JP4678244B2 - Catalyst for fuel cell and direct methanol fuel cell - Google Patents

Catalyst for fuel cell and direct methanol fuel cell Download PDF

Info

Publication number
JP4678244B2
JP4678244B2 JP2005170435A JP2005170435A JP4678244B2 JP 4678244 B2 JP4678244 B2 JP 4678244B2 JP 2005170435 A JP2005170435 A JP 2005170435A JP 2005170435 A JP2005170435 A JP 2005170435A JP 4678244 B2 JP4678244 B2 JP 4678244B2
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
hydroxide
electrode
direct methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005170435A
Other languages
Japanese (ja)
Other versions
JP2006344539A (en
Inventor
敏夫 大庭
敦雄 川田
繁 小西
晋輔 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005170435A priority Critical patent/JP4678244B2/en
Publication of JP2006344539A publication Critical patent/JP2006344539A/en
Application granted granted Critical
Publication of JP4678244B2 publication Critical patent/JP4678244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、特にダイレクトメタノール固体高分子形燃料電池用のアノード電極触媒として好適な燃料電池用触媒、これを用いたダイレクトメタノール型燃料電池用電極、ダイレクトメタノール型燃料電池用電解質膜/電極接合体、ダイレクトメタノール型燃料電池、及び燃料電池用触媒の製造方法に関する。 The present invention relates to a fuel cell catalyst particularly suitable as an anode electrode catalyst for a direct methanol solid polymer fuel cell, an electrode for a direct methanol fuel cell, an electrolyte membrane / electrode assembly for a direct methanol fuel cell using the same. The present invention relates to a direct methanol fuel cell and a method for producing a fuel cell catalyst .

固体高分子形燃料電池は携帯用や自動車用、家庭用コジェネレーションの幅広い分野での利用が期待されており、その性能向上が求められている。   The polymer electrolyte fuel cell is expected to be used in a wide range of fields such as portable, automobile and household cogeneration, and its performance is required to be improved.

携帯用燃料電池では、製品としてのサイズ、燃料インフラの観点からダイレクトメタノール方式が有力視されている。   In the case of portable fuel cells, the direct methanol system is considered promising from the viewpoint of product size and fuel infrastructure.

このような燃料電池用アノード電極触媒として、カーボンからなる担体にPtなどの活性金属を担持させたものが用いられている。しかしながら、アノード電極ではメタノール酸化反応の過電圧が大きいため、燃料電池の出力を下げる主な原因となっている。   As such an anode electrode catalyst for a fuel cell, an active metal such as Pt supported on a support made of carbon is used. However, since the anode electrode has a large overvoltage of the methanol oxidation reaction, it is a main cause of lowering the output of the fuel cell.

詳しくは、メタノール酸化反応活性及び副生成物による被毒などが出力低下の要因として挙げられる。   Specifically, methanol oxidation reaction activity and poisoning by by-products can be cited as causes of output reduction.

触媒活性を向上させるためには反応面積を増加させる、即ち触媒表面積を増加させる必要があり、触媒表面積を増加させる手段の一つとしては触媒の粒径を小さくし、高分散させることが必要である。このため燃料電池用触媒としては一般に導電性のカーボンに白金を含む貴金属を担持した触媒が用いられている。白金担持カーボン触媒は、塩化白金酸を出発原料として還元、吸着させる含浸法が一般的である。   In order to improve the catalyst activity, it is necessary to increase the reaction area, that is, to increase the catalyst surface area, and as one means for increasing the catalyst surface area, it is necessary to reduce the particle size of the catalyst and make it highly dispersed. is there. For this reason, a catalyst in which a noble metal containing platinum is supported on conductive carbon is generally used as a fuel cell catalyst. The platinum-supported carbon catalyst is generally impregnated by reducing and adsorbing chloroplatinic acid as a starting material.

副生成物として挙げられる一酸化炭素は白金触媒を被毒するため、アノード触媒としてはルテニウムと白金を合金化させた触媒が用いられている。渡辺らは、非特許文献1(H. Igarashi, M.Watanabe, Phys. Chem. Chem. Phys., 2001, 3, 306−314)などで白金とルテニウムを合金化させることにより、ルテニウムと結合するOH-が、白金上に吸着した一酸化炭素を二酸化炭素まで酸化させるバイファンクショナルメカニズムを提唱しており、白金の一酸化炭素被毒を抑制できることを報告している。白金−ルテニウム合金は導電性カーボンに担持された後、加熱により合金化させる手法が一般的である。 Since carbon monoxide mentioned as a by-product poisons a platinum catalyst, a catalyst in which ruthenium and platinum are alloyed is used as the anode catalyst. Watanabe et al. Bind to ruthenium by alloying platinum and ruthenium in Non-Patent Document 1 (H. Igarashi, M. Watanabe, Phys. Chem. Chem. Phys., 2001, 3, 306-314). OH - has proposed a bifunctional mechanism that oxidizes carbon monoxide adsorbed on platinum to carbon dioxide, and reports that it can suppress carbon monoxide poisoning of platinum. Generally, platinum-ruthenium alloy is supported on conductive carbon and then alloyed by heating.

しかし、上述の含浸法では、金属の還元工程などの処理工程により金属の凝集などが起こり易いなどの課題があった。また加熱による合金化では、その熱処理において合金化は進むものの、金属粒子がシンタリングを起こし、粒径が大きくなる課題があり、調製された触媒の活性が低くなる場合があるという問題があった。   However, the above-described impregnation method has a problem that metal aggregation easily occurs due to a processing step such as a metal reduction step. In addition, in the alloying by heating, although the alloying proceeds in the heat treatment, there is a problem that the metal particles cause sintering, there is a problem that the particle size becomes large, and the activity of the prepared catalyst may be lowered. .

一方、岡本らは、特許文献1(特開2002−1095号公報)で、コロイドを用いることでクラスター状の金属を触媒粒子として担体上に担持ができる点や、コロイド粒子を複数種類の金属原子が凝集したクラスターとすることで多元軽金属触媒を容易に製造できる点において有効であることを公開している。また、一般にコロイド溶液には緩衝剤が添加されるが、これはコロイド粒子に電荷をチャージさせることによるコロイド粒子間の静電反発力により、数nmであっても水中に安定して分散させることができることを公開している。   On the other hand, Okamoto et al., In Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-1095), can use a colloid to support a clustered metal as a catalyst particle on a support, It is disclosed that it is effective in that a multi-element light metal catalyst can be easily produced by forming an agglomerated cluster. In general, a buffering agent is added to the colloidal solution. This is because the electrostatic repulsion between the colloidal particles is caused by charging the colloidal particles, and the colloidal particles are stably dispersed in water even at a few nanometers. We are releasing what we can do.

しかし、特許文献1では、コロイド溶液の調製方法の記載は公開されているものの、担持工程における緩衝剤の調整については詳細が記載されておらず、燃料電池用触媒調製の観点からは記載が不十分であった。   However, Patent Document 1 discloses a method for preparing a colloidal solution, but does not describe details of adjustment of the buffering agent in the supporting process, and does not describe it from the viewpoint of preparing a fuel cell catalyst. It was enough.

H. Igarashi, M.Watanabe, Phys. Chem. Chem. Phys., 2001, 3, 306−314H. Igarashi, M .; Watanabe, Phys. Chem. Chem. Phys. , 2001, 3, 306-314 特開2002−1095号公報JP 2002-1095 A

本発明は、複合金属粒子からなるコロイド分散溶液を出発原料とし、メタノール酸化活性が高く、且つ副生成物の耐被毒性に優れた燃料電池用触媒、これを用いたダイレクトメタノール型燃料電池用電極、ダイレクトメタノール型燃料電池用電解質膜/電極接合体、ダイレクトメタノール型燃料電池、及び燃料電池用触媒の製造方法を提供することを目的とする。 The present invention is a colloidal dispersion solution of composite metal particles as a starting material, high methanol oxidation activity, and excellent fuel cell catalyst to poisoning resistance of byproducts, for direct methanol fuel cell using the Re this An object is to provide an electrode, an electrolyte membrane / electrode assembly for a direct methanol fuel cell , a direct methanol fuel cell , and a method for producing a fuel cell catalyst .

本発明者は、上記目的を達成するべく鋭意検討を行った結果、複数の金属元素による複合金属粒子からなるコロイド分散溶液に緩衝剤として4級アンモニウム水酸化物を添加すると共に、これと導電性カーボン担体とを混合して導電性カーボン担体に複合金属粒子を担持させることにより、触媒への担持工程において、緩衝剤の添加を行うことで、担持工程において起こり得る複合金属粒子の凝集を抑制することに成功したもので、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor added quaternary ammonium hydroxide as a buffering agent to a colloidal dispersion solution composed of composite metal particles composed of a plurality of metal elements, and the conductivity thereof. By mixing the carbon carrier with the composite carbon particles supported on the conductive carbon carrier, addition of a buffering agent in the catalyst loading step suppresses the aggregation of the composite metal particles that may occur in the loading step. In particular, the present inventors have found that the above-described problems can be solved, and have completed the present invention.

従って、本発明は、下記の燃料電池用触媒、電極、電解質膜/電極接合体、燃料電池、及び燃料電池用触媒の製造方法を提供する。
請求項1:
複数の金属元素による複合金属粒子からなるコロイド分散溶液に、4級アンモニウム水酸化物を添加し、更に導電性カーボン担体を混合して導電性カーボン担体に複合金属粒子を担持することにより調製したことを特徴とする燃料電池用触媒。
請求項2:
前記4級アンモニウム水酸化物が、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ−n−プロピルアンモニウム、水酸化テトライソプロピルアンモニウム及び水酸化テトラブチルアンモニウムから選ばれることを特徴とする請求項1に記載の燃料電池用触媒。
請求項3:
前記4級アンモニウム水酸化物が水酸化テトラメチルアンモニウムを含むことを特徴とする請求項2に記載の燃料電池用触媒。
請求項4:
請求項1、2又は3に記載した触媒を含むことを特徴とするダイレクトメタノール型燃料電池用電極。
請求項5:
水素イオン伝導性高分子電解質膜と該水素イオン伝導性高分子電解質膜の少なくとも片面に請求項4に記載した電極を配置することを特徴とするダイレクトメタノール型燃料電池用電解質膜/電極接合体。
請求項6:
請求項5に記載した電解質膜/電極接合体を有することを特徴とするダイレクトメタノール型燃料電池。
請求項7:
複数の金属元素による複合金属粒子からなるコロイド分散溶液に、4級アンモニウム水酸化物を添加し、更に導電性カーボン担体を混合して導電性カーボン担体に複合金属粒子を担持することを特徴とする燃料電池用触媒の調製方法。
Accordingly, the present invention provides a catalyst for a fuel cell described below, the electrode, electrolyte membrane / electrode assembly, a method of manufacturing a fuel cell and a fuel cell catalyst.
Claim 1:
A colloidal dispersion solution of composite metal particles by a plurality of metal elements, the addition of quaternary ammonium hydroxides, further to a mixture of conductive carbon responsible body, a conductive carbon support by supporting the composite metal particles A fuel cell catalyst characterized by being prepared.
Claim 2:
The quaternary ammonium hydroxide is selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetraisopropylammonium hydroxide and tetrabutylammonium hydroxide. 2. The fuel cell catalyst according to 1.
Claim 3:
The fuel cell catalyst according to claim 2, wherein the quaternary ammonium hydroxide contains tetramethylammonium hydroxide .
Claim 4:
A direct methanol fuel cell electrode comprising the catalyst according to claim 1, 2 or 3.
Claim 5:
An electrolyte membrane / electrode assembly for a direct methanol fuel cell, comprising: a hydrogen ion conductive polymer electrolyte membrane; and the electrode according to claim 4 disposed on at least one surface of the hydrogen ion conductive polymer electrolyte membrane.
Claim 6:
A direct methanol fuel cell comprising the electrolyte membrane / electrode assembly according to claim 5.
Claim 7:
A quaternary ammonium hydroxide is added to a colloidal dispersion solution composed of composite metal particles composed of a plurality of metal elements, and a conductive carbon support is further mixed to support the composite metal particles on the conductive carbon support. A method for preparing a fuel cell catalyst.

本発明の燃料電池用触媒は、メタノール酸化活性が高く、副生成物の耐被毒性に優れたものである。   The fuel cell catalyst of the present invention has high methanol oxidation activity and is excellent in the by-product toxicity resistance.

本発明の燃料電池用触媒は、複数の金属元素による複合金属粒子からなるコロイド分散溶液に緩衝剤を添加すると共に、これと導電性カーボン担体とを混合して導電性カーボン担体に複合金属粒子を担持することにより調製したもので、本発明は、複数の金属元素による複合金属粒子からなるコロイド分散溶液に緩衝剤を添加、調整し、それと共に導電性カーボンに担持することにより、粒径の小さい複合金属粒子を高分散させた燃料電池用触媒であることを特徴としている。このように、本発明による燃料電池用触媒は担持工程においてコロイド溶液に緩衝剤を添加、調整するものであり、高担持触媒の調製を行う場合、コロイド溶液の濃縮にも効果が期待でき、高分散性を損なわずに触媒調製工程を削減できる効果が期待できる。   In the fuel cell catalyst of the present invention, a buffer agent is added to a colloidal dispersion solution composed of composite metal particles made of a plurality of metal elements, and this is mixed with a conductive carbon support to mix the composite metal particles with the conductive carbon support. In the present invention, a small particle size is obtained by adding a buffer to a colloidal dispersion solution composed of composite metal particles composed of a plurality of metal elements, adjusting it, and supporting it on conductive carbon. It is a fuel cell catalyst in which composite metal particles are highly dispersed. Thus, the fuel cell catalyst according to the present invention adds and adjusts a buffering agent to the colloidal solution in the supporting step. When preparing a highly supported catalyst, it can be expected to be effective in concentrating the colloidal solution. An effect of reducing the catalyst preparation step without impairing dispersibility can be expected.

なお、特許文献1で、岡本らは4級アンモニウム塩の窒素部分が配位し、マイナスにチャージされることを公開しているが、本発明者は、緩衝剤である4級アンモニウム塩の添加量を調整することにより複合金属粒子のカーボン担持工程において分散担持に効果があることを見出したものである。   In Patent Document 1, Okamoto et al. Disclose that the nitrogen moiety of the quaternary ammonium salt is coordinated and charged negatively, but the present inventor has added a quaternary ammonium salt as a buffering agent. It has been found that adjusting the amount has an effect of dispersing and supporting in the carbon supporting step of the composite metal particles.

ここで、本発明で使用する複合金属粒子の金属成分としては、白金、金、ルテニウム、パラジウム、鉄、コバルト、ニッケル又はクロムが挙げられ、これら2種以上を使用した系、特にアノード触媒としては白金とルテニウムの合金が好適である。
本発明で使用するカーボン担体としてはカーボンブラックが好適である。
本発明で使用する緩衝剤としては4級アンモニウム塩が好適に用いられ、このように添加する緩衝剤に4級アンモニウム塩を用いることにより、粒径の小さい複合金属粒子を高分散させた燃料電池用触媒を得ることができる。4級アンモニウム塩としては、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラ−n−プロピルアンモニウム塩、テトライソプロピルアンモニウム塩、テトラブチルアンモニウム塩が挙げられ、特に水酸化テトラメチルアンモニウム等の4級アンモニウム塩の水酸化物が好ましい。添加する緩衝剤に水酸化テトラメチルアンモニウムを用いることより、粒径の小さい複合金属粒子を高分散させた燃料電池用触媒を可能とする。
コロイド溶液の保管及びカーボン担体への担持工程ではコロイド溶液の取扱の観点から溶媒として水を適用することが望ましい。その観点から4級アンモニウム塩でもできるだけ短いアルキル基を含む緩衝剤が望ましい。その点において4級アンモニウム塩でもアルキル基の短いテトラメチルアンモニウム塩が望ましい。
また、4級アンモニウム塩において陰イオン成分が塩素イオンである塩化物は、触媒金属に対しての吸着力が強く、被毒要素となる可能性が高いことから適当ではなく、水酸化物が好ましい。以上のことから緩衝剤としては水酸化テトラメチルアンモニウムが望ましい。
Here, examples of the metal component of the composite metal particles used in the present invention include platinum, gold, ruthenium, palladium, iron, cobalt, nickel or chromium. As a system using these two or more, particularly as an anode catalyst, An alloy of platinum and ruthenium is preferred.
Carbon black is preferred as the carbon carrier used in the present invention.
A quaternary ammonium salt is preferably used as the buffer used in the present invention. By using the quaternary ammonium salt as the buffer added in this way, a fuel cell in which composite metal particles having a small particle size are highly dispersed is used. The catalyst for use can be obtained. Examples of the quaternary ammonium salt include tetramethylammonium salt, tetraethylammonium salt, tetra-n-propylammonium salt, tetraisopropylammonium salt, tetrabutylammonium salt, and particularly quaternary ammonium salts such as tetramethylammonium hydroxide. Hydroxides are preferred. By using tetramethylammonium hydroxide as a buffering agent to be added, a fuel cell catalyst in which composite metal particles having a small particle diameter are highly dispersed is made possible.
In the process of storing the colloidal solution and supporting the colloidal solution, it is desirable to apply water as a solvent from the viewpoint of handling the colloidal solution. From this point of view, a buffering agent containing an alkyl group as short as possible even with a quaternary ammonium salt is desirable. In that respect, a tetramethylammonium salt having a short alkyl group is desirable even for a quaternary ammonium salt.
Further, a chloride whose anion component is a chloride ion in a quaternary ammonium salt is not suitable because it has a strong adsorptive power to a catalytic metal and is likely to be a poisoning element, and a hydroxide is preferable. . From the above, tetramethylammonium hydroxide is desirable as the buffer.

なお、複合金属粒子の平均粒径は2〜3.5nmであることが好ましい。この場合、平均粒径の測定法は動的光散乱法である。   The average particle size of the composite metal particles is preferably 2 to 3.5 nm. In this case, the measurement method of the average particle diameter is a dynamic light scattering method.

本発明において、コロイド溶液の複合金属濃度は0.001〜10g/L以下、好ましくは0.1〜5g/Lが望ましい。また、緩衝剤はカーボン担持工程前のコロイド溶液に対して調整されることが好適であり、その濃度は0.001〜10mol/L、好ましくは0.01〜3mol/Lに調整されることが望ましい。   In the present invention, the composite metal concentration of the colloidal solution is 0.001 to 10 g / L or less, preferably 0.1 to 5 g / L. In addition, the buffer is preferably adjusted with respect to the colloidal solution before the carbon supporting step, and the concentration thereof is adjusted to 0.001 to 10 mol / L, preferably 0.01 to 3 mol / L. desirable.

本発明のダイレクトメタノール型燃料電池用電極は、上記燃料電池用触媒を含む。この場合、白金−ルテニウム合金などの複合金属元素は、ダイレクトメタノール型燃料電池用電極、特にメタノール酸化反応を起こすためのアノード電極に有用である。   The electrode for a direct methanol fuel cell of the present invention includes the above fuel cell catalyst. In this case, a composite metal element such as a platinum-ruthenium alloy is useful for an electrode for a direct methanol fuel cell, particularly an anode electrode for causing a methanol oxidation reaction.

また、本発明のダイレクトメタノール型燃料電池用電解質膜/電極接合体は、ダイレクトメタノール型燃料電池用電極を水素イオン伝導性高分子電解質膜の少なくとも片面に配置することを特徴とする。この場合、水素イオン伝導性高分子電解質膜にはパーフルオロスルホン酸系、部分フッ素化系、炭化水素系、基材に電解質を含浸した補強膜などが挙げられるが、上記燃料電池用触媒及びダイレクトメタノール型燃料電池用電極はいずれの水素イオン伝導性高分子電解質膜にも適用でき、特にダイレクトメタノール型燃料電池アノード電極としての効果が期待できる。   The direct methanol fuel cell electrolyte membrane / electrode assembly of the present invention is characterized in that the direct methanol fuel cell electrode is disposed on at least one surface of the hydrogen ion conductive polymer electrolyte membrane. In this case, examples of the hydrogen ion conductive polymer electrolyte membrane include perfluorosulfonic acid type, partially fluorinated type, hydrocarbon type, and a reinforcing membrane in which the base material is impregnated with the electrolyte. The electrode for methanol fuel cell can be applied to any hydrogen ion conductive polymer electrolyte membrane, and in particular, an effect as a direct methanol fuel cell anode electrode can be expected.

本発明の燃料電池は、電解質膜/電極接合体を有することを特徴とするダイレクトメタノール型燃料電池であることを特徴とする。アノード極の課題を解決できる手段であるため、携帯用、パソコン用、小型輸送機などに適用が期待されている全てのダイレクトメタノール型燃料電池に対して適用することができる。なお、燃料電池のその他の構成は、ダイレクトメタノール型燃料電池の公知の構成を採用し得る。   The fuel cell of the present invention is a direct methanol fuel cell having an electrolyte membrane / electrode assembly. Since it is a means that can solve the problem of the anode electrode, it can be applied to all direct methanol fuel cells that are expected to be applied to portable, personal computer, small transport aircraft, and the like. In addition, the other structure of a fuel cell can employ | adopt the well-known structure of a direct methanol type fuel cell.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
粒径約3.3nmのPtRuコロイド溶液(Pt:Ruモル比=4:6、PtRu含有量0.1g/L)中に塩化テトラメチルアンモニウム及び水酸化テトラメチルアンモニウムを0.1mol/Lとなるように添加したコロイド溶液を調製し、静置2日後の状態を目視観察した。表1に担持処理前のコロイド溶液の分散状態試験結果を示す。塩化テトラメチルアンモニウムでは緩衝剤添加2日後、沈殿が見られたのに対して、水酸化テトラメチルアンモニウムでは沈殿は見られず、安定して分散していた。このことからコロイド溶液中の複合金属粒子の分散性は水酸化テトラメチルアンモニウムが好ましいことが確認された。
[Example 1]
Tetramethylammonium chloride and tetramethylammonium hydroxide are 0.1 mol / L in a PtRu colloidal solution having a particle size of about 3.3 nm (Pt: Ru molar ratio = 4: 6, PtRu content 0.1 g / L). The colloidal solution thus added was prepared, and the state after 2 days of standing was visually observed. Table 1 shows the results of the dispersion state test of the colloidal solution before the supporting treatment. In tetramethylammonium chloride, precipitation was observed 2 days after the addition of the buffer, whereas in tetramethylammonium hydroxide, no precipitation was observed and the dispersion was stably dispersed. From this, it was confirmed that the dispersibility of the composite metal particles in the colloidal solution is preferably tetramethylammonium hydroxide.

[実施例2]
粒径約3.3nmPtRuコロイド溶液(Pt:Ruモル比=4:6、PtRu含有量0.1g/L)中に、緩衝剤として水酸化テトラメチルアンモニウムを0.1mol/Lとなるように添加した後、濃縮することにより、コロイド溶液(PtRu含有量1.2g/L)を調製した。カーボン担体としてケッチェンブラックEC(ライオン株式会社製)を用いた。まず三角フラスコに、予め乾燥させたケッチェンブラックEC(ライオン株式会社製)200mgとPtRuコロイド溶液200mlを入れ、分散させ、その後、15時間以上室温にて撹拌し、PtRuコロイド粒子を担体カーボン上に吸着担持させた。PtRuカーボン担持触媒は、ろ過により回収し、送風乾燥機内にて60℃で乾燥させた。
[Example 2]
Tetramethylammonium hydroxide was added as a buffering agent to a concentration of 0.1 mol / L in a colloidal solution with a particle size of about 3.3 nm (Pt: Ru molar ratio = 4: 6, PtRu content 0.1 g / L). Then, a colloidal solution (PtRu content 1.2 g / L) was prepared by concentrating. Ketjen Black EC (manufactured by Lion Corporation) was used as a carbon carrier. First, 200 mg of Ketjen Black EC (manufactured by Lion Co., Ltd.) and 200 ml of PtRu colloid solution previously dried are put in an Erlenmeyer flask and dispersed, and then stirred at room temperature for 15 hours or more to put the PtRu colloid particles on the carrier carbon. Adsorbed and supported. The PtRu carbon supported catalyst was recovered by filtration and dried at 60 ° C. in a blower dryer.

得られた触媒4mgを水/エタノール混合(質量比1:1)溶液1gに懸濁させ、インクを調製した。0.07cm2のグラッシーカーボン電極上に20μgの触媒が載るように、得られたインク2.5μlを滴下したのち乾燥し、メタノール酸化特性評価用電極を作製した。電極の概略図を図1に示す。なお、図1において、1はグラッシーカーボン基板、2は白金/ルテニウムカーボン担持触媒である。触媒のバインダーとしては、希釈したNafion溶液(Du Pont社製 5wt%Nafion溶液)を一定量使用した。メタノール酸化用電極を電解液に浸漬し、参照極、対極を設置し、線形電位走査法によりメタノール酸化特性を取得した。電解液は0.5M−H2SO4に1M−CH3OHを混合したものを使用した。参照極として銀/塩化銀電極を用い、対極として白金線を使用した。線形電位走査はポテンショスタット(Solartron1260)を使用した。 4 mg of the obtained catalyst was suspended in 1 g of a water / ethanol mixed (mass ratio 1: 1) solution to prepare an ink. 2.5 μl of the obtained ink was dropped so that 20 μg of catalyst was placed on a 0.07 cm 2 glassy carbon electrode, followed by drying to prepare an electrode for methanol oxidation characteristic evaluation. A schematic diagram of the electrodes is shown in FIG. In FIG. 1, 1 is a glassy carbon substrate and 2 is a platinum / ruthenium carbon supported catalyst. As a catalyst binder, a fixed amount of diluted Nafion solution (5% by weight Nafion solution manufactured by Du Pont) was used. The electrode for methanol oxidation was immersed in electrolyte solution, the reference electrode and the counter electrode were installed, and the methanol oxidation characteristic was acquired by the linear potential scanning method. The electrolyte used was a mixture of 0.5M-H 2 SO 4 and 1M-CH 3 OH. A silver / silver chloride electrode was used as a reference electrode, and a platinum wire was used as a counter electrode. A potentiostat (Solartron 1260) was used for the linear potential scan.

[比較例1]
ケッチェンブラックEC(ライオン株式会社製)に白金とルテニウムの合金を担持したもの(田中貴金属工業株式会社製TEC61E54、Pt濃度30wt%、Ru濃度24wt%)を用いて、実施例2と同様の方法でメタノール酸化評価用電極を作製した。この電極を用いて、実施例2と同様にメタノール酸化特性を取得した。
[Comparative Example 1]
The same method as in Example 2 using a ketjen black EC (manufactured by Lion Corporation) carrying an alloy of platinum and ruthenium (TEC61E54, Tanaka Kikinzoku Kogyo Co., Ltd., Pt concentration 30 wt%, Ru concentration 24 wt%) The electrode for methanol oxidation evaluation was produced. Using this electrode, methanol oxidation characteristics were obtained in the same manner as in Example 2.

実施例2と比較例1のメタノール酸化活性を図2に示した。実施例2では、比較例1と比べて単位複合金属質量あたりのメタノール酸化電流は大きく、メタノール酸化反応が開始する立ち上がり電位も比較例1と比べて低く、高い活性を示した。   The methanol oxidation activities of Example 2 and Comparative Example 1 are shown in FIG. In Example 2, the methanol oxidation current per unit composite metal mass was larger than that in Comparative Example 1, and the rising potential at which the methanol oxidation reaction started was lower than that in Comparative Example 1, indicating high activity.

メタノール酸化電流特性評価用電極を示す概略図である。It is the schematic which shows the electrode for methanol oxidation current characteristic evaluation. 実施例2と比較例1でのメタノール酸化特性の比較を示すグラフである。4 is a graph showing a comparison of methanol oxidation characteristics between Example 2 and Comparative Example 1.

符号の説明Explanation of symbols

1 グラッシーカーボン基板
2 白金/ルテニウムカーボン担持触媒
1 Glassy carbon substrate 2 Platinum / ruthenium carbon supported catalyst

Claims (7)

複数の金属元素による複合金属粒子からなるコロイド分散溶液に、4級アンモニウム水酸化物を添加し、更に導電性カーボン担体を混合して導電性カーボン担体に複合金属粒子を担持することにより調製したことを特徴とする燃料電池用触媒。 A colloidal dispersion solution of composite metal particles by a plurality of metal elements, the addition of quaternary ammonium hydroxides, further to a mixture of conductive carbon responsible body, a conductive carbon support by supporting the composite metal particles A fuel cell catalyst characterized by being prepared. 前記4級アンモニウム水酸化物が、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ−n−プロピルアンモニウム、水酸化テトライソプロピルアンモニウム及び水酸化テトラブチルアンモニウムから選ばれることを特徴とする請求項1に記載の燃料電池用触媒。The quaternary ammonium hydroxide is selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetraisopropylammonium hydroxide and tetrabutylammonium hydroxide. 2. The fuel cell catalyst according to 1. 前記4級アンモニウム水酸化物が水酸化テトラメチルアンモニウムを含むことを特徴とする請求項2に記載の燃料電池用触媒。 The fuel cell catalyst according to claim 2, wherein the quaternary ammonium hydroxide contains tetramethylammonium hydroxide . 請求項1、2又は3に記載した触媒を含むことを特徴とするダイレクトメタノール型燃料電池用電極。   A direct methanol fuel cell electrode comprising the catalyst according to claim 1, 2 or 3. 水素イオン伝導性高分子電解質膜と該水素イオン伝導性高分子電解質膜の少なくとも片面に請求項4に記載した電極を配置することを特徴とするダイレクトメタノール型燃料電池用電解質膜/電極接合体。   An electrolyte membrane / electrode assembly for a direct methanol fuel cell, comprising: a hydrogen ion conductive polymer electrolyte membrane; and the electrode according to claim 4 disposed on at least one surface of the hydrogen ion conductive polymer electrolyte membrane. 請求項5に記載した電解質膜/電極接合体を有することを特徴とするダイレクトメタノール型燃料電池。   A direct methanol fuel cell comprising the electrolyte membrane / electrode assembly according to claim 5. 複数の金属元素による複合金属粒子からなるコロイド分散溶液に、4級アンモニウム水酸化物を添加し、更に導電性カーボン担体を混合して導電性カーボン担体に複合金属粒子を担持することを特徴とする燃料電池用触媒の調製方法。A quaternary ammonium hydroxide is added to a colloidal dispersion solution composed of composite metal particles composed of a plurality of metal elements, and a conductive carbon support is further mixed to support the composite metal particles on the conductive carbon support. A method for preparing a fuel cell catalyst.
JP2005170435A 2005-06-10 2005-06-10 Catalyst for fuel cell and direct methanol fuel cell Expired - Fee Related JP4678244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170435A JP4678244B2 (en) 2005-06-10 2005-06-10 Catalyst for fuel cell and direct methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170435A JP4678244B2 (en) 2005-06-10 2005-06-10 Catalyst for fuel cell and direct methanol fuel cell

Publications (2)

Publication Number Publication Date
JP2006344539A JP2006344539A (en) 2006-12-21
JP4678244B2 true JP4678244B2 (en) 2011-04-27

Family

ID=37641335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170435A Expired - Fee Related JP4678244B2 (en) 2005-06-10 2005-06-10 Catalyst for fuel cell and direct methanol fuel cell

Country Status (1)

Country Link
JP (1) JP4678244B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990657B2 (en) * 2007-03-26 2012-08-01 株式会社日立製作所 Method for producing PtRu catalyst for fuel cell, PtRu catalyst and membrane electrode assembly
EP2082805A1 (en) * 2008-01-28 2009-07-29 Basf Se Process for the preparation of an aqueous colloidal precious metal suspension
JP2012049265A (en) * 2010-08-25 2012-03-08 Seiko Instruments Inc Gasket, electrochemical cell, and manufacturing method of these
JP6359679B2 (en) * 2014-10-02 2018-07-18 株式会社キャタラー Composite particle dispersion and method for producing the same
JP6359678B2 (en) * 2014-10-02 2018-07-18 株式会社キャタラー Composite particle dispersion and method for producing the same
WO2020059090A1 (en) * 2018-09-20 2020-03-26 日本製鉄株式会社 Method and device for manufacturing titanium alloy ingot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310107A (en) * 1994-03-14 1995-11-28 Studienges Kohle Mbh Electrochemical reduction of metal salt as method for preparing highly dispersible metal colloid and metal clusterimmobilized on substrate by electrochemical deduction of metal salt
JP2001224969A (en) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery
JP2002001095A (en) * 2000-06-16 2002-01-08 Tanaka Kikinzoku Kogyo Kk Colloidal solution and method for producing colloidal solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310107A (en) * 1994-03-14 1995-11-28 Studienges Kohle Mbh Electrochemical reduction of metal salt as method for preparing highly dispersible metal colloid and metal clusterimmobilized on substrate by electrochemical deduction of metal salt
JP2001224969A (en) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery
JP2002001095A (en) * 2000-06-16 2002-01-08 Tanaka Kikinzoku Kogyo Kk Colloidal solution and method for producing colloidal solution

Also Published As

Publication number Publication date
JP2006344539A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
Li et al. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation
US7229942B2 (en) Supported catalyst and method for preparing the same
US9054355B2 (en) Catalyst with metal oxide doping for fuel cells
Alcaide et al. Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells
US8748334B2 (en) Process for producing electrode catalyst for fuel cell
JP6232505B2 (en) Fuel cell electrode catalyst and method for producing the same
Yano et al. Temperature dependence of oxygen reduction activity at carbon-supported Pt x Co (x= 1, 2, and 3) alloy catalysts prepared by the nanocapsule method
JP5166842B2 (en) ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
Wang et al. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation
Fatih et al. Synthesis and characterization of quaternary PtRuIrSn/C electrocatalysts for direct ethanol fuel cells
JP4678244B2 (en) Catalyst for fuel cell and direct methanol fuel cell
JP3870282B2 (en) Dispersed and stabilized liquid containing catalyst nanoparticles
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
JP5158334B2 (en) Method for producing electrode catalyst for fuel cell
Zhao et al. Multi-walled carbon nanotubes supported binary PdSn nanocatalyst as effective catalytic cathode for Mg-air battery
Zhao et al. Ionic liquid-mediated synthesis of ‘clean’palladium nanoparticles for formic acid electrooxidation
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
KR20200001064A (en) The platinum-transition metal composite supported on carbon and method for preparing the same
Sun et al. Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction
Marinho et al. Electrochemical study of PtRh/C and PtRhNi/C electrocatalysts for ethylene glycol oxidation
Ayoub et al. Preparation of PtSnSb/C by an alcohol reduction process for direct ethanol fuel cell (DEFC)
JP4875266B2 (en) Cathode electrode catalyst for fuel cell and production method thereof
Neto et al. Electrooxidation of ethanol using Pt rare earth–C electrocatalysts prepared by an alcohol reduction process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4678244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees