JP2001224969A - Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery - Google Patents

Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery

Info

Publication number
JP2001224969A
JP2001224969A JP2000039592A JP2000039592A JP2001224969A JP 2001224969 A JP2001224969 A JP 2001224969A JP 2000039592 A JP2000039592 A JP 2000039592A JP 2000039592 A JP2000039592 A JP 2000039592A JP 2001224969 A JP2001224969 A JP 2001224969A
Authority
JP
Japan
Prior art keywords
alloy
catalyst
solution
preparing
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000039592A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Masanao Yonemura
将直 米村
Satoru Watanabe
渡辺  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000039592A priority Critical patent/JP2001224969A/en
Publication of JP2001224969A publication Critical patent/JP2001224969A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an alloy catalyst containing active metals which have a high alloying degree and are more pulverized. SOLUTION: This method includes a state for preparing an alloy colloid solution by adding >=2 kinds of metal salts to an aqueous solution in which a reducing agent consisting of an organic acid is dissolved at the same period in the state of dissolving the metal salts in water and a stage for depositing the alloy colloid particles in the solution on a carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金触媒の調製方
法、とりわけ固体高分子型燃料電池用電極触媒の調製方
法と、固体高分子型燃料電池の製造方法に関するもので
ある。
The present invention relates to a method for preparing an alloy catalyst, particularly to a method for preparing an electrode catalyst for a polymer electrolyte fuel cell and a method for manufacturing a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】合金触媒は、活性金属として単一金属を
用いる触媒では得られない特異な触媒活性を示し、石油
化学、石油精製の化学プロセスあるいは種々の排ガス処
理用触媒に適用されている。最近では、固体高分子型燃
料電池用電極触媒に使用されつつある。
2. Description of the Related Art Alloy catalysts exhibit a unique catalytic activity that cannot be obtained with a catalyst using a single metal as an active metal, and have been applied to petrochemical and petroleum refining chemical processes or various exhaust gas treatment catalysts. Recently, it has been used as an electrode catalyst for polymer electrolyte fuel cells.

【0003】合金触媒は、高温で2成分以上の金属を溶
融して合金化(高温還元溶融法)するか、スパッタリン
グ等の物理的手法にて金属を固溶させる方法により調製
される。しかしながら、これらの方法によると、金属を
溶融させて合金化しているために合金粒子の粒径が大き
くなって合金粒子の比表面積が増加し、高い触媒活性が
得られないという問題点がある。このような問題点を燃
料電池用合金電極触媒を例にして具体的に説明する。
[0003] The alloy catalyst is prepared by melting two or more components of a metal at a high temperature to form an alloy (high-temperature reduction melting method) or by dissolving the metal by a physical method such as sputtering. However, according to these methods, since the metal is melted and alloyed, the particle size of the alloy particles increases, the specific surface area of the alloy particles increases, and there is a problem that high catalytic activity cannot be obtained. Such problems will be specifically described with reference to an alloy electrode catalyst for a fuel cell.

【0004】固体高分子型燃料電池はコンパクトで、か
つ高い電流密度を取り出せることから電気自動車や宇宙
船用の電源として注目されている。このような燃料電池
用アノード電極触媒として、カーボンからなる担体にP
tからなる活性金属を担持させたものが用いられてい
る。しかしながら、この活性金属としてPtを含む触媒
は、水素を含む燃料ガス中に混入しやすいCOにより被
毒されるため、電池性能の低下を招くという問題点を有
する。
A polymer electrolyte fuel cell has attracted attention as a power source for electric vehicles and spacecraft because it is compact and can extract a high current density. As such an anode electrode catalyst for a fuel cell, a carrier made of carbon is composed of P
What carries the active metal consisting of t is used. However, the catalyst containing Pt as an active metal is poisoned by CO which is likely to be mixed into a fuel gas containing hydrogen, and thus has a problem in that the performance of the battery is lowered.

【0005】このようなことから、PtとRu等の第2
成分とからなる合金をアノード電極触媒の活性金属とし
て適用することにより、COによる被毒を抑制すること
が行われている。COによる被毒を抑制するには、白金
と添加第2成分との合金化度合いを高くする必要があ
る。このため、Pt含有合金からなる活性金属は、前述
した高温還元溶融法か、あるいはスパッタリング法で作
製される。
[0005] From such a fact, the second Pt and Ru etc.
It has been practiced to suppress the poisoning by CO by applying an alloy comprising the components as an active metal of the anode electrode catalyst. In order to suppress poisoning by CO, it is necessary to increase the degree of alloying of platinum with the added second component. Therefore, the active metal made of the Pt-containing alloy is produced by the high-temperature reduction melting method described above or the sputtering method.

【0006】しかしながら、高温還元溶融法か、あるい
はスパッタリング法でPt含有合金を形成すると、合金
の粒径が大きくなるため、高い触媒活性が得られず、燃
料電池の性能を向上させることができなかった。
However, when a Pt-containing alloy is formed by the high-temperature reduction melting method or the sputtering method, the particle size of the alloy becomes large, so that high catalytic activity cannot be obtained, and the performance of the fuel cell cannot be improved. Was.

【0007】[0007]

【発明が解決しようとする課題】本発明は、合金化度合
いが高く、より微粒子化された活性金属を含む合金触媒
の調製方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing an alloy catalyst having a high degree of alloying and containing finely divided active metal.

【0008】また、本発明は、Pt含有合金を活性金属
として含む合金触媒がCOにより被毒されるのが抑制さ
れ、高性能な固体高分子型燃料電池の製造方法を提供す
ることを目的とする。
Another object of the present invention is to provide a method for producing a high-performance polymer electrolyte fuel cell in which an alloy catalyst containing a Pt-containing alloy as an active metal is prevented from being poisoned by CO. I do.

【0009】[0009]

【課題を解決するための手段】本発明に係る合金触媒の
調製方法は、有機酸からなる還元剤が溶解されている水
溶液に2種類以上の金属塩を水に溶解させた状態で同時
期に添加することにより合金コロイド溶液を調製する工
程と、前記溶液中の合金コロイド粒子を担体に担持させ
る工程とを具備することを特徴とするものである。
The method for preparing an alloy catalyst according to the present invention comprises simultaneously dissolving two or more metal salts in water in an aqueous solution in which a reducing agent comprising an organic acid is dissolved. It is characterized by comprising a step of preparing an alloy colloid solution by adding, and a step of supporting alloy colloid particles in the solution on a carrier.

【0010】本発明に係る固体高分子型燃料電池の製造
方法は、触媒及び高分子電解質を含むアノード極及びカ
ソード極を備えた固体高分子型燃料電池の製造方法にお
いて、前記アノード極及び前記カソード極のうち少なく
とも一方の電極の触媒は、有機酸からなる還元剤が溶解
されている水溶液に2種類以上の金属塩(白金塩を含
む)を水に溶解させた状態で同時期に添加することによ
りPt含有合金コロイド溶液を調製する工程と、前記溶
液中のPt含有合金コロイド粒子を担体粉末に担持させ
る工程とを具備する方法により作製されることを特徴と
するものである。
The method of manufacturing a polymer electrolyte fuel cell according to the present invention is directed to a method of manufacturing a polymer electrolyte fuel cell having an anode and a cathode each comprising a catalyst and a polymer electrolyte. The catalyst for at least one of the electrodes is added at the same time in a state where two or more metal salts (including platinum salts) are dissolved in water in an aqueous solution in which a reducing agent comprising an organic acid is dissolved. And preparing a colloidal Pt-containing alloy solution by the method described above, and a step of supporting the colloidal Pt-containing alloy particles in the solution on a carrier powder.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る合金触媒の調
製方法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for preparing an alloy catalyst according to the present invention will be described.

【0012】(合金コロイド調製工程)有機酸からなる
還元剤が溶解されている水溶液に2種類以上の金属塩を
水に溶解させた状態で同時期に添加することにより合金
コロイド溶液を調製する。
(Alloy colloid preparation step) An alloy colloid solution is prepared by simultaneously adding two or more metal salts dissolved in water to an aqueous solution in which a reducing agent comprising an organic acid is dissolved.

【0013】金属塩の添加方法としては、例えば、
(a)2種類以上の金属塩が溶解されている混合水溶液
を添加する、(b)1種類の金属塩が溶解されている水
溶液を2種類以上用意し、これら水溶液を同時期に添加
する、(c)前記(a)の混合水溶液1種類以上と前記
(b)の単独水溶液1種類以上とを同時期に添加する等
が挙げられる。
As a method of adding a metal salt, for example,
(A) adding a mixed aqueous solution in which two or more metal salts are dissolved; (b) preparing two or more aqueous solutions in which one metal salt is dissolved, and adding these aqueous solutions at the same time; (C) One or more of the mixed aqueous solution of (a) and one or more of the single aqueous solution of (b) are added at the same time.

【0014】前記有機酸からなる還元剤が溶解されてい
る水溶液は、例えば、水を沸騰させて溶存酸素を除去し
た後、有機酸を溶解させることにより調製することが好
ましい。前記水溶液中に溶存酸素が含まれていると、酸
化物が生成しやすく、この酸化物により合金コロイド粒
子が凝集しやすくなり、コロイド粒子の粒径が大きくな
る可能性があるからである。
The aqueous solution in which the reducing agent comprising the organic acid is dissolved is preferably prepared, for example, by boiling water to remove dissolved oxygen and then dissolving the organic acid. If dissolved oxygen is contained in the aqueous solution, an oxide is likely to be generated, and this oxide tends to cause the alloy colloid particles to easily aggregate, which may increase the particle size of the colloid particles.

【0015】前記有機酸は、アルコール類(例えば、メ
タノール、エタノール、イソプロパノール、ブタノー
ル)、クエン酸類(例えば、クエン酸ナトリウム、クエ
ン酸カリウム、クエン酸アンモニウム)、ケトン類(例
えば、アセトン、メチルエチルケトン)、カルボン酸類
(例えば、酢酸、ぎ酸、フマル酸、りんご酸、アスパラ
ギン酸、こはく酸)及びエステル類(例えば、ぎ酸メチ
ル)から選ばれる少なくとも1種類の有機酸からなるこ
とが好ましい。
The organic acids include alcohols (eg, methanol, ethanol, isopropanol, butanol), citric acids (eg, sodium citrate, potassium citrate, ammonium citrate), ketones (eg, acetone, methyl ethyl ketone), It is preferably composed of at least one organic acid selected from carboxylic acids (eg, acetic acid, formic acid, fumaric acid, malic acid, aspartic acid, succinic acid) and esters (eg, methyl formate).

【0016】調製される合金コロイドの組成は、特に限
定されず、目的とする触媒の組成に応じたものにする。
固体高分子型燃料電池用電極の触媒を作製する際には、
合金コロイドの組成は、Ptと、Ru、Au、Pd、R
h、Ir、Co、Fe、Ni、Cu及びSnから選ばれ
る少なくとも1種類の元素とからなるものにすることが
好ましい。
The composition of the alloy colloid to be prepared is not particularly limited, and may be selected according to the desired composition of the catalyst.
When preparing a catalyst for an electrode for a polymer electrolyte fuel cell,
The composition of the alloy colloid is Pt, Ru, Au, Pd, R
It is preferable to use at least one element selected from h, Ir, Co, Fe, Ni, Cu and Sn.

【0017】前記金属塩としては、例えば、金属塩化
物、金属の硝酸塩、金属錯体等を挙げることができる。
金属塩化物の一例を挙げると塩化白金酸があり、また金
属錯体の一例としてはジニトロジアミン白金塩が挙げら
れる。
Examples of the metal salt include a metal chloride, a metal nitrate, and a metal complex.
An example of a metal chloride is chloroplatinic acid, and an example of a metal complex is dinitrodiamine platinum salt.

【0018】有機酸からなる還元剤が溶解されている水
溶液に2種類以上の金属塩を水に溶解させた状態で同時
期に添加し、これらを30〜110℃に保持することが
好ましい。このような構成にすることによって、合金形
成反応速度を適度なものにすることができるため、合金
コロイド溶液の調製を量産性良く行うことができる。よ
り好ましい範囲は40〜110℃である。
It is preferable that two or more metal salts are added to an aqueous solution in which a reducing agent composed of an organic acid is dissolved in water at the same time while being dissolved in water, and these are kept at 30 to 110 ° C. With such a configuration, the rate of the alloy formation reaction can be made appropriate, so that the alloy colloid solution can be prepared with high mass productivity. A more preferred range is 40 to 110 ° C.

【0019】(合金コロイドの担体への担持工程)得ら
れた合金コロイド溶液の合金コロイド粒子を担体粉末に
担持させることにより合金触媒を得る。
(Step of Supporting Alloy Colloid on Carrier) An alloy catalyst is obtained by supporting the alloy colloid particles of the obtained alloy colloid solution on a carrier powder.

【0020】担体粉末への担持には、例えば、液相吸着
法(室温の合金コロイド溶液に担体粉末を添加して攪拌
することにより前記担体粉末に合金コロイド粒子を吸着
させた後、濾過し、洗浄し、乾燥させる方法である)
か、蒸発乾固法(合金コロイド溶液に担体粉末を添加
し、攪拌しながら加熱して溶媒を飛散させる方法であ
る)を採用することができる。
The carrier is supported on the carrier powder by, for example, a liquid phase adsorption method (adding the carrier powder to the alloy colloid solution at room temperature and stirring to adsorb the alloy colloid particles to the carrier powder, followed by filtration. Washing and drying)
Alternatively, an evaporation to dryness method (a method in which a carrier powder is added to an alloy colloid solution and heated while stirring to disperse the solvent) can be employed.

【0021】合金コロイド溶液中には還元剤との反応に
より生成した余剰イオンが存在する場合がある。このよ
うな場合、担体粉末への担持を行う前に、合金コロイド
溶液をイオン交換樹脂に通して余剰イオンである陽イオ
ン並びに陰イオンを除去することが好ましい。
In some cases, excess ions generated by the reaction with the reducing agent are present in the alloy colloid solution. In such a case, it is preferable that the alloy colloid solution be passed through an ion exchange resin to remove excess ions, ie, cations and anions, before carrying on the carrier powder.

【0022】前記担体粉末は、特に限定されず、目的と
する触媒組成に応じたものが使用される。前記担体粉末
としては、例えば、多孔質物質(例えば、アルミナ、シ
リカ)、炭素系粉末等を挙げることができる。前記炭素
系粉末としては、例えば、黒鉛、カーボンブラック、電
気導電性を有する活性炭等を挙げることができる。特
に、燃料電池用電極触媒には、前記活性炭が好ましい。
The carrier powder is not particularly limited, and a powder according to a desired catalyst composition is used. Examples of the carrier powder include a porous substance (for example, alumina and silica) and a carbon-based powder. Examples of the carbon-based powder include graphite, carbon black, and activated carbon having electrical conductivity. In particular, the activated carbon is preferably used for an electrode catalyst for a fuel cell.

【0023】燃料電池用電極触媒中の活性金属の担持量
は、10%以上にすることが好ましい。担持量を10%
以上にすることによって、燃料電池をより高性能にする
ことができる。
The amount of active metal carried in the fuel cell electrode catalyst is preferably 10% or more. 10% loading
With the above, the performance of the fuel cell can be further improved.

【0024】次いで、本発明に係る固体高分子型燃料電
池の製造方法について説明する。
Next, a method for manufacturing a polymer electrolyte fuel cell according to the present invention will be described.

【0025】まず、前述した方法により調製された合金
触媒(Pt含有合金を活性金属とする)と、固体高分子
電解液とをエタノール等の溶剤に添加し、これらを攪拌
することによりアノード極用スラリーを調製する。一
方、前述した方法により調製された合金触媒(Pt含有
合金を活性金属とする)か、もしくはPtを活性金属と
する触媒と、固体高分子電解液とをエタノール等の溶剤
に添加し、これらを攪拌することによりカソード極用ス
ラリーを調製する。
First, the alloy catalyst prepared by the above-described method (a Pt-containing alloy is used as an active metal) and a solid polymer electrolyte are added to a solvent such as ethanol, and these are stirred to form an anode electrode. Prepare a slurry. On the other hand, the alloy catalyst prepared by the above-described method (a Pt-containing alloy as an active metal) or a catalyst with Pt as an active metal and a solid polymer electrolyte solution are added to a solvent such as ethanol, and these are added. A slurry for a cathode is prepared by stirring.

【0026】固体高分子電解膜の一方の面にアノード極
用スラリーを塗布し、他方の面にカソード極用スラリー
を塗布することにより電極セルを作製する。この電極セ
ルの両面にカーボンペーパーのような集電体を貼り付
け、各集電体にセパレータを積層することにより単セル
固体高分子燃料電池が得られる。前記カソード電極及び
前記アノード電極の組成は、燃料に水素を用いる場合に
は同一にすることができる。
An electrode cell is prepared by applying the slurry for the anode electrode to one surface of the solid polymer electrolyte membrane and applying the slurry for the cathode electrode to the other surface. A current collector such as carbon paper is attached to both sides of the electrode cell, and a separator is laminated on each current collector, thereby obtaining a single-cell solid polymer fuel cell. The composition of the cathode electrode and the anode electrode can be the same when hydrogen is used as fuel.

【0027】以上詳述したように本発明に係る合金触媒
の調製方法によれば、有機酸からなる還元剤が溶解され
ている水溶液に2種類以上の金属塩を水に溶解させた状
態で同時期に添加して合金コロイド溶液を調製すること
によって、各金属イオンをその酸化還元準位が互いに異
なる場合にも同時に還元させることができるため、コロ
イド粒子の合金化度合いを高くすることができる。ま
た、有機酸からなる還元剤は、従来から使用されている
ヒドラジンやチオ硫酸塩に比べて還元力が弱いため、金
属イオンの還元反応(一例を下記(1)式に示す)が緩
やかに進み、還元による結晶成長を抑制することがで
き、合金コロイド粒子を微細化することができる(例え
ば粒径2〜3nm)。なお、(1)式では、係数を省略
している。
As described in detail above, according to the method for preparing an alloy catalyst according to the present invention, two or more metal salts are dissolved in water in an aqueous solution in which a reducing agent comprising an organic acid is dissolved. By preparing the alloy colloid solution by adding the metal ions at appropriate times, each metal ion can be reduced at the same time even when their redox levels are different from each other, so that the degree of alloying of the colloid particles can be increased. In addition, since the reducing agent composed of an organic acid has a lower reducing power than hydrazine and thiosulfate conventionally used, the reduction reaction of metal ions (an example is shown in the following formula (1)) proceeds slowly. In addition, crystal growth due to reduction can be suppressed, and alloy colloid particles can be miniaturized (for example, a particle diameter of 2 to 3 nm). In equation (1), coefficients are omitted.

【0028】 (Pt4+,Ru4+)+C657Na3・11/2H2O→ (Pt0,Ru0)+(Na+,CO2,H2O) …(1) 得られた合金コロイド粒子を担体粉末に担持させること
によって、活性金属の合金化度合い及び比表面積を向上
させることができるため、活性が改善された、換言すれ
ば少量の活性金属で高い活性が得られる合金触媒を提供
することができる。また、本発明の方法により得られた
Pt含有合金触媒を固体高分子型燃料電池に供すること
によって、前記触媒の活性を向上することができると共
に、前記触媒が一酸化炭素により被毒されるのを抑制す
ることができるため、燃料電池の性能を向上することが
できる。
(Pt 4+ , Ru 4+ ) + C 6 H 5 O 7 Na 3 .11 / 2H 2 O → (Pt 0 , Ru 0 ) + (Na + , CO 2 , H 2 O) (1) By supporting the obtained alloy colloid particles on the carrier powder, the degree of alloying and the specific surface area of the active metal can be improved, so that the activity is improved, in other words, a high activity can be obtained with a small amount of active metal. Alloy catalyst can be provided. Further, by providing the Pt-containing alloy catalyst obtained by the method of the present invention to a polymer electrolyte fuel cell, the activity of the catalyst can be improved and the catalyst can be poisoned by carbon monoxide. Therefore, the performance of the fuel cell can be improved.

【0029】さらに、還元剤としてヒドラジンやチオ硫
酸塩を使用する従来法においては、形成された合金コロ
イドが凝集しやすく、界面活性剤等の保護コロイドを添
加する必要がある。本発明により得られる合金コロイド
粒子は、保護コロイドが添加されていなくとも微粒子状
を維持することができる。
Further, in the conventional method using hydrazine or thiosulfate as a reducing agent, the formed alloy colloid tends to aggregate, and it is necessary to add a protective colloid such as a surfactant. The alloy colloid particles obtained according to the present invention can maintain a fine particle state even if no protective colloid is added.

【0030】本発明に係る方法において、有機酸からな
る還元剤が溶解されている水溶液に2種類以上の金属塩
を水に溶解させた状態で同時期に添加し、これらを30
〜110℃に保持して合金コロイド溶液を調製すること
によって、還元による結晶成長を抑制しつつ、量産性を
高くすることができる。
In the method according to the present invention, two or more metal salts dissolved in water are added simultaneously to an aqueous solution in which a reducing agent comprising an organic acid is dissolved.
By preparing the alloy colloid solution while maintaining the temperature at ~ 110 ° C, mass productivity can be increased while suppressing crystal growth by reduction.

【0031】[0031]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0032】[実施例1] <合金コロイド溶液の調製>1時間沸騰させることによ
り十分溶存酸素を除去したイオン交換水1リットルにク
エン酸ナトリウム(C657Na3・11/2H2O)
10mmolを添加し、100℃沸騰下にて均一な溶液を調
製した。この溶液に、塩化白金酸と塩化ルテニウムの混
合水溶液(Ptが1mmolで、Ruが1mmolである)を滴
下し、これらを100℃に保持して1時間還元処理を行
った。溶液が赤色から黒色に変色するのを確認した後、
室温に急冷した。生成したPt・Ru合金コロイド溶液
をイオン交換樹脂に通して陰および陽イオンを除去し、
合金コロイド溶液1とした。
Example 1 <Preparation of Alloy Colloid Solution> Sodium citrate (C 6 H 5 O 7 Na 3 .11 / 2H 2) was added to 1 liter of ion-exchanged water from which dissolved oxygen was sufficiently removed by boiling for 1 hour. O)
10 mmol was added, and a homogeneous solution was prepared under boiling at 100 ° C. To this solution, a mixed aqueous solution of chloroplatinic acid and ruthenium chloride (Pt was 1 mmol, Ru was 1 mmol) was dropped, and these were kept at 100 ° C. and subjected to a reduction treatment for 1 hour. After confirming that the solution changes color from red to black,
Quenched to room temperature. The resulting Pt / Ru alloy colloid solution is passed through an ion exchange resin to remove anions and cations,
Alloy colloid solution 1 was obtained.

【0033】<合金コロイドの担体への担持>2リット
ルの上記合金コロイド溶液1に比表面積が800m2
gのケッチェンカーボンを0.5g添加して、超音波分
散させ、均一なスラリーを得た。得られた水溶液を90
℃に保ち、攪拌しながら水を蒸発させることにより合金
粒子をカーボンに担持させ、得られたカーボン担持Pt
・Ru合金触媒を触媒1とした。
<Supporting of Alloy Colloid on Carrier> 2 liters of the above-mentioned alloy colloid solution 1 had a specific surface area of 800 m 2 /
g of Ketjen carbon was added and ultrasonically dispersed to obtain a uniform slurry. The obtained aqueous solution is 90
° C and the alloy particles were supported on carbon by evaporating water while stirring.
-The Ru alloy catalyst was used as catalyst 1.

【0034】[実施例2]合金コロイド溶液の調製にお
いて、クエン酸ナトリウムの代わりに、エタノール、メ
タノール、イソプロパノール、ブタノール、酢酸、ぎ
酸、アセトン、メチルエチルケトンまたはぎ酸メチルを
用いること以外は、前述した実施例1で説明したのと同
様にしてPt・Ru合金コロイド溶液2〜10を調製し
た。各合金コロイド溶液2〜10をケッチェンカーボン
に前述した実施例1と同様にして担持させ、得られたカ
ーボン担持Pt・Ru合金触媒を触媒2〜10とした。
Example 2 The preparation of the alloy colloid solution was as described above, except that ethanol, methanol, isopropanol, butanol, acetic acid, formic acid, acetone, methyl ethyl ketone or methyl formate was used instead of sodium citrate. Pt / Ru alloy colloid solutions 2 to 10 were prepared in the same manner as described in Example 1. Each of the alloy colloid solutions 2 to 10 was supported on Ketjen carbon in the same manner as in Example 1 described above, and the obtained carbon-supported Pt / Ru alloy catalyst was used as catalysts 2 to 10.

【0035】合金コロイド溶液の調製において、塩化ル
テニウムの代わりに、塩化金酸、塩化パラジウム、塩化
ロジウム、塩化イリジウム、塩化コバルト、塩化鉄、塩
化ニッケル、塩化銅または塩化スズを用いること以外
は、前述した実施例1で説明したのと同様にしてPt及
びα元素からなる合金コロイド溶液11〜19を調製し
た(α元素は、Au、Pd、Rh、Ir、Co、Fe、
Ni、CuまたはSnである)。各合金コロイド溶液1
1〜19をケッチェンカーボンに前述した実施例1と同
様にして担持させ、得られたカーボン担持Pt・α合金
触媒を触媒11〜19とした。
In the preparation of the alloy colloid solution, except that ruthenium chloride is replaced by chloroauric acid, palladium chloride, rhodium chloride, iridium chloride, cobalt chloride, iron chloride, nickel chloride, copper chloride or tin chloride, Alloy colloid solutions 11 to 19 composed of Pt and α elements were prepared in the same manner as described in Example 1 (α elements were Au, Pd, Rh, Ir, Co, Fe,
Ni, Cu or Sn). Each alloy colloid solution 1
1 to 19 were supported on Ketjen carbon in the same manner as in Example 1 described above, and the obtained carbon-supported Pt / α alloy catalyst was used as catalysts 11 to 19.

【0036】[比較例1]以下に説明するように、含浸
法にて炭素系粉末にPtとRuを担持させた後、高温熱
処理によりPtとRuを合金化してカーボン担持Pt・
Ru合金触媒を得た。
Comparative Example 1 As described below, after Pt and Ru are supported on a carbon-based powder by an impregnation method, Pt and Ru are alloyed by a high-temperature heat treatment to form a carbon-supported Pt.
A Ru alloy catalyst was obtained.

【0037】すなわち、ケッチェンカーボンを0.4g
サンプリングし、塩化白金酸と塩化ルテニウム混合水溶
液(Pt 2mmol、Ru 2mmol)をカーボンに滴下し
て、混練しながら蒸発乾固させた。これを900℃窒素
雰囲気にさらし、1%水素を1時間供給することにより
Pt・Ru合金を形成させた後、室温まで冷却し、得ら
れたカーボン担持Pt・Ru触媒を比較触媒1とした。
That is, 0.4 g of Ketjen carbon
Sampling was performed, and a mixed aqueous solution of chloroplatinic acid and ruthenium chloride (Pt 2 mmol, Ru 2 mmol) was dropped on carbon, and the mixture was evaporated to dryness while kneading. This was exposed to a nitrogen atmosphere at 900 ° C., and 1% hydrogen was supplied for 1 hour to form a Pt.Ru alloy, and then cooled to room temperature. The obtained carbon-supported Pt.Ru catalyst was used as Comparative Catalyst 1.

【0038】[比較例2]1時間沸騰させることにより
十分溶存酸素を除去したイオン交換水1リットルに塩化
白金酸と塩化ルテニウムの混合水溶液(Ptが1mmol
で、Ruが1mmolである)を先に添加した。次いで、ク
エン酸ナトリウム10mmolを添加し、これらを100℃
に保持して1時間還元処理を行った後、室温に急冷し、
生成したPt・Ru合金コロイド溶液をイオン交換樹脂
に通して陰および陽イオンを除去し、合金コロイド溶液
を調製した。この合金コロイド溶液をケッチェンカーボ
ンに前述した実施例1と同様にして担持させ、得られた
カーボン担持Pt・Ru合金触媒を比較触媒2とした。
Comparative Example 2 A mixed aqueous solution of chloroplatinic acid and ruthenium chloride (Pt: 1 mmol) was added to 1 liter of ion-exchanged water from which dissolved oxygen was sufficiently removed by boiling for 1 hour.
, Where Ru is 1 mmol). Then, 10 mmol of sodium citrate are added and these are brought to 100 ° C.
After performing a reduction treatment for 1 hour while maintaining at
The resulting Pt / Ru alloy colloid solution was passed through an ion exchange resin to remove anions and cations, thereby preparing an alloy colloid solution. This alloy colloid solution was supported on Ketjen carbon in the same manner as in Example 1 described above, and the obtained carbon-supported Pt / Ru alloy catalyst was used as Comparative Catalyst 2.

【0039】[比較例3]合金コロイド溶液の調製にお
いて、塩化ルテニウムを添加せず、塩化白金酸のみを用
いること以外は、前述した実施例1で説明したのと同様
にして白金コロイド溶液を調製した。この白金コロイド
溶液をケッチェンカーボンに前述した実施例1と同様に
して担持させ、得られたカーボン担持Pt触媒を比較触
媒3とした。
Comparative Example 3 A platinum colloid solution was prepared in the same manner as described in Example 1 except that ruthenium chloride was not used and only chloroplatinic acid was used. did. This platinum colloid solution was supported on Ketjen carbon in the same manner as in Example 1 described above, and the obtained carbon-supported Pt catalyst was used as Comparative Catalyst 3.

【0040】得られた試作触媒1〜19と比較触媒1〜
3について、物性評価として透過型電子顕微鏡による合
金粒子の平均粒径を測定した。また、X線回折法による
Ptの格子定数の変化より合金度合いを評価した。これ
らの結果と触媒の調製方法とを下記表1に示す。なお、
表1において、2成分金属が合金の場合を○、独立した
金属混合物の場合を×と記す。
The obtained prototype catalysts 1 to 19 and comparative catalysts 1 to
For No. 3, the average particle size of the alloy particles was measured by a transmission electron microscope as a property evaluation. Further, the degree of alloy was evaluated from the change in the lattice constant of Pt by the X-ray diffraction method. The results and the method of preparing the catalyst are shown in Table 1 below. In addition,
In Table 1, the case where the two-component metal is an alloy is indicated by “○”, and the case of an independent metal mixture is indicated by “×”.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から明らかなように、有機酸からなる
還元剤が溶解された水溶液に2種類の金属塩の水溶液を
同時期に添加する方法により調製された試作触媒1〜1
9は、活性金属の合金化度合いが高く、かつ活性金属の
平均粒径を小さくできることがわかる。
As is clear from Table 1, prototype catalysts 1 to 1 prepared by a method in which aqueous solutions of two kinds of metal salts are added simultaneously to an aqueous solution in which a reducing agent composed of an organic acid is dissolved.
No. 9 shows that the degree of alloying of the active metal is high and the average particle size of the active metal can be reduced.

【0043】これに対し、高温還元処理法で調製された
比較触媒1は、活性金属の合金化度合いを高くできるも
のの、活性金属の平均粒径が試作触媒1〜19に比べて
大きくなることがわかる。また、2種類の金属塩の混合
水溶液に有機酸の水溶液を添加する方法により調製され
た比較触媒2は、活性金属の平均粒径を小さくできるも
のの、活性金属が合金ではなく混合物のままであること
がわかる。
On the other hand, although the comparative catalyst 1 prepared by the high-temperature reduction method can increase the degree of alloying of the active metal, the average particle diameter of the active metal is larger than those of the prototype catalysts 1 to 19. Understand. Further, Comparative Catalyst 2 prepared by a method of adding an aqueous solution of an organic acid to a mixed aqueous solution of two metal salts can reduce the average particle size of the active metal, but the active metal is not an alloy but a mixture. You can see that.

【0044】[実施例3]前記試作触媒1、2、3、
4、5と比較触媒1、2、3を用いて固体高分子型燃料
電池を製造し、アノード極に供給される燃料ガスにCO
が含有されている場合の発電性能を評価した。
Example 3 The prototype catalysts 1, 2, 3,
A polymer electrolyte fuel cell is manufactured using the catalysts 4, 5 and the comparative catalysts 1, 2, and 3, and the fuel gas supplied to the anode is CO 2
The power generation performance in the case where was contained was evaluated.

【0045】(電池セルの調製)触媒1に水/エタノー
ル混合水並びに高分子電解質溶液としてナフィオン溶液
を添加して超音波攪拌にてスラリーを調製した。得られ
たスラリーをテフロンシートに塗布して膜厚50μmの
固体高分子膜(デュポン社製で、商品名がナフィオン
膜)の両面に転写し、アノード極を形成した。アノード
極中のPt量は0.5mg/cm2で、Ru量は0.2
5mg/cm2で、ナフィオン液は0.5mg/cm2
あった。
(Preparation of Battery Cell) Water / ethanol mixed water and Nafion solution as a polymer electrolyte solution were added to Catalyst 1, and a slurry was prepared by ultrasonic stirring. The obtained slurry was applied to a Teflon sheet and transferred to both sides of a 50 μm-thick solid polymer film (manufactured by DuPont, trade name: Nafion film) to form an anode electrode. The amount of Pt in the anode was 0.5 mg / cm 2 , and the amount of Ru was 0.2 mg / cm 2.
At 5 mg / cm 2 , the Nafion solution was 0.5 mg / cm 2 .

【0046】一方、比較触媒3に水/エタノール混合水
並びに高分子電解質溶液としてナフィオン溶液を添加し
て超音波攪拌にてスラリーを調製した。得られたスラリ
ーをテフロンシートに塗布して膜厚50μmの固体高分
子膜(デュポン社製で、商品名がナフィオン膜)の両面
に転写し、カソード極を形成した。カソード極中のPt
量は0.5mg/cm2で、ナフィオン液は0.5mg
/cm2であった。アノード極及びカソード極それぞれ
にカーボンペーパを貼り付けた後、これらを1対のセパ
レータで挟み、5cm四方の電極セル1を製作した。
On the other hand, a water / ethanol mixed water and a Nafion solution as a polymer electrolyte solution were added to the comparative catalyst 3, and a slurry was prepared by ultrasonic stirring. The resulting slurry was applied to a Teflon sheet and transferred to both surfaces of a 50 μm-thick solid polymer film (manufactured by DuPont, trade name: Nafion film) to form a cathode. Pt in cathode electrode
The amount is 0.5 mg / cm 2 and the Nafion solution is 0.5 mg
/ Cm 2 . After attaching carbon paper to each of the anode electrode and the cathode electrode, these were sandwiched between a pair of separators to produce a 5 cm square electrode cell 1.

【0047】また、アノード電極に含まれる触媒として
試作触媒1の代わりに試作触媒2〜5および比較触媒1
〜3を用いること以外は、前述した実施例1で説明した
のと同様にして電極セル2〜5および比較電極セル1〜
3を製造した。なお、各電極セル2〜5及び比較電極セ
ル1〜3において使用されるカソード電極は、前述した
電極セル1で用いられているものと同一のものである。
The catalysts contained in the anode electrode were the prototype catalysts 2 to 5 and the comparative catalyst 1 instead of the trial catalyst 1.
Except for using Nos. 1 to 3, the electrode cells 2 to 5 and the comparative electrode cells 1 to 5 were formed in the same manner as described in Example 1 described above.
3 was produced. The cathode electrodes used in each of the electrode cells 2 to 5 and the comparative electrode cells 1 to 3 are the same as those used in the electrode cell 1 described above.

【0048】(発電性能評価)得られた電極セル1〜5
及び比較電極セル1〜3について、下記に説明する試験
条件で発電試験を行い、その結果を下記表2に示す。
(Evaluation of Power Generation Performance) Obtained Electrode Cells 1 to 5
A power generation test was performed on the comparative electrode cells 1 to 3 under the test conditions described below, and the results are shown in Table 2 below.

【0049】アノード側:H2 60%、CO2 20%、
2 20%、CO10ppm、3ata、温度60℃、
水素利用率50% カソード側:空気(Air)、3ata、温度60℃、
空気利用率50%
Anode side: H 2 60%, CO 2 20%,
N 2 20%, CO 10 ppm, 3ata, temperature 60 ° C.
Hydrogen utilization rate 50% Cathode side: Air (Air), 3ata, temperature 60 ° C,
50% air utilization

【0050】[0050]

【表2】 [Table 2]

【0051】表2から明らかなように、試作触媒1〜5
を用いた電極セル1〜5は、比較電極セル1〜3に比べ
て高電圧を得られることがわかる。
As can be seen from Table 2, the prototype catalysts 1 to 5
It can be seen that the electrode cells 1 to 5 using can obtain a higher voltage than the comparative electrode cells 1 to 3.

【0052】なお、前述した実施例においては、塩化白
金酸と塩化ルテニウムの混合水溶液のような2種類の金
属塩が溶解された混合水溶液を用いる例を説明したが、
混合水溶液にせず、金属塩水溶液を2種類用意し(例え
ば、塩化白金酸の水溶液と塩化ルテニウムの水溶液)、
これら水溶液を同時期に添加すること以外は前述した実
施例1,2で説明したのと同様にして試作触媒1〜19
を調製したところ、前述した表1で説明したのと同様な
結果が得られた。
In the above-described embodiment, an example in which a mixed aqueous solution in which two kinds of metal salts are dissolved, such as a mixed aqueous solution of chloroplatinic acid and ruthenium chloride, has been described.
Instead of a mixed aqueous solution, two kinds of aqueous metal salt solutions are prepared (for example, an aqueous solution of chloroplatinic acid and an aqueous solution of ruthenium chloride),
Except that these aqueous solutions were added at the same time, the prototype catalysts 1 to 19 were the same as described in Examples 1 and 2 above.
Prepared, the same results as described in Table 1 above were obtained.

【0053】また、前述した実施例においては、Pt・
Ru合金のような二成分系合金に適用した例を説明した
が、本発明に係る調製方法を三成分以上を含有する合金
に適用した際に合金化度合いの向上と微粒子化の効果が
得られることを確認した。
In the above-described embodiment, Pt ·
Although an example in which the invention is applied to a two-component alloy such as a Ru alloy has been described, when the preparation method according to the present invention is applied to an alloy containing three or more components, an improvement in the degree of alloying and an effect of atomization can be obtained. It was confirmed.

【0054】[0054]

【発明の効果】以上詳述したように本発明に係る合金触
媒の調製方法によれば、活性金属の合金化度合いを高く
することができると共に活性金属の粒径を小さくするこ
とができ、低金属量で高い活性を得ることができる等の
顕著な効果を奏する。また、本発明に係る固体高分子型
燃料電池の製造方法によれば、Pt系合金を活性金属と
して含む合金触媒がCOにより被毒されるのを抑制する
ことができると共に前記触媒の活性を向上することがで
き、電池性能を向上することができる等の顕著な効果を
奏する。
As described in detail above, according to the method for preparing an alloy catalyst according to the present invention, the degree of alloying of the active metal can be increased, and the particle size of the active metal can be reduced. A remarkable effect such as high activity can be obtained with an amount of metal. Further, according to the method of manufacturing a polymer electrolyte fuel cell according to the present invention, it is possible to suppress poisoning of an alloy catalyst containing a Pt-based alloy as an active metal by CO and to improve the activity of the catalyst. And a remarkable effect such as an improvement in battery performance can be achieved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 渡辺 悟 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 Fターム(参考) 4G069 AA08 BA08A BA08B BA21C BB02A BB02B BC22A BC22B BC31A BC31B BC33A BC33B BC66A BC66B BC67A BC67B BC68A BC68B BC70A BC70B BC71A BC71B BC72A BC72B BC74A BC74B BC75A BC75B BE06C BE08C BE09C CC32 EB19 EC04Y FA02 FB05 FB09 FB45 FC04 5H018 AA06 AS02 AS03 BB17 EE06 EE07 EE08 EE10 EE12 5H026 AA06 CX05 EE05 EE06 EE08 EE12 EE19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanao Yonemura 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Satoru Watanabe Kanagawa-ku, Yokohama-shi Kanazawa-ku, Kanagawa Prefecture 8th Street 1 Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory F-term (reference) 4G069 AA08 BA08A BA08B BA21C BB02A BB02B BC22A BC22B BC31A BC31B BC33A BC33B BC66A BC66B BC67A BC67B BC68A BC68B BC70A BC70B BC71 BC72BBC BCBC BC BC EB19 EC04Y FA02 FB05 FB09 FB45 FC04 5H018 AA06 AS02 AS03 BB17 EE06 EE07 EE08 EE10 EE12 5H026 AA06 CX05 EE05 EE06 EE08 EE12 EE19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機酸からなる還元剤が溶解されている
水溶液に2種類以上の金属塩を水に溶解させた状態で同
時期に添加することにより合金コロイド溶液を調製する
工程と、 前記溶液中の合金コロイド粒子を担体に担持させる工程
とを具備することを特徴とする合金触媒の調製方法。
A step of preparing an alloy colloid solution by simultaneously adding two or more metal salts dissolved in water to an aqueous solution in which a reducing agent comprising an organic acid is dissolved; Supporting the alloy colloidal particles therein on a carrier.
【請求項2】 触媒及び高分子電解質を含むアノード極
及びカソード極を備えた固体高分子型燃料電池の製造方
法において、 前記アノード極及び前記カソード極のうち少なくとも一
方の電極の触媒は、 有機酸からなる還元剤が溶解されている水溶液に2種類
以上の金属塩(白金塩を含む)を水に溶解させた状態で
同時期に添加することによりPt含有合金コロイド溶液
を調製する工程と、 前記溶液中のPt含有合金コロイド粒子を担体粉末に担
持させる工程とを具備する方法により作製されることを
特徴とする固体高分子型燃料電池の製造方法。
2. A method for manufacturing a polymer electrolyte fuel cell having an anode and a cathode including a catalyst and a polymer electrolyte, wherein the catalyst of at least one of the anode and the cathode is an organic acid. Preparing a Pt-containing alloy colloid solution by simultaneously adding two or more metal salts (including platinum salts) in a state of being dissolved in water to an aqueous solution in which a reducing agent comprising: Supporting the Pt-containing alloy colloid particles in the solution on a carrier powder.
JP2000039592A 2000-02-17 2000-02-17 Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery Withdrawn JP2001224969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039592A JP2001224969A (en) 2000-02-17 2000-02-17 Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039592A JP2001224969A (en) 2000-02-17 2000-02-17 Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery

Publications (1)

Publication Number Publication Date
JP2001224969A true JP2001224969A (en) 2001-08-21

Family

ID=18563134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039592A Withdrawn JP2001224969A (en) 2000-02-17 2000-02-17 Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery

Country Status (1)

Country Link
JP (1) JP2001224969A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160876A (en) * 2001-11-22 2003-06-06 Sumitomo Osaka Cement Co Ltd Catalyst for electroless plating and method for forming metal plating pattern
JP2003175340A (en) * 2001-09-04 2003-06-24 Korea Inst Of Science & Technology Composite hydrogen ion exchange membrane having separation capacity, composite solution, its production method, and fuel cell containing it
JP2005199204A (en) * 2004-01-16 2005-07-28 Nippon Sheet Glass Co Ltd Superfine metal particle-containing photocatalyst and manufacturing method therefor
JP2006231266A (en) * 2005-02-28 2006-09-07 Tohoku Techno Arch Co Ltd Nano catalyst particle containing liquid with stabilized dispersion
JP2006344539A (en) * 2005-06-10 2006-12-21 Shin Etsu Chem Co Ltd Catalyst for fuel cell and direct methanol type fuel cell
US7241717B2 (en) 2003-10-23 2007-07-10 Cataler Corporation Cathode catalyst for fuel cell
JP2008161857A (en) * 2006-12-08 2008-07-17 Catalysts & Chem Ind Co Ltd Metal-containing colloidal grain-carrier, and method for producing the same
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same
JP2009263719A (en) * 2008-04-24 2009-11-12 Toyota Motor Corp Method for manufacturing alloy fine particle, alloy fine particle, catalyst for solid polymer type fuel cell including the alloy fine particle, and metal colloid solution including the alloy fine particle
US7648938B2 (en) * 2003-12-15 2010-01-19 Nippon Sheet Glass Company, Limited Metal nanocolloidal liquid, method for producing metal support and metal support
US7811965B2 (en) 2004-08-18 2010-10-12 Symyx Solutions, Inc. Platinum-copper-nickel fuel cell catalyst
JP2020044535A (en) * 2015-02-28 2020-03-26 株式会社フルヤ金属 Production method of carrying catalyst

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175340A (en) * 2001-09-04 2003-06-24 Korea Inst Of Science & Technology Composite hydrogen ion exchange membrane having separation capacity, composite solution, its production method, and fuel cell containing it
JP2003160876A (en) * 2001-11-22 2003-06-06 Sumitomo Osaka Cement Co Ltd Catalyst for electroless plating and method for forming metal plating pattern
US7241717B2 (en) 2003-10-23 2007-07-10 Cataler Corporation Cathode catalyst for fuel cell
US7648938B2 (en) * 2003-12-15 2010-01-19 Nippon Sheet Glass Company, Limited Metal nanocolloidal liquid, method for producing metal support and metal support
JP2005199204A (en) * 2004-01-16 2005-07-28 Nippon Sheet Glass Co Ltd Superfine metal particle-containing photocatalyst and manufacturing method therefor
JP4564263B2 (en) * 2004-01-16 2010-10-20 日本板硝子株式会社 Ultrafine metal particle-containing photocatalyst and method for producing the same
US7759281B2 (en) 2004-01-16 2010-07-20 Nippon Sheet Glass Co., Ltd. Photocatalyst containing metallic ultrafine particles and process for producing said photocatalyst
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same
US7811965B2 (en) 2004-08-18 2010-10-12 Symyx Solutions, Inc. Platinum-copper-nickel fuel cell catalyst
WO2006092910A1 (en) * 2005-02-28 2006-09-08 Tohoku Techno Arch Co., Ltd. Liquid containing dispersion stabilized catalytic nanoparticles
JP2006231266A (en) * 2005-02-28 2006-09-07 Tohoku Techno Arch Co Ltd Nano catalyst particle containing liquid with stabilized dispersion
JP2006344539A (en) * 2005-06-10 2006-12-21 Shin Etsu Chem Co Ltd Catalyst for fuel cell and direct methanol type fuel cell
JP4678244B2 (en) * 2005-06-10 2011-04-27 信越化学工業株式会社 Catalyst for fuel cell and direct methanol fuel cell
JP2008161857A (en) * 2006-12-08 2008-07-17 Catalysts & Chem Ind Co Ltd Metal-containing colloidal grain-carrier, and method for producing the same
JP2012096234A (en) * 2006-12-08 2012-05-24 Jgc Catalysts & Chemicals Ltd Carrier carrying metal-containing colloidal particle and method of producing the same
JP2009263719A (en) * 2008-04-24 2009-11-12 Toyota Motor Corp Method for manufacturing alloy fine particle, alloy fine particle, catalyst for solid polymer type fuel cell including the alloy fine particle, and metal colloid solution including the alloy fine particle
JP2020044535A (en) * 2015-02-28 2020-03-26 株式会社フルヤ金属 Production method of carrying catalyst
JP6989856B2 (en) 2015-02-28 2022-02-03 株式会社フルヤ金属 Method for manufacturing a supported catalyst

Similar Documents

Publication Publication Date Title
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
JP5443029B2 (en) Method for producing core-shell particles
Crisafulli et al. On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium
JP4934799B2 (en) Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same
JP5665743B2 (en) Continuous production method of catalyst
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
JP3870282B2 (en) Dispersed and stabilized liquid containing catalyst nanoparticles
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
JP2016003396A (en) Synthesis of alloy nanoparticles as stable core for core-shell electrode catalysts
JPWO2009096356A1 (en) ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME
JP5204714B2 (en) Alloy fine particles and their production and use
JP2006297355A (en) Catalyst and its manufacturing method
JP2001224969A (en) Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
KR20130067476A (en) Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
JP2001224968A (en) Method for preparing deposited metallic catalyst and method for manufacturing solid high-polymer type fuel battery
Gong et al. Platinum–copper alloy nanocrystals supported on reduced graphene oxide: One-pot synthesis and electrocatalytic applications
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
RU2395339C2 (en) Catalyst for fuel cell cathode and method of preparing said catalyst
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
JP2003320249A (en) Metal-carrying catalyst and production of the same and solid polymer electrolyte type fuel cell using the same
JP2003100308A (en) Cathode electrode catalyst for fuel cell and method of manufacturing the same
JP2005196972A (en) Manufacturing method of electrode catalyst

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501