JP5539091B2 - Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. - Google Patents

Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. Download PDF

Info

Publication number
JP5539091B2
JP5539091B2 JP2010169616A JP2010169616A JP5539091B2 JP 5539091 B2 JP5539091 B2 JP 5539091B2 JP 2010169616 A JP2010169616 A JP 2010169616A JP 2010169616 A JP2010169616 A JP 2010169616A JP 5539091 B2 JP5539091 B2 JP 5539091B2
Authority
JP
Japan
Prior art keywords
metal
particle
particles
supported catalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010169616A
Other languages
Japanese (ja)
Other versions
JP2012030149A (en
Inventor
光章 熊澤
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2010169616A priority Critical patent/JP5539091B2/en
Publication of JP2012030149A publication Critical patent/JP2012030149A/en
Application granted granted Critical
Publication of JP5539091B2 publication Critical patent/JP5539091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、担体物質に金属を担持した金属粒子担持触媒、及びこの金属粒子担持触媒を製造する技術、並びに当該金属粒子担持触媒を用いて反応を進行させる技術に関する。   The present invention relates to a metal particle-supported catalyst in which a metal is supported on a support material, a technique for producing the metal particle-supported catalyst, and a technique for advancing a reaction using the metal particle-supported catalyst.

触媒は、燃料電池における反応促進の他、有機物質合成、自動車排ガスの浄化等、各種の分野で使用されている。この様な触媒としては、アルミナ、シリカ等の酸化物やカーボンなどの多孔質体を担体物質とし、これに活性金属である白金、ロジウム等が担持された触媒や、複数の金属が担持された多元系触媒が知られている。また、担体物質については、上述したもののほか、ゼオライト、シリカ-アルミナ複合体、セリア、酸化錫、ATO、ITO、五酸化アンチモンなど種々の物質が用いられている。   Catalysts are used in various fields such as organic substance synthesis and purification of automobile exhaust gas, in addition to promoting reaction in fuel cells. As such a catalyst, a porous material such as alumina or silica or a porous material such as carbon is used as a carrier material, and a catalyst in which platinum, rhodium, or the like, which is an active metal, is supported, or a plurality of metals are supported. Multi-component catalysts are known. As the support material, various materials such as zeolite, silica-alumina composite, ceria, tin oxide, ATO, ITO, and antimony pentoxide are used in addition to those described above.

担体物質に担持される活性金属は、単位重量あたりの表面積を大きくし、活性金属としての性質や担体物質との相互作用を発揮させるため、コロイド粒子などのように粒径の小さな状態で担持されることが多い。従来の、担体物質に金属を含むコロイド粒子が担持されてなる金属粒子担持触媒の代表的な製造方法のひとつとして、多孔質の金属酸化物からなる担体にジニトロジアンミン白金や塩化白金酸、硝酸ロジウムといった金属塩溶液を含浸させ、還元雰囲気中で焼成する方法が知られている。また、前記多元系触媒についても、担持する複数の金属塩の溶液を調製し、これに担体を混合して複数の金属イオンを担体上に吸着させ、ついで乾燥、焼成する製造方法が知られている。   The active metal supported on the support material is supported in a small particle size, such as colloidal particles, in order to increase the surface area per unit weight and to exhibit the properties as an active metal and interaction with the support material. Often. As one of the typical methods for producing a conventional metal particle-supported catalyst in which colloidal particles containing metal are supported on a support material, dinitrodiammine platinum, chloroplatinic acid, rhodium nitrate is applied to a support made of a porous metal oxide. A method of impregnating such a metal salt solution and firing in a reducing atmosphere is known. Also for the multi-component catalyst, a production method is known in which a solution of a plurality of metal salts to be supported is prepared, a carrier is mixed with the solution, a plurality of metal ions are adsorbed on the carrier, and then dried and calcined. Yes.

担体物質も比表面積を大きくするためにミクロンオーダーでなくナノオーダーの担体に金属粒子を担持させる触媒開発も行われている。このような触媒は担体表面に金属イオンを還元し金属を析出させコーティングする方法が主に知られているが、金属粒子を析出させる際に構造制御剤として使用する高分子や界面活性剤などが粒子表面に多く存在し、触媒活性が低い問題や金属が粒子表面にコーティングされずに単独のコロイドとして存在する問題があった。   In order to increase the specific surface area of the support material, catalysts have been developed in which metal particles are supported on a nano-order support instead of a micron order. For such a catalyst, a method in which metal ions are reduced on the support surface to deposit and coat the metal is known, but there are polymers and surfactants used as a structure control agent when depositing metal particles. There are many problems that exist on the particle surface and the catalytic activity is low, and that the metal is not coated on the particle surface and exists as a single colloid.

上述の製造方法の例に加え、担体物質上に金属を含むコロイド粒子が担持されてなる金属粒子担持触媒の製造方法の先行技術例をいくつか挙げておく。特許文献1には、金属酸化物などからなる微小な担体粒子の表面に、触媒活性をもつ微小な金属粒子を析出させる方法において、前記担体を合成する少なくとも一つの原料の吸収バンドに合致する波長を含む光を、前記原料に照射し前記担体粒子を析出させる工程と、析出した前記担体粒子と触媒活性をもつ前記金属粒子を析出するための前記原料とに、同時に、前記原料の吸収バンドに合致する波長を含む光を照射し、前記金属粒子を前記担体粒子の表面に析出させる工程と、析出した前記金属粒子を選別補収する工程とからなることを特徴とする触媒の製造方法が開示されている。   In addition to the examples of the production method described above, some prior art examples of a method for producing a metal particle-supported catalyst in which colloidal particles containing a metal are supported on a support material will be given. Patent Document 1 discloses a wavelength that matches the absorption band of at least one raw material for synthesizing the carrier in the method of depositing the fine metal particles having catalytic activity on the surface of the fine carrier particles made of a metal oxide or the like. The step of irradiating the raw material with light containing the material and precipitating the carrier particles, and the raw material for precipitating the deposited carrier particles and the metal particles having catalytic activity, simultaneously in the absorption band of the raw material Disclosed is a method for producing a catalyst, characterized by comprising a step of irradiating light containing a matching wavelength and depositing the metal particles on the surface of the carrier particles, and a step of selectively collecting the deposited metal particles. Has been.

特許文献2には、金属粒子及び/または金属化合物粒子が、該粒子を実質的に個々に且つ別々に保護する数平均分子量が3,000〜300,000の有機高分子化合物と共に固体担体に吸着担持されてなり、該高分子化合物及び該固体担体の少なくとも一方が、共有結合を形成して両者間に化学結合を作るべく作用し得る官能基を有さないことを特徴とする金属粒子及び/または金属化合物粒子担持複合体が記載されている。その製造方法としては、分散媒、金属粒子及び/または金属化合物粒子及び保護コロイド粒子作用を持つ数平均分子量が3,000〜300,000の有機高分子化合物を含み、該粒子が該分散媒中に分散してコロイド粒子を形成し、且つ該高分子が該粒子に吸着して保護コロイド粒子として該粒子を実質的に個々に且つ別々に保護してなるコロイド粒子分散液を提供し、該コロイド粒子分散液と固体担体とを接触させ、該高分子化合物および該固体担体の少なくとも一方が、共有結合を形成して両者間に化学結合を作るべく作用し得る官能基を有さず、かくして、該高分子化合物で保護された該粒子が該固体担体に吸着されてなる粒子担持複合体を形成し、そして得られた複合体を該分散媒から単離することを特徴とする。   In Patent Document 2, metal particles and / or metal compound particles are adsorbed on a solid support together with an organic polymer compound having a number average molecular weight of 3,000 to 300,000 that protects the particles substantially individually and separately. And / or metal particles characterized in that at least one of the polymer compound and the solid support does not have a functional group capable of forming a covalent bond and forming a chemical bond therebetween. Alternatively, a metal compound particle-supported composite is described. The production method includes a dispersion medium, metal particles and / or metal compound particles, and an organic polymer compound having a number average molecular weight of 3,000 to 300,000 having a protective colloid particle action, and the particles are contained in the dispersion medium. A colloidal particle dispersion comprising: a colloidal particle dispersed to form a colloidal particle; and the polymer adsorbed on the particle to protect the particle substantially individually and separately as a protective colloidal particle. Contacting the particle dispersion with a solid support, wherein at least one of the polymer compound and the solid support does not have a functional group capable of forming a covalent bond and creating a chemical bond therebetween, thus The particles protected with the polymer compound are adsorbed on the solid support to form a particle-supported complex, and the resulting complex is isolated from the dispersion medium.

特許文献3には、金属含有イオン及び該金属含有イオンの還元により生成する金属粒子が担持される担体を含む溶液中にプロパルギルアルコールを加え、該金属含有イオンとプロパルギルアルコールとの反応物を該担体上に担持した後、該担体を水素ガスを含有する還元性ガス中で熱処理して、該担体上の金属含有イオンとプロパルギルアルコールとの反応物を金属含有コロイド粒子に還元することを特徴とする高分散金属含有コロイド粒子担持触媒の製造方法が開示されている。   In Patent Document 3, propargyl alcohol is added to a solution containing a carrier on which metal-containing ions and metal particles generated by reduction of the metal-containing ions are supported, and a reaction product of the metal-containing ions and propargyl alcohol is added to the carrier. After being supported on the substrate, the support is heat-treated in a reducing gas containing hydrogen gas to reduce a reaction product of metal-containing ions and propargyl alcohol on the support to metal-containing colloidal particles. A method for producing a highly dispersed metal-containing colloidal particle supported catalyst is disclosed.

特許文献4には、担体となる固体物質の存在下、金属の化合物またはイオンを含有した還元能を有する液体または還元物質を溶解した液体に、マイクロ波を照射させるか、或いは、金属の化合物またはイオンを含有した、還元能を有する液体または還元物質を溶解した液体に、マイクロ波を照射させた後に、担体となる固体物質を存在させることを特徴とする、金属含有コロイド粒子を表面に付着させた金属含有コロイド粒子付着担体の製造方法が開示されている。   In Patent Document 4, in the presence of a solid substance serving as a carrier, a liquid having a reducing ability containing a metal compound or ions or a liquid in which a reducing substance is dissolved is irradiated with microwaves, or a metal compound or A metal-containing colloidal particle is attached to the surface, characterized by having a solid substance serving as a carrier after a microwave is irradiated to a liquid containing a reducing ability or containing a reducing substance containing ions. In addition, a method for producing a metal-containing colloidal particle adhesion carrier is disclosed.

特許文献5には、周期表第4周期から第6周期の2B族、3B族、4B族、5B族、6B族及び第4周期8族の少なくとも1種の第二元素と金とを含有する金属粒子が担体上に担持された金属粒子担持体と、その製造方法として金及びその化合物の少なくとも1種ならびに第二元素及びその化合物の少なくとも1種を含む担体を熱処理することを特徴とする製造方法が開示されている。   Patent Document 5 contains at least one second element of Group 2B, Group 3B, Group 4B, Group 5B, Group 6B, and Group 8 of the Period 4 to Period 6 of the periodic table and gold. A metal particle carrier in which metal particles are supported on a carrier, and a production method comprising heat treating a carrier containing at least one of gold and its compound and at least one of a second element and its compound as a production method thereof A method is disclosed.

特許文献6には、アミノ基含有シラン化合物で表面処理された金属酸化物粒子(A−1)分散液と、カルボキシル基および/またはカルボキシレート基含有有機化合物で表面処理された金属コロイド粒子(M−1)分散液とを混合することを特徴とする導電性複合粒子の製造方法及び導電性複合粒子が開示されている。   Patent Document 6 discloses a dispersion of metal oxide particles (A-1) surface-treated with an amino group-containing silane compound, and metal colloid particles (M) surface-treated with a carboxyl group and / or carboxylate group-containing organic compound. -1) A method for producing conductive composite particles and conductive composite particles characterized by mixing with a dispersion liquid are disclosed.

特許文献7には、金属微粒子、金属酸化物微粒子、金属被覆金属酸化物微粒子から選ばれる少なくとも1種の微粒子と、有機系安定剤と、分散媒とを含む分散液に、水素ガスを供給して、該微粒子表面に、水素を吸着させたのち、該分散液に、金属塩を添加して、該微粒子表面に吸着した水素により、金属塩を還元して、該微粒子上に金属を析出させて表面層を形成することを特徴とする複合微粒子の製造方法及び導電性複合粒子が開示されている。   In Patent Document 7, hydrogen gas is supplied to a dispersion containing at least one kind of fine particles selected from metal fine particles, metal oxide fine particles, and metal-coated metal oxide fine particles, an organic stabilizer, and a dispersion medium. Then, after hydrogen is adsorbed on the surface of the fine particles, a metal salt is added to the dispersion, and the metal salt is reduced by hydrogen adsorbed on the surface of the fine particles to deposit metal on the fine particles. A method for producing composite fine particles and conductive composite particles characterized by forming a surface layer are disclosed.

このように、微小な金属粒子を担体物質に担持して金属粒子担持触媒を製造する手法は数多く開発されているが、例えば触媒の活性向上や寿命延長、電気的特性の向上といった観点における触媒性能については、更なる改善が要望されていた。   As described above, many methods for producing a metal particle-supported catalyst by supporting fine metal particles on a support material have been developed. For example, the catalyst performance in terms of improving the activity of the catalyst, extending its life, and improving the electrical characteristics. There was a need for further improvement.

特開昭61−268359号公報:請求項1Japanese Patent Laid-Open No. 61-268359: Claim 1 特開平5−293383号公報:請求項1、請求項4JP-A-5-293383: Claims 1 and 4 特開平6−31181号公報:請求項1JP-A-6-31181: Claim 1 特開2003−13105号公報:請求項1Japanese Patent Laying-Open No. 2003-13105: Claim 1 特開2003−053188号公報:請求項1、請求項2Japanese Patent Laid-Open No. 2003-053188: Claims 1 and 2 特開2008−311141号公報:請求項1、請求項2JP 2008-3111141 A: Claims 1 and 2 特開平11−12608号公報:請求項1、請求項2JP-A-11-12608: Claims 1 and 2

本発明は、従来の金属粒子担持触媒と比較して活性向上や寿命延長などの観点から触媒性能、電気的特性を改善したナノオーダーの担体に金属ナノ粒子を担持被覆させた金属粒子担持触媒の製造方法、金属粒子担持触媒及びこの触媒を利用した反応方法を提供することを目的とする。   The present invention relates to a metal particle-supported catalyst in which metal nanoparticles are supported and coated on a nano-order carrier that has improved catalyst performance and electrical characteristics in terms of activity improvement and life extension compared to conventional metal particle-supported catalysts. It is an object of the present invention to provide a production method, a metal particle-supported catalyst, and a reaction method using the catalyst.

第1の発明は、次の[1]〜[4]の工程を含むことを特徴とする金属粒子担持触媒の製造方法である。
[1] イオン交換体を含む担体物質(但し、一次粒子の平均粒子径が1〜500nm)を溶媒に分散させた第1の懸濁液に、次の(Ia)〜(Ic)から選ばれる1種以上の金属イオンを、担体物質100質量部に対して金属元素換算で0.1〜100質量部の割合で添加し、該金属イオンを担体物質に担持し、懸濁液Aを調製する工程。
(Ia)第4周期遷移金属元素から選ばれる金属イオン
(Ib)第5周期遷移金属元素から選ばれる金属イオン
(Ic)白金イオンまたは金イオン
[2]前記工程[1]に続いて、前記懸濁液Aを15〜40℃に温度調整しながら下記(IIa)〜(IId)から選ばれる平均粒子径1〜20nmの金属粒子を、前記担体物質100質量部に対して200〜100000質量部添加し、混合して、金属粒子担持触媒の前駆体分散液を調製する工程。
(IIa)第4周期遷移金属元素から選ばれる金属粒子
(IIb)第5周期遷移金属元素から選ばれる金属粒子
(IIc)白金粒子または金粒子
(IId)(IIa)〜(IIc)から選ばれる少なくとも2種以上の金属が複合してなる金属粒子
[3]前記工程[2]に続いて、前記担体物質に担持されなかった金属イオンを取り除くために、前記金属粒子担持触媒の前駆体分散液を脱塩して金属粒子担持触媒分散液を得る工程。
[4]前記工程[3]で得られた金属粒子担持触媒分散液を温度100〜200℃で乾燥処理し、厚さ1〜50nmの金属粒子の被覆層が形成された金属粒子担持触媒を得る工程。
この製造方法によれば、乾燥処理工程以外には100℃以上での高温処理工程を必要とせず、その操作も容易である。
1st invention is the manufacturing method of the metal particle supported catalyst characterized by including the process of following [1]-[4].
[1] The following (Ia) to (Ic) are selected from the following (Ia) to (Ic) for the first suspension in which the carrier material containing the ion exchanger (the average particle diameter of primary particles is 1 to 500 nm) is dispersed in a solvent. One or more kinds of metal ions are added at a ratio of 0.1 to 100 parts by mass in terms of metal elements with respect to 100 parts by mass of the carrier substance, and the metal ions are supported on the carrier substance to prepare a suspension A. Process.
(Ia) Metal ion selected from the fourth period transition metal element (Ib) Metal ion selected from the fifth period transition metal element (Ic) Platinum ion or gold ion [2] Following the step [1], the suspension While adjusting the temperature of the suspension A to 15 to 40 ° C., 200 to 100000 parts by mass of metal particles having an average particle diameter of 1 to 20 nm selected from the following (IIa) to (IId) are added to 100 parts by mass of the carrier substance. And mixing to prepare a precursor dispersion of the metal particle-supported catalyst.
(IIa) Metal particles selected from fourth period transition metal elements (IIb) Metal particles selected from fifth period transition metal elements (IIc) Platinum particles or gold particles (IId) At least selected from (IIa) to (IIc) Metal particles formed by combining two or more metals [3] Subsequent to the step [2], in order to remove metal ions not supported on the support material, a precursor dispersion of the metal particle-supported catalyst is used. A step of obtaining a metal particle-supported catalyst dispersion by desalting.
[4] The metal particle-supported catalyst dispersion obtained in the step [3] is dried at a temperature of 100 to 200 ° C. to obtain a metal particle-supported catalyst having a coating layer of metal particles having a thickness of 1 to 50 nm. Process.
According to this manufacturing method, a high temperature treatment step at 100 ° C. or higher is not required other than the drying treatment step, and the operation is easy.

第2の発明は、前記工程[3]にて脱塩処理を行った後の前記担体物質に対する金属イオンの担持量が、担体物質100質量部に対して0.001〜10質量部であることを特徴とする。前記固液分離処理により未吸着の金属イオンを分離することで触媒反応の低下や電気的特性の低下を抑制することができる。   In the second invention, the amount of metal ions supported on the carrier material after the desalting treatment in the step [3] is 0.001 to 10 parts by mass with respect to 100 parts by mass of the carrier material. It is characterized by. By separating unadsorbed metal ions by the solid-liquid separation treatment, it is possible to suppress a decrease in catalytic reaction and a decrease in electrical characteristics.

第3の発明は、前記工程[1]にて、前記担体物質に担持された金属イオンの質量と、前記工程[2]にて懸濁液Aに添加される金属粒子の質量との関係を、下記式(1)で表したときの式の値が0.0001〜0.005の範囲であることを特徴とする。
金属イオンの質量/(金属イオンの質量+金属コロイドの質量)…(1)
金属イオンの担持量及び金属粒子の添加量の好適な値を規定する。
The third invention relates the relationship between the mass of the metal ions supported on the carrier material in the step [1] and the mass of the metal particles added to the suspension A in the step [2]. The value of the formula expressed by the following formula (1) is in the range of 0.0001 to 0.005.
Mass of metal ion / (mass of metal ion + mass of metal colloid) (1)
The preferred values of the loading amount of metal ions and the addition amount of metal particles are defined.

第4の発明は、前記工程[4]の乾燥処理を不活性雰囲気下で行うことを特徴とする。乾燥処理を行う際の好適な雰囲気を規定したものである。   The fourth invention is characterized in that the drying process of the step [4] is performed in an inert atmosphere. It defines a suitable atmosphere when performing the drying process.

の発明は、前記第4周期遷移金属元素が、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群より選ばれる元素であり、前記第5周期遷移金属元素が、Zr、Nb、Mo、Tc、Ru、Rh、PdおよびAgからなる群より選ばれる元素であることを特徴とする。
具体的には、本発明により製造される金属粒子担持触媒の担持金属がこれらの金属から選ばれるものである場合、従来の金属粒子担持触媒の場合と同等の水準の担持量で、より優れた触媒性能を示すことが可能となる。
In a fifth aspect of the invention, the fourth periodic transition metal element is an element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, and the fifth periodic transition metal element is Zr. characterized Nb, Mo, Tc, Ru, Rh, that is an element selected from the group consisting of P d and Ag.
Specifically, if the supported metal of the metal particles supported catalyst is more produced in the present invention are those selected from these metals, in a loading amount of same level as in the conventional metal particles supported catalyst, more excellent It is possible to show the catalyst performance.

の発明は、前記金属粒子担持触媒に含まれる金属粒子の割合が40〜99.9質量%であることを特徴とする。本発明は、金属粒子担持触媒における担持金属の含有割合を特定したものであり、特に従来の金属粒子担持触媒に比べて、担持される金属が少量であっても、従来の金属粒子担持触媒と同等以上の触媒性能を示すことが可能となる。 6th invention is characterized by the ratio of the metal particle contained in the said metal particle carrying catalyst being 40-99.9 mass%. The present invention specifies the content of the supported metal in the metal particle-supported catalyst, and in particular, compared with the conventional metal particle-supported catalyst, even if the amount of supported metal is small, It is possible to show catalyst performance equal to or higher than that.

の発明は、前記担体物質が、無機系担体物質または有機系担体物質から選ばれるものであり、当該無機系担体物質または有機系担体物質は、Si、Al、C、Ti、ZrおよびCeからなる群より選ばれる少なくとも1種以上の元素を含有するものであることを特徴とする。本発明は、金属粒子担持触媒における担体物質の種類を規定したものであり、無機系担体物質または有機系担体物質のいずれにも適用可能であると共に、これらの担体物質に含有される元素として好適な元素を示している。 In a seventh invention, the carrier material is selected from an inorganic carrier material or an organic carrier material, and the inorganic carrier material or the organic carrier material includes Si, Al, C, Ti, Zr and Ce. It contains at least one element selected from the group consisting of: The present invention defines the type of carrier material in the metal particle-supported catalyst, and can be applied to both inorganic carrier materials and organic carrier materials, and is suitable as an element contained in these carrier materials. Shows the elements.

の発明は、前記担体物質が、酸化錫、アンチモンドープ酸化錫(ATO)、酸化錫ドープ酸化インジウム(ITO)、五酸化アンチモン、ケイタングステン酸、リンドープ酸化錫(PTO)、アルミドープ酸化亜鉛(AZO)、からなる1種以上の化合物を含有するものであることを特徴とする。本発明は、金属粒子担持触媒における担体物質の種類を規定したものであり、半導体や電子導電体、プロトン導電体のいずれにも適用可能であると共に、これらの担体物質に含有される化合物として好適な化合物を示している。
さらに第9の発明は、前記第1から第8のいずれか一つ発明に係る金属粒子担持触媒の製造方法で製造されてなり、前記金属粒子がRu、Rh、Pd、Ag、Pt及びAuからなる群より選ばれる元素を含み、不飽和炭化水素の水素化反応用、又は、硝酸類の水素化分解反応用に用いられることを特徴とする金属粒子担持触媒である。
In an eighth aspect of the present invention, the carrier material is tin oxide, antimony-doped tin oxide (ATO), tin oxide-doped indium oxide (ITO), antimony pentoxide, silicotungstic acid, phosphorus-doped tin oxide (PTO), or aluminum-doped zinc oxide. It contains one or more compounds consisting of (AZO). The present invention defines the type of carrier material in the metal particle-supported catalyst, and can be applied to any of semiconductors, electronic conductors, and proton conductors, and is suitable as a compound contained in these carrier materials. Compound.
Further, a ninth invention is produced by the method for producing a metal particle-supported catalyst according to any one of the first to eighth inventions, wherein the metal particles are made of Ru, Rh, Pd, Ag, Pt and Au. A metal particle-supported catalyst comprising an element selected from the group and used for hydrogenation of unsaturated hydrocarbons or for hydrogenolysis of nitric acids.

本発明に係る金属粒子担持触媒は、イオン交換サイトに担持した金属イオンと金属粒子とを共存させることにより、これら金属イオンと金属粒子との間で相乗効果が発揮されると考えられると共に、金属粒子が被覆層を形成して担持されているので、例えば活性向上や寿命延長、ガス吸着能の向上、電気的特性の向上といった観点で優れた触媒性能を示す。   The metal particle-supported catalyst according to the present invention is considered to exhibit a synergistic effect between the metal ions and the metal particles by allowing the metal ions and metal particles supported on the ion exchange site to coexist. Since the particles are supported by forming a coating layer, the catalyst exhibits excellent catalytic performance in terms of, for example, improved activity, extended life, improved gas adsorption ability, and improved electrical characteristics.

実施の形態に係る金属粒子担持触媒等の具体的な構成を説明する前に、当該触媒の開発に至る基本的な考え方について説明しておく。例えば、排ガス浄化用途などに適用される、従来の金属粒子担持触媒は、担体物質(例えば、アルミナまたはゼオライトなど)に、活性金属と呼ばれる各種金属粒子(例えば、Pt(白金)、Pd(パラジウム)、Cu(銅)など)が担持してなるものが多い。   Before describing the specific configuration of the metal particle-supported catalyst or the like according to the embodiment, the basic concept leading to the development of the catalyst will be described. For example, a conventional metal particle-supported catalyst applied to exhaust gas purification uses a support material (for example, alumina or zeolite) and various metal particles called active metals (for example, Pt (platinum), Pd (palladium)). , Cu (copper), etc.) are often carried.

このような金属粒子担持触媒では、触媒性能を向上させる目的で担持金属量を増やす場合があるが、一定の水準以上に担持金属を増やすと触媒性能が飽和することが知られている。このような現象は、担持金属どうしが凝集または近接することにより担持金属の触媒作用が充分に機能しないことに起因するものと考えられている。   In such a metal particle-supported catalyst, the amount of the supported metal may be increased for the purpose of improving the catalyst performance. However, it is known that the catalyst performance is saturated when the supported metal is increased beyond a certain level. Such a phenomenon is considered to be caused by the fact that the catalytic action of the supported metal does not sufficiently function due to the aggregation or proximity of the supported metals.

また特許文献6及び7に挙げられるような担体粒子径がナノオーダーのものは、金属ナノ粒子が担持されにくい、金属ナノ粒子が局所的に凝集し担持される、合成時に多量の表面処理材を使用し活性が低くなるなどの問題があった。   In addition, those having a carrier particle diameter of nano-order as described in Patent Documents 6 and 7 are difficult to support metal nanoparticles, and a large amount of surface treatment material is used during the synthesis in which metal nanoparticles are aggregated and supported locally. There were problems such as low activity when used.

担体粒子径がナノオーダーのものは、金属ナノ粒子が完全被覆すること自体が難しく、部分被覆されたものでは、完全被覆されたものに比べて、電気的特性の低下、ガス吸着能の低下などの問題があった。   When the carrier particle size is nano-order, it is difficult to completely coat the metal nanoparticles, and with the partially coated one, the electrical properties and gas adsorbing capacity are lowered compared to the completely coated one. There was a problem.

そこで本発明者らは、これらの課題を解決するべく鋭意検討を行ったところ、担体物質への担持金属の際に予め金属イオンを担持させておくことにより、金属粒子の担持状態・被覆状態を改善できることに加え、担持された金属イオンと金属粒子の相乗効果により、触媒性能の改善、電気的特性の改善、ガス吸着能向上を図ることが可能であることを見出した。   Therefore, the present inventors have conducted intensive studies to solve these problems, and by preliminarily supporting metal ions when the metal is supported on the support material, the loading state / coating state of the metal particles can be determined. In addition to the improvement, it has been found that the synergistic effect of the supported metal ions and metal particles can improve the catalyst performance, the electrical characteristics, and the gas adsorption capacity.

また、従来の金属粒子担持触媒の製造方法においては、例えば500℃以上での焼成工程や水素ガス雰囲気中での還元工程などが採用されることが多かった。これらの工程は製造コストの増大や工程制御の労力を増やすものであった。この点、本発明に係る金属粒子担持触媒の製造方法では、このような工程を経ることなく、優れた触媒性能を示す金属粒子担持触媒を調製することが可能となった。
以下、本発明に係る金属粒子担持触媒、金属粒子担持触媒の製造方法および反応方法について具体的に説明する。
In addition, in the conventional method for producing a metal particle-supported catalyst, for example, a firing step at 500 ° C. or higher, a reduction step in a hydrogen gas atmosphere, and the like are often employed. These processes increase manufacturing costs and increase process control efforts. In this regard, in the method for producing a metal particle-supported catalyst according to the present invention, it is possible to prepare a metal particle-supported catalyst exhibiting excellent catalyst performance without undergoing such steps.
Hereinafter, the metal particle-supported catalyst according to the present invention, the method for producing the metal particle-supported catalyst, and the reaction method will be specifically described.

〔金属粒子担持触媒〕
本発明に係る金属粒子担持触媒は、イオン交換体を含む一次粒子径が1〜500nmの担体物質に金属粒子を担持してなる金属粒子担持触媒であって、
(I)前記イオン交換体に下記(Ia)〜(Ic)から選ばれる1種以上の金属イオンを担持したことと、
(II)下記(IIa)〜(IId)から選ばれる平均粒子径1〜20nmの金属粒子を担体物質に担持したことと、
(III)前記金属粒子が厚さ1〜50nmの被覆層を形成していることを特徴とする金属粒子担持触媒である。
(I)(Ia)第4周期遷移金属元素から選ばれる金属イオン
(Ib)第5周期遷移金属元素から選ばれる金属イオン
(Ic)白金イオンまたは金イオン
(II)(IIa)第4周期遷移金属元素から選ばれる金属粒子
(IIb)第5周期遷移金属元素から選ばれる金属粒子
(IIc)白金粒子または金粒子
(IId)(IIa)〜(IIc)から選ばれる少なくとも2種以上の金属が複合してなる金属粒子
[Metal particle supported catalyst]
The metal particle-supported catalyst according to the present invention is a metal particle-supported catalyst obtained by supporting metal particles on a carrier material having an ion exchanger and a primary particle diameter of 1 to 500 nm,
(I) carrying one or more metal ions selected from the following (Ia) to (Ic) on the ion exchanger;
(II) carrying metal particles having an average particle diameter of 1 to 20 nm selected from the following (IIa) to (IId) on a carrier substance;
(III) A metal particle-supported catalyst, wherein the metal particles form a coating layer having a thickness of 1 to 50 nm.
(I) (Ia) Metal ion selected from the fourth period transition metal element (Ib) Metal ion selected from the fifth period transition metal element (Ic) Platinum ion or gold ion (II) (IIa) Fourth period transition metal Metal particles selected from elements (IIb) Metal particles selected from fifth period transition metal elements (IIc) Platinum particles or gold particles (IId) (IIa) to (IIc) are combined with at least two kinds of metals. Metal particles

従来、ゼオライトまたはアルミナなどの無機材料からなる担体物質に、白金などの金属粒子が担持されてなる金属粒子担持触媒は知られている。本発明に係る金属粒子担持触媒は、従来公知の金属粒子担持触媒の触媒性能を大幅に改善したものである。触媒性能の改善にかかわる特徴は、担体物質に所定の金属イオンが担持されていること及び担体物質に金属粒子が担持し、所定の被覆層を形成していることにある。   Conventionally, a metal particle-supported catalyst in which metal particles such as platinum are supported on a support material made of an inorganic material such as zeolite or alumina is known. The metal particle-supported catalyst according to the present invention is obtained by greatly improving the catalyst performance of a conventionally known metal particle-supported catalyst. The characteristics related to the improvement of the catalyst performance are that a predetermined metal ion is supported on the support material and that a metal particle is supported on the support material to form a predetermined coating layer.

(i)金属イオン
本発明に係る金属粒子担持触媒は、金属イオンを利用して金属粒子の担持が行われる必要がある。ここで、金属イオンを利用した金属粒子の担持とは、金属イオンが存在する条件下で金属粒子を担体物質に固定化させることを意味する。また、最終的に得られた触媒の状態においては、担体物質のイオン交換サイトに金属イオンと金属粒子とが固定化されていることを意味する。なお、この金属粒子担持触媒には、担持工程における金属イオンを由来とする水酸化物、酸化物、単体金属、金属錯体などが担持されていてもよい。
(I) Metal ion
The metal particle-supported catalyst according to the present invention needs to carry metal particles using metal ions. Here, the carrying | support of the metal particle using a metal ion means fixing a metal particle to a support | carrier substance on the conditions in which a metal ion exists. Moreover, in the state of the catalyst finally obtained, it means that metal ions and metal particles are immobilized at the ion exchange site of the support material. The metal particle-supported catalyst may support a hydroxide, an oxide, a single metal, a metal complex, or the like derived from a metal ion in the supporting step.

担持工程において金属イオンは、担体物質に担持して、次工程で担持する金属粒子との担持力向上の作用(金属粒子が摩擦や熱などで剥離しにくくなる)を示し、これは金属イオンと金属粒子の電気的な相互作用により寄与するものと考えられる。金属イオンの担持は、担体物質の懸濁液に金属イオンを含む、金属塩の溶液を混合することなどにより行われる。またこの担持工程において、担体物質に吸着していない金属イオンを除去する工程を設けることで、フリーな金属イオンの存在により触媒活性や電気的特性低下を防ぐ。後述する製造方法に関する項に記した。このように金属イオンを使用して金属粒子を担持させたものは、金属イオンと金属粒子の相乗効果が発揮されるものと推定され、活性向上や寿命延長などの観点で高い触媒性能や電気的特性やガス吸着能を示すことが後述の実験からも確認されている。   In the supporting process, the metal ions are supported on the carrier material and show an effect of improving the supporting force with the metal particles supported in the next process (the metal particles are difficult to peel off due to friction, heat, etc.). It is thought that it contributes by the electrical interaction of metal particles. Metal ions are supported by mixing a metal salt solution containing metal ions in a suspension of a carrier material. Further, in this supporting step, by providing a step of removing metal ions that are not adsorbed on the support material, catalyst activity and electrical property deterioration are prevented by the presence of free metal ions. It described in the item regarding the manufacturing method mentioned later. In this way, metal particles supported using metal ions are presumed to exhibit a synergistic effect between metal ions and metal particles, and have high catalytic performance and electrical performance in terms of activity improvement and life extension. It has also been confirmed from experiments described later that it exhibits characteristics and gas adsorption ability.

前記金属イオンの種類としては、次の(Ia)、(Ib)または(Ic)から選ばれる1種以上の金属イオンが使用される。
(Ia)第4周期遷移金属元素から選ばれる金属イオン。具体的には、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群より選ばれる金属イオンが好適である。
(Ib)第5周期遷移金属元素から選ばれる金属イオン。具体的には、Zr、Nb、Mo、Tc、Ru、Rh、PdおよびAgからなる群より選ばれる金属イオンが好適である。
(Ic)白金イオンまたは金イオン。
As the type of the metal ion, one or more metal ions selected from the following (Ia), (Ib) or (Ic) are used.
(Ia) A metal ion selected from the fourth period transition metal elements. Specifically, metal ions selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu are suitable.
(Ib) A metal ion selected from fifth transition metal elements. Specifically, a metal ion selected from the group consisting of Zr, Nb, Mo, Tc, Ru, Rh, Pd and Ag is preferable.
(Ic) Platinum ion or gold ion.

上述の金属イオンを使用して金属粒子を担持させた金属粒子担持触媒は、金属イオンと金属粒子の相乗効果で活性向上や寿命延長などの観点で高い触媒性能や電気的特性やガス吸着能を示すことができる。金属イオンと金属粒子の組み合わせ例としては、担持金属粒子と同周期、同属、隣接する族の金属イオン等が好適である。   A metal particle-supported catalyst that supports metal particles using the metal ions described above has high catalytic performance, electrical characteristics, and gas adsorption capacity in terms of improving activity and extending life due to the synergistic effect of metal ions and metal particles. Can show. As a combination example of metal ions and metal particles, metal ions of the same period, the same genera, and adjacent groups as the supported metal particles are suitable.

担体物質に対する前記金属イオンの担持量は、担体物質100質量部に対して、0.1〜100質量部の範囲が好ましい。担持量がこの範囲にある場合、次工程で金属粒子を担持させやすくなる等の効果が発揮されやすい。担持量が0.1質量部未満では、次工程で金属粒子を担持させやすくなる効果が発揮されにくくなり、好ましくない。また、100質量部を超える場合は、次工程以降に金属イオンの原料となる金属塩が多く持ち込まれ、金属粒子が凝集を引き起こしやすいなどの理由で好ましくない。担体物質に対する前記金属イオンの担持量は、より好適には0.15〜90質量部の範囲が推奨される。   The amount of the metal ions supported on the carrier material is preferably in the range of 0.1 to 100 parts by mass with respect to 100 parts by mass of the carrier material. When the loading amount is within this range, effects such as easy loading of metal particles in the next step are easily exhibited. When the loading amount is less than 0.1 parts by mass, the effect of easily supporting the metal particles in the next step is hardly exhibited, which is not preferable. Moreover, when it exceeds 100 mass parts, many metal salts used as the raw material of a metal ion are carried in after the following process, and it is unpreferable because a metal particle tends to cause aggregation. The amount of the metal ions supported on the support material is more preferably in the range of 0.15 to 90 parts by mass.

(ii)金属粒子
本発明に係る金属粒子担持触媒は、担体物質の表面に金属粒子が担持し、被覆層を形成したものである。ここで、金属粒子が担体物質に担持するとは、金属粒子が担体物質の表面に固定化していることを意味する。また、前記被覆層は、金属粒子が担体物質表面に稠密に固定化されることにより形成されたものである。
(Ii) Metal particles
The metal particle-supported catalyst according to the present invention is one in which metal particles are supported on the surface of a carrier material to form a coating layer. Here, the fact that the metal particles are supported on the carrier material means that the metal particles are immobilized on the surface of the carrier material. The coating layer is formed by densely immobilizing metal particles on the surface of a carrier material.

前記金属粒子は、金属単体のほか、複合金属、単体金属と金属酸化物の混合物からなる部分酸化物であっても構わない。   The metal particles may be a single metal, a composite metal, or a partial oxide made of a mixture of a single metal and a metal oxide.

前記金属粒子の種類としては、次の(IIa)(IIb)または(IIc)から選ばれる1種以上の金属粒子が使用される。
(IIa)第4周期遷移金属元素から選ばれる金属粒子。具体的には、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群より選ばれる金属粒子が好適である。
(IIb)第5周期遷移金属元素から選ばれる金属粒子。具体的には、Zr、Nb、Mo、Tc、Ru、Rh、PdおよびAgからなる群より選ばれる金属粒子が好適である。
(IIc)白金粒子または金粒子
As the kind of the metal particles, one or more metal particles selected from the following (IIa), (IIb), and (IIc) are used.
(IIa) Metal particles selected from fourth period transition metal elements. Specifically, metal particles selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni and Cu are suitable.
(IIb) Metal particles selected from fifth period transition metal elements. Specifically, metal particles selected from the group consisting of Zr, Nb, Mo, Tc, Ru, Rh, Pd and Ag are suitable.
(IIc) Platinum particles or gold particles

このような金属粒子は担体物質に担持して水素化反応、水素化分解反応、酸化反応又は脱水素反応などの触媒作用を示す。水素化反応又は水素化分解反応の作用を示す金属粒子として特にFe、Co、Ni、Nb、Mo、Ru、Rh、Pd、Pt、Au、Cu又はこれらの複合金属等がこのましい。また、酸化反応又は脱水素反応の作用を示す金属粒子としては、Ag、Cu、Pt、Pd、Au又はこれらの複合金属等が好ましい。
電気的特性に有効な金属としては、Ag、Pd、Au、Pt、Cu,Ru、Rh及びこれらの複合金属等がこのましい。ガス吸着能に有効な金属としては、Ag、Pd、Au、Pt及びこれらの複合金属等が好ましい。
Such metal particles are supported on a support material and exhibit catalytic action such as hydrogenation reaction, hydrocracking reaction, oxidation reaction or dehydrogenation reaction. As the metal particles exhibiting the action of hydrogenation reaction or hydrogenolysis reaction, Fe, Co, Ni, Nb, Mo, Ru, Rh, Pd, Pt, Au, Cu, or a composite metal thereof is particularly preferable. In addition, as the metal particles exhibiting the action of oxidation reaction or dehydrogenation reaction, Ag, Cu, Pt, Pd, Au, or a composite metal thereof is preferable.
Preferred metals that are effective for electrical characteristics include Ag, Pd, Au, Pt, Cu, Ru, Rh, and composite metals thereof. As the metal effective for the gas adsorption capacity, Ag, Pd, Au, Pt, and a composite metal thereof are preferable.

担体物質に対する金属粒子の担持量は、担体物質の質量を基準として、金属の比重・粒子径、担体の比重と粒子径の兼ね合いもあるが、40〜99.9質量%の範囲が好ましい。この範囲であれば、金属粒子が1〜50nmの厚みで担体を被覆可能で担持分散性に優れる点で活性向上や寿命延長などの観点で高い触媒性能や電気的特性やガス吸着能に優れた触媒性能を示すことができる。金属粒子の担持量が40質量%未満の場合は担体粒子に金属粒子が完全に被覆されない場合がある。また、金属粒子の担持量が99.9質量%を超える場合は、担持分散性が悪い、寿命が短くなり場合がある点で好ましくない。担体物質における金属粒子のより好適な担持量としては45〜99.8質量%の範囲が推奨される。   The amount of the metal particles supported on the carrier material is preferably in the range of 40 to 99.9% by mass, although the specific gravity / particle diameter of the metal and the specific gravity of the carrier and the particle diameter are in balance based on the mass of the carrier material. Within this range, the metal particles can be coated with a carrier having a thickness of 1 to 50 nm and have excellent catalytic performance, electrical characteristics, and gas adsorbing ability in terms of activity improvement and life extension in terms of excellent support dispersibility. The catalyst performance can be shown. When the loading amount of the metal particles is less than 40% by mass, the carrier particles may not be completely covered with the metal particles. On the other hand, when the loading amount of the metal particles exceeds 99.9% by mass, the carrying dispersibility is poor and the life may be shortened. As a more preferable loading amount of the metal particles in the support material, a range of 45 to 99.8% by mass is recommended.

前記金属粒子が担体物質に担持した時の平均粒子径は、充分な活性発現を得る観点から平均粒子径1〜20nmの範囲が好ましい。平均粒子径1nm以下の金属粒子は得ることが困難である。また、平均粒子径20nmを超える金属粒子を使用した場合は、粒子の表面積が小さくなり、触媒作用を低下させる傾向がある。前記平均粒子径のより好適な範囲としては、1〜15nmの範囲が推奨される。また金属粒子の形状も特に限定されるものでなく、球状・鎖状・数珠状・異形・角状などが推奨される。   The average particle size when the metal particles are supported on a carrier substance is preferably in the range of an average particle size of 1 to 20 nm from the viewpoint of obtaining sufficient activity. It is difficult to obtain metal particles having an average particle diameter of 1 nm or less. Further, when metal particles having an average particle diameter of more than 20 nm are used, the surface area of the particles becomes small, and the catalytic action tends to be reduced. As a more preferable range of the average particle diameter, a range of 1 to 15 nm is recommended. The shape of the metal particles is not particularly limited, and a spherical shape, a chain shape, a bead shape, an irregular shape, an angular shape, or the like is recommended.

(iii)金属粒子の担持状態
本発明に係る金属粒子担持触媒において、前記金属粒子は担体表面に担持し被覆層(シェル層)を形成するものである。金属粒子が被覆層を形成せずに単独で存在したり、部分的に被覆層を形成しているだけの場合は、触媒活性の低下や、電気的特性の低下を引き起こす場合がある。
(Iii) Metal particle loading state
In the metal particle-supported catalyst according to the present invention, the metal particles are supported on the support surface to form a coating layer (shell layer). When the metal particles are present alone without forming a coating layer or only partially formed with a coating layer, the catalytic activity may be lowered or the electrical characteristics may be lowered.

なお、本出願において、全ての担持金属粒子のうち、担持状態は、走査型電子顕微鏡(例えば後述の実施例、比較例では株式会社日立製作所製、S−5500を用いた)で担持前後の一次粒子径を測定することで被覆層の厚みを算出できる。また部分的な被覆や、担持されていないフリーな金属粒子の存在も確認できる。   In the present application, among all the supported metal particles, the supported state is the primary before and after the support with a scanning electron microscope (for example, S-5500 manufactured by Hitachi, Ltd. in the examples and comparative examples described later). The thickness of the coating layer can be calculated by measuring the particle diameter. It is also possible to confirm the presence of partial coating and free metal particles that are not supported.

本出願において、全ての担持金属粒子は、単体金属若しくは複合金属が好ましいが、部分的に酸化されていてもよい。酸化の有無は、X線回折法により確認できる。単体金属や複合金属の粒子が全く存在しない場合、著しい活性低下や寿命が短いなどを引き起こすことがある。   In the present application, all the supported metal particles are preferably a single metal or a composite metal, but may be partially oxidized. The presence or absence of oxidation can be confirmed by an X-ray diffraction method. If no single metal or composite metal particles are present at all, it may cause a significant decrease in activity or a short life.

(iv)担体物質
本発明に係る金属粒子担持触媒の担体物質としては、公知の担体物質を使用することが可能である。具体的には、無機系担体物質または有機系担体物質から選ばれるものが使用できる。このような担体物質については、更にSi、Al、C、Ti、ZrおよびCeからなる群より選ばれる少なくとも1種以上を含有するものが好適に使用される。このような担体物質の例としては、シリカ、ゼオライト、アルミナ、カーボンブラック、活性炭、チタニア、ジルコニアまたはセリアを挙げることができる。なお、本出願においては、これらの担体物質は、次のa)〜e)に該当する担体物質も含まれる。これらの担体物質の例のうちカーボンブラック、活性炭は有機系担体物質に相当し、残る担体物質は無機系担体物質に相当する。
(Iv) Carrier material
As the carrier material of the metal particle-supported catalyst according to the present invention, a known carrier material can be used. Specifically, a material selected from an inorganic carrier material or an organic carrier material can be used. As such a carrier material, those containing at least one selected from the group consisting of Si, Al, C, Ti, Zr and Ce are preferably used. Examples of such carrier materials include silica, zeolite, alumina, carbon black, activated carbon, titania, zirconia or ceria. In the present application, these carrier materials include carrier materials corresponding to the following a) to e). Of these carrier materials, carbon black and activated carbon correspond to organic carrier materials, and the remaining carrier materials correspond to inorganic carrier materials.

a)これらの担体物質の構成元素の一部を他の元素で置換してなる担体物質。
b)これらの担体物質に通常含有される元素または化合物を他の元素または化合物で置換してなる担体物質。
c)これらの担体物質内に、他の元素または化合物を挿入してなる担体物質。
d)これらの担体物質に化学的な処理を加え、変性してなる担体物質。
e)これらの担体物質に水熱処理を加えてなる担体物質。
前記担体物質の比表面積、細孔容積または細孔分布は、格別に制限されるものではなく、金属粒子担持触媒の用途に応じて適宜選択して構わない。また、以上に列挙した各物質はイオン交換サイト持つイオン交換体としても作用する。
a) Support materials obtained by substituting some of the constituent elements of these support materials with other elements.
b) Carrier materials obtained by substituting elements or compounds usually contained in these carrier materials with other elements or compounds.
c) Carrier materials obtained by inserting other elements or compounds into these carrier materials.
d) Carrier materials obtained by subjecting these carrier materials to chemical treatment and modification.
e) Carrier materials obtained by subjecting these carrier materials to hydrothermal treatment.
The specific surface area, pore volume or pore distribution of the support material is not particularly limited and may be appropriately selected according to the use of the metal particle-supported catalyst. Each of the substances listed above also functions as an ion exchanger having an ion exchange site.

さらに本発明に係る金属粒子担持触媒の担体物質としては、半導体・電子導電体・プロトン導電体などの担体物質を使用することが可能である。具体的には、酸化錫、アンチモンドープ酸化錫(ATO)、酸化錫ドープ酸化インジウム(ITO)、五酸化アンチモン、ケイタングステン酸、リンドープ酸化錫(PTO)、アルミドープ酸化亜鉛(AZO)などの担体物質または有機系担体物質から選ばれるものが使用できる。このような担体物質については、に電気的な機能が必要な、燃料電池電極用触媒、水素、酸素、CO、COなどのガスセンサー用触媒などとしても使用可能である。 Further, as the carrier material of the metal particle-supported catalyst according to the present invention, a carrier material such as a semiconductor, an electronic conductor, or a proton conductor can be used. Specifically, carriers such as tin oxide, antimony-doped tin oxide (ATO), tin oxide-doped indium oxide (ITO), antimony pentoxide, silicotungstic acid, phosphorus-doped tin oxide (PTO), aluminum-doped zinc oxide (AZO), etc. Those selected from substances or organic carrier substances can be used. Such a carrier material can be used as a catalyst for a fuel cell electrode, a catalyst for a gas sensor such as hydrogen, oxygen, CO, and CO 2 that requires an electrical function.

〔金属粒子担持触媒を用いた反応システム〕
本発明に係る金属粒子担持触媒は、各種反応における触媒として使用できる。特に下記1)〜4)の反応に好適に使用できる。
1)不飽和炭化水素、芳香族、エステル、アルデヒド、ケトン類などの水素化反応、
2)アルコール類、メチレン、ディーゼル自動車排ガス、ガソリン自動車排ガスの酸化反応、
3)ガソリン、飽和炭化水素、不飽和炭化水素、芳香族などの脱水素反応、
4)ガソリン、ベンゾイル基誘導体、エポキシ誘導体など、硝酸類、硫酸類の水素化分解反応、
5)水素ガス、酸素ガス、CO、COガスの吸着による電気的変化から算出するガスセンサー
6)燃料電池の燃料極や空気極に用いることによるDMFC(Direct-Methanol Fuel Cell)、PEFC(Polymer Electrolyte Fuel Cell)燃料電池発電システム。
[Reaction system using metal particle supported catalyst]
The metal particle supported catalyst according to the present invention can be used as a catalyst in various reactions. In particular, it can be suitably used for the following reactions 1) to 4).
1) Hydrogenation reaction of unsaturated hydrocarbons, aromatics, esters, aldehydes, ketones,
2) Oxidation reaction of alcohols, methylene, diesel automobile exhaust gas, gasoline automobile exhaust gas,
3) Dehydrogenation reactions of gasoline, saturated hydrocarbons, unsaturated hydrocarbons, aromatics,
4) Hydrogenolysis reaction of nitric acids and sulfuric acids such as gasoline, benzoyl group derivatives, epoxy derivatives,
5) Gas sensor calculated from electrical changes due to adsorption of hydrogen gas, oxygen gas, CO, CO 2 gas 6) DMFC (Direct-Methanol Fuel Cell), PEFC (Polymer) Electrolyte Fuel Cell) Fuel cell power generation system.

触媒の形状としては、粉末、成型体(粒状、角状、四葉状など)、ハニカム等でもよく、成型体やハニカムを得る場合はバインダー成分を使用してもよい。バインダー成分としては、反応に負の影響を与えないものであれば、有機系、無機系特に限定されるものでない。また、必要に応じて乾燥・焼成もしてよい。
また反応システムは、目的に応じてバッチ方式、カラム方式(連続式)でもよく、気相反応、液相反応、気相-液相反応でもよい。
The shape of the catalyst may be a powder, a molded body (granular, square, four-leaf, etc.), a honeycomb, or the like. When obtaining a molded body or a honeycomb, a binder component may be used. The binder component is not particularly limited as long as it does not negatively influence the reaction. Moreover, you may dry and bake as needed.
The reaction system may be a batch system, a column system (continuous system), or a gas phase reaction, a liquid phase reaction, or a gas phase-liquid phase reaction depending on the purpose.

〔金属粒子担持触媒の製造方法〕
本発明に係る金属粒子担持触媒の製造方法は、次の[1]〜[4]の工程を含むことを特徴とする金属粒子担持触媒の製造方法(以下、この製造方法を便宜上、「第1の製造方法」と呼ぶ場合がある)である。
[1]イオン交換体を含む担体物質(但し、一次粒子の平均粒子径が1〜500nm)を溶媒に分散させた第1の懸濁液に、次の(Ia)〜(Ic)から選ばれる1種以上の金属イオンを、担体物質100質量部に対して金属元素換算で0.1〜100質量部の割合で添加し、該金属イオンを担体物質に担し、懸濁液Aを調製する工程。
(Ia)第4周期遷移金属元素から選ばれる金属イオン
(Ib)第5周期遷移金属元素から選ばれる金属イオン
(Ic)白金イオンまたは金イオン
[2]前記工程[1]に続いて、前記懸濁液Aを15〜40℃に温度調整しながら下記(IIa)〜(IId)から選ばれる平均粒子径1〜20nmの金属粒子を、前記担体物質100質量部に対して50〜100000質量部添加し、混合して、金属粒子担持触媒の前駆体分散液を調製する工程。
(IIa)第4周期遷移金属元素から選ばれる金属粒子
(IIb)第5周期遷移金属元素から選ばれる金属粒子
(IIc)白金粒子または金粒子
(IId)(IIa)〜(IIc)から選ばれる少なくとも2種以上の金属が複合してなる金属粒子
[3]前記工程[2]に続いて、前記担体物質に担持されなかった金属イオンを取り除くために、前記金属粒子担持触媒の前駆体分散液を脱塩処理して金属粒子担持触媒分散液を得る工程。
[4]前記工程[3]で得られた金属粒子担持触媒分散液を温度100〜200℃で乾燥処理する工程。
[Method for producing metal particle-supported catalyst]
The method for producing a metal particle-supported catalyst according to the present invention includes the following steps [1] to [4]. The method for producing a metal particle-supported catalyst (hereinafter referred to as “first method” for convenience). It may be referred to as a “production method”).
[1] The following (Ia) to (Ic) are selected from the following (Ia) to (Ic) for a first suspension in which a carrier material containing an ion exchanger (where the average particle size of primary particles is 1 to 500 nm) is dispersed in a solvent. One or more kinds of metal ions are added at a ratio of 0.1 to 100 parts by mass in terms of metal elements with respect to 100 parts by mass of the carrier substance, and the metal ions are carried by the carrier substance to prepare suspension A. Process.
(Ia) Metal ion selected from the fourth period transition metal elements
(Ib) A metal ion selected from fifth transition metal elements
(Ic) Platinum ion or gold ion
[2] Subsequent to the step [1], while adjusting the temperature of the suspension A to 15 to 40 ° C., metal particles having an average particle diameter of 1 to 20 nm selected from the following (IIa) to (IId): A step of adding 50 to 100,000 parts by mass with respect to 100 parts by mass of the carrier substance and mixing them to prepare a precursor dispersion of the metal particle-supported catalyst.
(IIa) Metal particles selected from fourth transition metal elements
(IIb) Metal particles selected from fifth transition metal elements
(IIc) Platinum particles or gold particles
(IId) Metal particles formed by combining at least two metals selected from (IIa) to (IIc)
[3] Subsequent to the step [2], in order to remove the metal ions not supported on the support material, the metal particle-supported catalyst precursor dispersion is desalted to obtain a metal particle-supported catalyst dispersion. Obtaining step.
[4] A step of drying the metal particle-supported catalyst dispersion obtained in the step [3] at a temperature of 100 to 200 ° C.

また、前記製造方法とは別に予め金属イオンが担持された担体物質に金属粒子を担持する場合は、下記の製造方法(以下、この製造方法を便宜上、「第2の製造方法」と呼ぶ場合がある)を採用してもよい。
即ち、下記(I)の(Ia)〜(Ic)から選ばれる1種以上の金属イオンが担持されたイオン交換体を含む一次粒子径が1〜500nmの担体物質に、下記(II)の(IIa)〜(IId)から選ばれる平均粒子径1〜20nmの金属粒子により、厚さ1〜50nmの被覆層を形成する工程を含むことを特徴とする金属粒子担持触媒の製造方法である。
(I)(Ia)第4周期遷移金属元素から選ばれる金属イオン
(Ib)第5周期遷移金属元素から選ばれる金属イオン
(Ic)白金イオンまたは金イオン
(II)(IIa)第4周期遷移金属元素から選ばれる金属粒子
(IIb)第5周期遷移金属元素から選ばれる金属粒子
(IIc)白金粒子または金粒子
(IId)(IIa)〜(IIc)から選ばれる少なくとも2種以上の金属が複合してなる金属粒子
In addition to the above manufacturing method, when the metal particles are supported on a carrier material on which metal ions are previously supported, the following manufacturing method (hereinafter, this manufacturing method may be referred to as “second manufacturing method” for convenience). May be adopted.
That is, a support material having a primary particle diameter of 1 to 500 nm including an ion exchanger on which one or more metal ions selected from (Ia) to (Ic) of (I) below are supported, A method for producing a metal particle-supported catalyst, comprising a step of forming a coating layer having a thickness of 1 to 50 nm with metal particles having an average particle diameter of 1 to 20 nm selected from IIa) to (IId).
(I) (Ia) Metal ion selected from the fourth period transition metal element (Ib) Metal ion selected from the fifth period transition metal element (Ic) Platinum ion or gold ion (II) (IIa) Fourth period transition metal Metal particles selected from elements (IIb) Metal particles selected from fifth period transition metal elements (IIc) Platinum particles or gold particles (IId) (IIa) to (IIc) are combined with at least two kinds of metals. Metal particles

前記第1の製造方法について、以下に説明する。
(i)工程[1]
この工程では、イオン交換体を含む一次粒子径が1〜500nmの担体物質を溶媒に分散させた第1の懸濁液に、次の(Ia)〜(Ic)から選ばれる1種以上の金属イオンを、担体物質100質量部に対して金属元素換算で0.1〜100質量部の割合で添加し、担持し、懸濁液(本願ではこの懸濁液を便宜上「懸濁液A」と記す)を調製する。
(Ia)第4周期遷移金属元素から選ばれる金属イオン
(Ib)第5周期遷移金属元素から選ばれる金属イオン
(Ic)白金イオンまたは金イオン
The first manufacturing method will be described below.
(I) Process [1]
In this step, one or more metals selected from the following (Ia) to (Ic) are added to a first suspension in which a carrier material having an ion exchanger having a primary particle size of 1 to 500 nm is dispersed in a solvent. Ions are added and supported at a ratio of 0.1 to 100 parts by mass in terms of metal elements with respect to 100 parts by mass of the carrier substance, and the suspension (in this application, this suspension is referred to as “suspension A” for convenience. To prepare).
(Ia) Metal ion selected from the fourth period transition metal element (Ib) Metal ion selected from the fifth period transition metal element (Ic) Platinum ion or gold ion

本発明に使用される担体物質については、前記した通りである。本発明では、前記担体物質は、通常、水に懸濁させた状態で使用される。このような担体物質の懸濁液である第1の懸濁液は、例えば、金属水酸化物を水熱処理して得られた酸化物微粒子又は金属水酸化物を焼成し得られた酸化物微粉末を、アルミナビーズなどでブレイキンダウンして得られた担体物質を水に懸濁させて得られる。水の使用量は、担体物質100質量部に対して100〜99,900質量部が好ましく、400〜19,900質量部がより好ましい。このようにして得られた第1の懸濁液は、必要に応じて、さらに水で希釈してもよく、あるいはデカンテーションで濃縮してもよい。希釈水としては脱イオン水が好ましい。希釈後の第1の懸濁液の濃度は、0.1〜50質量%が好ましい。   The carrier material used in the present invention is as described above. In the present invention, the carrier substance is usually used in a state suspended in water. The first suspension which is a suspension of such a carrier material is, for example, oxide fine particles obtained by hydrothermal treatment of metal hydroxide or oxide fine particles obtained by firing metal hydroxide. It is obtained by suspending a carrier material obtained by breaking down powder with alumina beads or the like in water. The amount of water used is preferably 100 to 99,900 parts by weight, more preferably 400 to 19,900 parts by weight with respect to 100 parts by weight of the carrier substance. The first suspension thus obtained may be further diluted with water as necessary, or may be concentrated by decantation. As the dilution water, deionized water is preferred. The concentration of the first suspension after dilution is preferably 0.1 to 50% by mass.

次に、担体物質の懸濁液に金属イオンを添加する。金属イオンは、第4周期遷移金属元素、第5周期遷移金属元素金属元素、白金および金からなる群より選ばれる少なくとも1種の金属のイオンである。
前記第4周期遷移金属元素は、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群より選ばれる元素であることが好ましく、前記第5周期遷移金属元素は、Zr、Nb、Mo、Tc、Ru、Rh、PdおよびAgからなる群より選ばれる元素であることが好ましい。
Next, metal ions are added to the suspension of carrier material. The metal ion is an ion of at least one metal selected from the group consisting of a fourth period transition metal element, a fifth period transition metal element metal element, platinum, and gold.
The fourth periodic transition metal element is preferably an element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, and the fifth periodic transition metal element is Zr, Nb, An element selected from the group consisting of Mo, Tc, Ru, Rh, Pd and Ag is preferable.

金属イオンの添加量は、担体物質100質量部に対して金属元素換算で0.1〜100質量部が好ましく、0.2〜80質量部がより好ましい。金属イオンの添加量がこの範囲であれば、前記担体物質のイオン交換サイトへでのイオン交換や担体表面への吸着が容易となり、金属粒子と共に担持したときの相乗効果の作用が発現し易くなる。前記添加量が0.1質量部未満であると、前記担体へのイオン交換や吸着が困難になると共に、金属粒子との相乗効果の作用が生じ難くなる。前記添加量が100質量部を超えると、担持されなかった金属イオンを後段の脱塩工程で除去する効果が不十分となり、金属粒子の担持工程で高分散担持ができないなどの問題がある。   The addition amount of metal ions is preferably 0.1 to 100 parts by mass, more preferably 0.2 to 80 parts by mass in terms of metal element with respect to 100 parts by mass of the carrier substance. If the added amount of metal ions is in this range, ion exchange at the ion exchange site of the carrier material and adsorption onto the carrier surface are facilitated, and a synergistic effect when supported together with metal particles is easily exhibited. . When the addition amount is less than 0.1 parts by mass, ion exchange and adsorption to the carrier become difficult, and a synergistic effect with metal particles hardly occurs. When the added amount exceeds 100 parts by mass, the effect of removing unsupported metal ions in the subsequent desalting step becomes insufficient, and there is a problem that highly dispersed loading cannot be performed in the metal particle loading step.

上記範囲の量の金属イオンを前記第1の懸濁液に添加する方法としては、1)金属元素換算で上記範囲の量の金属イオンを含む所定の溶液を添加する方法、および2)金属元素換算で上記割合の金属イオンを形成し得る量の金属化合物を添加し、この懸濁液中で金属イオンを発生させる方法を挙げることができる。   As a method of adding the amount of metal ions in the above range to the first suspension, 1) a method of adding a predetermined solution containing the amount of metal ions in the above range in terms of metal element, and 2) metal element A method of adding a metal compound in an amount capable of forming the above-mentioned proportion of metal ions in terms of conversion and generating metal ions in this suspension can be mentioned.

前記1)の方法において、金属イオンを含む溶液は、金属イオンを形成し得る金属化合物を溶媒に溶解することにより調製できる。上記金属イオンの価数については、特に限定されるものではない。   In the method 1), a solution containing metal ions can be prepared by dissolving a metal compound capable of forming metal ions in a solvent. The valence of the metal ion is not particularly limited.

金属イオンを生成可能な上記化合物としては、上記懸濁液中で金属イオンを形成するものであれば特に制限されず、例えば、Pdイオンを形成する化合物としては、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、クエン酸パラジウム、酢酸パラジウムなどが挙げられる。これらのパラジウム化合物は1種単独で、または2種以上を混合して用いることができる。   The compound capable of generating a metal ion is not particularly limited as long as it forms a metal ion in the suspension. Examples of the compound that forms a Pd ion include palladium chloride, palladium nitrate, and palladium sulfate. , Palladium citrate, palladium acetate and the like. These palladium compounds can be used alone or in combination of two or more.

その他の金属イオンを生成可能な化合物の一例を以下に記す。
銅イオン:塩化銅、硫酸銅、硝酸銅
白金イオン:塩化白金酸、塩化白金(IV)酸カリウム、塩化白金(IV)酸ナトリウム、テトラニトロ白金(II)カリウム、ヘキサヒドロキソ白金(IV)酸ナトリウム水和物、ジニトロジアンミン白金硝酸、ジニトロジアンミン白金アンモニアおよびテトラアンミンジクロロ白金水和物
金イオン:塩化金酸、亜硫酸金ナトリウム、シアン化金カリウムおよびシアン化金ナトリウム
銀イオン:硝酸銀、硫酸銀、
鉄イオン:硫酸第二鉄、酢酸第一鉄
ニッケルイオン:硫酸ニッケル、硝酸ニッケル、塩化ニッケル
コバルトイオン:硫酸コバルト、硝酸コバルト、塩化コバルト
セリウムイオン:硝酸セリウム、塩化セリウム、硫酸セリウム
金属イオンを生成する金属化合物は、通常溶媒に溶解させて、前記第1の懸濁液に添加される。
An example of a compound capable of generating other metal ions is described below.
Copper ion: Copper chloride, copper sulfate, copper nitrate
Platinum ions: chloroplatinic acid, potassium chloroplatinum (IV), sodium chloroplatinum (IV), potassium tetranitroplatinum (II), sodium hexahydroxoplatinum (IV) hydrate, dinitrodiammine platinum nitrate, dinitrodiammine platinum Ammonia and tetraamminedichloroplatinum hydrate Gold ions: chloroauric acid, sodium gold sulfite, potassium gold cyanide and sodium gold cyanide
Silver ion: Silver nitrate, Silver sulfate,
Iron ion: ferric sulfate, ferrous acetate
Nickel ion: Nickel sulfate, nickel nitrate, nickel chloride
Cobalt ion: Cobalt sulfate, cobalt nitrate, cobalt chloride
Cerium ions: cerium nitrate, cerium chloride, cerium sulfate
The metal compound that generates metal ions is usually dissolved in a solvent and added to the first suspension.

金属イオンを含む溶液に用いられる溶媒は、該金属との反応性を示さず、該金属化合物を溶解できるものであればよく、特定の溶媒に限定されるものではない。このような溶媒としては、
水;
メタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;
アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;
ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;
2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;
2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;
酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;
ヘキサン、ヘプタン、iso−オクタン、シクロヘキサンなどの脂肪族炭化水素類;
塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;
ジメチルスルホキシドなどのスルホキシド類;
N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類;
エチレングリコール、プロピレングリコール、へキシレングリコールなどのグリコール類を挙げることができる。
The solvent used for the solution containing a metal ion is not limited to a specific solvent as long as it does not show reactivity with the metal and can dissolve the metal compound. Such solvents include
water;
Alcohols such as methanol, ethanol, isopropanol, n-butanol, methyl isocarbinol;
Ketones such as acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, cyclohexanone;
Amides such as N, N-dimethylformamide and N, N-dimethylacetamide;
Ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran;
Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether;
Glycol ether acetates such as 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate;
Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, ethylene carbonate;
Aromatic hydrocarbons such as benzene, toluene, xylene;
Aliphatic hydrocarbons such as hexane, heptane, iso-octane, cyclohexane;
Halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene;
Sulfoxides such as dimethyl sulfoxide;
Pyrrolidones such as N-methyl-2-pyrrolidone and N-octyl-2-pyrrolidone;
Examples include glycols such as ethylene glycol, propylene glycol, and hexylene glycol.

前記2)の方法は、前記1)の方法で述べた金属化合物をそのまま前記第1の懸濁液に添加する方法である。
金属粒子が複合金属粒子である金属粒子担持触媒を製造する場合には、前記1)の方法においては、2種以上の金属化合物を溶媒に溶解して得られた溶液を前記第1の懸濁液に添加すればよく、前記2)の方法においては、2種以上の金属化合物を前記第1の懸濁液に添加すればよい。
The method 2) is a method in which the metal compound described in the method 1) is added to the first suspension as it is.
In the case of producing a metal particle-supported catalyst in which the metal particles are composite metal particles, in the method 1), a solution obtained by dissolving two or more metal compounds in a solvent is used as the first suspension. What is necessary is just to add to a liquid, and what is necessary is just to add 2 or more types of metal compounds to a said 1st suspension in the method of said 2).

第1の懸濁液に、金属イオンを含む溶液あるいは金属化合物を添加する際の温度は、特に限定されないが、15〜40℃の範囲が好ましい。添加温度が前記範囲より低いと、十分に金属イオンを担持できないことがあり、添加温度が前記範囲より高いと、担持効率のさらなる向上が見られないため、経済的に好ましくない。   Although the temperature at the time of adding the solution or metal compound containing a metal ion to a 1st suspension liquid is not specifically limited, The range of 15-40 degreeC is preferable. If the addition temperature is lower than the above range, the metal ions may not be sufficiently supported, and if the addition temperature is higher than the above range, further improvement in the support efficiency will not be seen, which is economically undesirable.

また、上記添加後、上記範囲の温度に保持しながら懸濁液Aを攪拌して充分に混合することが好ましい。攪拌は15〜40℃で、通常5分以上、好ましくは10分以上行うことが望ましく、必要に応じて、3時間程度まで、好ましくは1時間程度まで攪拌してもよい。
特に、固体状の金属化合物を添加した場合には、金属化合物が充分に溶解して金属イオンが生成するまで攪拌などの操作を充分に行う必要がある。
Further, after the addition, it is preferable that the suspension A is stirred and sufficiently mixed while maintaining the temperature within the above range. Stirring is preferably carried out at 15 to 40 ° C. for usually 5 minutes or longer, preferably 10 minutes or longer. If necessary, the stirring may be performed for up to about 3 hours, preferably up to about 1 hour.
In particular, when a solid metal compound is added, it is necessary to sufficiently perform an operation such as stirring until the metal compound is sufficiently dissolved and metal ions are generated.

(ii)工程[2]
前記工程[1]で得られた懸濁液Aを15〜40℃に温度調整しながら、下記(IIa)〜(IId)から選ばれる平均粒子径1〜20nmの金属粒子を、を担体物質100質量部に対して200100000質量部添加し、混合して、金属粒子担持触媒の前駆体分散液を調製する。
(IIa)第4周期遷移金属元素から選ばれる金属粒子
(IIb)第5周期遷移金属元素から選ばれる金属粒子
(IIc)白金粒子または金粒子
(IId)(IIa)〜(IIc)から選ばれる少なくとも2種以上の金属が複合してなる金属粒子
(Ii) Step [2]
While the temperature of the suspension A obtained in the step [1] is adjusted to 15 to 40 ° C., metal particles having an average particle diameter of 1 to 20 nm selected from the following (IIa) to (IId) are added to the carrier substance 100. A precursor dispersion of a metal particle-supported catalyst is prepared by adding and mixing 200 to 100,000 parts by mass with respect to parts by mass.
(IIa) Metal particles selected from fourth transition metal elements
(IIb) Metal particles selected from fifth transition metal elements
(IIc) Platinum particles or gold particles
(IId) Metal particles formed by combining at least two metals selected from (IIa) to (IIc)

この工程において、金属粒子は、通常、金属コロイド溶液にして前工程で得られた懸濁液に添加する。このような金属コロイド溶液の調製方法は公知であるが、例えば、特開2002−180110号(出願人=日揮触媒化成株式会社)の各実施例に記載された方法を挙げることができる。   In this step, the metal particles are usually added to the suspension obtained in the previous step as a metal colloid solution. Although the preparation method of such a metal colloid solution is well-known, the method described in each Example of Unexamined-Japanese-Patent No. 2002-180110 (applicant = JGC Catalysts and Chemicals) can be mentioned, for example.

金属コロイド溶液の金属濃度は、実用上は1〜20質量%の範囲が好ましい。金属コロイド溶液は、担体物質100質量部に対して、金属粒子換算で200100000質量部を添加することが好ましい。この範囲であれば、金属粒子が1〜50nmの厚みで担体を被覆可能で担持分散性に優れる点で活性向上や寿命延長などの観点で高い触媒性能や電気的特性やガス吸着能に優れた触媒性能を示すことができる。金属粒子の添加量が200質量未満の場合は担体粒子に金属粒子が完全に被覆されない場合がある。また、金属粒子の添加量が100000質量部を超える場合は、担持分散性が悪い、寿命が短くな場合がある点で好ましくない In practice, the metal concentration of the metal colloid solution is preferably in the range of 1 to 20% by mass. The metal colloid solution is preferably added in an amount of 200 to 100,000 parts by mass in terms of metal particles with respect to 100 parts by mass of the carrier substance. Within this range, the metal particles can be coated with a carrier having a thickness of 1 to 50 nm and have excellent catalytic performance, electrical characteristics, and gas adsorbing ability in terms of activity improvement and life extension in terms of excellent support dispersibility. The catalyst performance can be shown. When the addition amount of the metal particles is less than 200 parts by mass, the carrier particles may not be completely covered with the metal particles. Also, if the amount of the metal particles exceeds 100000 parts by mass, poor carrier dispersibility, disadvantages in that it may life become shorter accordingly.

金属コロイド溶液を添加して混合する際の温度は、15〜40℃が好ましい。15℃未満では、十分に金属粒子を担持できないことがあり、実用性が低下することがある。40℃を超えると担持効果の更なる向上は認められず、経済的に好ましくない。   The temperature when adding and mixing the metal colloid solution is preferably 15 to 40 ° C. If it is less than 15 degreeC, a metal particle may not fully be supported, and practicality may fall. If it exceeds 40 ° C., further improvement of the supporting effect is not recognized, which is economically undesirable.

上記混合の際、通常5分以上、好ましくは10分以上の攪拌を行うことが望ましく、必要に応じて、通常3時間程度まで、好ましくは1時間程度まで攪拌してもよい。   In the mixing, it is desirable to perform stirring for usually 5 minutes or more, preferably 10 minutes or more, and if necessary, stirring may be performed for usually up to about 3 hours, preferably up to about 1 hour.

(iii)工程[3]
工程[3]では、工程[2]で得られた金属粒子担持触媒の前駆体分散液について、担体物質に担持されなかった金属イオンを取り除くため、固体と液体を分離するなどして脱塩処理を行い、金属粒子担持触媒分散液を得る。
(Iii) Step [3]
In step [3], the metal particle-supported catalyst precursor dispersion obtained in step [2] is desalted by separating the solid and the liquid in order to remove metal ions not supported on the support material. To obtain a metal particle-supported catalyst dispersion.

脱塩の方法としては、特に制限はなく、たとえばイオン交換樹脂を用いて金属粒子担持触媒の前駆体分散液から金属イオンを取り除く方法、限外膜で固液分離を行うことにより金属イオンを除去する方法、溶媒抽出で金属イオンを含む溶液を抽出する方法等を挙げることができる。   The desalting method is not particularly limited. For example, a method of removing metal ions from a precursor particle dispersion of a metal particle-supported catalyst using an ion exchange resin, or a method of removing metal ions by performing solid-liquid separation on an outer membrane. And a method of extracting a solution containing metal ions by solvent extraction.

脱塩によって得られた金属粒子担持触媒分散液の濃度は、0.1〜70質量%が好ましく、1〜50質量%がより好ましい。懸濁液の濃度の濃度が、0.1%未満の場合は、生産性が悪く経済的に好ましくない。70%を超える場合は、懸濁液の分散性が悪く、次工程の金属粒子担持の際に、金属粒子が担持されていない担体が生じ、不均一な担持となるため好ましくない。   The concentration of the metal particle-supported catalyst dispersion obtained by desalting is preferably 0.1 to 70% by mass, and more preferably 1 to 50% by mass. When the concentration of the suspension is less than 0.1%, productivity is poor and this is not economically preferable. When it exceeds 70%, the dispersibility of the suspension is poor, and when the metal particles are supported in the next step, a carrier on which the metal particles are not supported is generated, which is not preferable.

担体物質に、イオン交換又は吸着した金属イオンの担持量は、担体物質100質量部に対して0.001〜10質量部であることが好ましい。担体物質に吸着した金属イオンの担持量は、担体物質100質量部に対して0.001未満の場合は、金属イオンと金属粒子の相互作用が不十分で担持力が弱く、触媒反応における使用時に金属粒子の被覆層の脱落が生じる場合がある。10質量部を超えると、触媒反応使用時に系内への溶出する場合があり活性の低下や電気的特性の低下を引き起こす場合がある。   The supported amount of metal ions ion-exchanged or adsorbed on the support material is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the support material. When the supported amount of the metal ions adsorbed on the support material is less than 0.001 with respect to 100 parts by mass of the support material, the interaction between the metal ions and the metal particles is insufficient and the support force is weak. The metal particle coating layer may fall off. If it exceeds 10 parts by mass, it may elute into the system when using a catalytic reaction, which may cause a decrease in activity and a decrease in electrical characteristics.

また、前記工程[1]にて、前記担体物質に担持された金属イオンの質量と、前記工程[2]にて第1の懸濁液に添加される金属粒子の質量との関係を下記(2)式で表したとき、当該式の値は0.0001〜0.005の範囲であることが好ましい。
金属イオンの質量/(金属イオンの質量+金属粒子の質量)…(2)
The relationship between the mass of the metal ions supported on the carrier material in the step [1] and the mass of the metal particles added to the first suspension in the step [2] is as follows ( 2) When expressed by the formula, the value of the formula is preferably in the range of 0.0001 to 0.005.
Mass of metal ion / (mass of metal ion + mass of metal particle) (2)

本法では担体物質に金属イオンをイオン交換又は吸着させた状態において、金属粒子を担持させることにより、金属粒子が隙間無く配列し、被覆層を形成するものと考えられる。このような被覆層が形成されることが、金属粒子の担持力を高めているものと言える。このような特徴に加えて、金属イオンと金属粒子との相乗効果によっても活性向上や寿命延長といった観点で触媒性能が向上する。そして上記(2)式は金属粒子担持触媒に担持される全金属質量(金属イオン質量及び金属粒子質量の合計)に対する金属イオンの質量の比率を示している。このため、(2)式の値が0.0001を下回ると、金属粒子の分散性を高める効果や担持力を向上させる効果が得られにくくなる一方、この値が0.005を越えると、金属粒子の担持比率が低くなり、触媒の活性が低下するおそれがある。   In this method, it is considered that the metal particles are arranged without gaps and form a coating layer by supporting the metal particles in a state where metal ions are ion-exchanged or adsorbed on the support material. It can be said that the formation of such a coating layer enhances the supporting force of the metal particles. In addition to these characteristics, the catalytic performance is improved from the viewpoint of improving the activity and extending the life due to the synergistic effect of the metal ions and the metal particles. The above equation (2) indicates the ratio of the mass of metal ions to the total metal mass (total of metal ion mass and metal particle mass) supported on the metal particle supported catalyst. For this reason, when the value of the formula (2) is less than 0.0001, it is difficult to obtain the effect of improving the dispersibility of the metal particles and the effect of improving the supporting force, whereas when this value exceeds 0.005, the metal There is a possibility that the loading ratio of the particles becomes low and the activity of the catalyst is lowered.

(iv)工程[4]
前記工程[3]で得られた金属粒子担持触媒分散液(既に固液分離されている場合には、分離後の金属粒子担持触媒)を100〜200℃にて乾燥処理し、金属粒子担持触媒を得ることができる。乾燥時間については、温度100〜200℃で1〜20時間乾燥することが望ましい。乾燥温度範囲については、より好適には、100〜150℃の範囲が推奨される。
(Iv) Step [4]
The metal particle-supported catalyst dispersion obtained in the above step [3] (or the metal particle-supported catalyst after separation if solid-liquid separation has already been performed) is dried at 100 to 200 ° C. to obtain a metal particle-supported catalyst. Can be obtained. About drying time, it is desirable to dry at the temperature of 100-200 degreeC for 1 to 20 hours. About a drying temperature range, the range of 100-150 degreeC is recommended more suitably.

乾燥温度が100℃未満の場合、乾燥に時間がかかり経済的に効率が悪い傾向がある。乾燥温度が200℃を超える場合は、粒子のシンタリングや酸化が進行するといった問題がある。
前記乾燥工程は、大気中または不活性雰囲気下で行うことが好ましい。乾燥雰囲気として、より好適には不活性雰囲気を挙げることができる。不活性雰囲気としては、窒素、水素、アルゴン等の雰囲気を挙げることができる。
When the drying temperature is less than 100 ° C., drying tends to take time and economical efficiency tends to be poor. When the drying temperature exceeds 200 ° C., there is a problem in that particle sintering and oxidation progress.
It is preferable to perform the said drying process in air | atmosphere or inert atmosphere. More preferable examples of the dry atmosphere include an inert atmosphere. Examples of the inert atmosphere include nitrogen, hydrogen, argon, and the like.

本発明に係る金属粒子担持触媒は、金属イオンを担体物質にイオン交換又は吸着させてから金属粒子を担持させることにより、金属粒子を被覆でき、且つ、金属粒子の担持力を高めている。この結果、従来法で金属粒子を担持した触媒に見られる金属粒子の分散状態を凌ぐこともできる。また、イオン交換又は吸着していない金属イオンを除去する工程を設けることで触媒使用時に金属イオンの流失が低減でき、触媒活性の低下や電気的特性の低下を防ぐことが可能となる。   The metal particle-supported catalyst according to the present invention is capable of coating metal particles after ion-exchange or adsorption of metal ions on a support material and then supporting the metal particles and increasing the support ability of the metal particles. As a result, it is possible to surpass the dispersed state of the metal particles found in the catalyst supporting the metal particles by the conventional method. Further, by providing a step of ion exchange or removal of metal ions that are not adsorbed, the loss of metal ions can be reduced when the catalyst is used, and it is possible to prevent a decrease in catalytic activity and a decrease in electrical characteristics.

本発明に係る金属粒子担持触媒においては、金属粒子を担体に被覆させることにより、金属粒子の表面がより有効に触媒作用に寄与するため、本発明に係る金属粒子担持触媒は、従来の金属粒子担持触媒の場合と同等の金属担持量であっても、活性向上や寿命延長などの観点で高い触媒性能や電気的特性やガス吸着能を示すことができる。
また、担体物質のイオン交換サイトに金属イオンを担持させたものは、金属イオンと金属粒子が相乗効果を示し、この点でも活性向上や寿命延長などの観点で高い触媒性能や電気的特性やガス吸着能を示すことができる。
In the metal particle-supported catalyst according to the present invention, the metal particle-supported catalyst according to the present invention is a conventional metal particle because the surface of the metal particle contributes to the catalytic action more effectively by coating the metal particle on the carrier. Even if the amount of metal supported is the same as that of the supported catalyst, high catalyst performance, electrical characteristics, and gas adsorption ability can be exhibited from the viewpoint of improving activity and extending life.
In addition, metal ions supported on the ion exchange site of the support material have a synergistic effect between the metal ions and the metal particles, and in this respect as well, high catalyst performance, electrical characteristics, Adsorption ability can be shown.

このように触媒の活性向上や寿命延長が達成されることにより、従来の金属粒子担持触媒と同等の触媒性能で足りる用途においては、従来の金属粒子担持触媒より少量の金属粒子を担持させた金属粒子担持触媒を使用することができるので、資源の節約となる。特にPd又はPtのような高価な金属粒子を用いる場合は、製造コストの削減にも貢献するものである。   In this way, by improving the activity of the catalyst and extending the life of the catalyst, in applications where the catalyst performance equivalent to that of the conventional metal particle-supported catalyst is sufficient, the metal having a smaller amount of metal particles supported than the conventional metal particle-supported catalyst. Since a particle-supported catalyst can be used, resources are saved. In particular, when expensive metal particles such as Pd or Pt are used, this contributes to a reduction in manufacturing cost.

さらに金属イオンと金属粒子を担持した担体物質を100〜200℃の温度範囲で乾燥することにより金属粒子担持触媒を得ているので、例えば500℃以上での焼成工程や水素ガス雰囲気中での還元工程などを必要とする場合に比べて製造コストの増大や工程制御の労力を抑え、実用的な条件にて金属粒子担持触媒を調製することが可能である。   Furthermore, since the support material carrying the metal ions and the metal particles is dried at a temperature range of 100 to 200 ° C., the metal particle-supported catalyst is obtained. For example, a calcination step at 500 ° C. or higher or reduction in a hydrogen gas atmosphere Compared to the case where a process or the like is required, it is possible to prepare a metal particle-supported catalyst under practical conditions while suppressing an increase in manufacturing cost and labor of process control.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[測定方法]
本願で採用した測定方法について以下に記す。
[1]金属粒子の分散状態の測定
走査型電子顕微鏡(株式会社日立製作所製、S−5500)により、金属粒子担持前後の試料を倍率30〜100万倍で写真撮影した。得られた写真投影図において、前後の粒子径から被覆金属粒子の厚みを求めた。また粒子の担持状態から被覆されていない箇所・凝集している箇所、担持されていない金属粒子の存在を調べた。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples at all.
[Measuring method]
The measurement method employed in the present application is described below.
[1] Measurement of dispersion state of metal particles The sample before and after supporting the metal particles was photographed with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500) at a magnification of 300 to 1,000,000 times. In the obtained photographic projection, the thickness of the coated metal particles was determined from the front and rear particle sizes. In addition, the presence of uncovered / aggregated portions and unsupported metal particles were examined from the particle loading state.

[2]触媒に担持した金属粒子・金属イオンの組成分析
試料である金属イオン及び金属粒子(複合金属粒子の場合を含む)を担持させた触媒を600℃にて焼成し、焼成後の試料をアルカリ溶融剤にて溶融した。その後、溶融液を28質量%の塩酸水溶液にて溶解し、溶解液を純水で希釈した後、ICP誘導結合プラズマ発光分光分析装置SPS1200A(セイコー電子株式会社製)にて金属粒子担持触媒に含まれる元素の量を測定した。
[2] Composition analysis of metal particles and metal ions supported on a catalyst A catalyst supporting metal ions and metal particles (including composite metal particles) as a sample is calcined at 600 ° C., and the calcined sample is obtained. It melted with an alkali melting agent. Thereafter, the melt is dissolved in a 28% by mass hydrochloric acid solution, and the solution is diluted with pure water, and then included in the metal particle-supported catalyst with an ICP inductively coupled plasma emission spectrometer SPS1200A (Seiko Electronics Co., Ltd.). The amount of element to be measured was measured.

[3]触媒性能評価
後述の実施例、比較例では、Pd、Pt、Ru、Rh、Ag、Pt-Rh複合金属、Pd-Au複合金属、Pd-Pt複合金属、Pt-Ru複合金属、Pt-Cu複合金属の各金属粒子を担持した金属粒子担持触媒を調製した。これらのうち、Pdを担持した触媒(Pdの複合金属を担持した場合を含む)に関して、(1)アセチレンの水素化反応及び(2)硝酸イオンの分解反応を評価した。
[3] Catalyst performance evaluation
In Examples and Comparative Examples described later, each of Pd, Pt, Ru, Rh, Ag, Pt—Rh composite metal, Pd—Au composite metal, Pd—Pt composite metal, Pt—Ru composite metal, and Pt—Cu composite metal. A metal particle supported catalyst carrying metal particles was prepared. Among these, (1) hydrogenation reaction of acetylene and (2) decomposition reaction of nitrate ion were evaluated for the catalyst supporting Pd (including the case of supporting a Pd composite metal).

(1)アセチレンの水素化反応
アセチレンの水素化反応は、反応管φ21mm(二重管ガラス反応管)に金属粒子換算で0.002g分の金属粒子担持触媒を充填する。反応管外周部に温水を循環させ、触媒層を一定温度(40℃)に保持する。反応ガス(C;12ml/min)、還元ガス(H;10ml/min)及びキャリアーガス(N;400ml/min)を導入後、80分経過後のガスを採取しガスクロマトグラフィーにより、供給反応ガス量に対するエチレン及びエタンの生成率(((C+C)/C)×100[mol%])を求めた。
(1) Hydrogenation reaction of acetylene
In the hydrogenation reaction of acetylene, a reaction tube φ21 mm (double tube glass reaction tube) is filled with 0.002 g of metal particle supported catalyst in terms of metal particles. Hot water is circulated around the outer periphery of the reaction tube to keep the catalyst layer at a constant temperature (40 ° C.). After introducing a reaction gas (C 2 H 2 ; 12 ml / min), a reducing gas (H 2 ; 10 ml / min) and a carrier gas (N 2 ; 400 ml / min), the gas after 80 minutes was collected and subjected to gas chromatography. Thus, the production rate of ethylene and ethane relative to the amount of the supplied reaction gas (((C 2 H 4 + C 2 H 6 ) / C 2 H 2 ) × 100 [mol%]) was determined.

(2)硝酸イオンの分解反応(水素化分解反応)
硝酸イオン濃度で4.5mol/Lの硝酸ナトリウム溶液200gを1Lのセパラブルフラスコに入れる。その後触媒を金属粒子換算で0.02gとなる量の金属粒子担持触媒を入れ、アルゴンパージ下、マグネチックスターラーで攪拌し80℃に温調した。その後1.2mol量のヒドラジンを3時間かけて添加し、添加後の硝酸イオン濃度を分光光度法で測定し算出した。その際の硝酸イオンの転化率((初期硝酸イオン濃度-反応終了後硝酸イオン濃度)/(初期硝酸イオン濃度)×100[mol%])を触媒活性として評価した。
以下の実施例は、いずれも前記特許請求の範囲の要件を満たすものである。
(2) Nitrate ion decomposition reaction (hydrogenolysis reaction)
200 g of a sodium nitrate solution having a nitrate ion concentration of 4.5 mol / L is placed in a 1 L separable flask. Thereafter, a catalyst supporting metal particles in an amount of 0.02 g in terms of metal particles was added to the catalyst, and the mixture was stirred with a magnetic stirrer under an argon purge, and the temperature was adjusted to 80 ° C. Thereafter, 1.2 mol of hydrazine was added over 3 hours, and the nitrate ion concentration after the addition was measured and calculated by spectrophotometry. The conversion rate of nitrate ions at that time ((initial nitrate ion concentration−nitrate ion concentration after completion of reaction) / (initial nitrate ion concentration) × 100 [mol%]) was evaluated as the catalytic activity.
Each of the following examples satisfies the requirements of the claims.

(3)電気的特性
金属粒子担持触媒10gを100kg/cmの圧力で圧縮しペレットを形成し、その両端をテスターで抵抗値を測定し、ペレットの厚みと断面積、及び抵抗値から]固有抵抗値[Ω・cm]((抵抗値[Ω]×ペレットの断面積[cm])/(ペレットの厚み[cm])を求めた。
以下の実施例は、いずれも前記特許請求の範囲の要件を満たすものである。
(3) Electrical characteristics
10 g of a metal particle-supported catalyst is compressed at a pressure of 100 kg / cm 2 to form pellets, and the resistance values are measured with a tester at both ends thereof. From the pellet thickness, cross-sectional area, and resistance value, the specific resistance value [Ω · cm ] ((Resistance value [Ω] × pellet cross-sectional area [cm 2 ]) / (pellet thickness [cm])).
Each of the following examples satisfies the requirements of the claims.

[担体物質調製例A]
シリカ懸濁液(第1の懸濁液)の調製
シリカゾル(日揮触媒化成株式会社製、商品名:カタロイドSI−550、一次粒子径:5nm、固形分濃度:20%)を両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い濃度が20質量%の水分散液(A)を調製した。
[Carrier Material Preparation Example A]
Preparation of silica suspension (first suspension)
Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd., trade name: Cataloid SI-550, primary particle size: 5 nm, solid content concentration: 20%) is removed using an amphoteric ion exchange resin (trade name: SMNUPB, manufactured by Mitsubishi Chemical Corporation). Salt was added to prepare an aqueous dispersion (A) having a concentration of 20% by mass.

[担体物質調製例B]
ATO懸濁液(第1の懸濁液)の調製
アンチモンドープ酸化錫(ATO)微粒子分散液(日揮触媒化成株式会社製、商品名:ELCOM V−3501、一次粒子径:8nm、固形分濃度:20%、変性アルコール分散)を純水で希釈し、濃度が5質量%の水分散液(B)を調製した。
[Carrier Material Preparation Example B]
Preparation of ATO suspension (first suspension)
Antimony-doped tin oxide (ATO) fine particle dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd., trade name: ELCOM V-3501, primary particle size: 8 nm, solid content concentration: 20%, modified alcohol dispersion) is diluted with pure water, An aqueous dispersion (B) having a concentration of 5% by mass was prepared.

[担体物質調製例C]
ITO懸濁液(第1の懸濁液)の調製
錫ドープ酸化インジウム(ITO)微粒子分散液(日揮触媒化成株式会社製、商品名:ELCOM V−2504、一次粒子径:20nm、固形分濃度:20% 2−プロパノール分散)を純水で希釈し、濃度が5質量%の水分散液(C)を調製した。
[Carrier Material Preparation Example C]
Preparation of ITO suspension (first suspension)
Tin-doped indium oxide (ITO) fine particle dispersion (manufactured by JGC Catalysts and Chemicals, trade name: ELCOM V-2504, primary particle size: 20 nm, solid content concentration: 20% 2-propanol dispersion) is diluted with pure water, An aqueous dispersion (C) having a concentration of 5% by mass was prepared.

[担体物質調製例D]
PTO懸濁液(第1の懸濁液)の調製
リンドープ酸化錫(PTO)粉末(日揮触媒化成株式会社製、商品名:ELCOM TL−30S、一次粒子径:30nm、固形分濃度:20%、2−プロパノール分散)を純水及びKOHで希釈し、濃度が25質量%、pH11の希釈液を調製した。その後石英ビーズ0.15mmを用いてブレイキングダウン方で120分粉砕し、8000Gで10分遠心分離後、両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い濃度が10%のPTO分散液(D)を得た。得られた分散液の一次粒子径を走査電子顕微鏡で測定したところ30nmであった。
[Carrier Material Preparation Example D]
Preparation of PTO suspension (first suspension)
Phosphorus-doped tin oxide (PTO) powder (manufactured by JGC Catalysts & Chemicals, trade name: ELCOM TL-30S, primary particle size: 30 nm, solid content concentration: 20%, 2-propanol dispersion) is diluted with pure water and KOH, A diluted solution having a concentration of 25% by mass and pH 11 was prepared. After that, using 0.15 mm quartz beads for 120 minutes of breaking down, centrifuging at 8000 G for 10 minutes, and then desalting with amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) A 10% PTO dispersion (D) was obtained. It was 30 nm when the primary particle diameter of the obtained dispersion liquid was measured with the scanning electron microscope.

[担体物質調製例E]
Sb懸濁液(第1の懸濁液)の調製
五酸化アンチモン微粒子分散液(日揮触媒化成株式会社製、商品名:ELCOM V−4502、一次粒子径:30nm、固形分濃度:20% 変性アルコール分散)を純水で希釈し、濃度が5質量%の水分散液(E)を調製した。
[Carrier Material Preparation Example E]
Preparation of Sb 2 O 5 suspension (first suspension)
Antimony pentoxide fine particle dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd., trade name: ELCOM V-4502, primary particle size: 30 nm, solid content concentration: 20% modified alcohol dispersion) is diluted with pure water, and the concentration is 5% by mass. An aqueous dispersion (E) was prepared.

[担体物質調製例F]
SnO懸濁液(第1の懸濁液)の調製
酸化錫粉末(昭和加工株式会社製)を純水及びKOHで希釈し、濃度が25質量%、pH11の希釈液を調製した。その後石英ビーズ0.15mmを用いてブレイキングダウン方で120分粉砕し、8000Gで10分遠心分離後、両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い濃度が5%のSnO分散液(F)を得た。得られた分散液の一次粒子径を走査電子顕微鏡で測定したところ20nmであった。
[Carrier Material Preparation Example F]
Preparation of SnO 2 suspension (first suspension)
Tin oxide powder (manufactured by Showa Processing Co., Ltd.) was diluted with pure water and KOH to prepare a diluted solution having a concentration of 25% by mass and pH 11. After that, using 0.15 mm quartz beads for 120 minutes of breaking down, centrifuging at 8000 G for 10 minutes, and then desalting with amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) A 5% SnO 2 dispersion (F) was obtained. It was 20 nm when the primary particle diameter of the obtained dispersion liquid was measured with the scanning electron microscope.

[担体物質調製例G]
Al懸濁液(第1の懸濁液)の調製
水酸化酸化アルミミウム粉末(日揮触媒化成株式会社製、商品名:カタロイドAP−3、一次粒子径:20nm、固形分濃度:75%粉末)を純水で希釈し、30分マグネチックスターラーで攪拌し、濃度が1質量%のAl懸濁液(分散液(G))を調製した。得られた分散液の一次粒子径を走査電子顕微鏡で測定したところ20nmであった。
[Carrier Material Preparation Example G]
Preparation of Al 2 O 3 suspension (first suspension)
Aluminum hydroxide oxide powder (manufactured by JGC Catalysts & Chemicals Co., Ltd., trade name: Cataloid AP-3, primary particle size: 20 nm, solid content concentration: 75% powder) is diluted with pure water and stirred with a magnetic stirrer for 30 minutes. An Al 2 O 3 suspension (dispersion (G)) having a concentration of 1% by mass was prepared. It was 20 nm when the primary particle diameter of the obtained dispersion liquid was measured with the scanning electron microscope.

[担体物質調製例H]
活性アルミナ懸濁液(第1の懸濁液)の調製
活性アルミナ(和光純薬(製)型番:596−15865、比表面積250m/g、粒子径50μm、γ-アルミナ)を純水に分散させ、濃度が20質量%の水分散液を調製した。その後石英ビーズ0.15mmを用いてブレイキングダウン方で240分粉砕し、8000Gで10分遠心分離後、両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い濃度が10%のγ-アルミナ分散液(H)を得た。得られた分散液の一次粒子径を走査電子顕微鏡で測定したところ50nmであった。
[Carrier Material Preparation Example H]
Preparation of activated alumina suspension (first suspension)
Activated alumina (Wako Pure Chemical Industries, Ltd., model number: 596-15865, specific surface area 250 m 2 / g, particle diameter 50 μm, γ-alumina) was dispersed in pure water to prepare an aqueous dispersion having a concentration of 20% by mass. After that, it is crushed for 240 minutes by breaking down using 0.15 mm of quartz beads, centrifuged at 8000 G for 10 minutes, and then desalted using amphoteric ion exchange resin (product name: SMNUPB, manufactured by Mitsubishi Chemical Corporation) A 10% γ-alumina dispersion (H) was obtained. It was 50 nm when the primary particle diameter of the obtained dispersion liquid was measured with the scanning electron microscope.

[担体物質調製例I]
カーボンブラック(CB)懸濁液(第1の懸濁液)の調製
カーボンブラック(ケッチェンブラックインターナショナル株式会社製、商品名:ケッチェンブラックEC、表面積800m/g、吸油量360g/100g)を純水に分散させ、1時間煮沸処理を行い、濃度が10質量%の水分散液を調製した。その後石英ビーズ0.15mmを用いてブレイキングダウン方で240分粉砕し、8000Gで10分遠心分離後、両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い濃度が5%のCB分散液(I)を得た。得られた分散液の一次粒子径を走査電子顕微鏡で測定したところ80nmであった。
[Carrier Material Preparation Example I]
Preparation of carbon black (CB) suspension (first suspension)
Carbon black (manufactured by Ketjen Black International Co., Ltd., trade name: Ketjen Black EC, surface area 800 m 2 / g, oil absorption 360 g / 100 g) is dispersed in pure water, subjected to boiling treatment for 1 hour, and the concentration is 10% by mass. An aqueous dispersion was prepared. After that, it is crushed for 240 minutes by breaking down using 0.15 mm of quartz beads, centrifuged at 8000 G for 10 minutes, and then desalted using amphoteric ion exchange resin (product name: SMNUPB, manufactured by Mitsubishi Chemical Corporation) A 5% CB dispersion (I) was obtained. It was 80 nm when the primary particle diameter of the obtained dispersion liquid was measured with the scanning electron microscope.

[金属粒子調整例1]
Pd粒子分散液の合成
クエン酸水溶液(濃度30質量%)219gに還元剤として硫酸第一鉄122gを溶解させた溶液を調製した。そして、この溶液341gを、硝酸パラジウム水溶液(濃度20質量%)39gに室温で添加し、充分に混合することによりPd粒子の分散液を調製した。限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮しPd換算濃度3%のPdコロイド溶液(1)を得た。得られたPdコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は3nmであった。
[Metal Particle Preparation Example 1]
Synthesis of Pd particle dispersion
A solution was prepared by dissolving 122 g of ferrous sulfate as a reducing agent in 219 g of an aqueous citric acid solution (concentration: 30% by mass). Then, 341 g of this solution was added to 39 g of an aqueous palladium nitrate solution (concentration 20% by mass) at room temperature, and thoroughly mixed to prepare a dispersion of Pd particles. Washing and desalting was performed using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500), followed by concentration to obtain a Pd colloid solution (1) having a Pd equivalent concentration of 3%. When the particle diameter of the obtained Pd colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 3 nm.

[金属粒子調整例2]
Pt粒子分散液の合成
塩化白金酸6水和物25g(白金金属換算で9g)を純水16,000gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸3ナトリウム水溶液1,660gと還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液140gとを加え、窒素雰囲気下、20℃で攪拌混合して、水に白金微粒子が分散してなる白金コロイド溶液を得た。ついで、白金コロイド溶液を限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮し、白金金属換算で濃度3.0重量%の白金コロイド溶液(2)とした。得られたPtコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は1nmであった。
[Metal Particle Adjustment Example 2]
Synthesis of Pt particle dispersion
A metal salt aqueous solution obtained by dissolving 25 g of chloroplatinic acid hexahydrate (9 g in terms of platinum metal) in 16,000 g of pure water was added to an aqueous solution of trisodium citrate having a concentration of 5.0% by weight as a complexing stabilizer. , 660 g and a sodium borohydride aqueous solution 140 g having a concentration of 0.1% by weight as a reducing agent were added and stirred and mixed at 20 ° C. in a nitrogen atmosphere to obtain a platinum colloid solution in which platinum fine particles were dispersed in water. . Subsequently, the platinum colloid solution was washed and desalted using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500), and concentrated to obtain a platinum colloid solution (2) having a concentration of 3.0% by weight in terms of platinum metal. When the particle diameter of the obtained Pt colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 1 nm.

[金属粒子調整例3]
Ru粒子分散液の合成
塩化ルテニウム(III)3水和物23.3g(ルテニウム金属換算で9g)を純水16,000gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸3ナトリウム水溶液1,660gと還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液140gとを加え、窒素雰囲気下、20℃で攪拌混合して、水にルテニウム微粒子が分散してなるルテニウムコロイド溶液を得た。ついで、ルテニウムコロイド溶液を限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮し、ルテニウム金属換算で濃度3.0重量%のルテニウムコロイド溶液(3)とした。得られたPtコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は2nmであった。
[Metal Particle Preparation Example 3]
Synthesis of Ru particle dispersion
In a metal salt aqueous solution obtained by dissolving 23.3 g of ruthenium (III) chloride trihydrate (9 g in terms of ruthenium metal) in 16,000 g of pure water, citric acid having a concentration of 5.0% by weight as a complexing stabilizer A ruthenium colloid formed by adding 1,660 g of a trisodium aqueous solution and 140 g of a sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent and stirring and mixing at 20 ° C. in a nitrogen atmosphere to disperse ruthenium fine particles in water. A solution was obtained. Subsequently, the ruthenium colloid solution was washed and desalted using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500) and concentrated to obtain a ruthenium colloid solution (3) having a concentration of 3.0% by weight in terms of ruthenium metal. When the particle diameter of the obtained Pt colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 2 nm.

[金属粒子調整例4]
Rh粒子分散液の合成
塩化ロジウム(III)3水和物23.3g(ロジウム金属換算で9g)を純水100gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸(関東化学製)水溶液50gと、溶剤としてモノエチレングリコール900gを加え、窒素雰囲気下、100℃で6時間攪拌混合して、ロジウム微粒子が分散してなるロジウムコロイド溶液を得た。次いでロジウムコロイド溶液をロータリーエバポレーターで濃縮し、ロジウム金属換算で濃度3.0重量%のロジウムコロイド溶液(4)を得た。得られたロジウムコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は3nmであった。
[Metal Particle Preparation Example 4]
Synthesis of Rh particle dispersion
In a metal salt aqueous solution obtained by dissolving 23.3 g of rhodium (III) chloride trihydrate (9 g in terms of rhodium metal) in 100 g of pure water, citric acid (Kanto) having a concentration of 5.0% by weight as a complexing stabilizer. (Chemical) 50 g of an aqueous solution and 900 g of monoethylene glycol as a solvent were added and stirred and mixed at 100 ° C. for 6 hours in a nitrogen atmosphere to obtain a rhodium colloid solution in which rhodium fine particles were dispersed. Subsequently, the rhodium colloid solution was concentrated by a rotary evaporator to obtain a rhodium colloid solution (4) having a concentration of 3.0% by weight in terms of rhodium metal. When the particle diameter of the obtained rhodium colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 3 nm.

[金属粒子調整例5]
Ag粒子分散液の合成
クエン酸ナトリム水溶液(濃度30質量%)219gに還元剤として硫酸第一鉄122gを溶解させた溶液を調製した。そして、この溶液341gを、硝酸銀水溶液(濃度10質量%)80gに室温で添加し、充分に混合することによりPd粒子の分散液を調製した。限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮しAg換算濃度3%のAgコロイド溶液(5)を得た。得られたAgコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は10nmであった。
[Metal Particle Adjustment Example 5]
Synthesis of Ag particle dispersion
A solution was prepared by dissolving 122 g of ferrous sulfate as a reducing agent in 219 g of a sodium citrate aqueous solution (concentration: 30% by mass). Then, 341 g of this solution was added to 80 g of an aqueous silver nitrate solution (concentration: 10% by mass) at room temperature, and thoroughly mixed to prepare a dispersion of Pd particles. Washing and desalting was carried out using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500), followed by concentration to obtain an Ag colloid solution (5) having an Ag equivalent concentration of 3%. When the particle diameter of the obtained Ag colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 10 nm.

[金属粒子調整例6]
Pt−Rh粒子分散液の合成
塩化ロジウム(III)3水和物23.3g(ロジウム金属換算で9g)と塩化白金酸6水和物25g(白金金属換算で9g)を純水100gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸(関東化学製)水溶液100gと溶剤としてモノエチレングリコール1800gを加え、窒素雰囲気下、100℃で6時間攪拌混合して、白金-ロジウム複合微粒子が分散してなる白金-ロジウムコロイド溶液を得た。次いで白金-ロジウムコロイド溶液をロータリーエバポレーターで濃縮し、白金-ロジウム金属換算で濃度3.0重量%の白金-ロジウムコロイド溶液(6)を得た。得られた白金-ロジウムコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は2nmであった。
[Metal Particle Preparation Example 6]
Synthesis of Pt-Rh particle dispersion
To a metal salt aqueous solution obtained by dissolving 23.3 g of rhodium (III) chloride trihydrate (9 g in terms of rhodium metal) and 25 g of chloroplatinic acid hexahydrate (9 g in terms of platinum metal) in 100 g of pure water, 100 g of citric acid (manufactured by Kanto Chemical) with a concentration of 5.0% by weight as a complexing stabilizer and 1800 g of monoethylene glycol as a solvent are added, and the mixture is stirred and mixed at 100 ° C. for 6 hours in a nitrogen atmosphere. A platinum-rhodium colloidal solution in which was dispersed was obtained. Next, the platinum-rhodium colloid solution was concentrated with a rotary evaporator to obtain a platinum-rhodium colloid solution (6) having a concentration of 3.0% by weight in terms of platinum-rhodium metal. When the particle diameter of the obtained platinum-rhodium colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 2 nm.

[金属粒子調整例7]
Pd−Au粒子分散液の合成
硝酸パラジウム(II)水和物22.5g(パラジウム金属換算で9g)と塩化金(III)酸4水和物18.8g(金金属換算で9g)をそれぞれ純水100gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸(関東化学製)水溶液をそれぞれ50gずつ混合した。溶剤としてモノエチレングリコール1800g中に加え、窒素雰囲気下、100℃で6時間攪拌混合して、パラジウム-金複合微粒子が分散してなるパラジウム-金コロイド溶液を得た。次いでパラジウム-金コロイド溶液をロータリーエバポレーターで濃縮し、パラジウム-金金属換算で濃度3.0重量%のパラジウム-金コロイド溶液(7)を得た。得られた白金-ロジウムコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は2nmであった。
[Metal Particle Preparation Example 7]
Synthesis of Pd-Au particle dispersion
Obtained by dissolving 22.5 g of palladium nitrate (II) hydrate (9 g in terms of palladium metal) and 18.8 g of gold chloride (III) acid tetrahydrate (9 g in terms of gold metal) in 100 g of pure water. 50 g of an aqueous citric acid solution (manufactured by Kanto Chemical Co., Inc.) having a concentration of 5.0% by weight as a complexing stabilizer was mixed with the aqueous metal salt solution. In addition to 1800 g of monoethylene glycol as a solvent, the mixture was stirred and mixed at 100 ° C. for 6 hours in a nitrogen atmosphere to obtain a palladium-gold colloid solution in which palladium-gold composite fine particles were dispersed. Next, the palladium-gold colloid solution was concentrated with a rotary evaporator to obtain a palladium-gold colloid solution (7) having a concentration of 3.0% by weight in terms of palladium-gold metal. When the particle diameter of the obtained platinum-rhodium colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 2 nm.

[金属粒子調整例8]
Pd−Pt粒子分散液の合成
硝酸パラジウム(II)水和物23.3g(パラジウム金属換算で9g)と塩化白金(IV)酸6水和物25g(白金金属換算で9g)をそれぞれ純水100gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸(関東化学製)水溶液100gを添加した。溶剤としてモノエチレングリコール1800g中に金属塩水溶液を加え、窒素雰囲気下、100℃で6時間攪拌混合して、パラジウム-白金複合微粒子が分散してなるパラジウム-白金コロイド溶液を得た。次いでパラジウム-白金コロイド溶液をロータリーエバポレーターで濃縮し、パラジウム-白金金属換算で濃度3.0重量%のパラジウム-白金コロイド溶液(8)を得た。得られたパラジウム-白金コロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は2nmであった。
[Metal Particle Preparation Example 8]
Synthesis of Pd-Pt particle dispersion
Metal salt obtained by dissolving 23.3 g of palladium nitrate (II) hydrate (9 g in terms of palladium metal) and 25 g of platinum chloride (IV) acid hexahydrate (9 g in terms of platinum metal) in 100 g of pure water. To the aqueous solution, 100 g of a citric acid (manufactured by Kanto Chemical) aqueous solution having a concentration of 5.0% by weight was added as a complexing stabilizer. A metal salt aqueous solution was added to 1800 g of monoethylene glycol as a solvent, and the mixture was stirred and mixed at 100 ° C. for 6 hours in a nitrogen atmosphere to obtain a palladium-platinum colloid solution in which palladium-platinum composite fine particles were dispersed. Next, the palladium-platinum colloid solution was concentrated with a rotary evaporator to obtain a palladium-platinum colloid solution (8) having a concentration of 3.0% by weight in terms of palladium-platinum metal. When the particle diameter of the obtained palladium-platinum colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 2 nm.

[金属粒子調整例9]
Pt−Ru粒子分散液の合成
塩化白金(IV)酸6水和物25g(白金金属換算で9g)と塩化ルテニウム(III)3水和物23.3g(ルテニウム金属換算で9g)をそれぞれ純水100gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸(関東化学製)水溶液50gを添加した。溶剤としてモノエチレングリコール1800g中に金属塩溶液を加え、窒素雰囲気下、100℃で6時間攪拌混合して、白金-ルテニウム混合微粒子が分散してなる、白金-ルテニウムコロイド溶液を得た。次いで、白金-ルテニウムコロイド溶液をロータリーエバポレーターで濃縮し、白金-ルテニウム金属換算で濃度3.0重量%の白金-ルテニウムコロイド溶液(9)を得た。得られた白金-ルテニウムコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は2nmであった。
[Metal Particle Preparation Example 9]
Synthesis of Pt-Ru particle dispersion
Metal obtained by dissolving 25 g of platinum (IV) chloride hexahydrate (9 g in terms of platinum metal) and 23.3 g of ruthenium (III) chloride trihydrate (9 g in terms of ruthenium metal) in 100 g of pure water. To the salt aqueous solution, 50 g of citric acid (manufactured by Kanto Chemical) aqueous solution having a concentration of 5.0% by weight was added as a complexing stabilizer. A metal salt solution was added to 1800 g of monoethylene glycol as a solvent, and the mixture was stirred and mixed at 100 ° C. for 6 hours in a nitrogen atmosphere to obtain a platinum-ruthenium colloidal solution in which platinum-ruthenium mixed fine particles were dispersed. Subsequently, the platinum-ruthenium colloid solution was concentrated by a rotary evaporator to obtain a platinum-ruthenium colloid solution (9) having a concentration of 3.0% by weight in terms of platinum-ruthenium metal. When the particle diameter of the obtained platinum-ruthenium colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 2 nm.

[金属粒子調整例10]
Pd-Cu粒子分散液の合成
クエン酸水溶液(濃度30質量%)219gに還元剤として硫酸第一鉄122gを溶解させた溶液を調製した。そして、この溶液341gを、硝酸パラジウム水溶液(濃度20質量%)39gに室温で添加し、次いで硝酸銅水溶液(濃度20%)を10g充分に混合することによりPd粒子の分散液を調製した。限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮しPd−Cu換算濃度3%(Pd/(Pd+Cu)×100=80%)のPd−Cuコロイド溶液(10)を得た。得られたPd-Cuコロイド溶液の粒子径は、走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は3nmであった。
[Metal Particle Adjustment Example 10]
Synthesis of Pd-Cu particle dispersion
A solution was prepared by dissolving 122 g of ferrous sulfate as a reducing agent in 219 g of an aqueous citric acid solution (concentration: 30% by mass). Then, 341 g of this solution was added to 39 g of an aqueous palladium nitrate solution (concentration 20% by mass) at room temperature, and then 10 g of an aqueous copper nitrate solution (concentration 20%) was sufficiently mixed to prepare a dispersion of Pd particles. Washed and desalted using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500), concentrated and concentrated to a Pd—Cu colloidal solution of 10% Pd—Cu concentration (Pd / (Pd + Cu) × 100 = 80%) (10 ) The particle diameter of the obtained Pd—Cu colloidal solution was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), and the average particle diameter was 3 nm.

[金属粒子調整例11]
40nmのPd粒子分散液の合成
クエン酸水溶液(濃度30質量%)219gに還元剤として硫酸第一鉄122gを溶解させた溶液を調製した。そして、この溶液341gを、硝酸パラジウム水溶液(濃度20質量%)39gに室温で添加し、充分に混合することによりPd粒子の分散液を調製した。限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮しPd換算濃度3%のPdコロイド溶液(11)を得た。その後この粒子を200℃にて1時間水熱処理を行い、スギノマシン製アルチマイザーシステムを用いて分散させ3%Pdコロイドを得た。得られたPdコロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製、S−5500)で測定したところ平均粒子径は40nmであった。
[Metal Particle Preparation Example 11]
Synthesis of 40 nm Pd particle dispersion
A solution was prepared by dissolving 122 g of ferrous sulfate as a reducing agent in 219 g of an aqueous citric acid solution (concentration: 30% by mass). Then, 341 g of this solution was added to 39 g of an aqueous palladium nitrate solution (concentration 20% by mass) at room temperature, and thoroughly mixed to prepare a dispersion of Pd particles. Washing and desalting was performed using an ultrafilter (manufactured by ADVANTEC, Ultrafilter Q0500), followed by concentration to obtain a Pd colloid solution (11) having a Pd equivalent concentration of 3%. Thereafter, the particles were hydrothermally treated at 200 ° C. for 1 hour, and dispersed using a Sugino Machine Ultimizer system to obtain a 3% Pd colloid. When the particle diameter of the obtained Pd colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5500), the average particle diameter was 40 nm.

[実施例1]
担体物質調製例Aで調製したシリカの第1の懸濁液(A)500gに金属イオン源としてCuイオン濃度が5質量%の硝酸銅(II)水溶液を60g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。このときのpHは2.5であった。次いで、3%のPdコロイド溶液(1)900kgを添加し、10分間、混合攪拌した。Pd粒子添加後の混合懸濁液(前駆体分散液)のpHは6.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 1]
60 g of a copper nitrate (II) aqueous solution having a Cu ion concentration of 5% by mass as a metal ion source was added to 500 g of the first suspension (A) of silica prepared in Support Material Preparation Example A, and the mixture was heated at 20 ° C. for 40 minutes. Stir to prepare a mixed suspension (suspension A). The pH at this time was 2.5. Next, 900 kg of 3% Pd colloidal solution (1) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pd particles was 6.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
This metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例2]
担体物質調製例Bで調製したATOの第1の懸濁液(B)2000gに金属イオン源としてNiイオン濃度が5質量%の硝酸ニッケル(II)水溶液を100g添加して、20℃で40分間攪拌した(懸濁液A)。3%のPtコロイド溶液(2)40kgを添加し、10分間、混合攪拌した。Pt粒子添加後の混合懸濁液(前駆体分散液)のpHは7.2であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pt粒子担持ATO触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 2]
100 g of a nickel nitrate (II) aqueous solution having a Ni ion concentration of 5% by mass as a metal ion source was added to 2000 g of the first suspension (B) of ATO prepared in Carrier Material Preparation Example B, and the mixture was heated at 20 ° C. for 40 minutes. Stir (suspension A). 40 kg of 3% Pt colloidal solution (2) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pt particles was 7.2. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
This metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pt particle-supported ATO catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例3]
合成例Cで調製したITOの第1の懸濁液(B)2000gに金属イオン源としてFeイオン濃度が5質量%の硫酸鉄(II)水溶液を80g添加して、20℃で40分間攪拌した(懸濁液A)。その後3%のRuコロイド溶液(3)83.3kgを添加し、10分間、混合攪拌した。Ru粒子添加後の混合懸濁液(前駆体分散液)のpHは7.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Ru粒子担持ITO触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 3]
80 g of an iron (II) sulfate aqueous solution having a Fe ion concentration of 5% by mass as a metal ion source was added to 2000 g of the first ITO suspension (B) prepared in Synthesis Example C and stirred at 20 ° C. for 40 minutes. (Suspension A). Thereafter, 83.3 kg of a 3% Ru colloid solution (3) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Ru particles was 7.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
The metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Ru particle-supported ITO catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例4]
担体物質調製例Dで調製したPTOの第1の懸濁液(D)1000gに金属イオン源としてPdイオン濃度が5質量%の硝酸パラジウム(II)水溶液を140g添加して、20℃で40分間攪拌した(懸濁液A)。3%のRhコロイド溶液(4)100kgを添加し、10分間、混合攪拌した。Rh粒子添加後の混合懸濁液(前駆体分散液)のpHは7.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持分散液を得た。
この混合懸濁液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Rh粒子担持活性PTO触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 4]
140 g of a palladium (II) nitrate aqueous solution having a Pd ion concentration of 5% by mass as a metal ion source was added to 1000 g of the first suspension (D) of PTO prepared in Carrier Material Preparation Example D, and the mixture was heated at 20 ° C. for 40 minutes. Stir (suspension A). 100 kg of 3% Rh colloid solution (4) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Rh particles was 7.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported dispersion.
The mixed suspension was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain an Rh particle-supporting active PTO catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例5]
担体物質調製例Eで調製したSb5の第1の懸濁液(E)2000gに金属イオン源としてAuイオン濃度が5質量%の塩化金酸(III)水溶液を100g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。その後3%のAgコロイド溶液(5)26.7kgを添加し、10分間、混合攪拌した。Ag粒子添加後の混合懸濁液(前駆体分散液)のpHは6.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持分散液を得た。
この金属流体担持分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Ag粒子担持Sb5触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 5]
100 g of an aqueous solution of chloroauric acid (III) having an Au ion concentration of 5% by mass as a metal ion source was added to 2000 g of the first suspension (E) of Sb 2 O 5 prepared in Carrier Material Preparation Example E, and 20 Stir at 40 ° C. for 40 minutes to prepare a mixed suspension (suspension A). Thereafter, 26.7 kg of 3% Ag colloidal solution (5) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after addition of Ag particles was 6.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported dispersion.
The metal fluid-supported dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain an Ag particle-supported Sb 2 O 5 catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

参考例6]
担体物質調製例Fで調製したSnOの第1の懸濁液(F)2000gに金属イオン源としてAgイオン濃度が5質量%の硝酸銀(I)水溶液を40g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。その後3%のPt−Rhコロイド溶液(6)3.3kgを添加し、10分間、混合攪拌した。Pt−Rh粒子添加後の混合懸濁液(前駆体分散液)のpHは6.8であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pt−Rh粒子担持活性SnO触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[ Reference Example 6]
40 g of an aqueous silver (I) nitrate solution having an Ag ion concentration of 5% by mass as a metal ion source was added to 2000 g of the first suspension (F) of SnO 2 prepared in Carrier Material Preparation Example F, and the mixture was stirred at 20 ° C. for 40 minutes. Stir to prepare a mixed suspension (suspension A). Thereafter, 3.3 kg of a 3% Pt—Rh colloidal solution (6) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pt—Rh particles was 6.8. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
This metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pt—Rh particle-supported active SnO 2 catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例7]
担体物質調製例Gで調製したAlの第1の懸濁液(G)10000gに金属イオン源としてPtイオン濃度が5質量%の塩化白金酸(IV)水溶液を60g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。次いで3%のPd−Auコロイド溶液(7)10.0kgを添加し、10分間、混合攪拌した。Pd−Au粒子添加後の混合懸濁液(前駆体分散液)のpHは6.8であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd−Au粒子担持活性アルミナ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 7]
60 g of a chloroplatinic acid (IV) aqueous solution having a Pt ion concentration of 5% by mass as a metal ion source was added to 10000 g of the first suspension (G) of Al 2 O 3 prepared in Carrier Material Preparation Example G, and 20 Stir at 40 ° C. for 40 minutes to prepare a mixed suspension (suspension A). Next, 10.0 kg of a 3% Pd—Au colloidal solution (7) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pd—Au particles was 6.8. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
The metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd—Au particle-supported active alumina catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例8]
担体物質調製例Hで調製したγ-アルミナの第1の懸濁液(H)1000gに金属イオン源としてAuイオン濃度が5質量%の塩化金酸(III)水溶液を120g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。次いで3%のPd−Ptコロイド溶液(8)6.7kgを添加し、10分間、混合攪拌した。Pd−Pt粒子添加後の混合懸濁液(前駆体分散液)のpHは6.3であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持分散液を得た。
この金属粒子担持分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd−Pt粒子担持活性アルミナ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 8]
120 g of an aqueous solution of chloroauric acid (III) having an Au ion concentration of 5% by mass as a metal ion source was added to 1000 g of the first suspension (H) of γ-alumina prepared in Support Material Preparation Example H, At 40 minutes to prepare a mixed suspension (suspension A). Next, 6.7 kg of a 3% Pd—Pt colloidal solution (8) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pd—Pt particles was 6.3. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported dispersion.
The metal particle-supported dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd—Pt particle-supported active alumina catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例9]
担体物質調製例Iで調製したカーボンブラックの第1の懸濁液(I)2000gに金属イオン源としてCoイオン濃度が5質量%の塩化コバルト(II)水溶液を200g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。次いで3%のPt−Ruコロイド溶液(9)26.7kgを添加し、10分間、混合攪拌した。Pt−Ru粒子添加後の混合懸濁液(前駆体分散液)のpHは6.2であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pt−Ru粒子担持カーボンブラック触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 9]
200 g of an aqueous cobalt (II) chloride solution having a Co ion concentration of 5% by mass as a metal ion source was added to 2000 g of the first carbon black suspension (I) prepared in Support Material Preparation Example I, Stir for minutes to prepare a mixed suspension (Suspension A). Next, 26.7 kg of 3% Pt-Ru colloidal solution (9) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pt-Ru particles was 6.2. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported dispersion.
The metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pt—Ru particle-supported carbon black catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[実施例10]
担体物質調製例Aで調製したシリカの第1の懸濁液(A)500gに金属イオン源としてCuイオン濃度が5質量%の硝酸銅(II)水溶液を4g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。次いで3%のPd-Cuコロイド溶液(10)900kgを添加し、10分間、混合攪拌した。Pd-Cu粒子添加後の混合懸濁液(前駆体分散液)のpHは6.3であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd-Cu粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Example 10]
4 g of an aqueous copper (II) nitrate solution having a Cu ion concentration of 5 mass% was added as a metal ion source to 500 g of the first suspension (A) of silica prepared in Support Material Preparation Example A, and the mixture was added at 20 ° C. for 40 minutes. Stir to prepare a mixed suspension (suspension A). Next, 900 kg of a 3% Pd—Cu colloidal solution (10) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pd—Cu particles was 6.3. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
This metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd—Cu particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[比較例1]
担体物質調製例Aで調製したシリカの第1の懸濁液(A)500gに金属イオン源としてCuイオン濃度が5質量%の硝酸銅(II)水溶液を60g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。このときのpHは2.5であった。次いで、3%のPdコロイド溶液(11)900kgを添加し、10分間、混合攪拌した。Pd粒子添加後の混合懸濁液(前駆体分散液)のpHは6.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Comparative Example 1]
60 g of a copper nitrate (II) aqueous solution having a Cu ion concentration of 5% by mass as a metal ion source was added to 500 g of the first suspension (A) of silica prepared in Support Material Preparation Example A, and the mixture was heated at 20 ° C. for 40 minutes. Stir to prepare a mixed suspension (suspension A). The pH at this time was 2.5. Next, 900 kg of 3% Pd colloidal solution (11) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pd particles was 6.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
This metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[比較例2]
担体物質調製例Aで調製したシリカの第1の懸濁液(A)500gに3%のPdコロイド溶液(1)900kgを添加し、10分間、混合攪拌した(懸濁液A)。Pd粒子添加後の混合懸濁液のpHは6.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い金属粒子担持触媒分散液を得た。
この金属粒子担持触媒分散を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Comparative Example 2]
900 kg of a 3% Pd colloid solution (1) was added to 500 g of the first suspension (A) of silica prepared in Carrier Material Preparation Example A, and mixed and stirred for 10 minutes (Suspension A). The pH of the mixed suspension after addition of Pd particles was 6.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
The metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[比較例3]
担体物質調製例Aで調製したシリカの第1の懸濁液(A)500gに金属イオン源としてCuイオン濃度が5質量%の硝酸銅(II)水溶液を10000g添加して、20℃で40分間攪拌し、混合懸濁液(懸濁液A)を調製した。このときのpHは2.5であった。次いで、3%のPdコロイド溶液(1)900kgを添加し、10分間、混合攪拌した。Pd粒子添加後の混合懸濁液(前駆体分散液)のpHは6.5であった。その後両性イオン交換樹脂(三菱化学株式会社製、商品名SMNUPB)を用いて脱塩を行い、金属粒子担持触媒分散を得た。
この金属粒子担持触媒分散を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Comparative Example 3]
10000 g of a copper nitrate (II) aqueous solution having a Cu ion concentration of 5% by mass as a metal ion source was added to 500 g of the first suspension (A) of silica prepared in Support Material Preparation Example A, and the mixture was added at 20 ° C. for 40 minutes. Stir to prepare a mixed suspension (suspension A). The pH at this time was 2.5. Next, 900 kg of 3% Pd colloidal solution (1) was added and mixed and stirred for 10 minutes. The pH of the mixed suspension (precursor dispersion) after the addition of Pd particles was 6.5. Thereafter, desalting was performed using an amphoteric ion exchange resin (trade name SMNUPB, manufactured by Mitsubishi Chemical Corporation) to obtain a metal particle-supported catalyst dispersion.
The metal particle-supported catalyst dispersion was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[比較例4]
特開平11−12608の実施例1に準じた方法でPdを用いて行った。
[TiO-Pd](核)-Pt(表面層)複合微粒子の製造TiOコロイド溶液(触媒化成工業(株)製:PW−1010、固形分濃度20重量%)0.8gとポリビニルピロリドン0.03gとを混合した後、水・エチレングリコール・エタノール(重量比=1:1:1)混合溶媒150mlと混合し、TiO微粒子が0.2mmol分散した分散液を調製した。純水10gに、予めクエン酸3ナトリウム2mg[Pd金属換算で1重量部あたり0.01重量部]を溶解し、硝酸パラジウム2mmolを含む水溶液を5ml加え、さらに硝酸パラジウムと等モル数の硫酸第一鉄水溶液を5ml添加した。上記の分散液との硝酸パラジウム溶液を混合し、窒素雰囲気下で一時間攪拌してPdで被覆されたTiO微粒子を製造し、メンブランフィルターで洗浄したのち、固形分濃度20重量%のPd被覆TiO微粒子分散液を調製した。上記の分散液1.86gとポリビニルピロリドン0.07gとを混合したのち、水・エチレングリコール・エタノール(1:1:1)混合溶媒150mlと混合し、攪拌しながら2時間水素ガスを吹き込み、Pd被覆TiO微粒子上に、水素の吸着を行った。水素が吸着したPd被覆TiO微粒子分散液に、塩化白金酸カリウム4mmolの水溶液100mlを、窒素雰囲気下で攪拌しながら、6時間かけて滴下した後、8時間攪拌を続け、Pd被覆TiO微粒子上にPd表面層が形成された複合微粒子を製造した。この混合懸濁液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Comparative Example 4]
This was performed using Pd by a method according to Example 1 of JP-A-11-12608.
Manufacture of [TiO 2 -Pd] (nucleus) -Pt (surface layer) composite fine particles TiO 2 colloid solution (catalyst chemical industry Co., Ltd .: PW-1010, solid content concentration 20 wt%) 0.8 g and polyvinylpyrrolidone 0 0.03 g was mixed, and then mixed with 150 ml of a mixed solvent of water, ethylene glycol and ethanol (weight ratio = 1: 1: 1) to prepare a dispersion liquid in which 0.2 mmol of TiO 2 fine particles were dispersed. In 10 g of pure water, 2 mg of trisodium citrate [0.01 parts by weight in terms of Pd metal] is dissolved in advance, and 5 ml of an aqueous solution containing 2 mmol of palladium nitrate is added. 5 ml of a ferrous iron solution was added. A palladium nitrate solution with the above dispersion is mixed, stirred for 1 hour in a nitrogen atmosphere to produce TiO 2 fine particles coated with Pd, washed with a membrane filter, and then coated with Pd with a solid concentration of 20% by weight. A TiO 2 fine particle dispersion was prepared. After mixing 1.86 g of the above dispersion and 0.07 g of polyvinylpyrrolidone, the mixture was mixed with 150 ml of a mixed solvent of water, ethylene glycol and ethanol (1: 1: 1), and hydrogen gas was blown in for 2 hours while stirring. Hydrogen was adsorbed on the coated TiO 2 fine particles. An aqueous solution of 4 mmol of potassium chloroplatinate was added dropwise to a Pd-coated TiO 2 fine particle dispersion adsorbed with hydrogen over 6 hours while stirring in a nitrogen atmosphere, and then stirred for 8 hours to obtain Pd-coated TiO 2 fine particles. Composite fine particles having a Pd surface layer formed thereon were produced. This mixed suspension was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

[比較例5]
特開2008-3111141の実施例に準じ、金属種をPdに変更した以外は同等な方法で行った。シリカ粒子(日揮触媒化成工業(株)製:真絲球、均粒子径300nm、CV値1.0%)10gを水/エタノール(50/50)混合溶媒90gに分散させた。この分散液にγ−アミノプロピルトリエトキシシラン2gを添加し、1時間攪拌した後、オートクレーブにて80℃で2時間撹拌処理してアミノ基含有シラン化合物で表面処理された金属酸化物粒子(A-1)分散液を調製した。3%のPdコロイド溶液(1)2kgを混合し、1時間撹拌して複合粒子分散液を調製した。この混合懸濁液を窒素雰囲気中にて、温度105℃で24時間乾燥させることにより、Pd粒子担持シリカ触媒を得た。製造条件および当該触媒の評価を(表1、表2)に示した。
[Comparative Example 5]
According to the example of JP 2008-311141 A, an equivalent method was performed except that the metal species was changed to Pd. 10 g of silica particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: true sphere, average particle diameter 300 nm, CV value 1.0%) were dispersed in 90 g of a water / ethanol (50/50) mixed solvent. 2 g of γ-aminopropyltriethoxysilane was added to this dispersion, and the mixture was stirred for 1 hour, and then stirred at 80 ° C. for 2 hours in an autoclave and surface-treated with an amino group-containing silane compound (A -1) A dispersion was prepared. 2 kg of 3% Pd colloid solution (1) was mixed and stirred for 1 hour to prepare a composite particle dispersion. This mixed suspension was dried in a nitrogen atmosphere at a temperature of 105 ° C. for 24 hours to obtain a Pd particle-supported silica catalyst. Production conditions and evaluation of the catalyst are shown in Tables 1 and 2.

(表1)

Figure 0005539091
(Table 1)
Figure 0005539091

(表2)

Figure 0005539091
(Table 2)
Figure 0005539091

(表1、表2)に示した[実施例1〜5、7〜10]の結果によれば、担体物質に金属イオンを担持してから(工程[1])、金属微粒子担持を行い(工程[2])、しかる後、脱塩を行う(工程[3])ことで、担体物質の種類に係らず、高分散で担持されていない金属粒子がなく、被覆されていない担体部分のない金属微粒子担持触媒が得られている。 According to the results of [Examples 1 to 5, 7 to 10] shown in (Tables 1 and 2), after supporting metal ions on the carrier material (step [1]), metal fine particles are supported ( Step [2]), followed by desalting (Step [3]), there is no highly dispersed and unsupported metal particles, and there is no uncoated carrier part, regardless of the type of carrier material. A metal fine particle supported catalyst has been obtained.

これに対して金属粒子が大きなものを用いた[比較例1]では、担持されていない金属粒子があり、被覆されていない担体部分が存在し、粒子径が大きな粒子を用いると完全被覆が困難であることが分かる。   On the other hand, in [Comparative Example 1] using large metal particles, there are unsupported metal particles, there are uncoated carrier parts, and complete coating is difficult when particles having a large particle diameter are used. It turns out that it is.

また金属イオンの担持を行わず、工程[1]を設けていない[比較例2]では担持されていない金属粒子が存在する。これは、担体表面のイオン交換サイトに金属イオンが存在しないため、静電引力による相互作用が小さく、その結果担持されていない金属粒子が多く存在するためであると考えられる。   In addition, there are metal particles that are not supported in [Comparative Example 2] in which the metal ion is not supported and the step [1] is not provided. This is presumably because there are no metal ions at the ion exchange site on the surface of the carrier, so that the interaction due to electrostatic attraction is small, and as a result there are many unsupported metal particles.

金属イオンを多量に工程[1]で使用した[比較例3]でも担持されていない金属粒子や担体表面に担持されていない部分が存在する。これは、担体表面に吸着していない過剰な金属イオンが存在し、その結果金属粒子が凝集し、担体表面に吸着しなかったため単独で存在するためであると推察する。   Even in [Comparative Example 3] in which a large amount of metal ions are used in step [1], there are metal particles that are not supported and portions that are not supported on the surface of the carrier. This is presumed to be due to the presence of excess metal ions that are not adsorbed on the surface of the carrier, and as a result, the metal particles aggregate and are not adsorbed on the surface of the carrier.

次いで触媒活性の違いについて考察する。アセチレンの水素化反応については、金属粒子としてPdもしくはPdの複合金属を担持した[実施例1、7〜8、10]、[比較例1〜5]について行った。また硝酸イオンの分解については金属粒子としてPd、Pd−Cuを担持した[実施例1、8、10]、[比較例1〜3]について行った。   Next, the difference in catalyst activity will be considered. About the hydrogenation reaction of acetylene, it carried out about [Example 1, 7-8, 10] and [Comparative Examples 1-5] which carry | supported the composite metal of Pd or Pd as a metal particle. The decomposition of nitrate ions was carried out for [Examples 1, 8, 10] and [Comparative Examples 1 to 3] carrying Pd and Pd—Cu as metal particles.

アセチレンの水素化反応について見ると、各実施例におけるエチレン、エタンの生成率は75〜90%の範囲である一方、各比較例では20〜60%の範囲となり、実施例の方が高い水素化活性を示した。特に金属粒子の担持状態が良好な[比較例4、5]よりも各実施例の方が高い水素化活性を示していることから、これら実施例の触媒活性は、金属粒子の担持分散状態のみならず、担体物質上に金属イオン及び金属粒子が担持されていることによる相乗効果により活性の向上をもたらしているものと考えられる。   Looking at the hydrogenation reaction of acetylene, the production rate of ethylene and ethane in each example is in the range of 75 to 90%, while in each comparative example is in the range of 20 to 60%. Showed activity. In particular, since each example shows higher hydrogenation activity than [Comparative Examples 4 and 5] in which the supported state of the metal particles is good, the catalytic activity of these examples is only the supported and dispersed state of the metal particles. In other words, it is considered that the activity is improved by a synergistic effect due to the metal ions and the metal particles being supported on the support material.

各触媒に担持した金属粒子及び金属イオンの組成分析は、金属粒子の担持触媒の溶解液をプラズマ発光分光分析にかけて行っていることから、前記触媒上の金属イオンの担持状態を特定するものではない。しかしながら、1)いずれもイオン交換体として作用する担体物質を利用していること、2)工程[3]にて担体物質に担持されなかったな余剰な金属イオンを脱塩していること、3)不活性雰囲気(窒素雰囲気)下で105℃という比較的低温の条件下で乾燥処理を行い、金属イオンの酸化や還元を進行させる可能性が低いこと、などから、当該金属粒子担持触媒上において金属イオンは担体物質のイオン交換サイトにイオン交換された状態で担持されている可能性が高い。   The composition analysis of the metal particles and metal ions supported on each catalyst is performed by subjecting the solution of the metal particle-supported catalyst to plasma emission spectroscopic analysis, and thus does not specify the state of metal ion support on the catalyst. . However, 1) all use a carrier material that acts as an ion exchanger, 2) desalting excess metal ions not supported on the carrier material in step [3], 3 ) Since the drying process is performed under a relatively low temperature of 105 ° C. under an inert atmosphere (nitrogen atmosphere) and the possibility of advancing the oxidation and reduction of metal ions is low, There is a high possibility that the metal ions are supported in an ion exchanged state on the ion exchange site of the support material.

ただしイオン交換サイトにてイオン交換された金属イオンと共に、当該金属イオンに由来する酸化物や担体金属、金属塩が存在しても本金属粒子担持触媒の活性を妨げるものではない。また仮に、実際には金属イオンが担体物質のイオン交換サイトにイオン交換された状態で担持されているのではないことが確認されたとしても、工程[1]〜工程[3]を経て製造した実施例に係る金属粒子担持触媒の活性が比較例に比べて高いことは明らかである。またこの傾向は、活性金属(金属粒子)の選択に依存するものではなく、活性試験を行っていない[実施例2〜、9]においても同様と考えられる。


However, the presence of oxides, carrier metals, and metal salts derived from the metal ions ion-exchanged at the ion exchange site does not hinder the activity of the metal particle-supported catalyst. Moreover, even if it is confirmed that the metal ions are not actually supported in the ion exchange site of the carrier material in the state of being ion exchanged, the metal ions are manufactured through the steps [1] to [3]. It is clear that the activity of the metal particle-supported catalyst according to the example is higher than that of the comparative example. Further, this tendency does not depend on the selection of the active metal (metal particles), and is considered to be the same in [Examples 2 to 5 , 9] in which the activity test is not performed.


さらに硝酸イオンの分解試験においても各実施例における硝酸イオンの分解率は90〜98%の範囲である一方、各比較例では25〜55%の範囲となり、実施例の方が高い分解活性を示している。したがって、金属粒子の分散状態がよく、担体物質上に金属粒子と金属イオンとが担持されていることによる相乗効果が発揮されることによる活性の向上は、アセチレンの水素化のみならず他の反応においても発揮されることが確認できた。   Further, in the decomposition test of nitrate ions, the decomposition rate of nitrate ions in each example is in the range of 90 to 98%, while in each comparative example, it is in the range of 25 to 55%, and the examples show higher decomposition activity. ing. Therefore, the dispersion of the metal particles is good, and the synergistic effect due to the support of the metal particles and the metal ions on the support material is exerted to improve the activity of not only the hydrogenation of acetylene but also other reactions. It was confirmed that it was also demonstrated in

電気的特性においても各実施例における固有抵抗値は0.01〜1.2[Ω・cm]の範囲である一方、各比較例では25.8〜3500[Ω・cm]の範囲となり、実施例の方が高い導電性を示している。したがって、金属粒子の分散状態がよく、高分子などの影響も少なくこの点からも、電気的特性の向上、触媒活性の向上、ガス吸着量の向上が示唆され他の反応においても発揮されることが確認できた。   In terms of electrical characteristics, the specific resistance value in each example is in the range of 0.01 to 1.2 [Ω · cm], while in each comparative example, the range is 25.8 to 3500 [Ω · cm]. The example shows higher conductivity. Therefore, the dispersion state of the metal particles is good, and there is little influence of polymer etc. From this point, improvement of electrical characteristics, improvement of catalytic activity, improvement of gas adsorption amount is suggested and it can be demonstrated in other reactions. Was confirmed.

Claims (9)

次の[1]〜[4]の工程を含むことを特徴とする金属粒子担持触媒の製造方法。
[1]イオン交換体を含む担体物質(但し、一次粒子の平均粒子径が1〜500nm)を溶媒に分散させた第1の懸濁液に、次の(Ia)〜(Ic)から選ばれる1種以上の金属イオンを、担体物質100質量部に対して金属元素換算で0.1〜100質量部の割合で添加し、該金属イオンを担体物質に担持し、懸濁液Aを調製する工程。
(Ia)第4周期遷移金属元素から選ばれる金属イオン
(Ib)第5周期遷移金属元素から選ばれる金属イオン
(Ic)白金イオンまたは金イオン
[2]前記工程[1]に続いて、前記懸濁液Aを15〜40℃に温度調整しながら下記(IIa)〜(IId)から選ばれる平均粒子径1〜20nmの金属粒子を、前記担体物質100質量部に対して200〜100000質量部添加し、混合して、金属粒子担持触媒の前駆体分散液を調製する工程。
(IIa)第4周期遷移金属元素から選ばれる金属粒子
(IIb)第5周期遷移金属元素から選ばれる金属粒子
(IIc)白金粒子または金粒子
(IId)(IIa)〜(IIc)から選ばれる少なくとも2種以上の金属が複合してなる金属粒子
[3]前記工程[2]に続いて、前記担体物質に担持されなかった金属イオンを取り除くために、前記金属粒子担持触媒の前駆体分散液を脱塩して金属粒子担持触媒分散液を得る工程。
[4]前記工程[3]で得られた金属粒子担持触媒分散液を温度100〜200℃で乾燥処理し、厚さ1〜50nmの金属粒子の被覆層が形成された金属粒子担持触媒を得る工程。
The manufacturing method of the metal particle supported catalyst characterized by including the process of following [1]-[4].
[1] The following (Ia) to (Ic) are selected from the following (Ia) to (Ic) for a first suspension in which a carrier material containing an ion exchanger (where the average particle size of primary particles is 1 to 500 nm) is dispersed in a solvent. One or more kinds of metal ions are added at a ratio of 0.1 to 100 parts by mass in terms of metal elements with respect to 100 parts by mass of the carrier substance, and the metal ions are supported on the carrier substance to prepare a suspension A. Process.
(Ia) Metal ion selected from the fourth period transition metal element (Ib) Metal ion selected from the fifth period transition metal element (Ic) Platinum ion or gold ion [2] Following the step [1], the suspension While adjusting the temperature of the suspension A to 15 to 40 ° C., 200 to 100000 parts by mass of metal particles having an average particle diameter of 1 to 20 nm selected from the following (IIa) to (IId) are added to 100 parts by mass of the carrier substance. And mixing to prepare a precursor dispersion of the metal particle-supported catalyst.
(IIa) Metal particles selected from fourth period transition metal elements (IIb) Metal particles selected from fifth period transition metal elements (IIc) Platinum particles or gold particles (IId) At least selected from (IIa) to (IIc) Metal particles formed by combining two or more metals [3] Subsequent to the step [2], in order to remove metal ions not supported on the support material, a precursor dispersion of the metal particle-supported catalyst is used. A step of obtaining a metal particle-supported catalyst dispersion by desalting.
[4] The metal particle-supported catalyst dispersion obtained in the step [3] is dried at a temperature of 100 to 200 ° C. to obtain a metal particle-supported catalyst having a coating layer of metal particles having a thickness of 1 to 50 nm. Process.
前記工程[3]にて脱塩処理を行った後の前記担体物質に対する金属イオンの量が、担体物質100質量部に対して0.001〜10質量部であることを特徴とする請求項1に記載の金属粒子担持触媒の製造方法。   The amount of metal ions with respect to the carrier material after the desalting treatment in the step [3] is 0.001 to 10 parts by mass with respect to 100 parts by mass of the carrier material. A process for producing a metal particle-supported catalyst according to claim 1. 前記工程[1]にて、前記担体物質に担持された金属イオンの質量と、前記工程[2]にて懸濁液Aに添加される金属粒子の質量との関係を、下記式(1)で表したときの式の値が0.0001〜0.005の範囲であることを特徴とする請求項1または2に記載の金属粒子担持触媒の製造方法。
金属イオンの質量/(金属イオンの質量+金属粒子の質量)…(1)
In the step [1], the relationship between the mass of the metal ions supported on the carrier substance and the mass of the metal particles added to the suspension A in the step [2] is expressed by the following formula (1). The method for producing a metal particle-supported catalyst according to claim 1, wherein the value of the formula expressed by the formula is in the range of 0.0001 to 0.005.
Mass of metal ion / (mass of metal ion + mass of metal particle) (1)
前記工程[4]の乾燥処理を不活性雰囲気下で行うことを特徴とする請求項1ないし3のいずれか一つに記載の金属粒子担持触媒の製造方法。   The method for producing a metal particle-supported catalyst according to any one of claims 1 to 3, wherein the drying treatment in the step [4] is performed in an inert atmosphere. 前記第4周期遷移金属元素が、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群より選ばれる元素であり、前記第5周期遷移金属元素が、Zr、Nb、Mo、Tc、Ru、Rh、PdおよびAgからなる群より選ばれる元素であることを特徴とする請求項1ないし4のいずれか一つに記載の金属粒子担持触媒の製造方法The fourth period transition metal element is an element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, and the fifth period transition metal element is Zr, Nb, Mo, Tc. , Ru, Rh, method of producing metal particles supported catalyst according to any one of claims 1 to 4, characterized in that an element selected from the group consisting of P d and Ag. 前記金属粒子担持触媒に含まれる金属粒子の割合が40〜99.9質量%であることを特徴とする請求項1ないし5のいずれか一つに記載の金属粒子担持触媒の製造方法The method for producing a metal particle-supported catalyst according to any one of claims 1 to 5, wherein a ratio of the metal particles contained in the metal particle-supported catalyst is 40 to 99.9 mass%. 前記担体物質が、無機系担体物質または有機系担体物質から選ばれるものであり、当該無機系担体物質または有機系担体物質は、Si、Al、C、Ti、ZrおよびCeからなる群より選ばれる少なくとも1種以上の元素を含有するものであることを特徴とする請求項ないしのいずれか一つに記載の金属粒子担持触媒の製造方法The carrier material is selected from an inorganic carrier material or an organic carrier material, and the inorganic carrier material or the organic carrier material is selected from the group consisting of Si, Al, C, Ti, Zr and Ce. The method for producing a metal particle-supported catalyst according to any one of claims 1 to 6 , wherein the method contains at least one element. 前記担体物質が、酸化錫、アンチモンドープ酸化錫(ATO)、酸化錫ドープ酸化インジウム(ITO)、五酸化アンチモン、ケイタングステン酸、リンドープ酸化錫(PTO)、アルミドープ酸化亜鉛(AZO)、からなる1種以上の化合物を含有するものであることを特徴とする請求項ないしのいずれかひとつに記載の金属粒子担持触媒の製造方法The carrier material is composed of tin oxide, antimony-doped tin oxide (ATO), tin oxide-doped indium oxide (ITO), antimony pentoxide, silicotungstic acid, phosphorus-doped tin oxide (PTO), and aluminum-doped zinc oxide (AZO). The method for producing a metal particle-supported catalyst according to any one of claims 1 to 7 , wherein the method comprises one or more compounds. 請求項1ないしのいずれか一つに記載の製造方法で製造されてなり、前記金属粒子がRu、Rh、Pd、Ag、Pt及びAuからなる群より選ばれる元素を含み、不飽和炭化水素の水素化反応用、又は、硝酸類の水素化分解反応用に用いられることを特徴とする金属粒子担持触媒。 Ri Na is manufactured by the method according to any one of claims 1 to 8, comprising an element wherein the metal particles are Ru, Rh, Pd, Ag, selected from the group consisting of Pt and Au, unsaturated hydrocarbons A metal particle-supported catalyst used for hydrogenation reaction of hydrogen or for hydrocracking reaction of nitric acids .
JP2010169616A 2010-07-28 2010-07-28 Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. Active JP5539091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169616A JP5539091B2 (en) 2010-07-28 2010-07-28 Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169616A JP5539091B2 (en) 2010-07-28 2010-07-28 Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.

Publications (2)

Publication Number Publication Date
JP2012030149A JP2012030149A (en) 2012-02-16
JP5539091B2 true JP5539091B2 (en) 2014-07-02

Family

ID=45844232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169616A Active JP5539091B2 (en) 2010-07-28 2010-07-28 Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.

Country Status (1)

Country Link
JP (1) JP5539091B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871773B2 (en) * 2012-10-30 2016-03-01 Jx日鉱日石エネルギー株式会社 Dehydrogenation catalyst and method for producing the same
CN105110424B (en) * 2015-08-18 2017-08-25 昆明理工大学 A kind of preparation method of floatability mesoporous nano Zero-valent Iron carbon material
CN105110426A (en) * 2015-09-24 2015-12-02 南通科技职业学院 Preparation method of novel filling particle electrode material for treating organic wastewater
CN113019405B (en) * 2021-01-08 2023-09-19 深圳万物传感科技有限公司 Preparation method and application of metal composite black phosphorus-based electrocatalyst
CN113209986B (en) * 2021-05-17 2023-11-10 陕西科技大学 Supported zirconium-based catalyst, preparation method and application
CN115852693B (en) * 2023-02-14 2023-06-06 开贝科技(苏州)有限公司 Fabric treatment method and fabric sizing slurry
CN116588917A (en) * 2023-06-30 2023-08-15 苏州擎动动力科技有限公司 Carrier and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265541B2 (en) * 2005-01-24 2009-05-20 株式会社デンソー Method for producing nanoparticles
JP4954530B2 (en) * 2005-10-28 2012-06-20 日揮触媒化成株式会社 Platinum colloid-supporting carbon and method for producing the same
JP2008161857A (en) * 2006-12-08 2008-07-17 Catalysts & Chem Ind Co Ltd Metal-containing colloidal grain-carrier, and method for producing the same
JP5255388B2 (en) * 2007-12-25 2013-08-07 日揮触媒化成株式会社 Metal particle-supported catalyst and method for producing the same
JP5010547B2 (en) * 2008-07-10 2012-08-29 公立大学法人首都大学東京 Highly active catalyst and method for producing the same

Also Published As

Publication number Publication date
JP2012030149A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
Pal et al. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis
US8273504B2 (en) Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
EP1826180A1 (en) A composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
JP5665743B2 (en) Continuous production method of catalyst
WO2005093881A1 (en) Catalyst nanoparticle
KR20130004582A (en) Catalyst having metal microparticles supported thereon, and use thereof
JP2008251413A (en) Manufacturing method of metal-oxide carrying carbon
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
WO2011108250A1 (en) Catalyst loaded with fine noble metal particles, method for producing same, and purification catalyst
Zoladek et al. Fabrication of polyoxometallate-modified gold nanoparticles and their utilization as supports for dispersed platinum in electrocatalysis
JP2017029967A (en) Method for producing platinum catalyst and fuel cell using the same
JP5649932B2 (en) Method for producing metal-coated metal oxide fine particles and metal-coated metal oxide fine particles
JP2013027869A (en) Method for manufacturing metal particle carrying catalyst
JP6815590B2 (en) Platinum catalyst, its manufacturing method, and fuel cells using the platinum catalyst
WO2014069208A1 (en) Platinum core shell catalyst, manufacturing method for same, and fuel cell using same
JP2003320249A (en) Metal-carrying catalyst and production of the same and solid polymer electrolyte type fuel cell using the same
JP2019166482A (en) Pd-Ru NANO COMPOSITE PARTICLE CARRIER, CO OXIDATION CATALYST AND METHOD FOR MANUFACTURING Pd-Ru NANO COMPOSITE PARTICLE CARRIER
JP5010522B2 (en) Gold fine particle dispersion and immobilization method and material obtained thereby
CN111013600B (en) Shallow surface layer metal monatomic catalyst and preparation method and application thereof
Wang et al. Hollow multiple noble metallic nanoalloys by mercury-assisted galvanic replacement reaction for hydrogen evolution
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP5806100B2 (en) Porous silazane-coated particles, supported catalyst, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5539091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250