JP5251227B2 - Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles - Google Patents

Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles Download PDF

Info

Publication number
JP5251227B2
JP5251227B2 JP2008114425A JP2008114425A JP5251227B2 JP 5251227 B2 JP5251227 B2 JP 5251227B2 JP 2008114425 A JP2008114425 A JP 2008114425A JP 2008114425 A JP2008114425 A JP 2008114425A JP 5251227 B2 JP5251227 B2 JP 5251227B2
Authority
JP
Japan
Prior art keywords
fine particles
alloy fine
alloy
gold
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114425A
Other languages
Japanese (ja)
Other versions
JP2009263719A (en
Inventor
宣明 水谷
宏明 高橋
洋輔 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008114425A priority Critical patent/JP5251227B2/en
Publication of JP2009263719A publication Critical patent/JP2009263719A/en
Application granted granted Critical
Publication of JP5251227B2 publication Critical patent/JP5251227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、高い合金化度とナノオーダーの平均粒径を有する合金微粒子の製造方法に関する。また、該方法で製造された合金微粒子、該合金微粒子を含む固体高分子型燃料電池用触媒、及び該合金微粒子を含む金属コロイド溶液に関する。   The present invention relates to a method for producing alloy fine particles having a high degree of alloying and a nano-order average particle size. Further, the present invention relates to alloy fine particles produced by the method, a polymer electrolyte fuel cell catalyst containing the alloy fine particles, and a metal colloid solution containing the alloy fine particles.

燃料電池は高い発電性能を長期に亘って示すことが求められ、自動車用電源では5000時間、定置用電源では4万時間とも言われている。そのため、電極触媒には高い触媒活性および耐久性を有することが必要とされる。電極触媒としては、多孔質のカーボン粒子に貴金属、卑金属などの触媒金属を担持したものが用いられている。例えば、複数の貴金属を触媒金属としてカーボン粒子上に担持された電極触媒の製造方法としては、複数の貴金属化合物を含む水溶液にカーボン粒子を分散混合し、これに還元剤または沈殿剤などを添加することにより貴金属粒子をカーボン粒子上に形成した後、焼成する吸着法などが一般的に用いられている。   A fuel cell is required to exhibit high power generation performance over a long period of time, and is said to be 5000 hours for an automotive power source and 40,000 hours for a stationary power source. Therefore, the electrode catalyst is required to have high catalytic activity and durability. As the electrode catalyst, porous carbon particles carrying a catalyst metal such as a noble metal or base metal are used. For example, as a method for producing an electrode catalyst supported on carbon particles using a plurality of noble metals as catalyst metals, carbon particles are dispersed and mixed in an aqueous solution containing a plurality of noble metal compounds, and a reducing agent or a precipitating agent is added thereto. Thus, an adsorption method or the like in which precious metal particles are formed on carbon particles and then fired is generally used.

しかしながら、このような方法では、不溶化剤により形成された複数の貴金属粒子が他の貴金属粒子上及び担体表面上に無作為に吸着してしまう。このため、焼成によって合金化して形成された複合貴金属粒子の組成は不均一なものとなり、さらには、熱的エネルギーが加わることでシンタリングして粒子径の大きなものが形成される問題があった。従って、複合貴金属粒子の活性表面積が減少し、触媒活性が低くなるという問題もあった。さらに、吸着法を用いた場合には、電解液が十分に浸透しないカーボン粒子の微細孔内にも複合貴金属粒子が形成・担持されてしまうが、このように電解液と充分に接触できない複合貴金属粒子は、電極触媒の活性成分として働かないため、担持した複合貴金属粒子の有効利用率が低下する問題もあった。   However, in such a method, a plurality of noble metal particles formed by the insolubilizing agent are adsorbed randomly on other noble metal particles and on the surface of the support. For this reason, the composition of the composite noble metal particles formed by alloying by firing becomes non-uniform, and further, there is a problem that a large particle size is formed by sintering due to the addition of thermal energy. . Accordingly, there is a problem that the active surface area of the composite noble metal particles is reduced and the catalytic activity is lowered. Furthermore, when the adsorption method is used, composite noble metal particles are formed and supported in the fine pores of the carbon particles into which the electrolyte does not sufficiently permeate. Since the particles do not act as an active component of the electrode catalyst, there is a problem that the effective utilization rate of the supported composite noble metal particles is lowered.

他方、燃料電池や排ガス浄化用の触媒などとしては白金、パラジウムなどの貴金属が使用される。しかし、貴金属元素は、地球上に限られた量しか存在しないため、その使用量をできるだけ少なくすることが求められる。そこで、貴金属を用いた触媒としては、例えば、カーボンや無機化合物等からなる担体粒子の表面に、貴金属の微粒子を担持させたものなどが一般的に用いられる。また、触媒作用は、主に貴金属の表面において発揮されることから、上記構造の触媒において、良好な触媒作用を維持しつつ貴金属の使用量をできるだけ少なくするためには、担体粒子の表面に担持させる貴金属の微粒子を、できるだけ一次粒子径が小さく、かつ比表面積の大きいものとすることが有効である。   On the other hand, noble metals such as platinum and palladium are used as fuel cells and exhaust gas purification catalysts. However, since only a limited amount of noble metal elements exists on the earth, it is required to reduce the amount used as much as possible. Therefore, as a catalyst using a noble metal, for example, a catalyst in which fine particles of noble metal are supported on the surface of carrier particles made of carbon or an inorganic compound is generally used. In addition, since the catalytic action is mainly exerted on the surface of the noble metal, in order to reduce the amount of the noble metal used as much as possible while maintaining good catalytic action in the catalyst having the above structure, it is supported on the surface of the carrier particles. It is effective to make the noble metal fine particles to have a primary particle size as small as possible and a specific surface area as large as possible.

更に、近年、例えば、導電性インクとして、水や、水と水溶性有機溶媒との混合溶媒等に、導電性フィラーとしての金属微粒子、特に、金や銀などの貴金属の微粒子を分散させたものが検討されている。かかる用途に用いる貴金属の微粒子には、導電性インクを用いて形成される導体配線や導電膜の構造や導電性を均一化するために、上記触媒用ほどではないものの、これまでよりも一次粒子径が小さく、しかも粒度分布がシャープである上、その形状が球状ないし粒状であることが求められる。   Further, in recent years, for example, as conductive inks, fine particles of metal, particularly noble metals such as gold and silver, are dispersed in water or a mixed solvent of water and a water-soluble organic solvent. Is being considered. The fine particles of noble metal used in such applications are primary particles that are not as large as those for the above-mentioned catalysts in order to make the structure and conductivity of conductive wiring and conductive film formed using conductive ink uniform. It is required that the diameter is small, the particle size distribution is sharp, and the shape is spherical or granular.

これらの微細な金属微粒子を製造する方法としては、含浸法と呼ばれる高温処理法や、液相還元法、気相法などがあるが、近年、特に、製造設備の簡易化が容易な液相還元法、すなわち、液相の反応系中で、析出対象である金属のイオンを、還元剤の作用によって還元して金属微粒子を析出させる方法が広く普及しつつある。また、液相還元法で製造される金属微粒子は、その形状が球状ないし粒状で揃っていると共に、粒度分布がシャープで、しかも、一次粒子径が小さいため、特に、燃料電池用触媒として適しているという利点もある。   As a method for producing these fine metal fine particles, there are a high temperature treatment method called an impregnation method, a liquid phase reduction method, a gas phase method, and the like. The method, that is, a method in which metal ions to be deposited are reduced by the action of a reducing agent to deposit metal fine particles in a liquid phase reaction system is becoming widespread. In addition, the metal fine particles produced by the liquid phase reduction method have a spherical or granular shape, a sharp particle size distribution, and a small primary particle size. There is also an advantage of being.

2種以上の金属の合金からなる合金微粒子を、上記の液相還元法によって製造するためには、反応系中に、合金のもとになる2種以上の金属のイオンを混在させた状態で、両イオンを、還元剤の作用によって還元して、合金微粒子として析出させることが考えられる。   In order to produce alloy fine particles composed of an alloy of two or more kinds of metals by the above liquid phase reduction method, two or more kinds of metal ions that are the basis of the alloy are mixed in the reaction system. It is conceivable that both ions are reduced by the action of a reducing agent and precipitated as alloy fine particles.

例えば、下記特許文献1には、単分散で粒径が揃った遷移金属と貴金属から成る微粒子を合成する方法として、有機保護剤の存在下、水或いはアルコールに混和する有機溶剤中に、Fe又はCoから選択される少なくとも一種の遷移金属の塩又はその錯体と、Pt又はPdから選択される少なくとも一種の貴金属の塩又はその錯体及とを溶解させ、不活性雰囲気中で、アルコールによる加熱還流を行うことによって、遷移金属と貴金属とからなる2元系合金を生成することが開示されている。   For example, in Patent Document 1 below, as a method for synthesizing fine particles composed of a monodispersed transition metal having a uniform particle size and a noble metal, Fe or At least one transition metal salt selected from Co or a complex thereof and at least one noble metal salt selected from Pt or Pd or a complex thereof are dissolved and heated under reflux with alcohol in an inert atmosphere. It is disclosed to produce a binary alloy composed of a transition metal and a noble metal by performing.

特開2003−166040号公報JP 2003-166040 A

しかし、従来の液相還元法による合金微粒子の製造方法は、有機溶媒中の高温反応での合成方法であるため、簡便性に欠けるとともに高コストであるという問題がある。   However, since the conventional method for producing fine alloy particles by the liquid phase reduction method is a synthesis method using a high-temperature reaction in an organic solvent, there are problems in that it is not simple and expensive.

そこで、本発明は、高い合金化度とナノオーダーの平均粒径を有する合金微粒子を、簡便に低コストで製造する方法を提供することを目的とする。   Then, this invention aims at providing the method of manufacturing the alloy fine particle which has a high alloying degree and an average particle diameter of nano order simply and at low cost.

本発明者らは、合金微粒子を形成する各金属イオンの酸化還元電位を調整して合金微粒子を製造することによって、上記課題が解決されることを見出し、本発明に到達した。   The present inventors have found that the above problems can be solved by adjusting the redox potential of each metal ion forming the alloy fine particles to produce the alloy fine particles, and have reached the present invention.

即ち、第1に、本発明は、2種以上の金属のイオンを、液相の反応系中で、還元剤の作用によって還元して、該2種以上の金属の合金からなる合金微粒子として析出させる合金微粒子の製造方法の発明であって、該2種以上の金属イオンの還元電位の差を110mV以下に調整して、該還元、析出反応を行うことを特徴とする。なお、前記2種以上の金属イオンの還元電位の差は、例えば3電極式酸化還元電位測定装置を用いて測定することができる。   That is, first, in the present invention, ions of two or more kinds of metals are reduced by the action of a reducing agent in a liquid phase reaction system, and precipitated as alloy fine particles made of an alloy of the two or more kinds of metals. An alloy fine particle manufacturing method according to the present invention is characterized in that the reduction and precipitation reactions are performed by adjusting the difference in reduction potential of the two or more metal ions to 110 mV or less. The difference in reduction potential between the two or more metal ions can be measured using, for example, a three-electrode oxidation / reduction potential measuring device.

2種以上の金属イオンの還元電位の差を110mV以下に調整する手段としては、(1)出発原料である金属塩又は金属錯化合物の2種以上の組み合わせ、(2)還元温度の設定、及び(3)還元剤の種類と濃度の設定が具体的に挙げられる。これらの手段の1種以上を用いることで、2種以上の金属イオンの還元電位の差を110mV以下に調整できる。   Means for adjusting the difference in reduction potential between two or more metal ions to 110 mV or less include (1) a combination of two or more metal salts or metal complex compounds as starting materials, (2) setting of the reduction temperature, and (3) The setting of the kind and density | concentration of a reducing agent is mentioned concretely. By using one or more of these means, the difference in reduction potential between two or more metal ions can be adjusted to 110 mV or less.

本発明により、各種元素の組み合わせからなる合金微粒子が製造される。例えば、2種以上の金属のイオンが、PtイオンとAuイオンであり、該合金がPt−Au合金である場合が好ましく例示される。   According to the present invention, alloy fine particles comprising a combination of various elements are produced. For example, the case where two or more kinds of metal ions are Pt ions and Au ions and the alloy is a Pt—Au alloy is preferably exemplified.

第2に、本発明は、上記の方法で製造された合金微粒子である。   Second, the present invention is an alloy fine particle produced by the above method.

第3に、本発明は、上記の方法で製造された合金微粒子を含む固体高分子型燃料電池用触媒である。本発明で製造された合金微粒子は各種触媒などの用途に広く用いられる。その中で、高い合金化度とナノオーダーの平均粒径を有する合金微粒子である特徴を生かして燃料電池用触媒として好適に用いられる。   Third, the present invention is a polymer electrolyte fuel cell catalyst containing alloy fine particles produced by the above method. The alloy fine particles produced in the present invention are widely used for various catalysts. Among them, it is suitably used as a fuel cell catalyst by taking advantage of the characteristics of alloy fine particles having a high degree of alloying and a nano-order average particle size.

第4に、本発明は、上記の方法で製造された合金微粒子を含む金属コロイド溶液である。本発明で製造された合金微粒子はナノオーダーの平均粒径を有することから、生成した反応溶液は優れた金属コロイド溶液である。該金属コロイド溶液は、導電性インクなどの用途に広く用いられる。   Fourthly, the present invention is a metal colloid solution containing alloy fine particles produced by the above method. Since the alloy fine particles produced in the present invention have a nano-order average particle size, the produced reaction solution is an excellent metal colloid solution. The metal colloid solution is widely used for applications such as conductive ink.

合金微粒子を形成する各金属イオンの酸化還元電位を調整して合金微粒子を製造することによって、高い合金化度とナノオーダーの平均粒径を有する合金微粒子を、簡便に低コストで製造することが可能となった。高い合金化度とナノオーダーの平均粒径を有する合金微粒子は、燃料電池用触媒をはじめ各種用途に用いることができる。特に、燃料電池用触媒として用いると、高い発電性能を発揮する。   By adjusting the oxidation-reduction potential of each metal ion forming the alloy fine particles to produce the alloy fine particles, it is possible to easily produce the alloy fine particles having a high degree of alloying and a nano-order average particle size at a low cost. It has become possible. Alloy fine particles having a high degree of alloying and a nano-order average particle diameter can be used in various applications including fuel cell catalysts. In particular, when used as a fuel cell catalyst, it exhibits high power generation performance.

本発明の、液相の反応系は、2種以上の金属のイオン源となる、それぞれの金属化合物である金属塩又は錯塩と、還元剤とを、各成分に共通の溶媒、特に水に溶解して調製される。そのため、金属のイオン源となる金属化合物である金属塩又は錯塩としては、水等の溶媒に可溶性の種々の金属化合物が、いずれも使用可能である。ただし、金属化合物は、可能であれば、合金微粒子の析出時に核成長の起点となって異常な核成長を生じさせたり、あるいは、触媒性能等を劣化させたりするおそれのある、塩素等のハロゲン元素や、硫黄、リン、ホウ素等の不純物元素を含まないのが好ましい。これにより、合金度が高く、平均粒径がナノオーダーで、その形状がより一層、球状ないし粒状で揃っていると共に、粒度分布がシャープな合金微粒子を製造することができる。   The liquid phase reaction system of the present invention dissolves a metal salt or complex salt, each of which is a metal compound, which serves as an ion source for two or more metals, and a reducing agent in a solvent common to each component, particularly water. Prepared. Therefore, any of various metal compounds that are soluble in a solvent such as water can be used as the metal salt or complex salt that is a metal compound serving as a metal ion source. However, if possible, the metal compound may be a halogen such as chlorine, which may cause abnormal nucleation as a starting point of nucleation during precipitation of alloy fine particles, or may deteriorate catalyst performance. It is preferable that an element and impurity elements, such as sulfur, phosphorus, and boron, are not included. Thereby, it is possible to produce alloy fine particles having a high degree of alloying, an average particle size of nano-order, a more uniform spherical shape or granular shape, and a sharp particle size distribution.

金属のイオン源として好適な金属化合物である金属塩又は錯塩としては種々の化合物を用いることができる。例えば、銀の場合は、硝酸銀(I)(AgNO)やメタンスルホン酸銀(CHSOAg)等が挙げられる。また、白金の場合は、ジニトロジアンミン白金(II)(Pt(NO(NH)やヘキサクロロ白金(IV)酸六水和物(H(PtCl)・6HO)等が挙げられる。金の場合は、テトラクロロ金(III)酸四水和物(HAuCl・4HO)等が挙げられる。パラジウムの場合は、硝酸パラジウム(II)硝酸溶液(Pd(NO/HO)や塩化パラジウム(II)溶液(PdCl)等が挙げられる。イリジウムの場合は、ヘキサクロロイリジウム(III)酸六水和物(2(IrCl)・6HO)、ロジウムの場合は、塩化ロジウム(III)溶液(RhCl・3HO)、ルテニウムの場合は、硝酸ルテニウム(III)溶液(Ru(NO)等が挙げられる。さらに、銅の場合は、硝酸銅(II)(Cu(NO)、硫酸銅(II)五水和物(CuSO・5HO)等が挙げられる。 Various compounds can be used as a metal salt or complex salt which is a metal compound suitable as a metal ion source. For example, in the case of silver, silver nitrate (I) (AgNO 3 ), silver methanesulfonate (CH 3 SO 3 Ag), and the like can be given. In the case of platinum, dinitrodiammine platinum (II) (Pt (NO 2 ) 2 (NH 3 ) 2 ), hexachloroplatinum (IV) acid hexahydrate (H 2 (PtCl 6 ) · 6H 2 O), etc. Is mentioned. In the case of gold, tetrachloroauric (III) acid tetrahydrate (HAuCl 4 .4H 2 O) and the like can be mentioned. In the case of palladium, palladium nitrate (II) nitric acid solution (Pd (NO 2 ) 2 / H 2 O), palladium chloride (II) solution (PdCl 2 ) and the like can be mentioned. In the case of iridium, hexachloroiridium (III) hexahydrate (2 (IrCl 6 ) · 6H 2 O), in the case of rhodium, rhodium (III) chloride solution (RhCl 3 · 3H 2 O), in the case of ruthenium Includes a ruthenium (III) nitrate solution (Ru (NO 3 ) 3 ). Furthermore, in the case of copper, copper nitrate (II) (Cu (NO 3 ) 2 ), copper sulfate (II) pentahydrate (CuSO 4 .5H 2 O) and the like can be mentioned.

還元剤としては、液相の反応系中で、2種以上の金属のイオンを還元することで、合金微粒子として析出させることができる種々の還元剤が、いずれも使用可能である。かかる還元剤としては、例えば、水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、遷移金属元素のイオン(三価のチタンイオン、二価のコバルトイオン等)が挙げられる。ただし、析出させる合金微粒子の一次粒子径をできるだけ小さくするためには、2種以上の金属のイオンの還元、析出速度を遅くするのが有効であり、還元、析出速度を遅くするためには、できるだけ還元力の弱い還元剤を選択して使用することが好ましい。   As the reducing agent, any of various reducing agents that can be precipitated as alloy fine particles by reducing two or more kinds of metal ions in a liquid phase reaction system can be used. Examples of the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, and transition metal element ions (trivalent titanium ions, divalent cobalt ions, and the like). However, in order to make the primary particle diameter of the alloy fine particles to be precipitated as small as possible, it is effective to reduce the reduction and precipitation rate of ions of two or more metals, and to reduce the reduction and precipitation rate, It is preferable to select and use a reducing agent having a reducing power as weak as possible.

そこで用いられる還元力の弱い還元剤としては、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコールや、あるいはアスコルビン酸等を挙げることができる他、エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元性糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、および糖アルコール類(ソルビトール等)等を挙げることができる。   Examples of the reducing agent having a weak reducing power used include alcohols such as methanol, ethanol and isopropyl alcohol, ascorbic acid, and the like, as well as ethylene glycol, glutathione, organic acids (citric acid, malic acid, Tartaric acid, etc.), reducing sugars (glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose, etc.) and sugar alcohols (sorbitol, etc.).

還元剤の、液相の反応系中での濃度は特に限定されないが、一般に、還元剤の濃度が低いほど、2種以上の金属のイオンの還元、析出速度を遅くして、形成される個々の合金微粒子の一次粒子径を小さくできる傾向があることから、目的とする一次粒子径の範囲等に応じて、好適な濃度の範囲を設定するのが好ましい。また、液相の反応系のpHは、できるだけ一次粒子径の小さい合金微粒子を製造することを考慮すると、先に説明したように、7〜13であるのが好ましい。反応系のpHを上記の範囲に調整するためのpH調整剤としては、これも先に説明したように、アルカリ金属やアルカリ土類金属、塩素等のハロゲン元素、硫黄、リン、ホウ素等の不純物元素を含まないアンモニアやカルボン酸アンモニウムが好ましい。   The concentration of the reducing agent in the liquid phase reaction system is not particularly limited, but in general, the lower the reducing agent concentration, the slower the reduction and precipitation rate of two or more metal ions, and the individual formed Since the primary particle size of the alloy fine particles tends to be reduced, it is preferable to set a suitable concentration range according to the intended primary particle size range. Further, the pH of the liquid phase reaction system is preferably 7 to 13 as described above in consideration of producing alloy fine particles having a primary particle size as small as possible. As described above, as a pH adjuster for adjusting the pH of the reaction system to the above range, impurities such as alkali metals, alkaline earth metals, halogen elements such as chlorine, sulfur, phosphorus, boron, etc. Ammonia and ammonium carboxylate containing no element are preferred.

以下、本発明の実施例及び比較例を示して合金微粒子の製造方法を説明する。
[実施例1]
純水に白金4.8gを含むヘキサヒドロキソ白金硝酸を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含むヘキサヒドロキソ白金硝酸と金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。
Hereinafter, examples of the present invention and comparative examples will be shown to describe a method for producing alloy fine particles.
[Example 1]
Hexahydroxo platinum nitric acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold ammonium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was dropped at a rate of 1 g / min and reduced at 90 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Then, hexahydroxo platinum nitric acid containing 4.8 g of platinum and gold ammonium sulfite containing 0.5 g of gold were added to pure water to make a total amount of 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 90 ° C.

[実施例2]
純水に白金4.8gを含むヘキサヒドロキソ白金硝酸を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、60℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含むヘキサヒドロキソ白金硝酸と金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、60℃で還元した。
[Example 2]
Hexahydroxo platinum nitric acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold ammonium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 60 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Then, hexahydroxo platinum nitric acid containing 4.8 g of platinum and gold ammonium sulfite containing 0.5 g of gold were added to pure water to make a total amount of 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 60 ° C.

[実施例3]
純水に白金4.8gを含むテトラアンミンジクロロ白金を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含むテトラアンミンジクロロ白金と金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。
[Example 3]
Tetraamminedichloroplatinum containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold ammonium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was dropped at a rate of 1 g / min and reduced at 90 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Thereafter, tetraamminedichloroplatinum containing 4.8 g of platinum and gold ammonium sulfite containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 90 ° C.

[実施例4]
純水に白金4.8gを含むテトラアンミンジクロロ白金を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、60℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含むテトラアンミンジクロロ白金と金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、60℃で還元した。
[Example 4]
Tetraamminedichloroplatinum containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold ammonium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 60 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Then, tetraamminedichloroplatinum containing 4.8 g of platinum and gold ammonium sulfite containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 60 ° C.

[実施例5]
純水に白金4.8gを含む塩化白金酸を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金ナトリウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含む塩化白金酸と金0.5gを含む亜硫酸金ナトリウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。
[Example 5]
Chloroplatinic acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold water sodium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was dropped at a rate of 1 g / min and reduced at 90 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Thereafter, chloroplatinic acid containing 4.8 g of platinum and sodium gold sulfite containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 90 ° C.

[比較例1]
純水に白金4.8gを含む塩化白金酸を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ10wt%のエタノール溶液100gを1g/minの速度で滴下し、60℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含む塩化白金酸と金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。10wt%のエタノール溶液100gを1g/minの速度で滴下し、60℃で還元した。
[Comparative Example 1]
Chloroplatinic acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold ammonium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 10 wt% ethanol solution was dropped at a rate of 1 g / min and reduced at 60 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Thereafter, chloroplatinic acid containing 4.8 g of platinum and gold ammonium sulfite containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 10 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 60 ° C.

[比較例2]
純水に白金4.8gを含む塩化白金酸を加え全量を1.0Lとした。純水に金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ20wt%のエタノール溶液100gを2g/minの速度で滴下し、60℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含む塩化白金酸と金0.5gを含む亜硫酸金アンモニウムを加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。20wt%のエタノール溶液100gを2g/minの速度で滴下し、60℃で還元した。
[Comparative Example 2]
Chloroplatinic acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Gold ammonium sulfite containing 0.5 g of gold was added to pure water to make the total amount 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 20 wt% ethanol solution was added dropwise at a rate of 2 g / min and reduced at 60 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Thereafter, chloroplatinic acid containing 4.8 g of platinum and gold ammonium sulfite containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 20 wt% ethanol solution was added dropwise at a rate of 2 g / min and reduced at 60 ° C.

[比較例3]
純水に白金4.8gを含む塩化白金酸を加え全量を1.0Lとした。純水に金0.5gを含む塩化金酸を加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含む塩化白金酸と金0.5gを含む塩化金酸を加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。
[Comparative Example 3]
Chloroplatinic acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Chloroauric acid containing 0.5 g of gold was added to pure water to make the total volume 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was dropped at a rate of 1 g / min and reduced at 90 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Thereafter, chloroplatinic acid containing 4.8 g of platinum and chloroauric acid containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 90 ° C.

[比較例4]
純水に白金4.8gを含むシアン化白金酸を加え全量を1.0Lとした。純水に金0.5gを含む塩化金酸を加え全量を1.0Lとした。それぞれにクエン酸アンモニウム1gを加え十分に攪拌した。この白金と金の溶液にそれぞれ5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。この際、3電極式の酸化還元電位測定装置を用いて電位測定を行い、白金溶液と、金溶液の電位の差を求めた。その後、純水に白金4.8gを含む塩化白金酸と金0.5gを含むシアン化金酸を加え全量を1.0Lとした。これにクエン酸アンモニウム1gを加え十分に攪拌した。5wt%のエタノール溶液100gを1g/minの速度で滴下し、90℃で還元した。
[Comparative Example 4]
Cyanated platinic acid containing 4.8 g of platinum was added to pure water to make the total amount 1.0 L. Chloroauric acid containing 0.5 g of gold was added to pure water to make the total volume 1.0 L. 1 g of ammonium citrate was added to each and stirred sufficiently. To this platinum and gold solution, 100 g of a 5 wt% ethanol solution was dropped at a rate of 1 g / min and reduced at 90 ° C. At this time, the potential was measured using a three-electrode type oxidation-reduction potential measuring device, and the difference in potential between the platinum solution and the gold solution was determined. Thereafter, chloroplatinic acid containing 4.8 g of platinum and cyanogenated gold acid containing 0.5 g of gold were added to pure water to make the total amount 1.0 L. To this, 1 g of ammonium citrate was added and stirred sufficiently. 100 g of a 5 wt% ethanol solution was added dropwise at a rate of 1 g / min and reduced at 90 ° C.

[比較例5]
2nmの白金4.8gを含むコロイド液と2nmの金0.5gを含むコロイド液をカーボン5gを含む分散液に混合し、白金及び金をカーボン上に担持させた。1時間攪拌後、この白金、金、カーボンの混合液をろ過し、得られた固形物を900℃で熱処理した。
[Comparative Example 5]
A colloidal solution containing 4.8 g of 2 nm platinum and a colloidal solution containing 0.5 g of 2 nm gold were mixed with a dispersion containing 5 g of carbon, and platinum and gold were supported on the carbon. After stirring for 1 hour, the platinum, gold, and carbon mixture was filtered, and the resulting solid was heat treated at 900 ° C.

[比較例6]
2nmの白金4.8gを含むコロイド液と2nmの金0.5gを含むコロイド液をカーボン5gを含む分散液に混合し、白金及び金をカーボン上に担持させた。1時間攪拌後、この白金、金、カーボンの混合液をろ過し、得られた固形物を700℃で熱処理した。
[Comparative Example 6]
A colloidal solution containing 4.8 g of 2 nm platinum and a colloidal solution containing 0.5 g of 2 nm gold were mixed with a dispersion containing 5 g of carbon, and platinum and gold were supported on the carbon. After stirring for 1 hour, the platinum, gold, and carbon mixture was filtered, and the resulting solid was heat treated at 700 ° C.

[試験方法]
実施例1〜5、比較例1〜6で得られたPt‐Au合金粒子について、リガク製小角広角回折装置(RINT2000)を用い、解析にはリガク製“NANO−Solver(ver.3.1)”を用い、平均粒径を求めた。又、合金化度測定はXRD測定結果から行った。Pt(111)面の回折ピークより、Pt格子定数aを求め、Vegard則にしたがい、下式にて、Pt‐Au合金化度を計算した。
合金化度=(Pt格子定数a−格子定数a測定値)×100/(Pt格子定数a−Au格子定数a)
ここで、Pt及びAu格子定数aはJCPDSカードデータを使用した。
[Test method]
For the Pt—Au alloy particles obtained in Examples 1 to 5 and Comparative Examples 1 to 6, a small-angle wide-angle diffractometer (RINT2000) manufactured by Rigaku was used, and “NANO-Solver (ver. 3.1) manufactured by Rigaku was used for analysis. ”Was used to determine the average particle size. The degree of alloying was measured from the XRD measurement results. The Pt lattice constant a was obtained from the diffraction peak of the Pt (111) plane, and the degree of Pt—Au alloying was calculated according to the following equation according to the Vegard law.
Degree of alloying = (Pt lattice constant a−measured value of lattice constant a) × 100 / (Pt lattice constant a−Au lattice constant a)
Here, JCPDS card data was used for Pt and Au lattice constant a.

下記表1に、実施例1〜5、比較例1〜6で得られたPt‐Au合金粒子について、還元電位のずれ、合金化度及び平均粒径を示す。   Table 1 below shows reduction in reduction potential, degree of alloying, and average particle diameter of the Pt—Au alloy particles obtained in Examples 1 to 5 and Comparative Examples 1 to 6.

Figure 0005251227
Figure 0005251227

図1に、還元電位のずれと合金化度の関係を示す。又、図2に、還元電位のずれと平均粒径の関係を示す。更に、図3に、合金化度と平均粒径の関係を示す。   FIG. 1 shows the relationship between the reduction potential reduction and the degree of alloying. FIG. 2 shows the relationship between the reduction potential reduction and the average particle size. Further, FIG. 3 shows the relationship between the degree of alloying and the average particle size.

比較例1〜4は合金種同士の還元電位の差が110mvより上にある状態で粒子を合成しているため、より貴なAuがまず還元され、Au粒子が生成する。Au粒子は凝集しやすく、粒子が粗大化する。その後、Pt粒子が生成するが、Pt粒子とAu粒子が別々に生成するためPt−Au合金とならない。つまり、表1、図1の結果の通り、還元電位のずれと合金化度の関係から還元電位のずれが110mv以上では合金化度が下がり、表1、図2の結果の通り、還元電位のずれと平均粒径の関係から平均粒径が大きくなっている。   In Comparative Examples 1 to 4, since the particles are synthesized in a state where the difference in reduction potential between the alloy types is higher than 110 mv, the noble Au is first reduced to generate Au particles. Au particles are easy to aggregate and the particles become coarse. Thereafter, Pt particles are produced, but Pt-Au alloy is not formed because Pt particles and Au particles are produced separately. That is, as shown in Table 1 and FIG. 1, the degree of alloying decreases when the reduction potential shift is 110 mV or more due to the relationship between the reduction potential deviation and the degree of alloying. As shown in Table 1 and FIG. The average particle size is increased from the relationship between the deviation and the average particle size.

比較例5,6はPt、Au微粒子を別に担持した物をそれぞれ700℃、900℃で熱処理により合金化させたものであるが、熱処理により合金化度は上がるが粒子径が大きくなる。図3の合金化度と平均粒径の関係中の比較例5,6はそれを示している。   Comparative Examples 5 and 6 were obtained by alloying separately carrying Pt and Au fine particles by heat treatment at 700 ° C. and 900 ° C., respectively, but the degree of alloying increased by the heat treatment, but the particle diameter increased. Comparative examples 5 and 6 in the relationship between the degree of alloying and the average grain size in FIG. 3 show this.

それに対し実施例1〜5では還元電位差が近いため、Pt粒子、Au粒子が同時に生成し、微粒子で合金化した状態で生成する。   On the other hand, in Examples 1 to 5, since the reduction potential difference is close, Pt particles and Au particles are generated at the same time and formed in an alloyed state with fine particles.

図4に、実施例1〜5の合金微粒子生成のイメージを示す。実施例1〜5では、合金調製工程において合金粒子が生成している。   In FIG. 4, the image of alloy fine particle production | generation of Examples 1-5 is shown. In Examples 1 to 5, alloy particles are generated in the alloy preparation process.

図5に、比較例1〜4の微粒子生成のイメージを示す。比較例1〜4では、Au粒子がまず生成する。Au粒子は凝集し粗大化する。その後、Pt粒子も還元されるが別々の粒子として生成する。このため、合金化度が極めて低くなっている。   In FIG. 5, the image of the fine particle production | generation of Comparative Examples 1-4 is shown. In Comparative Examples 1 to 4, Au particles are first generated. Au particles are aggregated and coarsened. Thereafter, the Pt particles are also reduced but produced as separate particles. For this reason, the degree of alloying is extremely low.

図6に、比較例5,6の微粒子生成のイメージを示す。比較例5,6では、熱処理工程において合金粒子が粗大化する。   FIG. 6 shows an image of fine particle generation in Comparative Examples 5 and 6. In Comparative Examples 5 and 6, the alloy particles are coarsened in the heat treatment step.

本発明の合金微粒子製造方法によって得られる、高い合金化度とナノオーダーの平均粒径を有する合金微粒子は、燃料電池用触媒をはじめ各種用途に用いることができる。特に、燃料電池用触媒として用いると、高い発電性能を発揮する。   Alloy fine particles having a high degree of alloying and a nano-order average particle diameter obtained by the method for producing alloy fine particles of the present invention can be used for various applications including fuel cell catalysts. In particular, when used as a fuel cell catalyst, it exhibits high power generation performance.

還元電位のずれと合金化度の関係を示す。The relationship between the reduction | restoration potential of a reduction potential and an alloying degree is shown. 還元電位のずれと平均粒径の関係を示す。The relationship between the reduction | restoration potential of a reduction potential and an average particle diameter is shown. 合金化度と平均粒径の関係を示す。The relationship between an alloying degree and an average particle diameter is shown. 実施例1〜5の合金微粒子生成のイメージを示す。The image of alloy fine particle production | generation of Examples 1-5 is shown. 比較例1〜4の微粒子生成のイメージを示す。The image of the fine particle production | generation of Comparative Examples 1-4 is shown. 比較例5,6の微粒子生成のイメージを示す。The image of the fine particle production | generation of the comparative examples 5 and 6 is shown.

Claims (5)

2種以上の金属のイオンを、液相の反応系中で、還元剤の作用によって還元して、該2種以上の金属の合金からなる合金微粒子として析出させる合金微粒子の製造方法であって、
該2種以上の金属イオンの還元電位の差を110mV以下に調整して、該還元、析出反応を行うこと、
該還元を、該2種以上の金属イオンを含む溶液に還元剤を加えることにより行うこと、
還元剤が、エタノール及びクエン酸アンモニウムから選択される少なくとも1種であること、及び
該2種以上の金属のイオンが、PtイオンとAuイオンであり、該合金がPt−Au合金であること
を特徴とする合金微粒子の製造方法。
A method for producing alloy fine particles in which ions of two or more kinds of metals are reduced by the action of a reducing agent in a liquid phase reaction system and precipitated as alloy fine particles comprising an alloy of the two or more kinds of metals,
Adjusting the difference in reduction potential between the two or more metal ions to 110 mV or less, and carrying out the reduction and precipitation reactions;
Performing the reduction by adding a reducing agent to the solution containing the two or more metal ions,
That said reducing agent is at least one selected from ethanol and ammonium citrate, and
The method for producing fine alloy particles, wherein the two or more kinds of metal ions are Pt ions and Au ions, and the alloy is a Pt-Au alloy .
前記2種以上の金属イオンの還元電位の差を110mV以下に調整するため、(1)出発原料である金属塩又は金属錯化合物の2種以上の組み合わせ、(2)還元温度の設定、及び(3)還元剤の濃度の設定から選択される1種以上の手段を用いることを特徴とする、請求項1記載の合金微粒子の製造方法。 In order to adjust the difference in reduction potential between the two or more metal ions to 110 mV or less, (1) a combination of two or more metal salts or metal complex compounds as starting materials, (2) setting of the reduction temperature, and ( 3) The method for producing fine alloy particles according to claim 1 , wherein at least one means selected from setting of the concentration of the reducing agent is used. 請求項1又は2に記載の方法で製造された合金微粒子。 Alloy fine particles produced by the method according to claim 1 or 2 . 請求項1又は2に記載の方法で製造された合金微粒子を含む固体高分子型燃料電池用触媒。 A catalyst for a polymer electrolyte fuel cell comprising alloy fine particles produced by the method according to claim 1 or 2 . 請求項1又は2に記載の方法で製造された合金微粒子を含む金属コロイド溶液。
Metal colloid solution containing alloy fine particles produced by the method according to claim 1 or 2.
JP2008114425A 2008-04-24 2008-04-24 Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles Expired - Fee Related JP5251227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114425A JP5251227B2 (en) 2008-04-24 2008-04-24 Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114425A JP5251227B2 (en) 2008-04-24 2008-04-24 Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles

Publications (2)

Publication Number Publication Date
JP2009263719A JP2009263719A (en) 2009-11-12
JP5251227B2 true JP5251227B2 (en) 2013-07-31

Family

ID=41389939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114425A Expired - Fee Related JP5251227B2 (en) 2008-04-24 2008-04-24 Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles

Country Status (1)

Country Link
JP (1) JP5251227B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569396B2 (en) * 2010-04-20 2014-08-13 トヨタ自動車株式会社 Catalyst production method
WO2011148463A1 (en) 2010-05-25 2011-12-01 エム・テクニック株式会社 Method for producing precipitated substances with controlled amounts of dopant element
JP5524761B2 (en) * 2010-08-06 2014-06-18 日立マクセル株式会社 PtRu-based alloy catalyst for fuel cell, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
WO2013073068A1 (en) * 2011-11-16 2013-05-23 エム・テクニック株式会社 Method for producing silver-copper alloy particles
JP5912888B2 (en) * 2012-06-07 2016-04-27 大阪瓦斯株式会社 Method for producing alloy particles
CN108296492A (en) * 2017-01-12 2018-07-20 丰田自动车株式会社 The manufacturing method of alloy nano particle
TW202031354A (en) * 2018-12-20 2020-09-01 日商出光興產股份有限公司 Method for producing composite supporting metal and metal oxide
JP7468379B2 (en) 2021-01-27 2024-04-16 トヨタ紡織株式会社 Manufacturing method of alloy fine particle supported catalyst, electrode, fuel cell, manufacturing method of alloy fine particle, manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597098B2 (en) * 2000-01-21 2004-12-02 住友電気工業株式会社 Alloy fine powder, method for producing the same, molding material using the same, slurry, and electromagnetic wave shielding material
JP2001224969A (en) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery
JP2002102679A (en) * 2000-09-29 2002-04-09 Toyota Motor Corp Composite metal colloid and its production method
JP4056775B2 (en) * 2002-03-28 2008-03-05 トヨタ自動車株式会社 Method for modifying composite metal particles
JP2005206931A (en) * 2003-12-26 2005-08-04 Sumitomo Electric Ind Ltd Method for producing metal powder
JPWO2005082561A1 (en) * 2004-02-27 2007-10-25 有限会社サンサーラコーポレーション Colloidal metal
JP4735939B2 (en) * 2004-12-27 2011-07-27 住友電気工業株式会社 Method for producing alloy fine particles and alloy fine particles and metal colloid solution produced thereby
JP5257965B2 (en) * 2006-04-25 2013-08-07 独立行政法人物質・材料研究機構 Method for producing alloy fine particle colloid
JP2008007847A (en) * 2006-06-30 2008-01-17 Fujifilm Corp Ag-CONTAINING MULTICOMPONENT ALLOY MAGNETIC NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND MAGNETIC RECORDING MEDIUM USING THE SAME

Also Published As

Publication number Publication date
JP2009263719A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5251227B2 (en) Manufacturing method of alloy fine particles, alloy fine particles, catalyst for polymer electrolyte fuel cell containing the alloy fine particles, and metal colloid solution containing the alloy fine particles
KR101770010B1 (en) Catalyst having metal microparticles supported thereon, and use thereof
JP5105602B2 (en) Method for producing noble metal alloy catalyst and catalyst prepared thereby
Pal et al. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis
CN103977794B (en) A kind of support type three-dimensional structure noble metal catalyst and its preparation method and application
CN105431230B (en) Method for forming noble metal nanoparticles on a support
Shen et al. Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation
Dehghan Banadaki et al. Recent advances in facile synthesis of bimetallic nanostructures: An overview
JP2011089143A (en) Method for producing mono-component system and bi-component system cubic type metal nanoparticle
KR20110060589A (en) Synthesis methods of core-shell nanoparticles on a carbon support
JP6653875B2 (en) Method for producing platinum catalyst and fuel cell using the same
JP4853498B2 (en) Method for producing gold fine particle supported carrier catalyst for fuel cell and catalyst for polymer electrolyte fuel cell containing gold fine particle produced by the method
CN101157043A (en) A nucleocapsid type nanometer stephanoporate metal catalyst as well as its preparing method
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JP2005270883A (en) Catalyst manufacturing method
JP5665743B2 (en) Continuous production method of catalyst
JP5569396B2 (en) Catalyst production method
JP4272916B2 (en) Ternary metal colloid having a three-layer core / shell structure and method for producing the ternary metal colloid
JP2020145154A (en) Manufacturing method of platinum core-shell catalyst and fuel cell using the same
KR101164693B1 (en) Method for producing metal powder
JP4849317B2 (en) Method for producing metal fine particles
Rong et al. Noble metal-based nanocomposites for fuel cells
CN101618324A (en) Carbon-supported metal catalyst and preparation method thereof
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP4056775B2 (en) Method for modifying composite metal particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees