sn1-SnO2 alloy nanopore on carbon nanotubes for boosting electro-catalytic methanol oxidation
JP7112739B2 (en) Electrode material, manufacturing method thereof, electrode, membrane electrode assembly, and polymer electrolyte fuel cell
Xu A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction
Chai et al. Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
Thilaga et al. Multiwalled carbon nanotube supported Pt–Sn–M (M= Ru, Ni, and Ir) catalysts for ethanol electrooxidation
Liu et al. Ultrathin PdCu Nanosheet as Bifunctional Electrocatalysts for Formate Oxidation Reaction and Oxygen Reduction Reaction
Li et al. In situ shaped PtPd nanocubes on common carbon powder for efficient methanol electrooxidation in practical fuel cells
JP2010149008A (en) Electrode catalyst
JP2009117287A (en) Catalyst for direct type alcohol fuel cell electrode, and manufacturing method of catalyst for that electrode
JP5524761B2 (en) PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
KR101111486B1 (en) manufacturing method of Electrocatalyst material for direct methanol fuel cell
KR20110029573A (en) Manufacturing method of electrocatalyst material for direct methanol fuel cell
Sun et al. Synthesis of Ni-MOF loaded Pt nanoparticle composites for the electro-oxidation of methanol in acidic media

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees