JP2008161857A - Metal-containing colloidal grain-carrier, and method for producing the same - Google Patents
Metal-containing colloidal grain-carrier, and method for producing the same Download PDFInfo
- Publication number
- JP2008161857A JP2008161857A JP2007242162A JP2007242162A JP2008161857A JP 2008161857 A JP2008161857 A JP 2008161857A JP 2007242162 A JP2007242162 A JP 2007242162A JP 2007242162 A JP2007242162 A JP 2007242162A JP 2008161857 A JP2008161857 A JP 2008161857A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- containing colloidal
- carrier
- particles
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 192
- 239000002184 metal Substances 0.000 title claims abstract description 192
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 150000002500 ions Chemical class 0.000 claims abstract description 101
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 70
- 229910052802 copper Inorganic materials 0.000 claims abstract description 52
- 239000000126 substance Substances 0.000 claims abstract description 24
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 19
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 18
- 229910052737 gold Inorganic materials 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 11
- 229910052709 silver Inorganic materials 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- 229910052713 technetium Inorganic materials 0.000 claims abstract description 10
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 8
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 4
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 4
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 4
- 229910052738 indium Inorganic materials 0.000 claims abstract description 4
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 4
- 229910052745 lead Inorganic materials 0.000 claims abstract description 4
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 3
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 255
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 134
- 239000000725 suspension Substances 0.000 claims description 68
- 239000012876 carrier material Substances 0.000 claims description 51
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 33
- 239000010931 gold Substances 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 230000000737 periodic effect Effects 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 13
- 239000010944 silver (metal) Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 9
- 239000010948 rhodium Substances 0.000 claims description 9
- 230000008093 supporting effect Effects 0.000 claims description 9
- 229910002651 NO3 Inorganic materials 0.000 claims description 7
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 claims description 6
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical compound [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 5
- 150000003058 platinum compounds Chemical class 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 claims description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229940045985 antineoplastic platinum compound Drugs 0.000 claims description 3
- 150000002344 gold compounds Chemical class 0.000 claims description 3
- 150000002941 palladium compounds Chemical class 0.000 claims description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims description 3
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 claims description 3
- XTFKWYDMKGAZKK-UHFFFAOYSA-N potassium;gold(1+);dicyanide Chemical compound [K+].[Au+].N#[C-].N#[C-] XTFKWYDMKGAZKK-UHFFFAOYSA-N 0.000 claims description 3
- ZWZLRIBPAZENFK-UHFFFAOYSA-J sodium;gold(3+);disulfite Chemical compound [Na+].[Au+3].[O-]S([O-])=O.[O-]S([O-])=O ZWZLRIBPAZENFK-UHFFFAOYSA-J 0.000 claims description 3
- 239000001119 stannous chloride Substances 0.000 claims description 3
- 235000011150 stannous chloride Nutrition 0.000 claims description 3
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 claims description 3
- 229910000375 tin(II) sulfate Inorganic materials 0.000 claims description 3
- 150000003606 tin compounds Chemical class 0.000 claims description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims 1
- KYHBHUGWTQLYOZ-UHFFFAOYSA-N [N+](=O)([O-])[Pt]([N+](=O)[O-])([N+](=O)[O-])[N+](=O)[O-].[K] Chemical compound [N+](=O)([O-])[Pt]([N+](=O)[O-])([N+](=O)[O-])[N+](=O)[O-].[K] KYHBHUGWTQLYOZ-UHFFFAOYSA-N 0.000 claims 1
- AZMMUMQYPBKXHS-UHFFFAOYSA-N gold sodium Chemical compound [Na].[Au] AZMMUMQYPBKXHS-UHFFFAOYSA-N 0.000 claims 1
- DJXYWDRBAAVVSG-UHFFFAOYSA-J potassium;tetrachloroplatinum Chemical compound [K].Cl[Pt](Cl)(Cl)Cl DJXYWDRBAAVVSG-UHFFFAOYSA-J 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 238000007796 conventional method Methods 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 40
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 36
- 229910021536 Zeolite Inorganic materials 0.000 description 35
- 239000007787 solid Substances 0.000 description 35
- 239000010457 zeolite Substances 0.000 description 35
- 239000000084 colloidal system Substances 0.000 description 31
- 239000006185 dispersion Substances 0.000 description 28
- 229910021645 metal ion Inorganic materials 0.000 description 26
- 238000005406 washing Methods 0.000 description 25
- 239000007864 aqueous solution Substances 0.000 description 24
- 239000003054 catalyst Substances 0.000 description 22
- 239000007788 liquid Substances 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 19
- 239000000243 solution Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000005119 centrifugation Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 12
- 150000002736 metal compounds Chemical class 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000002923 metal particle Substances 0.000 description 11
- 239000006229 carbon black Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 9
- -1 Glycol ethers Chemical class 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000011817 metal compound particle Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 239000011790 ferrous sulphate Substances 0.000 description 2
- 235000003891 ferrous sulphate Nutrition 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- VMDSWYDTKFSTQH-UHFFFAOYSA-N sodium;gold(1+);dicyanide Chemical compound [Na+].[Au+].N#[C-].N#[C-] VMDSWYDTKFSTQH-UHFFFAOYSA-N 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- WPPOGHDFAVQKLN-UHFFFAOYSA-N N-Octyl-2-pyrrolidone Chemical compound CCCCCCCCN1CCCC1=O WPPOGHDFAVQKLN-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VMRJECJWGHKSMH-UHFFFAOYSA-L [Na].[Pt](Cl)Cl Chemical compound [Na].[Pt](Cl)Cl VMRJECJWGHKSMH-UHFFFAOYSA-L 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- ACDVNLCTXBOVNW-UHFFFAOYSA-L platinum(2+);dichloride;hydrate Chemical compound O.Cl[Pt]Cl ACDVNLCTXBOVNW-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
本発明は、金属含有コロイド粒子が担持された金属含有コロイド粒子担持担体の製造方法およびその製造方法により得られる金属含有コロイド粒子担持担体に関する。 The present invention relates to a method for producing a metal-containing colloidal particle-carrying carrier on which metal-containing colloidal particles are carried, and a metal-containing colloidal particle-carrying carrier obtained by the production method.
触媒は、燃料電池における反応促進の他、有機物質合成、自動車排ガスの浄化等、各種の分野で使用されている。この様な触媒については、その多くはアルミナ、シリカ等の酸化物やカーボンといった多孔質体を担体とし、これに白金、ロジウム等を担持したものや、複数の金属が担持された多元系触媒が知られている。また、担体物質については、シリカ、ゼオライト、シリカーアルミナ複合体、セリアなどが用いられている。 Catalysts are used in various fields such as organic substance synthesis and purification of automobile exhaust gas, in addition to promoting reaction in fuel cells. As for such catalysts, most of them are porous materials such as oxides and carbons such as alumina, silica, etc., which support platinum, rhodium, etc., and multi-component catalysts in which a plurality of metals are supported. Are known. As the carrier material, silica, zeolite, silica-alumina composite, ceria and the like are used.
従来の、担体物質上に金属を含むコロイド粒子が担持してなる触媒の製造方法として、代表的なものひとつとして、多孔質の金属酸化物からなる担体にジニトロジアンミン白金や塩化白金酸、硝酸ロジウムといった金属塩溶液を含浸させ、還元雰囲気中で焼成する方法が知られている。また、前記多元系触媒についても、担持する複数の金属塩の溶液を調製し、これに担体を混合して複数の金属イオンを担体上に吸着させた、そして乾燥、焼成してなる製造方法が知られている。 As a typical method for producing a conventional catalyst in which colloidal particles containing a metal are supported on a support material, as a representative one, a carrier made of a porous metal oxide is coated with dinitrodiammine platinum, chloroplatinic acid, rhodium nitrate. A method of impregnating such a metal salt solution and firing in a reducing atmosphere is known. Also, for the multi-component catalyst, there is a production method in which a solution of a plurality of metal salts to be supported is prepared, a carrier is mixed with this, a plurality of metal ions are adsorbed on the carrier, and then dried and calcined. Are known.
上記の製造方法も含めた担体物質上に金属を含むコロイド粒子を担持してなる触媒の製造方法としては、特許文献1には、金属酸化物などから成る微小な担体粒子の表面に、触媒活性をもつ微小な金属粒子を析出させる方法において、前記担体を合成する少なくとも一つの原料の吸収バンドに合致する波長を含む光を、前記原料に照射し前記担体粒子を析出させる工程と、析出した前記担体粒子と触媒活性をもつ前記金属粒子を析出するための前記原料とに、同時に、前記原料の吸収バンドに合致する波長を含む光を照射し、前記金属粒子を前記担体粒子の表面に析出させる工程と、析出した前記金属粒子を選別補収する工程とからなることを特徴とする触媒の製造方法が開示されている。 As a method for producing a catalyst in which colloidal particles containing a metal are supported on a carrier material, including the production method described above, Patent Document 1 discloses catalytic activity on the surface of fine carrier particles made of a metal oxide or the like. And depositing the carrier particles by irradiating the raw material with light having a wavelength matching an absorption band of at least one raw material for synthesizing the carrier, and depositing the carrier particles. The carrier particles and the raw material for depositing the metal particles having catalytic activity are simultaneously irradiated with light having a wavelength that matches the absorption band of the raw materials to deposit the metal particles on the surface of the carrier particles. There is disclosed a method for producing a catalyst comprising a step and a step of selectively collecting the deposited metal particles.
特許文献2には、金属粒子及び/又は金属化合物粒子が該粒子を実質的に個々に且つ別々に保護する数平均分子量が3,000〜300,000の有機高分子化合物と共に固体担体に吸着担持されてなり、該高分子化合物及び該固体担体の少くとも一方が、共有結合を形成して両者間に化学結合を作るべく作用し得る官能基を有さないことを特徴とする金属粒子及び/又は金属化合物粒子担持複合体およびその製造方法として、分散媒、金属粒子及び/又は金属化合物粒子及び保護コロイド粒子作用を持つ数平均分子量が3,000〜300,000の有機高分子化合物を含み、該粒子が該分散媒中に分散してコロイド粒子を形成し、且つ該高分子が該粒子に吸着して保護コロイド粒子として該粒子を実質的に個々に且つ別々に保護してなるコロイド粒子分散液を提供し、該コロイド粒子分散液と固体担体とを接触させ、該高分子化合物および該固体担体の少なくとも一方が、共有結合を形成して両者間に化学結合を作るべく作用し得る官能基を有さず、かくして、該高分子化合物で保護された該粒子が該固体担体に吸着されてなる粒子担持複合体を形成し、そして得られた複合体を該分散媒から単離することを特徴とする金属粒子及び/又は金属化合物粒子担持複合体の製造方法が開示されている。 In Patent Document 2, metal particles and / or metal compound particles are adsorbed and supported on a solid support together with an organic polymer compound having a number average molecular weight of 3,000 to 300,000 which protects the particles substantially individually and separately. Metal particles and / or metal compound particles characterized in that at least one of the polymer compound and the solid support does not have a functional group capable of acting to form a covalent bond and form a chemical bond therebetween. The supported composite and the method for producing the same include a dispersion medium, metal particles and / or metal compound particles, and an organic polymer compound having a number average molecular weight of 3,000 to 300,000 having a protective colloid particle action, and the particles are contained in the dispersion medium. Dispersing to form colloidal particles, and providing a colloidal particle dispersion comprising the polymer adsorbed on the particles and protecting the particles substantially individually and separately as protective colloidal particles. At least one of the polymer compound and the solid support does not have a functional group that can act to form a covalent bond and form a chemical bond therebetween, thus Metal particles characterized by forming a particle-supported complex formed by adsorbing the particles protected by the polymer compound to the solid support, and isolating the obtained complex from the dispersion medium, and A method for producing a metal compound particle-supported composite is disclosed.
特許文献3には、金属含有イオン及び該金属含有イオンの還元により生成する金属粒子が担持される担体を含む溶液中にプロパルギルアルコールを加え、該金属含有イオンとプロパルギルアルコールとの反応物を該担体上に担持した後、該担体を水素ガスを含有する還元性ガス中で熱処理して、該担体上の金属含有イオンとプロパルギルアルコールとの反応物を金属含有コロイド粒子に還元することを特徴とする高分散金属含有コロイド粒子担
持触媒の製造方法が開示されている。
In Patent Document 3, propargyl alcohol is added to a solution containing a carrier on which metal-containing ions and metal particles generated by reduction of the metal-containing ions are supported, and a reaction product of the metal-containing ions and propargyl alcohol is added to the carrier. After being supported on the substrate, the support is heat-treated in a reducing gas containing hydrogen gas to reduce a reaction product of metal-containing ions and propargyl alcohol on the support to metal-containing colloidal particles. A method for producing a highly dispersed metal-containing colloidal particle supported catalyst is disclosed.
特許文献4には、担体となる固体物質の存在下、金属の化合物またはイオンを含有した、還元能を有する液体または還元物質を溶解した液体に、マイクロ波を照射させるか、或いは、金属の化合物またはイオンを含有した、還元能を有する液体または還元物質を溶解した液体に、マイクロ波を照射させた後に、担体となる固体物質を存在させることを特徴とする、金属含有コロイド粒子を表面に付着させた金属含有コロイド粒子付着担体の製造方法が開示されている。 In Patent Document 4, in the presence of a solid substance serving as a carrier, a liquid having a reducing ability or a liquid in which a reducing substance is dissolved, containing a metal compound or ions, is irradiated with microwaves, or a metal compound. Alternatively, a metal-containing colloidal particle is attached to the surface, characterized by the presence of a solid substance serving as a carrier after microwave irradiation of a liquid containing a reducing ability or a liquid containing a reducing substance containing ions. A method for producing a metal-containing colloidal particle adhesion carrier is disclosed.
特許文献5には、周期表第4周期から第6周期の2B族、3B族、4B族、5B族、6B族及び第4周期8族の少なくとも1種の第二元素と金とを含有する金属粒子が担体上に担持された金属粒子担持体と、その製造方法として金及びその化合物の少なくとも1種ならびに第二元素及びその化合物の少なくとも1種を含む担体を熱処理することを特徴とする製造方法が開示されている。 Patent Document 5 contains at least one second element of Group 2B, Group 3B, Group 4B, Group 5B, Group 6B, and Group 8 of the Period 4 to Period 6 of the periodic table and gold. A metal particle carrier in which metal particles are supported on a carrier, and a production method comprising heat treating a carrier containing at least one of gold and its compound and at least one of a second element and its compound as a production method thereof A method is disclosed.
特許文献6には、窒化アルミニウム粒子を空気又は酸素存在下で焼成させ、当該窒化アルミニウム粒子の表面に酸化アルミニウム層を形成する酸化アルミニウム層形成工程と、該酸化アルミニウム層形成工程により得られた窒化アルミニウム粒子を、金属イオン又は金属粒子を含む水溶液に含浸させた後、乾燥させることにより、窒化アルミニウム担体に金属触媒を保持させる保持工程と、該保持工程で得られた窒化アルミニウム担体を空気又は酸素存在下で焼成する焼成工程とを含むことを特徴とする金属又は金属酸化物から成る金属触媒が窒化アルミニウムから成る担体に保持された触媒の製造方法が開示されている。 In Patent Document 6, aluminum nitride particles are fired in the presence of air or oxygen to form an aluminum oxide layer on the surface of the aluminum nitride particles, and the nitride obtained by the aluminum oxide layer formation step. The aluminum particles are impregnated with an aqueous solution containing metal ions or metal particles and then dried to hold the metal catalyst on the aluminum nitride carrier, and the aluminum nitride carrier obtained in the holding step is air or oxygen A method for producing a catalyst in which a metal catalyst composed of a metal or a metal oxide is held on a carrier composed of aluminum nitride, which comprises a calcination step of calcination in the presence of the catalyst.
特許文献7には、1種又は2種以上の遷移金属の金属塩を含む金属塩溶液を製造する工程と、前記金属塩溶液と、有機物と、1種又は2種以上の金属酸化物からなる多孔質担体とを溶媒に分散させ、原子数10〜50000の1種又は2種以上の遷移金属イオンと、前記遷移金属イオンに結合する有機物とからなる複合錯体を形成しつつ、該複合錯体を該多孔質担体上に担持させる工程と、前記複合錯体が担持された担体を焼成する工程とを含む触媒の製造方法が開示されている。
上記した従来技術では、焼成工程などが必要であるばかりか、焼成処理を行うために、触媒活性や触媒性能の再現性という点でも必ずしも満足するものではなかった。
このため、本発明の目的は、従来の担体物質に金属含有コロイド粒子を担持させる金属含有コロイド粒子担持担体の製造方法に比べて簡易な操作により、担体物質上における金属含有コロイド粒子を担持させて、金属含有コロイド粒子担持担体を製造する方法およびこの方法により得られた金属含有コロイド粒子担持担体を提供することにある。
In the above-described conventional technology, not only a firing process is necessary, but also the reproducibility of catalyst activity and catalyst performance is not always satisfactory because the firing process is performed.
For this reason, the object of the present invention is to support metal-containing colloidal particles on a carrier material by a simple operation as compared with the conventional method for producing a metal-containing colloidal particle-supported carrier on which metal-containing colloidal particles are supported. Another object of the present invention is to provide a method for producing a metal-containing colloidal particle carrier and a metal-containing colloidal particle carrier obtained by this method.
このような情況のもと、本発明者らは上記課題を解決すべく鋭意検討した結果、以下の本発明の構成とすることで、上記課題を解決できることを見出した。
[1]無機系担体物質に1種以上の金属含有コロイド粒子が担持されてなる金属含有コロイ
ド粒子担持担体であって、該担体物質に担持された金属含有コロイド粒子の平均粒子径が2〜200nmの範囲にあることを特徴とする金属含有コロイド粒子担持担体。
[2]前記金属含有コロイド粒子が、無機系担体物質上に単位面積(m2)あたり、102〜1017個存在する[1]の金属含有コロイド粒子担持担体。
[3]前記金属含有コロイド粒子担持担体に含まれる金属含有コロイド粒子担持担体の割合
が1〜50質量%である[1]〜[3]の金属含有コロイド粒子担持担体。
[4]前記金属含有コロイド粒子が次の(1)または(2)から選ばれるものである[1]の金属含有コロイド粒子担持担体。
(1)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、AgまたはAuから選ばれる金属含有コロイド粒子、
(2)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、Ag、AuまたはPtから選ばれる2種以上からなる複合金属含有コロイド粒子。
[5]前記無機系担体物質がSi、Al、C、Ti、ZrまたはCeから選ばれる1種また
は2種以上を含有する含有するものである[1]〜[4]の金属含有コロイド粒子担持担体。
[6]第4周期元素イオン(ただしTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zn
、Ga、GeまたはAsから選ばれる)、第5周期イオン(ただし、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、SnまたはSbから選ばれる)または第6周期イオン(ただし、Hf、Ta、W、Re、Os、Pt、Au、Ir、Hg、TI、PbまたはBiから選ばれる)の存在下、平均粒子径2〜200nmの金属含有コロイド粒子を担体物質に担持させることを特徴とする金属含有コロイド粒子担持担体の製造方法。[7]担体物質の懸濁液に、前記第4周期元素イオン、前記第5周期元素イオンまたは前記
第6周期元素イオンを担体物質100重量部に対して金属元素換算で2〜100重量部含有させ、このイオン含有懸濁液に、15〜40℃で、平均粒子径2〜200nmの金属含有コロイド粒子を担体物質100重量部に対して5〜180重量部添加して混合することを特徴とする金属含有コロイド粒子担持担体の製造方法。
[8]前記第4周期元素イオン、前記第5周期元素イオンまたは前記第6周期元素イオンが
、Ptイオン、Auイオン、SnイオンまたはPdイオンである[6]または[7]の金属含有コロイド粒子担持担体の製造方法。
[9]前記Ptイオン、Auイオン、Snイオン、Pdイオンが、塩化白金酸、塩化白金(IV
)酸カリウム、塩化白金(IV)酸ナトリウム、テトラニトロ白金(II)カリウム、ヘキサヒドロキソ白金(IV)酸ナトリウム水和物、ジニトロジアンミン白金硝酸、ジニトロジアンミン白金アンモニアおよびテトラアンミンジクロロ白金水和物からなる群から選ばれる1種または2種以上の白金化合物、 塩化金酸、亜硫酸金ナトリウム、シアン化金カリウムおよびシアン化金ナトリウムからなる群から選ばれる1種または2種以上の金化合物、硫酸第一スズ、酸化第一スズ、塩化第一スズからなる群から選ばれる1種または2種以上のスズ化合物、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、クエン酸パラジウム、酢酸パラジウムなどからなる群から選ばれる1種または2種以上のパラジウム化合物から得られるものである[8]の金属含有コロイド粒子担持担体の製造方法。
[10]前記担体物質がSi、Al、C、Ti、ZrまたはCeから選ばれる1種または2種以上を含有するものである[6]〜[9]の金属含有コロイド粒子担持担体の製造方法。
[11]前記[6]〜[10]の製造方法により製造されてなる[1]〜[5]の金属含有コロイド粒子担
持担体。
Under such circumstances, the present inventors have intensively studied to solve the above problems, and as a result, have found that the above problems can be solved by adopting the following configuration of the present invention.
[1] A metal-containing colloidal particle-supported carrier in which one or more kinds of metal-containing colloidal particles are supported on an inorganic carrier material, wherein the average particle diameter of the metal-containing colloidal particles supported on the carrier material is 2 to 200 nm A metal-containing colloidal particle-supporting carrier characterized by being in the range of.
[2] The metal-containing colloidal particle-supporting carrier according to [1], wherein 10 2 to 10 17 metal-containing colloidal particles are present per unit area (m 2 ) on the inorganic carrier material.
[3] The metal-containing colloidal particle carrier according to [1] to [3], wherein the ratio of the metal-containing colloidal particle carrier contained in the metal-containing colloidal particle carrier is 1 to 50% by mass.
[4] The metal-containing colloidal particle-supporting carrier according to [1], wherein the metal-containing colloidal particles are selected from the following (1) or (2).
(1) Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru,
Metal-containing colloidal particles selected from Rh, Pd, Ag or Au,
(2) Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru,
A composite metal-containing colloidal particle comprising two or more selected from Rh, Pd, Ag, Au, or Pt.
[5] The metal-containing colloidal particle support according to [1] to [4], wherein the inorganic carrier material contains one or more selected from Si, Al, C, Ti, Zr or Ce. Carrier.
[6] Fourth periodic element ions (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
, Ga, Ge, or As), fifth periodic ion (however, selected from Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, or Sb) or sixth periodic ion In the presence of Hf, Ta, W, Re, Os, Pt, Au, Ir, Hg, TI, Pb or Bi, metal-containing colloidal particles having an average particle diameter of 2 to 200 nm are supported on the carrier material. A method for producing a metal-containing colloidal particle-supporting carrier, characterized by comprising: [7] The suspension of the carrier material contains 2 to 100 parts by weight of the fourth periodic element ion, the fifth periodic element ion or the sixth periodic element ion in terms of metal element with respect to 100 parts by weight of the carrier material. And 5 to 180 parts by weight of metal-containing colloidal particles having an average particle diameter of 2 to 200 nm are added to and mixed with the ion-containing suspension at 15 to 40 ° C. with respect to 100 parts by weight of the carrier substance. A method for producing a metal-containing colloidal particle-supporting carrier.
[8] The metal-containing colloidal particle according to [6] or [7], wherein the fourth periodic element ion, the fifth periodic element ion, or the sixth periodic element ion is Pt ion, Au ion, Sn ion, or Pd ion. A method for producing a carrier.
[9] The Pt ion, Au ion, Sn ion, and Pd ion are chloroplatinic acid, platinum chloride (IV
) Potassium acid, Sodium platinum chloride (IV), Tetranitroplatinum (II) potassium, Hexahydroxoplatinum (IV) sodium hydrate, Dinitrodiammine platinum nitrate, Dinitrodiammine platinum ammonia and Tetraammine dichloroplatinum hydrate One or more platinum compounds selected from the group consisting of chloroauric acid, sodium gold sulfite, potassium gold cyanide and sodium gold cyanide, one or more gold compounds, stannous sulfate One selected from the group consisting of one or more tin compounds selected from the group consisting of stannous oxide and stannous chloride, palladium chloride, palladium nitrate, palladium sulfate, palladium citrate, palladium acetate, etc. Alternatively, the metal content of [8], which is obtained from two or more palladium compounds A method for producing a carrier having colloidal particles.
[10] The method for producing a metal-containing colloidal particle-supporting carrier according to [6] to [9], wherein the carrier material contains one or more selected from Si, Al, C, Ti, Zr or Ce. .
[11] The metal-containing colloidal particle-supporting carrier according to [1] to [5], which is produced by the production method of [6] to [10].
本発明の製造方法によれば、焼成工程などを経ることなく、簡易な手段により金属含有コロイド粒子を担体物質に担持することが可能となった。 According to the production method of the present invention, metal-containing colloidal particles can be supported on a carrier material by a simple means without going through a firing step.
以下、本発明の金属含有コロイド粒子担持担体およびその製造方法について詳細に説明する。 Hereinafter, the metal-containing colloidal particle-supporting carrier and the production method thereof according to the present invention will be described in detail.
[金属含有コロイド粒子担持担体]
無機系担体物質
本発明に使用される担体物質については、金属含有コロイド粒子が担持可能な物質であれば、格別な制限はない。通常はSi、Al、C、Ti、ZrまたはCeから選ばれる1種または2種以上を含有するものが使用される。この担体物質については、非晶質であっても、晶質であってもよく、合成物質、天然鉱物のいずれであっても構わない。通常、Si、Al、Ti、Ti、Zr、Ceは酸化物が使用され、Cはカーボン単体が使用される。酸化物は、複合酸化物であってもよく、さらに、NaやK、Feなどの成分を含んでいても良い。このような担体物質の具体例としては、シリカ粒子、シリカーアルミナ粒子、カーボン粒子、ゼオライト粒子(Y型、A型、モルデナイト型、ZSM-5型など、天然物でも合成物でもよい)、セリア(酸化セリウム)粒子、カオリン粒子、スメクタイト粒子、バーミキュライト粒子、雲母片などを挙げることができるが、これら限定されるものではない。
[Metal-containing colloidal particle support]
Inorganic carrier material The carrier material used in the present invention is not particularly limited as long as it is a material capable of supporting metal-containing colloidal particles. Usually, those containing one or more selected from Si, Al, C, Ti, Zr or Ce are used. This carrier material may be amorphous or crystalline, and may be either a synthetic material or a natural mineral. Normally, oxides are used for Si, Al, Ti, Ti, Zr, and Ce, and carbon is used for C. The oxide may be a complex oxide, and may further contain components such as Na, K, and Fe. Specific examples of such carrier materials include silica particles, silica-alumina particles, carbon particles, zeolite particles (Y-type, A-type, mordenite type, ZSM-5 type, etc., which may be natural products or synthetic products), ceria. (Cerium oxide) particles, kaolin particles, smectite particles, vermiculite particles, mica pieces and the like can be mentioned, but are not limited thereto.
また、担体物質の形状は特に限定されるものではない。担体物質の平均粒子径は担持される金属含有コロイド粒子の平均粒子径と同等またはそれ以上であれば特に限定されない。なお、担体物質が粒子状の場合は、例えば、後記画像解析により測定される平均粒子径で、30nm〜10μmが好ましく、30nm〜5μmがより好ましい。 The shape of the carrier material is not particularly limited. The average particle size of the support material is not particularly limited as long as it is equal to or larger than the average particle size of the supported metal-containing colloidal particles. When the carrier substance is in the form of particles, for example, the average particle diameter measured by image analysis described later is preferably 30 nm to 10 μm, and more preferably 30 nm to 5 μm.
また、担体物質の平均粒子径は後述する金属含有コロイド粒子の平均粒子径の5倍以上が好ましい。粒子径が前記範囲の担体物質は容易に得ることができ、また、本発明の製造方法により、容易に金属含有コロイド粒子を表面に均一に担持させることができる。なお、二次粒子径が上記範囲にあれば、金属含有コロイド粒子は凝集した状態でも使用することができるが、できる限り単分散していることが好ましい。なお、担体物質が粒子状でない場合は、この限りではない。上記担体物質の比表面積については、格別制限されるものではないが、例えば、10〜1000m2/gが好ましく、180〜900m2/gがより好ましい。担体物質の比表面積が上記範囲にあると、優れた触媒活性を有する金属含有コロイド粒子担持担体を得ることができる。 The average particle size of the carrier substance is preferably 5 times or more the average particle size of the metal-containing colloidal particles described later. A carrier substance having a particle size in the above range can be easily obtained, and the metal-containing colloidal particles can be easily uniformly supported on the surface by the production method of the present invention. If the secondary particle diameter is in the above range, the metal-containing colloidal particles can be used even in an aggregated state, but it is preferable that they are monodispersed as much as possible. Note that this is not the case when the carrier substance is not particulate. The specific surface area of the carrier material is not particularly limited, but is preferably 10 to 1000 m 2 / g, and more preferably 180 to 900 m 2 / g, for example. When the specific surface area of the support material is in the above range, a metal-containing colloidal particle-supported support having excellent catalytic activity can be obtained.
金属含有コロイド粒子
本発明では、上記担体物質に金属含有コロイド粒子が担持されている。
金属含有コロイド粒子の平均粒子径は、後記した画像解析により求められた平均粒子径で、2〜200nmの範囲が好ましく、さらに好ましくは2〜100nmの範囲が推奨される。
Metal-containing colloidal particles In the present invention, metal-containing colloidal particles are supported on the carrier material.
The average particle size of the metal-containing colloidal particles is an average particle size determined by image analysis described later, and is preferably in the range of 2 to 200 nm, more preferably in the range of 2 to 100 nm.
金属含有コロイド粒子の平均粒子径が上記範囲内にあると金属含有コロイド粒子が充分に分散した状態で担体物質に担持することができる。一方、平均粒子径が前記下限よりも小さいものは、製造することが容易ではなく、前記上限を超えると、担体物質に充分に分散して容易に担持させることができないことがあり、また、触媒反応などに寄与できない金属含有コロイド粒子の量が増大することがある。 When the average particle size of the metal-containing colloidal particles is within the above range, the metal-containing colloidal particles can be supported on the carrier material in a sufficiently dispersed state. On the other hand, when the average particle size is smaller than the lower limit, it is not easy to produce, and when the upper limit is exceeded, the carrier material may not be sufficiently dispersed and easily supported. The amount of metal-containing colloidal particles that cannot contribute to the reaction may increase.
本発明における金属含有コロイド粒子は、単体の金属または金属化合物から選ばれるものである。ここで、金属化合物としては、金属酸化物、複合金属、金属水酸化物などが含まれる。また、金属含有コロイド粒子を構成する金属種としては、平均粒子径1〜200nmの金属含有コロイド粒子分散液を調製可能なもののなから選択される。 The metal-containing colloidal particles in the present invention are selected from a single metal or metal compound. Here, examples of the metal compound include metal oxides, composite metals, metal hydroxides, and the like. The metal species constituting the metal-containing colloidal particles are selected from those capable of preparing a metal-containing colloidal particle dispersion having an average particle diameter of 1 to 200 nm.
具体的には、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、T
c、Ru、Rh、Pd、AgまたはAuから選ばれる金属から選ばれる金属含有コロイド粒子、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、AuまたはPtから選ばれる2種以上からなる複合金属含有コロイド粒子が好適に使用される。複合金属は、合金であっても、共晶体であってもよく、単に混合物であってもよい。とくに、用途の面から、Pd、Cu、AuまたはAgを含有してなるコロイド粒子が推奨される。また、PdとCuを含有するコロイド粒子も好適に使用される。
Specifically, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, T
Metal-containing colloidal particles selected from metals selected from c, Ru, Rh, Pd, Ag or Au, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru, Rh A composite metal-containing colloidal particle composed of two or more selected from Pd, Ag, Au or Pt is preferably used. The composite metal may be an alloy, an eutectic, or simply a mixture. In particular, colloidal particles containing Pd, Cu, Au, or Ag are recommended from the viewpoint of use. Also, colloidal particles containing Pd and Cu are preferably used.
このような金属含有コロイド粒子は、通常前記金属の塩、アルコキシド、錯体を還元処理、加水分解処理などを行うことによって調製可能である。
前記金属含有コロイド粒子担持担体に含まれる金属含有コロイド粒子担持担体の割合は、金属の種類にもより異なるが、適用する用途の要請に応じて選択されるものであり、格別に限定されるものではない。通常は、例えば、1〜50質量%、好ましくは3〜20質量%の範囲にあることが望ましい。この範囲に担持していると、例えば、金属含有コロイド粒子の作用による触媒作用などが実用的なレベルとなり易く、優れている。
Such metal-containing colloidal particles can be generally prepared by subjecting the metal salt, alkoxide, or complex to reduction treatment, hydrolysis treatment, or the like.
The proportion of the metal-containing colloidal particle-supported carrier contained in the metal-containing colloidal particle-supporting carrier varies depending on the type of metal, but is selected according to the requirements of the application to be used and is particularly limited. is not. Usually, it is desirable to be in the range of, for example, 1 to 50 mass%, preferably 3 to 20 mass%. When it is supported in this range, for example, the catalytic action due to the action of metal-containing colloidal particles tends to be at a practical level, which is excellent.
前記金属含有コロイド粒子は、無機系担体物質上に単位面積(m2)あたり、102〜
1017個/m2、好ましくは、103〜1015/m2個存在することが望ましい。
このような範囲で担持されていることにより金属含有コロイド粒子に基づく触媒効果などが安定して発現し易くなる。また範囲を外れて少ないと、金属含有コロイド粒子を担持させる効果が十分に発現せず、触媒効果または導電性効果が微弱なものとなることがある。また、多くても、金属含有コロイド粒子に基づく効果が飽和する傾向が強くなるため、必ずしも必要とはされない。場合によっては、担体物質の細孔を閉塞してしまうこともある。
The metal-containing colloidal particles are 10 2 to 10 2 per unit area (m 2 ) on the inorganic carrier material.
Desirably, 10 17 / m 2 , preferably 10 3 to 10 15 / m 2 are present.
By being supported in such a range, the catalytic effect based on the metal-containing colloidal particles and the like can be easily expressed stably. On the other hand, when the amount is out of the range, the effect of supporting the metal-containing colloidal particles is not sufficiently exhibited, and the catalytic effect or the conductive effect may be weak. In addition, at most, the effect based on the metal-containing colloidal particles tends to saturate and is not necessarily required. In some cases, the pores of the support material may be blocked.
本発明の金属含有コロイド粒子担持担体の大きさは実質的に、無機系担体物質の大きさによって決定される。
本発明の金属含有コロイド粒子担持担体は、必要に応じて、公知の方法で、ペレット、ハニカムなどの所望の形状に成形してもよい。
The size of the metal-containing colloidal particle-supported carrier of the present invention is substantially determined by the size of the inorganic carrier material.
The metal-containing colloidal particle-supporting carrier of the present invention may be formed into a desired shape such as a pellet or a honeycomb by a known method, if necessary.
本発明に係る金属含有コロイド粒子担持担体は、平均粒子径30nm〜10μmの範囲の無機系担体物質に1種以上の金属含有コロイド粒子が担持されてなる金属含有コロイド粒子担持担体であって、該担体物質に担持された金属含有コロイド粒子の平均粒子径が2〜200nmの範囲にあり、前記金属含有コロイド粒子が、無機系担体物質上に単位面積(m2)あたり、102〜1017個存在することを特徴とする金属含有コロイド粒子担持担体が好適な態様である。 The metal-containing colloidal particle-supported carrier according to the present invention is a metal-containing colloidal particle-supported carrier in which one or more metal-containing colloidal particles are supported on an inorganic carrier material having an average particle diameter in the range of 30 nm to 10 μm, The average particle diameter of the metal-containing colloidal particles supported on the support material is in the range of 2 to 200 nm, and the metal-containing colloidal particles are 10 2 to 10 17 per unit area (m 2 ) on the inorganic support material. A metal-containing colloidal particle-supported carrier characterized by being present is a preferred embodiment.
本発明に係る金属含有コロイド粒子担持担体は、以下の本発明の製造方法により製造されてなるものである。
[金属含有コロイド粒子担持担体の製造方法]
本発明の金属含有コロイド粒子担持担体は、金属イオンの存在下、平均粒子径1〜200nmの金属含有コロイド粒子を担体物質に担持させることにより製造することができる。
The metal-containing colloidal particle-supporting carrier according to the present invention is produced by the following production method of the present invention.
[Method for producing metal-containing colloidal particle-supported carrier]
The metal-containing colloidal particle-supported carrier of the present invention can be produced by supporting metal-containing colloidal particles having an average particle diameter of 1 to 200 nm on a carrier material in the presence of metal ions.
担体物質懸濁液の調製
本発明に使用される担体物質については、前記した通りである。
本発明では、上記担体物質は、通常、水に懸濁させた状態で使用される。担体物質の懸濁液は、上記担体物質に、例えば、脱イオン水を加えて、95℃で1時間混合することにより得ることができる。水の使用量は、担体物質100重量部に対して900〜99,900重量部が好ましく、1,900〜19,900重量部がより好ましい。このようにして得られた担体物質の懸濁液は、必要に応じて、さらに水で希釈してもよく、あるいはデカンテーションで濃縮してもよい。希釈水としては脱イオン水が好ましい。希釈後の懸濁液の担体物質濃度は、0.1〜10質量%が好ましく、0.5〜5質量%がより好ましい。
Preparation of carrier material suspension The carrier material used in the present invention is as described above.
In the present invention, the carrier material is usually used in a state suspended in water. A suspension of the carrier material can be obtained, for example, by adding deionized water to the carrier material and mixing at 95 ° C. for 1 hour. The amount of water used is preferably 900 to 99,900 parts by weight, more preferably 1,900 to 19,900 parts by weight with respect to 100 parts by weight of the carrier substance. The carrier material suspension thus obtained may be further diluted with water, if necessary, or may be concentrated by decantation. As the dilution water, deionized water is preferred. The carrier substance concentration of the suspension after dilution is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass.
金属イオン添加
次に、上記担体物質懸濁液に、第4周期元素イオン(ただしTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、GeまたはAsから選ばれる)、第5周期イオン(ただし、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、SnまたはSbから選ばれる)または第6周期イオン(ただし、Hf、Ta、W、Re、Os、Pt、Au、Ir、Hg、TI、PbまたはBiから選ばれる)を含有させる。金属イオンの含有量は担体物質懸濁液中の担体物質固形分100重量部に対して金属元素換算で2〜100重量部が好ましく、3〜80重量部がより好ましい。金属イオンの含有量が前記下限未満になると、金属含有コロイド粒子を添加しても担体物質に対する充分な担持効果が得られず、また前記上限を超えると前記担持効果のさらなる向上が得られず、経済的に好ましくない。
Metal ions added next to the carrier material suspension, Period 4 element ions (where Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, selected from Ge or As), the 5 period ions (however, selected from Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn or Sb) or 6th period ions (however, Hf, Ta, W, Re, Os) , Pt, Au, Ir, Hg, TI, Pb or Bi). The content of metal ions is preferably 2 to 100 parts by weight, more preferably 3 to 80 parts by weight in terms of metal element, based on 100 parts by weight of the solid content of the carrier substance in the carrier substance suspension. When the content of the metal ions is less than the lower limit, even if the metal-containing colloidal particles are added, a sufficient supporting effect on the support substance cannot be obtained, and when the upper limit is exceeded, further improvement of the supporting effect cannot be obtained, Economically unfavorable.
上記範囲の量の金属イオンを含有させるためには、金属元素換算で上記範囲の量の金属イオンを含む溶液を上記担体物質懸濁液に添加してもよいし、あるいは、金属元素換算で上記割合の金属イオンを形成し得る量の金属化合物を上記担体物質懸濁液に添加して懸濁液中で金属イオンを発生させてもよい。 In order to contain the amount of metal ions in the above range, a solution containing the amount of metal ions in the above range in terms of metal element may be added to the support material suspension, or the above in terms of metal element An amount of a metal compound capable of forming a proportion of metal ions may be added to the support material suspension to generate metal ions in the suspension.
金属イオンを含む溶液は金属イオンを形成し得る金属化合物を溶媒に溶解することにより調製できる。
上記金属イオンの価数については、特に限定されるものではない。金属イオンのうち、特にはPtイオン、Auイオン、Snイオン、Pdイオンが好ましい。ここで、Ptイオンについては、Pt2+、Pt4+、Pt6+のいずれでも構わない。また、Snイオンは、Sn2+、Sn4+のいずれであってもよい。
A solution containing metal ions can be prepared by dissolving a metal compound capable of forming metal ions in a solvent.
The valence of the metal ion is not particularly limited. Of the metal ions, Pt ions, Au ions, Sn ions, and Pd ions are particularly preferable. Here, the Pt ions may be any of Pt 2+ , Pt 4+ and Pt 6+ . The Sn ion may be Sn 2+ or Sn 4+ .
Ptイオンを生成可能な上記白金化合物としては、上記担体物質懸濁液中でPtイオンを形成するものであれば特に制限されず、例えば、塩化白金酸、塩化白金(IV)酸カリウム、塩化白金(IV)酸ナトリウム、テトラニトロ白金(II)カリウム、ヘキサヒドロキソ白金(IV)酸ナトリウム水和物、ジニトロジアンミン白金硝酸、ジニトロジアンミン白金アンモニアおよびテトラアンミンジクロロ白金水和物が挙げられる。これらの白金化合物は1種単独で、または2種以上を混合して用いることができる。 The platinum compound capable of generating Pt ions is not particularly limited as long as it forms Pt ions in the carrier material suspension. For example, chloroplatinic acid, potassium chloroplatinate (IV), platinum chloride Examples include (IV) sodium acid, tetranitroplatinum (II) potassium, hexahydroxoplatinum (IV) sodium hydrate, dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia and tetraamminedichloroplatinum hydrate. These platinum compounds can be used individually by 1 type or in mixture of 2 or more types.
また、Auイオンを生成可能な化合物としては、上記担体物質懸濁液中でAuイオンを形成するものであれば特に制限されず、例えば、亜硫酸金ナトリウム、シアン化金カリウムおよびシアン化金ナトリウムが挙げられる。これらの金化合物は1種単独で、または2種以上を混合して用いることができる。 Further, the compound capable of generating Au ions is not particularly limited as long as it forms Au ions in the above-mentioned carrier material suspension, and examples thereof include sodium gold sulfite, potassium gold cyanide and sodium gold cyanide. Can be mentioned. These gold compounds can be used alone or in combination of two or more.
Pdイオンを生成可能な上記化合物としては、上記担体物質懸濁液中でPdイオンを形成するものであれば特に制限されず、例えば、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、クエン酸パラジウム、酢酸パラジウムなどが挙げられる。これらのパラジウム化合物は1種単独で、または2種以上を混合して用いることができる。 The compound capable of generating Pd ions is not particularly limited as long as it forms Pd ions in the carrier material suspension, and examples thereof include palladium chloride, palladium nitrate, palladium sulfate, palladium citrate, and palladium acetate. Etc. These palladium compounds can be used alone or in combination of two or more.
Snイオンを生成可能な上記化合物としては、上記担体物質懸濁液中でSnイオンを形成するものであれば特に制限されず、例えば、硫酸第一スズ、酸化第一スズ、塩化第一スズなどが挙げられる。これらの鉛化合物は1種単独で、または2種以上を混合して用いることができる。 The compound capable of generating Sn ions is not particularly limited as long as it forms Sn ions in the carrier material suspension. For example, stannous sulfate, stannous oxide, stannous chloride, etc. Is mentioned. These lead compounds can be used individually by 1 type or in mixture of 2 or more types.
金属イオンを生成する金属化合物は、通常溶媒に溶解して、前記懸濁液に添加される。
金属イオンを含む溶液に用いられる溶媒は、該金属との反応性を示さず、該金属化合物を溶解できるものでは特に限定されるものではない。
The metal compound that generates metal ions is usually dissolved in a solvent and added to the suspension.
The solvent used for the solution containing a metal ion is not particularly limited as long as it does not show reactivity with the metal and can dissolve the metal compound.
このような溶媒としては、
水;
メタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;
アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;
ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;
2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;
2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;
酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;
ヘキサン、ヘプタン、iso−オクタン、シクロヘキサンなどの脂肪族炭化水素類;
塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;
ジメチルスルホキシドなどのスルホキシド類;
N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などを挙げることができる。
Such solvents include
water;
Alcohols such as methanol, ethanol, isopropanol, n-butanol, methyl isocarbinol;
Ketones such as acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, cyclohexanone;
Amides such as N, N-dimethylformamide and N, N-dimethylacetamide;
Ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran;
Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether;
Glycol ether acetates such as 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate;
Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, ethylene carbonate;
Aromatic hydrocarbons such as benzene, toluene, xylene;
Aliphatic hydrocarbons such as hexane, heptane, iso-octane, cyclohexane;
Halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene;
Sulfoxides such as dimethyl sulfoxide;
Examples thereof include pyrrolidones such as N-methyl-2-pyrrolidone and N-octyl-2-pyrrolidone.
上記担体物質懸濁液に、金属イオンを含む溶液あるいは金属化合物を添加する際の温度は、15〜40℃が好ましい。温度が低いと十分に金属含有コロイド粒子を担持できないことがあり、温度が高すぎても担持効率のさらなる向上が見られないため、経済的に好ましくない。また、上記添加後、上記範囲の温度に保持しながら懸濁液を攪拌して充分に混合することが好ましい。特に、固体状の金属化合物を添加した場合には、金属化合物が充分に溶解して金属イオンが生成するまで攪拌などの操作を充分に行なう必要がある。 The temperature at which the solution or metal compound containing metal ions is added to the carrier material suspension is preferably 15 to 40 ° C. If the temperature is low, the metal-containing colloidal particles may not be sufficiently supported, and if the temperature is too high, further improvement in the supporting efficiency is not seen, which is not economically preferable. Further, after the addition, it is preferable that the suspension is stirred and sufficiently mixed while maintaining the temperature within the above range. In particular, when a solid metal compound is added, it is necessary to sufficiently perform operations such as stirring until the metal compound is sufficiently dissolved and metal ions are generated.
本発明では、金属イオンの存在下で、担体物質の懸濁液に金属含有コロイド粒子を混合することにより、上記金属イオンが存在しない場合に比べて金属含有コロイド粒子が良好に担持することができる。これは、担体物質を構成する成分、特に担体物質表面に、金属イオンが吸着して、担体物質表面に一種のプライマー層が形成され、そのプライマー層の作用、すなわち、金属含有コロイド粒子と金属イオン間で吸着反応が起こることによると推定される。なお、これらの金属イオンについては、未反応の金属含有コロイド粒子などとともに、洗浄により除去することが望ましい。 In the present invention, the metal-containing colloidal particles can be supported better by mixing the metal-containing colloidal particles in the suspension of the carrier material in the presence of the metal ions compared to the case where the metal ions are not present. . This is because metal ions are adsorbed on the components constituting the carrier material, particularly on the surface of the carrier material, and a kind of primer layer is formed on the surface of the carrier material, and the action of the primer layer, that is, metal-containing colloidal particles and metal ions. It is presumed that an adsorption reaction occurs between the two. These metal ions are preferably removed by washing together with unreacted metal-containing colloidal particles.
金属含有コロイド粒子
本発明に用いる金属含有コロイド粒子としては前記したものが挙げられる。金属含有コロイド粒子は、通常、水または有機溶媒に分散した状態の金属含有コロイド粒子分散液の状態で使用される。金属含有コロイド粒子分散液における金属含有コロイド粒子の濃度は特に限定されないが、たとえば0.01質量%以上が好ましい。
Metal-containing colloidal particles Examples of the metal-containing colloidal particles used in the present invention include those described above. The metal-containing colloidal particles are usually used in the state of a metal-containing colloidal particle dispersion in a state of being dispersed in water or an organic solvent. The concentration of the metal-containing colloidal particles in the metal-containing colloidal particle dispersion is not particularly limited, but is preferably 0.01% by mass or more, for example.
このような金属含有コロイド粒子分散液の調製方法としては特に制限されないが、通常
前記金属の塩、アルコキシド、錯体を還元処理、加水分解処理などを行うことによって調製可能である。
The method for preparing such a metal-containing colloidal particle dispersion is not particularly limited, but can be usually prepared by subjecting the metal salt, alkoxide, or complex to reduction treatment, hydrolysis treatment, or the like.
金属含有コロイド粒子の添加量は、担体物質100重量部に対して5〜180重量部が好ましく、10〜180重量部がより好ましい。金属含有コロイド粒子の添加量が上記範囲にあると金属含有コロイド粒子が充分に分散した状態で担体物質に担持することができる。一方、添加量が5重量部未満になると、金属含有コロイド粒子の担持は問題ないが、金属含有コロイド粒子の担持量が少なくなり、金属含有コロイド粒子による触媒作用など、充分な効果が得られないことがある。また、添加量が180重量部を超えても担持量は増加しにくく、経済的に好ましくない。 The added amount of the metal-containing colloidal particles is preferably 5 to 180 parts by weight, more preferably 10 to 180 parts by weight with respect to 100 parts by weight of the carrier substance. When the amount of the metal-containing colloidal particles is within the above range, the metal-containing colloidal particles can be supported on the carrier material in a sufficiently dispersed state. On the other hand, when the addition amount is less than 5 parts by weight, there is no problem with the loading of the metal-containing colloidal particles, but the loading amount of the metal-containing colloidal particles decreases, and sufficient effects such as catalytic action by the metal-containing colloidal particles cannot be obtained. Sometimes. Moreover, even if the addition amount exceeds 180 parts by weight, the loading amount is hardly increased, which is economically undesirable.
金属含有コロイド粒子を添加して混合する際の温度は、特に限定されないが、15〜40℃が好ましい。15℃未満では、十分に金属含有コロイド粒子を担持できないことがあり、実用性が低下することがある。40℃を超えると担持効果の更なる向上は認められず、経済的に好ましくない。 Although the temperature at the time of adding and mixing a metal containing colloidal particle is not specifically limited, 15-40 degreeC is preferable. If it is less than 15 degreeC, a metal containing colloid particle may not fully be supported, and practicality may fall. If it exceeds 40 ° C., further improvement of the supporting effect is not recognized, which is economically undesirable.
上記混合の際、通常5分以上、好ましくは10分以上の攪拌を行なうことが望ましく、必要に応じて、通常3時間程度まで、好ましくは1時間程度まで攪拌してもよい。
上記混合操作後、必要に応じて、金属含有コロイド粒子担持担体を含む懸濁液を水で希釈してもよい。通常、金属含有コロイド粒子担持担体100重量部に対して、最大で250,000重量部程度の水で希釈することができる。さらに、通常水で希釈した金属含有コロイド粒子担持担体を遠心分離し、望ましくは洗浄を3回以上繰り返して、残存するイオンを除去し、金属含有コロイド粒子担持担体を分離精製する。その後、分離した金属含有コロイド粒子担持担体を、通常80〜100℃で1〜20時間乾燥することが望ましい。
In the mixing, it is desirable to stir usually for 5 minutes or longer, preferably for 10 minutes or longer. If necessary, the stirring may be performed for usually up to about 3 hours, preferably up to about 1 hour.
After the mixing operation, the suspension containing the metal-containing colloidal particle-supporting carrier may be diluted with water as necessary. Usually, it can be diluted with up to about 250,000 parts by weight of water with respect to 100 parts by weight of the metal-containing colloidal particle-supporting carrier. Further, the metal-containing colloidal particle-supported carrier diluted with water is usually centrifuged, and washing is preferably repeated three times or more to remove remaining ions, and the metal-containing colloidal particle-supported carrier is separated and purified. Thereafter, the separated metal-containing colloidal particle-supported carrier is preferably dried usually at 80 to 100 ° C. for 1 to 20 hours.
本発明の製造方法により、金属含有コロイド粒子担持量が、金属含有コロイド粒子担持担体全体に対して、1〜50質量%であり、かつ金属含有コロイド粒子が担体物質表面に極めて良好に分散した金属含有コロイド粒子担持担体を得ることができる。この金属含有コロイド粒子担持量は、金属イオンを含有させる際の温度、金属イオンの含有量、金属含有コロイド粒子混合時の温度、金属含有コロイド粒子の混合量などの製造条件を適宜調整することによりコントロールすることができる。特に担持量としては、5〜30質量%が好ましい。 According to the production method of the present invention, the amount of metal-containing colloidal particles supported is 1 to 50% by mass with respect to the whole metal-containing colloidal particle-supported carrier, and the metal-containing colloidal particles are very well dispersed on the surface of the carrier material. A colloidal particle-containing carrier can be obtained. The amount of the metal-containing colloidal particles supported is adjusted by appropriately adjusting the production conditions such as the temperature at which the metal ions are contained, the content of the metal ions, the temperature at the time of mixing the metal-containing colloidal particles, and the amount of the metal-containing colloidal particles mixed. Can be controlled. In particular, the supported amount is preferably 5 to 30% by mass.
本発明の製造方法においては、既に金属状態にある金属含有コロイド粒子を使用するので、担体物質に担持するだけで金属含有コロイド粒子担持担体を得ることができる。例えば、イオン吸着還元法では、担体上にPtイオンを存在させ、これを焼成還元して白金金属を形成する必要があるが、これに比べて本発明の製造方法は、より簡便であるものといえる。 In the production method of the present invention, since the metal-containing colloidal particles already in the metal state are used, a metal-containing colloidal particle-supported carrier can be obtained simply by being supported on a carrier material. For example, in the ion adsorption reduction method, it is necessary to cause Pt ions to be present on a carrier and to calcinate and reduce them to form platinum metal. However, the production method of the present invention is simpler than this. I can say that.
得られた金属含有コロイド粒子担持担体は、必要に応じて、公知の方法で、ペレット、ハニカムなどの所望の形状に成形してもよい。また、懸濁液に分散させる担体物質を予め所望の形状の成形して使用してもよい。 The obtained metal-containing colloidal particle-supported carrier may be formed into a desired shape such as a pellet or a honeycomb by a known method, if necessary. In addition, the carrier substance to be dispersed in the suspension may be used after being formed into a desired shape.
本発明の金属含有コロイド粒子担持担体は、例えば金属含有コロイド粒子担持担体からなる触媒として用いる場合には高い触媒活性を示し、また触媒性能の再現性もよい。また、触媒以外の用途として、金属含有コロイド粒子を担体上に良好に分散した材料として、電気特性または磁気特性を利用する用途に適用可能である。 The metal-containing colloidal particle-supported carrier of the present invention exhibits high catalytic activity when used, for example, as a catalyst comprising a metal-containing colloidal particle-supported carrier, and has good reproducibility of catalyst performance. Moreover, as a use other than the catalyst, it can be applied as a material in which metal-containing colloidal particles are favorably dispersed on a carrier and used in an application utilizing electric characteristics or magnetic characteristics.
[実施例]
以下、本発明を実施例により説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples at all.
[1]BET法による比表面積測定
試料(ゼオライト)分散液50mlをHNO3でpH3.5に調整し、1−プロパノー
ル40mlを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を測定した。
[1] Specific surface area measurement sample by BET method (Zeolite) 50 ml of a dispersion of HNO 3 was adjusted to pH 3.5, 40 ml of 1-propanol was added, and the sample was dried at 110 ° C. for 16 hours. A sample for measurement was obtained by firing in an oven at 500 ° C. for 1 hour. And the specific surface area was measured by the BET 1-point method from the amount of adsorption | suction of nitrogen using the nitrogen adsorption method (BET method) using the specific surface area measuring apparatus (The product made from Yuasa Ionics, model number multisorb 12).
具体的には、試料0.5gを測定セルに入れ、窒素30容量%とヘリウム70容量%の混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料(ゼオライト)の比表面積を測定した。 Specifically, 0.5 g of a sample is put in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of 30% by volume of nitrogen and 70% by volume of helium, and then the sample is mixed with the above mixed gas stream. The liquid nitrogen temperature is maintained in the sample, and nitrogen is allowed to equilibrate to the sample. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the sample (zeolite) was measured using a calibration curve prepared in advance.
[2]単位面積当たりの金属含有コロイド粒子存在個数測定
透過型電子顕微鏡(株式会社日立製作所製、H−800)により、試料(金属含有コロイド担持担体)を倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、40nm四方の表面に担持されている金属含有コロイド粒子の個数を測定し、その平均値から換算して、単位面積[m2]当たりの金属含有コロイド粒子存在個数を求めた。
[2] Measurement of the number of metal-containing colloidal particles per unit area Obtained by photographing a sample (metal-containing colloid-carrying carrier) at a magnification of 250,000 using a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.) The number of metal-containing colloidal particles supported on the surface of 40 nm square is measured for any 50 particles in the photographic projection figure, and the metal per unit area [m 2 ] is calculated from the average value. The number of contained colloidal particles was determined.
[3]金属含有コロイド粒子担持担体の組成分析
試料(金属含有コロイド担持担体)を600℃にて焼成し、残渣をアルカリ溶融剤にて溶融した後、28(質量)%塩酸水溶液にて溶解し、溶解液を純水で希釈した後、ICP誘導結合プラズマ発光分光分析装置SPS1200A(セイコー電子株式会社製)にて測定した。
[3] Composition analysis sample of metal-containing colloidal particle-supported carrier (metal-containing colloid-supported carrier) was fired at 600 ° C., the residue was melted with an alkaline melting agent, and then dissolved in 28% (mass)% aqueous hydrochloric acid The solution was diluted with pure water, and then measured with an ICP inductively coupled plasma emission spectrometer SPS1200A (manufactured by Seiko Electronics Co., Ltd.).
[4]画像解析による平均粒子径の測定方法
金属含有コロイド粒子または担体の平均粒子径については次の方法により測定した。
走査型電子顕微鏡(株式会社日立製作所製、H−800)により、試料粒子を倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、粒子径を測定し、その平均値を求めた。
[4] Method for measuring average particle diameter by image analysis The average particle diameter of metal-containing colloidal particles or carriers was measured by the following method.
With a scanning electron microscope (manufactured by Hitachi, Ltd., H-800), the particle diameter is measured for any 50 particles in a photograph projection view obtained by photographing a sample particle at a magnification of 250,000 times, The average value was obtained.
[合成例1A]
活性炭懸濁液の調製
固形分重量で0.2gのカーボンブラック(ライオン(株)製、商品名:ケッチェンブラックEC、DBP吸油量:360cm3/100g、比表面積:850m2/g、一次粒子径:39.5nm)を95℃に煮沸した水に分散させ、カーボンブラック7質量%(固形分)の分散液を得た。この分散液を脱イオン水で希釈し、攪拌することにより、カーボンブラック懸濁液(カーボンブラック固形分5質量%)を調製した。
[Synthesis Example 1A]
Carbon black 0.2g Preparation solids weight of the activated carbon suspension (Lion Co., Ltd., trade name: Ketjenblack EC, DBP oil absorption: 360 cm 3/100 g, a specific surface area: 850 meters 2 / g, primary particle (Diameter: 39.5 nm) was dispersed in water boiled at 95 ° C. to obtain a dispersion of 7% by mass (solid content) of carbon black. This dispersion was diluted with deionized water and stirred to prepare a carbon black suspension (carbon black solid content 5 mass%).
[合成例1B]
パラジウム−銅コロイド粒子分散液の合成
クエン酸水溶液〔濃度30質量%〕219gに還元剤として硫酸第一鉄122gを溶解させた溶液を調製した。そして、この溶液341gを、硝酸パラジウム水溶液(濃度20質量%)39gと硝酸銅水溶液(濃度20質量%)26gとの混合水溶液に室温で添加し、充分に混合することによりパラジウム−銅微粒子(平均粒子径3nm)の分散液を調製した。
[Synthesis Example 1B]
Synthesis of palladium-copper colloidal particle dispersion A solution in which 122 g of ferrous sulfate as a reducing agent was dissolved in 219 g of an aqueous citric acid solution (concentration: 30% by mass) was prepared. Then, 341 g of this solution was added to a mixed aqueous solution of 39 g of an aqueous palladium nitrate solution (concentration 20% by mass) and 26 g of an aqueous copper nitrate solution (concentration 20% by mass) at room temperature and mixed thoroughly to obtain palladium-copper fine particles (average A dispersion having a particle diameter of 3 nm) was prepared.
[実施例1]
合成例1Aで調製したカーボンブラック懸濁液100gにFeイオン濃度が1質量%の塩化第一鉄水溶液を15g添加して20℃で5分間攪拌した。この混合懸濁液に、合成例1Bで得たパラジウム銅コロイド粒子分散液16.6g(平均粒子径:3nm、パラジウム−銅換算で0.5g)を添加した。パラジウム銅コロイド粒子添加後の混合懸濁液のpHは2.5であった。
[Example 1]
15 g of a ferrous chloride aqueous solution having a Fe ion concentration of 1 mass% was added to 100 g of the carbon black suspension prepared in Synthesis Example 1A, and the mixture was stirred at 20 ° C. for 5 minutes. To this mixed suspension, 16.6 g of palladium copper colloidal particle dispersion obtained in Synthesis Example 1B (average particle size: 3 nm, 0.5 g in terms of palladium-copper) was added. The pH of the mixed suspension after addition of palladium-copper colloidal particles was 2.5.
この混合懸濁液を20℃で40分間攪拌した後、遠心分離機で固液分離し、更に水を500g加えて3分間洗浄した。遠心分離および洗浄操作を3回繰り返して懸濁液中に残存しているパラジウム銅コロイド粒子、塩素イオン、Feイオン等を除去した後、得られた固形物を90℃で10時間乾燥させることにより平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを得た。このカーボンの単位面積当たりのパラジウム−銅コロイド粒子存在個数は107個/m2だった。 The mixed suspension was stirred at 20 ° C. for 40 minutes, then solid-liquid separated with a centrifuge, and further 500 g of water was added and washed for 3 minutes. By removing the palladium copper colloidal particles, chlorine ions, Fe ions, etc. remaining in the suspension by repeating the centrifugation and washing operations three times, and then drying the obtained solid at 90 ° C. for 10 hours. Carbon supported by palladium-copper colloidal particles having an average particle diameter of 3 nm was obtained. The number of palladium-copper colloid particles present per unit area of carbon was 10 7 particles / m 2 .
[実施例2]
合成例1Aで調製したカーボンブラック懸濁液100gにPdイオン濃度が1質量%の硝酸パラジウム水溶液を15g添加して20℃で5分間攪拌した。この混合懸濁液に、合成例1Bで得たパラジウム銅コロイド粒子分散液16.6g(平均粒子径:3nm、パラジウム−銅換算で0.5g)を添加した。パラジウム銅コロイド粒子添加後の混合懸濁液のpHは2.5であった。
[Example 2]
15 g of an aqueous palladium nitrate solution having a Pd ion concentration of 1% by mass was added to 100 g of the carbon black suspension prepared in Synthesis Example 1A and stirred at 20 ° C. for 5 minutes. To this mixed suspension, 16.6 g of palladium copper colloidal particle dispersion obtained in Synthesis Example 1B (average particle size: 3 nm, 0.5 g in terms of palladium-copper) was added. The pH of the mixed suspension after addition of palladium-copper colloidal particles was 2.5.
この混合懸濁液を20℃で40分間攪拌した後、遠心分離機で固液分離し、更に水を500g加えて3分間洗浄した。遠心分離および洗浄操作を3回繰り返して懸濁液中に残存しているパラジウム銅コロイド粒子、硝酸イオン、Pdイオン等を除去した後、得られた固形物を90℃で10時間乾燥させることにより平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを得た。このカーボンの単位面積当たりのパラジウム−銅コロイド粒子存在個数は109個/m2だった。 The mixed suspension was stirred at 20 ° C. for 40 minutes, then solid-liquid separated with a centrifuge, and further 500 g of water was added and washed for 3 minutes. After removing the palladium copper colloid particles, nitrate ions, Pd ions, etc. remaining in the suspension by repeating the centrifugation and washing operations three times, the obtained solid is dried at 90 ° C. for 10 hours. Carbon supported by palladium-copper colloidal particles having an average particle diameter of 3 nm was obtained. The number of palladium-copper colloidal particles present per unit area of carbon was 10 9 / m 2 .
[実施例3]
合成例1Aで調製したカーボンブラック懸濁液100gにCuイオン濃度が1質量%の硝酸銅水溶液を15g添加して20℃で5分間攪拌した。この混合懸濁液に、合成例1Bで得たパラジウム銅コロイド粒子分散液16.6g(平均粒子径:3nm、パラジウム−銅換算で0.5g)を添加した。パラジウム銅コロイド粒子添加後の混合懸濁液のpHは2.5であった。
[Example 3]
To 100 g of the carbon black suspension prepared in Synthesis Example 1A, 15 g of an aqueous copper nitrate solution having a Cu ion concentration of 1% by mass was added and stirred at 20 ° C. for 5 minutes. To this mixed suspension, 16.6 g of palladium copper colloidal particle dispersion obtained in Synthesis Example 1B (average particle size: 3 nm, 0.5 g in terms of palladium-copper) was added. The pH of the mixed suspension after addition of palladium-copper colloidal particles was 2.5.
この混合懸濁液を20℃で40分間攪拌した後、遠心分離機で固液分離し、更に水を500g加えて3分間洗浄した。遠心分離および洗浄操作を3回繰り返して懸濁液中に残存しているパラジウム銅コロイド粒子、硝酸イオン、Cuイオン等を除去した後、得られた固形物を90℃で10時間乾燥させることにより平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを得た。このカーボンの単位面積当たりのパラジウム−銅コロイド粒子存在個数は1012個/m2だった。 The mixed suspension was stirred at 20 ° C. for 40 minutes, then solid-liquid separated with a centrifuge, and further 500 g of water was added and washed for 3 minutes. After removing the palladium copper colloid particles, nitrate ions, Cu ions, etc. remaining in the suspension by repeating the centrifugation and washing operations three times, the obtained solid is dried at 90 ° C. for 10 hours. Carbon supported by palladium-copper colloidal particles having an average particle diameter of 3 nm was obtained. The number of palladium-copper colloidal particles present per unit area of carbon was 10 12 particles / m 2 .
[実施例4]
合成例1Aで調製したカーボンブラック懸濁液100gにPtイオン濃度が1質量%の塩化白金酸水溶液を15g添加して20℃で5分間攪拌した。この混合懸濁液に、合成例1Bで得たパラジウム銅コロイド粒子分散液16.6g(平均粒子径:3nm、パラジウム−銅換算で0.5g)を添加した。パラジウム銅コロイド粒子添加後の混合懸濁液のpHは2.5であった。
[Example 4]
15 g of a chloroplatinic acid aqueous solution having a Pt ion concentration of 1% by mass was added to 100 g of the carbon black suspension prepared in Synthesis Example 1A and stirred at 20 ° C. for 5 minutes. To this mixed suspension, 16.6 g of palladium copper colloidal particle dispersion obtained in Synthesis Example 1B (average particle size: 3 nm, 0.5 g in terms of palladium-copper) was added. The pH of the mixed suspension after addition of palladium-copper colloidal particles was 2.5.
この混合懸濁液を20℃で40分間攪拌した後、遠心分離機で固液分離し、更に水を500g加えて3分間洗浄した。遠心分離および洗浄操作を3回繰り返して懸濁液中に残存しているパラジウム銅コロイド粒子、塩素イオン、Ptイオン等を除去した後、得られた固形物を90℃で10時間乾燥ささせることにより平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを得た。このカーボンの単位面積当たりのパラジウム−銅コロイド粒子存在個数は107個/m2だった。 The mixed suspension was stirred at 20 ° C. for 40 minutes, then solid-liquid separated with a centrifuge, and further 500 g of water was added and washed for 3 minutes. Repeat the centrifugation and washing operations three times to remove palladium copper colloid particles, chlorine ions, Pt ions, etc. remaining in the suspension, and then dry the resulting solid at 90 ° C. for 10 hours. As a result, carbon supported by palladium-copper colloidal particles having an average particle diameter of 3 nm was obtained. The number of palladium-copper colloid particles present per unit area of carbon was 10 7 / m 2 .
[実施例5]
合成例1Aで調製したカーボンブラック懸濁液100gにSnイオン濃度が1質量%の塩化スズ水溶液を15g添加して20℃で5分間攪拌した。この混合懸濁液に、合成例1Bで得たパラジウム銅コロイド粒子分散液16.6g(平均粒子径:3nm、パラジウム−銅換算で0.5g)を添加した。
[Example 5]
15 g of a tin chloride aqueous solution having a Sn ion concentration of 1% by mass was added to 100 g of the carbon black suspension prepared in Synthesis Example 1A and stirred at 20 ° C. for 5 minutes. To this mixed suspension, 16.6 g of palladium copper colloidal particle dispersion obtained in Synthesis Example 1B (average particle size: 3 nm, 0.5 g in terms of palladium-copper) was added.
パラジウム銅コロイド粒子添加後の混合懸濁液のpHは2.5であった。
この混合懸濁液を20℃で40分間攪拌した後、遠心分離機で固液分離し、更に水を500g加えて3分間洗浄した。遠心分離および洗浄操作を3回繰り返して懸濁液中に残存しているパラジウム銅コロイド粒子、塩素イオン、Snイオン等を除去した後、得られた固形物を90℃で10時間乾燥させることにより平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを得た。このカーボンの単位面積当たりのパラジウム−銅コロイド粒子存在個数は108個/m2だった。
The pH of the mixed suspension after addition of palladium-copper colloidal particles was 2.5.
The mixed suspension was stirred at 20 ° C. for 40 minutes, then solid-liquid separated with a centrifuge, and further 500 g of water was added and washed for 3 minutes. By removing the palladium copper colloid particles, chlorine ions, Sn ions, etc. remaining in the suspension by repeating the centrifugation and washing operations three times, and then drying the obtained solid at 90 ° C. for 10 hours. Carbon supported by palladium-copper colloidal particles having an average particle diameter of 3 nm was obtained. The number of palladium-copper colloidal particles present per unit area of carbon was 10 8 particles / m 2 .
[実施例6]
合成例1Aで調製したカーボンブラック懸濁液100gにAuイオン濃度が1%の塩化金酸水溶液を15g添加して20℃で5分間攪拌した。この混合懸濁液に、合成例1Bで得たパラジウム銅コロイド粒子分散液16.6g(平均粒子径:3nm、パラジウム銅合金分で0.5g)を添加した。
[Example 6]
15 g of a chloroauric acid aqueous solution with an Au ion concentration of 1% was added to 100 g of the carbon black suspension prepared in Synthesis Example 1A, and the mixture was stirred at 20 ° C. for 5 minutes. To this mixed suspension, 16.6 g of palladium copper colloidal particle dispersion obtained in Synthesis Example 1B (average particle size: 3 nm, 0.5 g of palladium copper alloy content) was added.
パラジウム銅コロイド粒子添加後の混合懸濁液のpHは2.5であった。
この混合懸濁液を20℃で40分間攪拌した後、遠心分離機で固液分離し、更に水を500g加えて3分間洗浄した。遠心分離および洗浄操作を3回繰り返して懸濁液中に残存しているパラジウム銅コロイド粒子、塩素イオン、Auイオン等を除去した後、得られた固形物を90℃で10時間乾燥させることにより平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを得た。このカーボンの単位面積当たりのパラジウム−銅コロイド粒子存在個数は109個/m2だった。
The pH of the mixed suspension after addition of palladium-copper colloidal particles was 2.5.
The mixed suspension was stirred at 20 ° C. for 40 minutes, then solid-liquid separated with a centrifuge, and further 500 g of water was added and washed for 3 minutes. By removing the palladium copper colloidal particles, chlorine ions, Au ions, etc. remaining in the suspension by repeating the centrifugation and washing operations three times, and then drying the obtained solid at 90 ° C. for 10 hours. Carbon supported by palladium-copper colloidal particles having an average particle diameter of 3 nm was obtained. The number of palladium-copper colloidal particles present per unit area of carbon was 10 9 / m 2 .
[合成例2A]
ゼオライト懸濁液の調製
実施例および比較例で使用するゼオライト懸濁液は次の様に調製した。超安定性Y型ゼオライト(パウダー状、平均粒子径=2μm、SiO2/Al2O3(モル比)=5、Na2
Oを5質量%含有、NFA(格子外アルミニウム)5.0質量%含有、比表面積600m2/g、格子定数24.57Å、12員環構造)を用意し、乾燥重量100gを採取して
、水を833g添加し、スリーワンモーターで5分攪拌後、ホモジナイザーで解砕することにより超安定性Y型ゼオライト懸濁液(以下、「USYゼオライト懸濁液」と称する。)を調製した。次に、ゼオライト固形分濃度が10質量%になるように脱イオン水を添加した。
[Synthesis Example 2A]
Preparation of zeolite suspension The zeolite suspension used in the examples and comparative examples was prepared as follows. Ultrastable Y-type zeolite (powder, average particle size = 2 μm, SiO 2 / Al 2 O 3 (molar ratio) = 5, Na 2
5% by mass of O, 5.0% by mass of NFA (aluminum out of lattice), specific surface area of 600 m 2 / g, lattice constant of 24.57 mm, and 12-membered ring structure) were prepared, and a dry weight of 100 g was collected. After adding 833 g of water, stirring with a three-one motor for 5 minutes, and then crushing with a homogenizer, an ultrastable Y-type zeolite suspension (hereinafter referred to as “USY zeolite suspension”) was prepared. Next, deionized water was added so that the zeolite solid content concentration was 10% by mass.
[合成例2B]
パラジウムコロイド粒子分散液の合成
硝酸パラジウム25g(白金金属換算で10g)を純水100gに溶解して得た金属塩水溶
液に、錯化安定剤として濃度30質量%のクエン酸3ナトリウム水溶液596gと還元剤とし
て濃度25質量%の硫酸第一鉄水溶液332gとを加え、窒素雰囲気下、20℃で攪拌混合し
て、水にパラジウム微粒子が分散してなるパラジウムロイド溶液を得た。このパラジウムコロイド粒子分散液を限外濾過膜法洗浄により精製した後、濃度を調整し、白金金属換算で濃度3質量%のパラジウムコロイド粒子分散液を得た。このパラジウムコロイド粒子の平均粒子径は3nmであった。
[Synthesis Example 2B]
Synthesis of colloidal palladium particle dispersion A metal salt aqueous solution obtained by dissolving 25 g of palladium nitrate (10 g in terms of platinum metal) in 100 g of pure water was reduced with 596 g of a trisodium citrate aqueous solution having a concentration of 30% by mass as a complexing stabilizer. As an agent, 332 g of an aqueous ferrous sulfate solution having a concentration of 25% by mass was added and stirred and mixed at 20 ° C. in a nitrogen atmosphere to obtain a palladium loid solution in which palladium fine particles were dispersed in water. After this palladium colloidal particle dispersion was purified by ultrafiltration membrane washing, the concentration was adjusted to obtain a palladium colloidal particle dispersion having a concentration of 3% by mass in terms of platinum metal. The average particle diameter of the palladium colloid particles was 3 nm.
[実施例11]
上記USYゼオライト懸濁液(ゼオライト固形分濃度10質量%)2gを秤量し、このゼオライト懸濁液に、塩化金酸水溶液(Auイオンを塩化金酸水溶液中に1質量%含有する)を14g添加し、25℃で5分攪拌した。
[Example 11]
2 g of the above USY zeolite suspension (zeolite solid content concentration 10% by mass) is weighed, and 14 g of chloroauric acid aqueous solution (containing 1% by mass of Au ions in the chloroauric acid aqueous solution) is added to the zeolite suspension. And stirred at 25 ° C. for 5 minutes.
次にパラジウムコロイド粒子分散液を6.7g(固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは1.95であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Auイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1014個/m2だった。 Next, 6.7 g (solid content 0.2 g, average particle diameter 3 nm) of palladium colloid particle dispersion was added. The pH after the addition was 1.95. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes. Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Au ions, and the like, thereby preparing zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles present per unit area was 10 14 particles / m 2 .
[実施例12]
実施例11と同様のUSYゼオライト懸濁液に塩化金酸水溶液(Auイオンを塩化金酸水溶液中に1質量%含有する)を10g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液47g(固形分0.2g、平均粒子径3nm)を添加した。
[Example 12]
10 g of a chloroauric acid aqueous solution (Au ion was contained at 1 mass% in the chloroauric acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g of palladium colloidal particle dispersion (solid content: 0.2 g, average particle diameter: 3 nm) was added.
添加後のpHは2.80であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Auイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1014個/m2だった。 The pH after the addition was 2.80. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes. Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Au ions, and the like, thereby preparing zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles present per unit area was 10 14 particles / m 2 .
[実施例13]
実施例11と同様のUSYゼオライト懸濁液に塩化金酸水溶液(Auイオンを塩化金酸水溶液中に1質量%含有する)を6g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液を47g(固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは3.54であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Auイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1014個/m2だった。
[Example 13]
6 g of a chloroauric acid aqueous solution (containing 1 mass% of Au ions in the chloroauric acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g (solid content 0.2 g, average particle diameter 3 nm) of palladium colloid particle dispersion was added. The pH after the addition was 3.54. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes. Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Au ions, and the like, thereby preparing zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles present per unit area was 10 14 particles / m 2 .
[実施例14]
実施例11と同様のUSYゼオライト懸濁液に塩化金酸水溶液(Auイオンを塩化金酸水溶液中に1質量%含有する)を2g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液を47g(固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは4.01であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。
[Example 14]
2 g of a chloroauric acid aqueous solution (containing 1 mass% of Au ions in the chloroauric acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g (solid content 0.2 g, average particle diameter 3 nm) of palladium colloid particle dispersion was added. The pH after the addition was 4.01. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes.
遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Auイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1013個/m2だった。 Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Au ions, and the like, thereby preparing zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles present per unit area was 10 13 particles / m 2 .
[実施例15]
実施例11と同様のUSYゼオライト懸濁液に塩化白金酸水溶液(Ptイオンを塩化白金酸水溶液中に1質量%含有する)を14g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液を47g(固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは2.01であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。
[Example 15]
14 g of a chloroplatinic acid aqueous solution (containing 1% by mass of Pt ions in the chloroplatinic acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g (solid content 0.2 g, average particle diameter 3 nm) of palladium colloid particle dispersion was added. The pH after the addition was 2.01. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes.
遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Ptイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1012個/m2だった。 Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Pt ions, and the like to prepare zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles per unit area was 10 12 particles / m 2 .
[実施例16]
実施例11と同様のUSYゼオライト懸濁液に塩化白金酸水溶液(Ptイオンを塩化白金酸水溶液中に1質量%含有する)を10g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液を47g(白金固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは2.01であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。
[Example 16]
10 g of a chloroplatinic acid aqueous solution (containing 1 mass% of Pt ions in the chloroplatinic acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g of palladium colloidal particle dispersion (platinum solid content 0.2 g, average particle diameter 3 nm) was added. The pH after the addition was 2.01. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes.
遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Ptイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1011個/m2だった。 Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Pt ions, and the like to prepare zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles present per unit area was 10 11 particles / m 2 .
[実施例17]
実施例11と同様のUSYゼオライト懸濁液に塩化白金酸水溶液(Ptイオンを塩化白金酸水溶液中に1質量%含有する)を6g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液を47g(固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは3.55であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。
[Example 17]
6 g of a chloroplatinic acid aqueous solution (containing 1 mass% of Pt ions in the chloroplatinic acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g (solid content 0.2 g, average particle diameter 3 nm) of palladium colloid particle dispersion was added. The pH after the addition was 3.55. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes.
遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Ptイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させパラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は1010個/m2だった。 Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Pt ions, and the like to prepare zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles per unit area was 10 10 particles / m 2 .
[実施例18]
実施例11と同様のUSYゼオライト懸濁液に塩化白金酸水溶液(Ptイオンを塩化白金酸水溶液中に1質量%含有する)を2g添加し、25℃で5分攪拌した。次にパラジウムコロイド粒子分散液を47g(固形分0.2g、平均粒子径3nm)を添加した。添加後のpHは4.03であった。25℃で40分攪拌した後、遠心分離機で固液分離し、更に水を500g加え、3分洗浄した。遠心分離、洗浄を3回繰り返し残存しているパラジウムコロイド粒子、Clイオン、Ptイオン等を除去して、パラジウムコロイド粒子が表面に担持したゼオライトを調製した。固形物を90℃で5時間乾燥させ、パラジウムコロイド粒子担持ゼオライトを得た。単位面積当たりの金属含有コロイド粒子存在個数は109
個/m2だった。
[Example 18]
2 g of a chloroplatinic acid aqueous solution (containing 1 mass% of Pt ions in the chloroplatinic acid aqueous solution) was added to the same USY zeolite suspension as in Example 11, and the mixture was stirred at 25 ° C. for 5 minutes. Next, 47 g (solid content 0.2 g, average particle diameter 3 nm) of palladium colloid particle dispersion was added. The pH after the addition was 4.03. After stirring at 25 ° C. for 40 minutes, solid-liquid separation was performed with a centrifuge, and 500 g of water was further added, followed by washing for 3 minutes. Centrifugation and washing were repeated three times to remove remaining palladium colloid particles, Cl ions, Pt ions, and the like to prepare zeolite with palladium colloid particles supported on the surface. The solid was dried at 90 ° C. for 5 hours to obtain palladium colloidal particle-supported zeolite. The number of metal-containing colloidal particles present per unit area is 10 9
Pieces / m 2 .
[硝酸性窒素処理性能試験]
硝酸ナトリウム(関東化学(株)製:特級)61.3gを純水に溶解して硝酸性窒素含有水
25kgを調製した。このときの硝酸性窒素の含有量はNとして400ppmであった。次に、超微細気泡還元ガス発生装置(スキルキット(株)製:マイクロバブル発生装置)の水槽に硝酸性窒素含有水を投入し、硝酸性窒素含有水を循環させながらこれに触媒用試料1000gを分散させた。このときの硝酸性窒素含有水中の触媒用試料の分散濃度は3.8質量%である。
[Nitrate nitrogen treatment performance test]
61.3 g of sodium nitrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was dissolved in pure water to prepare 25 kg of nitrate nitrogen-containing water. At this time, the content of nitrate nitrogen was 400 ppm as N. Next, nitrate nitrogen-containing water is put into a water tank of an ultrafine bubble reducing gas generator (manufactured by Skillkit Co., Ltd .: Microbubble generator), and a catalyst sample 1000 g is circulated while circulating the nitrate nitrogen-containing water. Was dispersed. At this time, the dispersion concentration of the catalyst sample in the nitrate nitrogen-containing water is 3.8% by mass.
ついで水素ガスの超微細気泡を吹き込み、硝酸性窒素含有水の処理を実施した。
この時、液温を25℃に維持し、水槽は200rpmで攪拌した。マイクロバブル発生装置は、液循環量70L/min、液圧力0.45MPa、水素圧力0.45MPa とし、
水素の流量を0.37NL/minの条件で注入し、硝酸性窒素の処理中は、硝酸性窒素
含有水のpHを濃度1質量%の硫酸にて5〜6の範囲に調整した。水素の超微細気泡を供給開始後5分毎に処理液を採取し、窒素分析装置(ブランルーベ(株)製:AAS−III
)により硝酸性窒素(NO3+NO2)およびNH3の分析を行った。
Subsequently, ultrafine bubbles of hydrogen gas were blown in to treat the nitrate-containing water.
At this time, the liquid temperature was maintained at 25 ° C., and the water tank was stirred at 200 rpm. The microbubble generator has a liquid circulation rate of 70 L / min, a liquid pressure of 0.45 MPa, a hydrogen pressure of 0.45 MPa,
The flow rate of hydrogen was injected at a condition of 0.37 NL / min, and during the treatment of nitrate nitrogen, the pH of the nitrate nitrogen-containing water was adjusted to a range of 5 to 6 with sulfuric acid having a concentration of 1% by mass. A treatment solution was collected every 5 minutes after the start of supply of hydrogen ultrafine bubbles, and a nitrogen analyzer (Blanlube Co., Ltd. product: AAS-III) was collected.
) To analyze nitrate nitrogen (NO 3 + NO 2 ) and NH 3 .
硝酸性窒素の還元は130分(NO3+NO2が0ppmとなった時点)で終了し、このときの副生NH3濃度、およびN2生成量、水素未利用率を測定した。
前記触媒用試料として、実施例1で調製した平均粒子径3nmのパラジウム−銅コロイド粒子が担持したカーボンを使用した場合、N2生成量48.8%、NH3副生量10.0%、未利用41.2%であった。
The reduction of nitrate nitrogen was completed in 130 minutes (when NO 3 + NO 2 became 0 ppm), and the concentration of by-product NH 3 , the amount of N 2 produced, and the hydrogen unused rate were measured.
When the carbon supported by the palladium-copper colloidal particles having an average particle diameter of 3 nm prepared in Example 1 was used as the catalyst sample, N 2 production amount 48.8%, NH 3 by- product production amount 10.0%, unused 41.2% Met.
なお、前記触媒用試料として、〔金属イオンを用いない方法で調合したパラジウム-銅
コロイド粒子を担持したカーボン〕を使用した場合は、N2生成量37.1%、NH3副生量9.8%、未利用53.1%であった。
When the catalyst sample was [carbon loaded with palladium-copper colloidal particles prepared by a method not using metal ions], the amount of N 2 produced was 37.1%, the amount of NH 3 by -product was 9.8%, Usage was 53.1%.
Claims (11)
(1)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、AgまたはAuから選ばれる金属含有コロイド粒子、
(2)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Tc、Ru、
Rh、Pd、Ag、AuまたはPtから選ばれる2種以上からなる複合金属含有コロイド粒子。 The metal-containing colloidal particle-supporting carrier according to claim 1, wherein the metal-containing colloidal particle is selected from the following (1) or (2).
(1) Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru,
Metal-containing colloidal particles selected from Rh, Pd, Ag or Au,
(2) Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru,
A composite metal-containing colloidal particle comprising two or more selected from Rh, Pd, Ag, Au, or Pt.
よび酢酸パラジウムからなる群から選ばれる1種または2種以上のパラジウム化合物から得られるものであることを特徴とする請求項8に記載の金属含有コロイド粒子担持担体の製造方法。 The Pt ion, Au ion, Sn ion, and Pd ion are chloroplatinic acid, potassium platinum (IV) chloride, sodium chloroplatinate (IV), potassium tetranitroplatinum (II), sodium hexahydroxoplatinum (IV). One or more platinum compounds selected from the group consisting of Japanese, dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia and tetraamminedichloroplatinum hydrate, chloroauric acid, sodium gold sulfite, potassium gold cyanide and cyanide One or more gold compounds selected from the group consisting of gold sodium, one or more tin compounds selected from the group consisting of stannous sulfate, stannous oxide and stannous chloride, palladium chloride , Palladium nitrate, palladium sulfate, palladium citrate and palladium acetate One or manufacturing method of a metal-containing colloidal particles supporting carrier according to claim 8, characterized in that is obtained from two or more palladium compounds barrel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007242162A JP2008161857A (en) | 2006-12-08 | 2007-09-19 | Metal-containing colloidal grain-carrier, and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006332021 | 2006-12-08 | ||
JP2007242162A JP2008161857A (en) | 2006-12-08 | 2007-09-19 | Metal-containing colloidal grain-carrier, and method for producing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012023288A Division JP5628225B2 (en) | 2006-12-08 | 2012-02-06 | Metal-containing colloidal particle-supported carrier and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008161857A true JP2008161857A (en) | 2008-07-17 |
Family
ID=39692027
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007242162A Pending JP2008161857A (en) | 2006-12-08 | 2007-09-19 | Metal-containing colloidal grain-carrier, and method for producing the same |
JP2012023288A Active JP5628225B2 (en) | 2006-12-08 | 2012-02-06 | Metal-containing colloidal particle-supported carrier and method for producing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012023288A Active JP5628225B2 (en) | 2006-12-08 | 2012-02-06 | Metal-containing colloidal particle-supported carrier and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP2008161857A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010531226A (en) * | 2007-06-26 | 2010-09-24 | コミサリア ア レネルジー アトミック | Dispersion of composite materials, especially fuel cell composite materials |
JP2012030149A (en) * | 2010-07-28 | 2012-02-16 | Jgc Catalysts & Chemicals Ltd | Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method |
JP2012030178A (en) * | 2010-07-30 | 2012-02-16 | Jgc Catalysts & Chemicals Ltd | Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method |
JP2012236117A (en) * | 2011-05-10 | 2012-12-06 | Suzuki Motor Corp | Method for stabilizing size of platinum hydroxide polymer |
CN102921432A (en) * | 2012-10-09 | 2013-02-13 | 常州大学 | Method for preparing catalyst used in promotion of conversion of ammonia nitrogen in oil refining waste water |
JP2013123696A (en) * | 2011-12-16 | 2013-06-24 | Jgc Catalysts & Chemicals Ltd | Porous oxide coated particle, supported catalyst, and method for producing the same |
KR20190053496A (en) * | 2017-11-10 | 2019-05-20 | 주식회사 씨비비 | Platinum colloid-based platinum/vanadium/titania catalyst for removal of gaseous ammonia and method for manufacturing the same |
JP2021159865A (en) * | 2020-03-31 | 2021-10-11 | 日揮触媒化成株式会社 | Nitrate nitrogen decomposition catalyst |
CN113956494A (en) * | 2020-09-07 | 2022-01-21 | 清华大学 | Metal-polyphenol colloid and preparation method and application thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5255388B2 (en) * | 2007-12-25 | 2013-08-07 | 日揮触媒化成株式会社 | Metal particle-supported catalyst and method for producing the same |
JP6304099B2 (en) | 2015-03-27 | 2018-04-04 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and method for producing the same |
CN104785285A (en) * | 2015-05-07 | 2015-07-22 | 温县三陵化工厂 | Low-mercury catalyst for synthesizing vinyl chloride and preparation method of low-mercury catalyst |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001168317A (en) * | 1999-12-13 | 2001-06-22 | Nec Corp | Method of forming metal fine particle ordered-structure |
JP2001224969A (en) * | 2000-02-17 | 2001-08-21 | Mitsubishi Heavy Ind Ltd | Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery |
JP2002305001A (en) * | 2001-04-06 | 2002-10-18 | Matsushita Electric Ind Co Ltd | Electrode catalyst for fuel cell and its manufacturing method |
JP2003320249A (en) * | 2002-05-01 | 2003-11-11 | Mitsubishi Heavy Ind Ltd | Metal-carrying catalyst and production of the same and solid polymer electrolyte type fuel cell using the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006272250A (en) * | 2005-03-30 | 2006-10-12 | Nissan Motor Co Ltd | Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material |
-
2007
- 2007-09-19 JP JP2007242162A patent/JP2008161857A/en active Pending
-
2012
- 2012-02-06 JP JP2012023288A patent/JP5628225B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001168317A (en) * | 1999-12-13 | 2001-06-22 | Nec Corp | Method of forming metal fine particle ordered-structure |
JP2001224969A (en) * | 2000-02-17 | 2001-08-21 | Mitsubishi Heavy Ind Ltd | Method for preparing alloy catalyst and method for manufacturing solid high-polymer type fuel battery |
JP2002305001A (en) * | 2001-04-06 | 2002-10-18 | Matsushita Electric Ind Co Ltd | Electrode catalyst for fuel cell and its manufacturing method |
JP2003320249A (en) * | 2002-05-01 | 2003-11-11 | Mitsubishi Heavy Ind Ltd | Metal-carrying catalyst and production of the same and solid polymer electrolyte type fuel cell using the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010531226A (en) * | 2007-06-26 | 2010-09-24 | コミサリア ア レネルジー アトミック | Dispersion of composite materials, especially fuel cell composite materials |
JP2012030149A (en) * | 2010-07-28 | 2012-02-16 | Jgc Catalysts & Chemicals Ltd | Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method |
JP2012030178A (en) * | 2010-07-30 | 2012-02-16 | Jgc Catalysts & Chemicals Ltd | Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method |
JP2012236117A (en) * | 2011-05-10 | 2012-12-06 | Suzuki Motor Corp | Method for stabilizing size of platinum hydroxide polymer |
JP2013123696A (en) * | 2011-12-16 | 2013-06-24 | Jgc Catalysts & Chemicals Ltd | Porous oxide coated particle, supported catalyst, and method for producing the same |
CN102921432B (en) * | 2012-10-09 | 2014-07-30 | 常州大学 | Method for preparing catalyst used in promotion of conversion of ammonia nitrogen in oil refining waste water |
CN102921432A (en) * | 2012-10-09 | 2013-02-13 | 常州大学 | Method for preparing catalyst used in promotion of conversion of ammonia nitrogen in oil refining waste water |
KR20190053496A (en) * | 2017-11-10 | 2019-05-20 | 주식회사 씨비비 | Platinum colloid-based platinum/vanadium/titania catalyst for removal of gaseous ammonia and method for manufacturing the same |
KR102224326B1 (en) | 2017-11-10 | 2021-03-08 | 주식회사 씨비비 | Platinum colloid-based platinum/vanadium/titania catalyst for removal of gaseous ammonia and method for manufacturing the same |
JP2021159865A (en) * | 2020-03-31 | 2021-10-11 | 日揮触媒化成株式会社 | Nitrate nitrogen decomposition catalyst |
JP7430561B2 (en) | 2020-03-31 | 2024-02-13 | 日揮触媒化成株式会社 | Nitric acid nitrogen decomposition catalyst |
CN113956494A (en) * | 2020-09-07 | 2022-01-21 | 清华大学 | Metal-polyphenol colloid and preparation method and application thereof |
CN113956494B (en) * | 2020-09-07 | 2022-09-16 | 清华大学 | Metal-polyphenol colloid and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5628225B2 (en) | 2014-11-19 |
JP2012096234A (en) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5628225B2 (en) | Metal-containing colloidal particle-supported carrier and method for producing the same | |
CN107405612B (en) | Cluster-supported catalyst and method for producing same | |
JP5612050B2 (en) | Method for producing metal particle supported catalyst | |
JP5794294B2 (en) | Metal particles, exhaust gas purifying catalyst containing the same, and method for producing them | |
CN110494216B (en) | Cluster-supported porous carrier and method for producing same | |
JP5539091B2 (en) | Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. | |
JP6737435B2 (en) | Method for producing fine particles carrying a noble metal solid solution | |
JP2010089031A (en) | Metal-particle supporting catalyst, and method of producing the same | |
JP4257684B2 (en) | Cerium oxide washcoat | |
JP5840475B2 (en) | Porous oxide-coated particles, supported catalyst, and production method thereof | |
KR102407233B1 (en) | Composite Body in which Nanoparticles are uniformly dispersed in nanosized Pores of a Support and Method of manufacturing the same | |
CN109395774B (en) | Cluster-supported catalyst and method for producing same | |
KR20170125511A (en) | The catalyst for decomposing ozone and air pollutants and preparation therof | |
JP5655723B2 (en) | Method for producing metal cluster supported catalyst | |
JP5548548B2 (en) | Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. | |
CN113976115B (en) | Layered core-shell structured catalyst, preparation method and application of catalyst in low-temperature catalytic oxidation of toluene | |
JP2010089032A (en) | Metal-particle supporting catalyst, and method of producing the same | |
JP2007098197A (en) | Manufacturing method of photocatalyst material | |
JP4714873B2 (en) | Cocatalyst for photocatalyst and photocatalyst material | |
WO2006095392A1 (en) | Process for producing catalyst for discharge gas treatment | |
JP2005319451A (en) | Photocatalyst and method for manufacturing the same | |
CN108236950A (en) | A kind of preparation method of the Pd-B/C powder as formaldehyde remover | |
JP5806100B2 (en) | Porous silazane-coated particles, supported catalyst, and production method thereof | |
JP7430561B2 (en) | Nitric acid nitrogen decomposition catalyst | |
JP6489892B2 (en) | Method for producing metal catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100609 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120327 |