JP5523767B2 - Power tools - Google Patents

Power tools Download PDF

Info

Publication number
JP5523767B2
JP5523767B2 JP2009197762A JP2009197762A JP5523767B2 JP 5523767 B2 JP5523767 B2 JP 5523767B2 JP 2009197762 A JP2009197762 A JP 2009197762A JP 2009197762 A JP2009197762 A JP 2009197762A JP 5523767 B2 JP5523767 B2 JP 5523767B2
Authority
JP
Japan
Prior art keywords
power
continuously variable
variable transmission
clutch
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009197762A
Other languages
Japanese (ja)
Other versions
JP2011045976A (en
Inventor
伸治 平林
周祐 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Priority to JP2009197762A priority Critical patent/JP5523767B2/en
Priority to PCT/JP2010/063979 priority patent/WO2011024698A1/en
Priority to EP10811748.2A priority patent/EP2471634B1/en
Priority to CN201080043367.1A priority patent/CN102548716B/en
Priority to US13/392,707 priority patent/US9186808B2/en
Priority to RU2012111814/02A priority patent/RU2012111814A/en
Publication of JP2011045976A publication Critical patent/JP2011045976A/en
Application granted granted Critical
Publication of JP5523767B2 publication Critical patent/JP5523767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Portable Power Tools In General (AREA)

Description

この発明は、例えば電動モータを駆動源として内装するグラインダ、ねじ締め工具、切断工具、あるいはエンジン(内燃機関)を駆動源として内装するチェーンソー等の動力工具に関する。   The present invention relates to a power tool such as a grinder equipped with an electric motor as a drive source, a screw tightening tool, a cutting tool, or a chain saw equipped with an engine (internal combustion engine) as a drive source.

この種の動力工具では、駆動源の回転動力を減速(変速)するための減速歯車列や出力方向を変換するための歯車列を備えている。減速歯車列としては、平歯車列や遊星歯車機構が用いられ、出力方向を変換するためにはかさ歯車列(ベベルギヤ)が用いられる。また、例えば下記の特許文献4に開示されているようにねじ締め工具等の回転工具では減速歯車列の動力伝達経路を切り換えて、出力状態をビット(先端工具)に付加される負荷トルクに応じて高速低トルク出力モードと低速高トルク出力モードに段階的に切り換える技術が提供されている。
動力工具に限らず、回転出力の変速機構としては、上記のような歯車列の動力伝達経路を切り換えることにより低速、高速の段階的な切り換えを行う構成とするものの他に、減速比を無段階で変化させる無段変速機(CVT:Continuously Variable Trans-mission)が公知になっている。従来、この無段変速機として、いわゆるトラクションドライブ機構を利用したものが公知になっている。このトラクションドライブ式の無段変速機に関する技術が例えば下記の特許文献1〜3に開示されている。
このトラクションドライブ式の無段変速機は、複数の円錐形の遊星ローラに、入力側の太陽ローラと、出力側の推力ローラを推力機構を用いて大きな力で圧接し、これにより得られる転がり接触を利用して動力を伝達するとともに、遊星ローラの円錐面に変速ローラを圧接し、この圧接位置を小径側と大径側との間で変位させて接触径を変化させることにより出力回転数を無段階で変速する構成となっている。
特許文献1には、係る無段変速機を内装したねじ締め工具が開示されている。このねじ締め工具では、ねじ締めビットに付加される負荷トルクの増大(ねじ締めの進行)に伴って変速ローラを低速側に変位させることにより、出力モードを低速高トルク出力モードに無段階で変速することができ、これにより迅速かつ確実なねじ締め作業を楽に行うことができる。
また、この特許文献1に開示されたねじ締め工具は、上記の無段変速機に加えて2系統の動力伝達経路を備えており、それぞれをクラッチ機構で断続して切り換えることにより高速出力状態と高トルク出力状態を選択可能であり、これによりねじ締めあるいはねじ緩め作業を迅速かつ確実に行うことができる。
This type of power tool includes a reduction gear train for reducing (shifting) the rotational power of the drive source and a gear train for changing the output direction. A spur gear train or a planetary gear mechanism is used as the reduction gear train, and a bevel gear train (bevel gear) is used to change the output direction. Further, for example, as disclosed in Patent Document 4 below, in a rotary tool such as a screw tightening tool, the power transmission path of the reduction gear train is switched, and the output state depends on the load torque applied to the bit (tip tool). Thus, there is provided a technique for gradually switching between a high speed low torque output mode and a low speed high torque output mode.
In addition to the power tool, the rotational output speed change mechanism is configured to perform stepwise switching at low speed and high speed by switching the power transmission path of the gear train as described above, and the reduction ratio is stepless. A continuously variable transmission (CVT) that is changed at the same time is known. Conventionally, a continuously variable transmission using a so-called traction drive mechanism has been known. Techniques relating to this traction drive type continuously variable transmission are disclosed in, for example, the following Patent Documents 1 to 3.
This traction drive type continuously variable transmission presses a sun roller on the input side and a thrust roller on the output side to a plurality of conical planetary rollers with a large force using a thrust mechanism, and the rolling contact obtained thereby. Is used to transmit the power, and the speed change roller is pressed against the conical surface of the planetary roller, and the output rotation speed is changed by changing the contact diameter by displacing the pressure contact position between the small diameter side and the large diameter side. It is configured to change continuously without shifting.
Patent Document 1 discloses a screw tightening tool in which such a continuously variable transmission is incorporated. In this screw tightening tool, the output mode is steplessly changed to the low speed high torque output mode by displacing the speed change roller to the low speed side as the load torque applied to the screw tightening bit increases (progress of screw tightening). Thus, a quick and reliable screw tightening operation can be easily performed.
Further, the screw tightening tool disclosed in Patent Document 1 includes two systems of power transmission paths in addition to the continuously variable transmission described above. A high torque output state can be selected, whereby the screw tightening or screw loosening operation can be performed quickly and reliably.

特開平6-190740号公報Japanese Unexamined Patent Publication No. 6-19740 特開2002-59370号公報JP 2002-59370 A 特公平3-73411号公報Japanese Patent Publication No. 3-73411 特許第3289958号公報Japanese Patent No. 3289958

しかしながら、上記従来のねじ締め機では、無段変速機に加えて2系統の動力伝達経路を設けてそれぞれにクラッチ機構を介在させる構成であったので構成が複雑になる問題があった。
本発明は、トラクションドライブ式の無段変速機に加えてクラッチ機構を備えた動力工具において構成の簡素化を図ることを目的とする。
However, the conventional screw tightening machine has a problem in that the configuration is complicated because two power transmission paths are provided in addition to the continuously variable transmission and a clutch mechanism is interposed between each.
An object of the present invention is to simplify the configuration of a power tool provided with a clutch mechanism in addition to a traction drive type continuously variable transmission.

上記の課題は、以下の各発明により解決される。
第1の発明は、トラクションドライブ式の無段変速機を備えた動力工具であって、先端工具を取り付けたスピンドルと無段変速機との間の動力伝達経路に回転動力を遮断するためのクラッチ機構を備えた動力工具である。
第1の発明によれば、駆動源の動力がトラクションドライブ式の無段変速機で減速された後にクラッチ機構を経てスピンドルに出力される。クラッチ機構が遮断されると、無段変速機とスピンドルとの間の動力伝達経路が遮断される。
第2の発明は、第1の発明において、無段変速機は、先端工具の負荷に基づいて自動的に変速する動力工具である。
第2の発明によれば、先端工具の負荷に基づいて無段変速機が自動的に変速するので、使用者は特別の操作をすることなく迅速かつ確実な作業を行うことができる。先端工具の負荷が小さな状態では無段変速機が高速低トルク出力状態に切り換わって迅速に作業が進行し、先端工具の負荷が大きくなった状態では無段変速機が低速高トルク出力状態に切り換わって確実に作業を進行させることができる。
第3の発明は、第1又は第2の発明において、クラッチ機構は、先端工具の負荷に基づいて作動する動力工具である。
第3の発明によれば、例えばねじ締めが完了したことにより先端工具の負荷が一定以上に達した段階でクラッチ機構が遮断されて先端工具への回転動力の出力が停止される。
第4の発明は、第3の発明において、クラッチ機構は、先端工具の負荷トルクに基づいて作動する動力工具である。
第4の発明によれば、上記先端工具の負荷としてスピンドルの出力トルクに基づいてクラッチ機構が遮断される。
第5の発明は、第4の発明において、クラッチ機構は、負荷トルクにより鋼球の係合状態が解除されると動力伝達を遮断する構成とした動力工具である。
第5の発明によれば、簡易かつ確実なクラッチ機構とすることができる。
第6の発明は、第3の発明において、クラッチ機構は、先端工具の回転数に基づいて作動する動力工具である。
第6の発明によれば、上記先端工具の負荷としてスピンドルの回転数に基づいてクラッチ機構が遮断される。
第7の発明は、第6の発明において、クラッチ機構として遠心クラッチ機構を用いた動力工具である。
第7の発明によれば、上記スピンドルの回転数が一定値以上の場合に遠心クラッチ機構が接続されて回転動力が出力され、スピンドルの回転数が一定値以下になると遠心クラッチが遮断されて回転動力の出力がなされなくなる。
Said subject is solved by each following invention.
A first invention is a power tool including a traction drive type continuously variable transmission, and a clutch for cutting off rotational power to a power transmission path between a spindle to which a tip tool is attached and the continuously variable transmission. It is a power tool provided with a mechanism.
According to the first invention , the power of the drive source is decelerated by the traction drive type continuously variable transmission and then output to the spindle via the clutch mechanism. When the clutch mechanism is cut off, the power transmission path between the continuously variable transmission and the spindle is cut off.
In a second aspect based on the first aspect, the continuously variable transmission is a power tool that automatically shifts based on the load of the tip tool.
According to the second aspect of the invention , the continuously variable transmission automatically shifts based on the load on the tip tool, so that the user can perform a quick and reliable operation without any special operation. When the load on the tip tool is small, the continuously variable transmission switches to the high speed and low torque output state and the work proceeds quickly.When the load on the tip tool is large, the continuously variable transmission enters the low speed and high torque output state. The work can be reliably advanced by switching.
According to a third invention, in the first or second invention, the clutch mechanism is a power tool that operates based on a load of the tip tool.
According to the third invention , for example, when the load on the tip tool reaches a certain level due to completion of the screw tightening, for example, the clutch mechanism is cut off and the output of the rotational power to the tip tool is stopped.
In a fourth aspect based on the third aspect, the clutch mechanism is a power tool that operates based on a load torque of the tip tool.
According to the fourth invention , the clutch mechanism is disengaged based on the output torque of the spindle as the load of the tip tool.
A fifth invention is a power tool according to the fourth invention, wherein the clutch mechanism is configured to interrupt power transmission when the engagement state of the steel ball is released by a load torque.
According to the fifth aspect of the invention, a simple and reliable clutch mechanism can be obtained.
In a sixth aspect based on the third aspect, the clutch mechanism is a power tool that operates based on the rotational speed of the tip tool.
According to the sixth invention , the clutch mechanism is disengaged based on the rotation speed of the spindle as the load of the tip tool.
7th invention is a power tool which used the centrifugal clutch mechanism as a clutch mechanism in 6th invention.
According to the seventh invention, when the rotational speed of the spindle is equal to or higher than a predetermined value, the centrifugal clutch mechanism is connected to output rotational power, and when the rotational speed of the spindle becomes lower than the predetermined value, the centrifugal clutch is disconnected and rotated. No power output is made.

第8の発明は、第1〜第7の何れか一つの発明において、減速比が固定された補助減速機構を有し、補助減速機構と無段変速機との間にクラッチ機構を備えた動力工具である。
第8の発明によれば、クラッチ機構が接続された状態では無段変速機を経て回転動力が補助減速機構でさらに減速されてスピンドルから出力され、クラッチ機構が遮断された状態では、補助減速機構へ回転動力が伝達されない。
第9の発明は、第1〜第8の何れか一つの発明において、無段変速機は、圧接力を発生させるための推力カム機構を備えており、推力カム機構が動力伝達を遮断するためのクラッチとしても機能する動力工具である。
第9の発明によれば、スピンドルの負荷に応じて推力カム機構が作動することにより無段変速機に適切な圧接力が発生する。スピンドルの負荷が一定以上に達すると、推力カム機構が滑って回転動力の伝達が遮断される。このようにトラクションドライブ式の無段変速機に圧接力を発生させるための推力カム機構にクラッチ機構の機能を併せ持たせることができる。
第10の発明は、第9の発明において、推力カム機構は、先端工具の負荷トルクが小さい状態では圧接力を発生させ、負荷トルクが一定値に達するとクラッチとして機能する動力工具である。
第10の発明によれば、推力カム機構の機能として、無段変速機に圧接力を発生させるためのカム機構として機能する場合と、回転動力を遮断するクラッチ機構として機能する場合とが先端工具の負荷トルクの大小によって切り換えられる。例えば、ねじ締め中では推力カム機構が圧接力発生手段として機能し、ねじ締めが完了してスピンドルに大きな負荷トルクが作用し始めた段階では推力カム機構がクラッチとして機能することにより回転動力の出力が遮断されて駆動系に対する過負荷が回避される。
第11の発明は、第1〜第10の何れか一つの発明において、動力伝達経路について少なくとも2つのクラッチ機構を直列に備えた動力工具である。
第11の発明によれば、1系統の回転動力伝達経路上に2つのクラッチ機構が直列に介在されて動力の断続がなされる。
第12の発明は、第11の発明において、2つのクラッチ機構の一方が作動設定トルクで動力遮断側に切り換わらない場合に他方のクラッチ機構を動力遮断側に作動させる動力工具である。
第12の発明によれば、上記2つのクラッチ機構の一方が正常動作しない場合であっても他方のクラッチ機構が正常動作することによって回転動力の伝達が遮断されることから、動力伝達経路のより確実な断続がなされる。
第13の発明は、第1〜第12の何れか一つの発明において、クラッチ機構が動力を遮断するための作動設定トルクを任意に調整可能な動力工具である。
第13の発明によれば、例えばねじ締め機である場合に、確実なねじ締めと過負荷の防止を実現できるとともに、当該ねじ締め機の使い勝手を高めることができる。
In an eighth aspect of the present invention, in any one of the first to seventh aspects, the power having an auxiliary reduction mechanism having a fixed reduction ratio and a clutch mechanism between the auxiliary reduction mechanism and the continuously variable transmission. It is a tool.
According to the eighth aspect of the invention , in the state where the clutch mechanism is connected, the rotational power is further decelerated by the auxiliary reduction mechanism through the continuously variable transmission and output from the spindle, and in the state where the clutch mechanism is disconnected, the auxiliary reduction mechanism Rotational power is not transmitted to
In a ninth aspect based on any one of the first to eighth aspects, the continuously variable transmission includes a thrust cam mechanism for generating a pressure contact force, and the thrust cam mechanism interrupts power transmission. It is a power tool that also functions as a clutch.
According to the ninth aspect of the invention , an appropriate pressure contact force is generated in the continuously variable transmission by operating the thrust cam mechanism according to the load on the spindle. When the load on the spindle reaches a certain level or more, the thrust cam mechanism slides to interrupt the transmission of rotational power. As described above, the thrust cam mechanism for generating the pressure contact force in the traction drive type continuously variable transmission can be provided with the function of the clutch mechanism.
A tenth invention is the power tool according to the ninth invention, wherein the thrust cam mechanism generates a pressure contact force when the load torque of the tip tool is small and functions as a clutch when the load torque reaches a constant value.
According to the tenth aspect of the present invention , the functions of the thrust cam mechanism include a case where it functions as a cam mechanism for generating a pressure contact force in the continuously variable transmission and a case where it functions as a clutch mechanism for cutting off rotational power. Can be switched according to the magnitude of the load torque. For example, during screw tightening, the thrust cam mechanism functions as a pressure contact force generating means, and when the screw tightening is completed and a large load torque begins to act on the spindle, the thrust cam mechanism functions as a clutch, thereby outputting rotational power. Is cut off and overload on the drive system is avoided.
An eleventh aspect of the present invention is the power tool according to any one of the first to tenth aspects, wherein the power transmission path includes at least two clutch mechanisms in series.
According to the eleventh aspect of the present invention , the two clutch mechanisms are interposed in series on one system of rotational power transmission path so that power is interrupted.
A twelfth invention is a power tool for operating the other clutch mechanism to the power cutoff side when one of the two clutch mechanisms is not switched to the power cutoff side by the operation setting torque in the eleventh invention.
According to the twelfth aspect , even if one of the two clutch mechanisms does not operate normally, the transmission of the rotational power is cut off by the other clutch mechanism operating normally. Certain interruptions are made.
A thirteenth aspect of the present invention is the power tool according to any one of the first to twelfth aspects of the present invention, wherein the operation setting torque for the clutch mechanism to cut off the power can be arbitrarily adjusted.
According to the thirteenth invention , for example, in the case of a screw tightening machine, reliable screw tightening and prevention of overload can be realized, and the usability of the screw tightening machine can be improved.

無段変速機を備えた携帯マルノコの概略の構成を示す図である。It is a figure which shows the schematic structure of the portable marnoco provided with the continuously variable transmission. 無段変速機を備えたディスクグラインダの概略の構成を示す図である。It is a figure which shows the structure of the outline of the disc grinder provided with the continuously variable transmission. 3点圧接式のトラクションドライブの側面図である。It is a side view of a three-point press-contact traction drive. 無段変速機を備えたディスクグラインダの全体斜視図である。1 is an overall perspective view of a disc grinder provided with a continuously variable transmission. 無段変速機を備えたディスクグラインダの内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the disc grinder provided with the continuously variable transmission. エンジンチェーンソーの左側面図である。It is a left view of an engine chain saw. 図6中(VII)-(VII)線断面矢視図である。本図は、エンジンチェーンソーの内部構造を下側から見た図である。FIG. 7 is a sectional view taken along line (VII)-(VII) in FIG. 6. This figure is a view of the internal structure of the engine chain saw as viewed from below. 無段変速機とクラッチを備えたねじ締め工具の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the screw fastening tool provided with the continuously variable transmission and the clutch.

次に、本発明の実施形態を図1〜図8に基づいて説明する。以下説明する実施形態は、多様な動力工具についてトラクションドライブ式の無段変速機を備えることを特徴とするもので、当該トラクションドライブ式の無段変速機そのものについては従来公知であることから詳細な説明を省略する。
図1及び図2には、手持ち式の電動工具であって、トラクションドライブ式の無段変速機1を備える電動工具の概略の構成が示されている。図1は携帯マルノコ10を示し、図2はディスクグラインダ20を示している。
図1に示すようにこの携帯マルノコ10は、駆動源としての電動モータ11を備えている。この電動モータ11の出力軸に無段変速機1が接続されている。電動モータ11の出力はこの無段変速機1によって減速される。無段変速機1の出力軸1aには、駆動側の平歯車13aが取り付けられている。この平歯車13aに従動側の平歯車13bが噛み合わされている。この平歯車13bはスピンドル12に取り付けられている。この平歯車13a,13bによって減速比が一定に固定された減速歯車列13が構成されている。従って、無段変速機1により減速された回転動力は、この減速歯車列13によってさらに減速されてスピンドル12に出力される。スピンドル12には、円形の切断刃(鋸刃)15が取り付けられている。減速歯車列13によってスピンドル12の回転軸線J1は、無段変速機1の出力軸1aの回転軸線J0に対して一定の軸間距離をおいて平行に配置されている。無段変速機1の出力軸1aは、電動モータ11の出力軸と同軸に配置されている。
図2に示すようにディスクグラインダ20は、駆動源としての電動モータ21を備えている。この電動モータ21の出力軸に無段変速機1が接続されている。電動モータ21の出力はこの無段変速機1によって減速される。無段変速機1の出力軸1aには、駆動側のかさ歯車22aが取り付けられている。このかさ歯車22aには、従動側のかさ歯車22bが噛み合わされている。このかさ歯車22bはスピンドル23に取り付けられている。このかさ歯車22a,22bによって減速比が一定に固定された減速歯車列22が構成されている。従って、無段変速機1により減速された回転動力は、この減速歯車列22によってさらに減速されてスピンドル23に出力される。スピンドル23には、円形の砥石24が取り付けられている。減速歯車列22によってスピンドル23の回転軸線J2は、無段変速機1の出力軸1aの回転軸線J0に対して直交(90°で交差)する状態に配置されている。無段変速機1の出力軸1aは、電動モータ21の出力軸と同軸に配置されている。
このように、携帯マルノコ10及びディスクグラインダ20等の動力工具において、先端工具としての鋸刃15を取り付けたスピンドル12の回転軸線J1が無段変速機1の出力軸1aの回転軸線J0に対して同軸ではなく一定の軸間距離をおいた平行である場合、あるいは砥石24を取り付けたスピンドル23の回転軸線J2が無段変速機1の出力軸1aの回転軸線J0に対して同軸ではなく直交する場合についてもそれぞれトラクションドライブ式の無段変速機1を備えることにより、その切断負荷や研削負荷(加工状況)に応じて適切な動力(回転数及び出力トルク)を出力可能となり、ひいては従来よりも広範な動力工具についてその機能及び付加価値を高めることができる。
Next, an embodiment of the present invention will be described with reference to FIGS. The embodiment described below is characterized by including a traction drive type continuously variable transmission for various power tools, and the traction drive type continuously variable transmission itself is well known in the art. Description is omitted.
1 and 2 show a schematic configuration of a power tool that is a hand-held power tool and includes a traction drive type continuously variable transmission 1. FIG. 1 shows a portable marnoco 10, and FIG. 2 shows a disc grinder 20.
As shown in FIG. 1, this portable marnoco 10 includes an electric motor 11 as a drive source. The continuously variable transmission 1 is connected to the output shaft of the electric motor 11. The output of the electric motor 11 is decelerated by the continuously variable transmission 1. A drive-side spur gear 13 a is attached to the output shaft 1 a of the continuously variable transmission 1. The spur gear 13b on the driven side is meshed with the spur gear 13a. The spur gear 13 b is attached to the spindle 12. The spur gears 13a and 13b constitute a reduction gear train 13 having a fixed reduction ratio. Accordingly, the rotational power decelerated by the continuously variable transmission 1 is further decelerated by the reduction gear train 13 and output to the spindle 12. A circular cutting blade (saw blade) 15 is attached to the spindle 12. Due to the reduction gear train 13, the rotation axis J <b> 1 of the spindle 12 is arranged parallel to the rotation axis J <b> 0 of the output shaft 1 a of the continuously variable transmission 1 with a certain inter-axis distance. The output shaft 1 a of the continuously variable transmission 1 is disposed coaxially with the output shaft of the electric motor 11.
As shown in FIG. 2, the disc grinder 20 includes an electric motor 21 as a drive source. The continuously variable transmission 1 is connected to the output shaft of the electric motor 21. The output of the electric motor 21 is decelerated by the continuously variable transmission 1. A drive-side bevel gear 22 a is attached to the output shaft 1 a of the continuously variable transmission 1. A bevel gear 22b on the driven side is meshed with the bevel gear 22a. The bevel gear 22 b is attached to the spindle 23. The bevel gears 22a and 22b constitute a reduction gear train 22 having a fixed reduction ratio. Accordingly, the rotational power decelerated by the continuously variable transmission 1 is further decelerated by the reduction gear train 22 and output to the spindle 23. A circular grindstone 24 is attached to the spindle 23. The rotation gear line 22 of the spindle 23 is arranged by the reduction gear train 22 so as to be orthogonal (crossed at 90 °) to the rotation axis J0 of the output shaft 1a of the continuously variable transmission 1. The output shaft 1 a of the continuously variable transmission 1 is disposed coaxially with the output shaft of the electric motor 21.
Thus, in the power tool such as the portable maroon saw 10 and the disc grinder 20, the rotation axis J1 of the spindle 12 to which the saw blade 15 as the tip tool is attached is relative to the rotation axis J0 of the output shaft 1a of the continuously variable transmission 1. When not parallel, but parallel with a certain distance between axes, or the rotation axis J2 of the spindle 23 to which the grindstone 24 is attached is not coaxial but orthogonal to the rotation axis J0 of the output shaft 1a of the continuously variable transmission 1. In each case, by providing the traction drive type continuously variable transmission 1, it becomes possible to output appropriate power (number of rotations and output torque) according to the cutting load and grinding load (processing conditions), and as a result The function and added value of a wide range of power tools can be enhanced.

図3には、上記無段変速機1の具体的な内部構造が示されている。以下、概略の構成について説明する。この無段変速機1は、3点圧接式の無段変速機で、駆動源側に接続される入力軸3と、入力軸3に取り付けた太陽ローラ4と、円錐形を有する複数の遊星ローラ5〜5と、各遊星ローラ5に圧接された推力ローラ6と、推力ローラ6に推力を発生させるための推力カム機構7と、出力軸8と、遊星ローラ5〜5を内接させた状態でその円錐面に圧接される変速ローラ9を備えている。
複数の遊星ローラ5〜5は、支持するキャリア5aの周囲に等間隔に配置され、それぞれ回転自在に支持されている。各遊星ローラ5は、その回転軸線を直立位置から図示右側に一定角度傾斜させた向きに支持されている。
太陽ローラ4は、各遊星ローラ5の圧接溝部5bに圧接されている。出力軸8は、推力ローラ6の中に後方(出力側)に延びる状態で一体に設けられている。この出力軸8上に推力カム機構7が支持されている。
推力カム機構7は、推力ローラ6の背面側に当接された基台部7aと、この基台部7aに対して相対回転可能かつ平行に接近離間可能に支持された押圧部7bと、基台部7aと押圧部7b間に挟み込まれた複数の鋼球7c〜7cを備えている。押圧部7bは圧縮ばね7dによって基台部7a側に接近する方向(図3において右側)に付勢されている。この圧縮ばね7dの付勢力で基台部7aが推力ローラ6に押し付けられ、これにより各遊星ローラ5に太陽ローラ4と推力ローラ6と変速ローラ9が同じ圧接力で圧接される。この圧接状態で各遊星ローラ5がその軸回りに回転すると変速ローラ9との圧接状態を介してキャリア5aが出力軸8の回転軸線J0回りに回転し、従って遊星ローラ5〜5が軸線J0回りに公転することにより、出力軸8が回転する。
図3は無負荷状態を示している。この無負荷状態では、各鋼球7cが基台部7aの係合凹部7eと押圧部7bの係合凹部7fとの間に挟み込まれている。この無負荷状態から、出力軸8に回転負荷が発生すると、押圧部7bが基台部7aに対して回転方向に変位して各鋼球7cが係合凹部7e,7f内で変位するため基台部7aと押圧部7bとの間隔が大きくなって、推力ローラ6の各遊星ローラ5に対する圧接力が増大し、従って各遊星ローラ5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の3点圧接状態を経て出力軸8に回転動力が伝達される。
この動力発生状態において、変速ローラ9が遊星ローラ5の小径側に位置する状態では、高速低トルクが出力される。変速ローラ9が遊星ローラ5の大径側に変位すると、出力軸8から低速高トルクが出力される。変速ローラ9の移動は、使用者が手動操作により行う構成とする他、出力軸8の負荷あるいは電動モータの負荷を検知し、これに基づいて変速ローラ9をアクチュエータを用いて低速側あるいは高速側に変位させる構成(トルク感応型自動変速機構)とすることができる。
出力軸8の負荷が一定値以上に増大して鋼球7c〜7cが係合凹部7e,7fから完全に離脱すると、動力の伝達が遮断される。負荷が一定値以下に戻されると、各鋼球7cが係合凹部7e,7f間に挟まれて再び動力伝達状態に復帰する。
このように、推力カム機構7は、無段変速機1に圧接力を発生させる機能に加えて、出力軸8の負荷に基づいて作動するクラッチとしての機能をも有している。
FIG. 3 shows a specific internal structure of the continuously variable transmission 1. The schematic configuration will be described below. The continuously variable transmission 1 is a three-point pressure contact type continuously variable transmission, and includes an input shaft 3 connected to the drive source side, a sun roller 4 attached to the input shaft 3, and a plurality of planetary rollers having a conical shape. 5-5, a thrust roller 6 pressed against each planetary roller 5, a thrust cam mechanism 7 for generating a thrust on the thrust roller 6, an output shaft 8, and the planetary rollers 5-5 are inscribed And a speed change roller 9 pressed against the conical surface.
The plurality of planetary rollers 5 to 5 are arranged at equal intervals around the carrier 5a to be supported, and are rotatably supported. Each planetary roller 5 is supported in a direction in which its rotational axis is inclined at a certain angle from the upright position to the right side in the figure.
The sun roller 4 is in pressure contact with the pressure contact groove 5b of each planetary roller 5. The output shaft 8 is integrally provided in the thrust roller 6 so as to extend rearward (output side). A thrust cam mechanism 7 is supported on the output shaft 8.
The thrust cam mechanism 7 includes a base portion 7a that is in contact with the back side of the thrust roller 6, a pressing portion 7b that is supported so as to be relatively rotatable with respect to the base portion 7a, and to be able to approach and separate in parallel. A plurality of steel balls 7c to 7c sandwiched between the base part 7a and the pressing part 7b are provided. The pressing part 7b is urged by the compression spring 7d in a direction approaching the base part 7a side (right side in FIG. 3). The base portion 7a is pressed against the thrust roller 6 by the urging force of the compression spring 7d, whereby the sun roller 4, the thrust roller 6 and the transmission roller 9 are pressed against the planetary rollers 5 with the same pressure contact force. When each planetary roller 5 rotates about its axis in this pressure contact state, the carrier 5a rotates about the rotation axis J0 of the output shaft 8 via the pressure contact state with the speed change roller 9, and therefore the planetary rollers 5 to 5 rotate about the axis J0. The output shaft 8 is rotated.
FIG. 3 shows a no-load state. In this unloaded state, each steel ball 7c is sandwiched between the engaging recess 7e of the base portion 7a and the engaging recess 7f of the pressing portion 7b. When a rotational load is generated on the output shaft 8 from this no-load state, the pressing portion 7b is displaced in the rotational direction with respect to the base portion 7a, and the respective steel balls 7c are displaced within the engaging recesses 7e and 7f. The distance between the base portion 7a and the pressing portion 7b is increased, and the pressing force of the thrust roller 6 against each planetary roller 5 is increased. Therefore, the sun roller 4, the thrust roller 6 and the transmission roller 9 are applied to each planetary roller 5 at three points. Rotational power is transmitted to the output shaft 8 through the pressure contact state.
In this power generation state, when the speed change roller 9 is positioned on the small diameter side of the planetary roller 5, high speed and low torque is output. When the speed change roller 9 is displaced to the larger diameter side of the planetary roller 5, a low speed and high torque is output from the output shaft 8. The shift roller 9 is moved by manual operation by the user, and the load of the output shaft 8 or the load of the electric motor is detected. Based on this, the shift roller 9 is moved to the low speed side or the high speed side using an actuator. (Torque-sensitive automatic transmission mechanism).
When the load on the output shaft 8 increases to a certain value or more and the steel balls 7c to 7c are completely separated from the engaging recesses 7e and 7f, the transmission of power is cut off. When the load is returned to a certain value or less, each steel ball 7c is sandwiched between the engagement recesses 7e and 7f and returns to the power transmission state again.
As described above, the thrust cam mechanism 7 has a function as a clutch that operates based on the load of the output shaft 8 in addition to the function of generating the pressure contact force in the continuously variable transmission 1.

図4及び図5には、上記の3点圧接式の無段変速機1を内装したディスクグラインダ30が示されている。図4では、図2に比してディスクグラインダ30の構成がより具体的に示されている。このディスクグラインダ30は、使用者が把持するグリップ部31と、減速部40と、ギヤヘッド部33を備えている。グリップ部31には、駆動源としての電動モータ34が内装されている。グリップ部31の前部に減速部40が結合されている。この減速部40に無段変速機1が内装されている。減速部40の前部にギヤヘッド部33が結合されている。このギヤヘッド部33に、補助減速機構として減速比が固定されたかさ歯車列35が内装されている。ギヤヘッド部33からスピンドル36が下方へ突き出す状態に設けられている。スピンドル36の下部に円形の砥石37が装着されている。グリップ部31の後部には、充電式のバッテリパック38が装填されている。グリップ部31の前側部にはスライドスイッチ32が設けられている。このスライドスイッチ32を前側へスライドさせると電源回路がオンして電動モータ34がバッテリパック38を電源として起動する。電動モータ34の回転動力は、減速部40の無段変速機1及びギヤヘッド部33のかさ歯車列35を経てスピンドル36に伝達される。このため、図2に示す実施形態と同様、スピンドル36の回転軸線J2は、無段変速機1の出力軸8の回転軸線J0に対して直交している。
減速部40は、変速機ケース41を備えている。この変速機ケース41の後部にグリップ部31が取り付けられ、前部にギヤヘッド部33が取り付けられている。この変速機ケース41に無段変速機1が内装されている。無段変速機1の入力軸3に電動モータ34の出力軸34aが結合されている。電動モータ34の出力軸34aは、回転について入力軸3に固定されている。入力軸3は、軸受け42によって軸線J0回りに回転自在に支持されている。
無段変速機1の出力軸8の後部側は、太陽ローラ4の前面に取り付けた軸受け43により回転支持されている。出力軸8の前部は、変速機ケース41に取り付けた軸受け44により回転支持されている。この出力軸8上に、キャリア5aと推力ローラ6と推力カム機構7が支持されている。出力軸8に対して、キャリア5a及び推力ローラ6は回転自在に支持されている。また、推力カム機構7の押圧部7bは出力軸8に回転について係合されている。推力カム機構7の基台部7aは推力ローラ6に対して回転について係合されている。
4 and 5 show a disc grinder 30 in which the three-point press-contact continuously variable transmission 1 is housed. In FIG. 4, the configuration of the disc grinder 30 is shown more specifically than in FIG. The disc grinder 30 includes a grip portion 31, a reduction portion 40, and a gear head portion 33 that are gripped by a user. The grip portion 31 includes an electric motor 34 as a drive source. A speed reduction portion 40 is coupled to the front portion of the grip portion 31. The continuously variable transmission 1 is built in the speed reduction unit 40. A gear head portion 33 is coupled to the front portion of the speed reduction portion 40. The gear head portion 33 is internally provided with a bevel gear train 35 having a fixed reduction ratio as an auxiliary reduction mechanism. The spindle 36 is provided so as to protrude downward from the gear head portion 33. A circular grindstone 37 is attached to the lower part of the spindle 36. A rechargeable battery pack 38 is loaded at the rear of the grip portion 31. A slide switch 32 is provided on the front side of the grip portion 31. When the slide switch 32 is slid forward, the power circuit is turned on and the electric motor 34 is activated using the battery pack 38 as a power source. The rotational power of the electric motor 34 is transmitted to the spindle 36 through the continuously variable transmission 1 of the speed reduction unit 40 and the bevel gear train 35 of the gear head unit 33. Therefore, as in the embodiment shown in FIG. 2, the rotation axis J <b> 2 of the spindle 36 is orthogonal to the rotation axis J <b> 0 of the output shaft 8 of the continuously variable transmission 1.
The speed reduction unit 40 includes a transmission case 41. The grip part 31 is attached to the rear part of the transmission case 41, and the gear head part 33 is attached to the front part. The continuously variable transmission 1 is built in the transmission case 41. An output shaft 34 a of the electric motor 34 is coupled to the input shaft 3 of the continuously variable transmission 1. The output shaft 34a of the electric motor 34 is fixed to the input shaft 3 with respect to rotation. The input shaft 3 is supported by a bearing 42 so as to be rotatable around an axis J0.
The rear side of the output shaft 8 of the continuously variable transmission 1 is rotatably supported by a bearing 43 attached to the front surface of the sun roller 4. The front portion of the output shaft 8 is rotatably supported by a bearing 44 attached to the transmission case 41. On this output shaft 8, a carrier 5a, a thrust roller 6, and a thrust cam mechanism 7 are supported. With respect to the output shaft 8, the carrier 5a and the thrust roller 6 are rotatably supported. The pressing portion 7b of the thrust cam mechanism 7 is engaged with the output shaft 8 for rotation. The base portion 7 a of the thrust cam mechanism 7 is engaged with the thrust roller 6 for rotation.

変速ローラ9の周方向の一部には、ホルダ50が取り付けられている。このホルダ50は、相互に平行な2つの壁部50a,50aを備えており、この両壁部50a,50a間に変速ローラ9が保持されている。
ホルダ50は、変速機ケース41に支持したスライドバー52によって前後に一定の範囲で平行移動可能に支持されている。このスライドバー52の周囲であって変速機ケース41とホルダ50の前面間には圧縮ばね53が介装されている。この圧縮ばね53によってホルダ50は、後ろ側へスライドする方向に付勢されている。ホルダ50が後ろ側にスライドすると、変速ローラ9が各遊星ローラ5の小径側へ変位するため、当該無段変速機1が高速側(初期位置)に変速する。ホルダ50が圧縮ばね53に抗して前側へスライドすると、変速ローラ9が各遊星ローラ5の大径側へ変位するため、当該無段変速機1が低速側へ変速する。このようにホルダ50の平行移動に伴って変速ローラ9が各遊星ローラ5の小径側と大径側との間で平行移動することにより、当該無段変速機1が高速低トルク出力状態と低速高トルク出力状態との間で無段階に変速される。
ホルダ50は、変速モータ51を駆動源として移動する。変速モータ51の出力軸にはねじ軸54が取り付けられている。このねじ軸54には、ナット55が噛み合わされている。ナット55の前端はホルダ50の後面に突き当てられている。変速モータ51が低速側へ起動するとねじ軸54が回転してナット55が前側へ変位する。ナット55が前側へ変位することにより、ホルダ50が圧縮ばね53に抗して前側へ押されて変速ローラ9が低速側へ変位する。変速モータ51が高速側に起動するとねじ軸54が逆転してナット55が後ろ側へ戻される。ナット55が後ろ側へ戻されると、ホルダ50が圧縮ばね53で後ろ側へ押されて変速ローラ9が高速側へ戻される。変速モータ51の低速側若しくは高速側への起動、停止のタイミングは、砥石37に負荷される研削抵抗であって電動モータ34の負荷に基づいてなされる。電動モータ34の負荷が増大すると変速モータ51が低速側に起動して当該無段変速機1が低速高トルク出力状態に変速され、電動モータ34の負荷が減少すると変速モータ51が高速側に起動して当該無段変速機1が高速低トルク出力状態に戻される。このように、砥石37の研削抵抗により増減する電動モータ34の負荷に基づいて当該無段変速機1が自動的かつ無段階で変速される(負荷感応型自動変速機能)。
出力軸8の前部(本実施形態ではかさ歯車35a)と、推力カム機構7の押圧部7bとの間に圧縮ばね7dが介装されている。この圧縮ばね7dの付勢力及び各鋼球7cの係合凹部7e,7fに対する係合状態により各遊星ローラ5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の圧接力が発生する。
出力軸8には、減速部33の駆動側のかさ歯車35aが結合されている。この駆動側のかさ歯車35aは出力軸8と一体で回転する。この駆動側のかさ歯車35aには従動側のかさ歯車35bが噛み合わされている。この従動側のかさ歯車35bは、スピンドル36の上部に固定されている。スピンドル36は、軸受け36a,36bを介して軸線J2回りに回転自在に支持されている。砥石37は、固定フランジ37aと固定ナット37bに挟まれた状態でスピンドル36の下部に強固に固定されている。砥石37の後ろ側ほぼ半周の範囲は、砥石カバー39で覆われている。
以上説明したように例示したディスクグラインダ30では、無段変速機1と、減速比が固定された補助減速機構(かさ歯車列35)との間に、クラッチとしても機能する推力カム機構7が直列に配置された構成となっている。
A holder 50 is attached to a part of the transmission roller 9 in the circumferential direction. The holder 50 includes two wall portions 50a and 50a that are parallel to each other, and the transmission roller 9 is held between the wall portions 50a and 50a.
The holder 50 is supported by a slide bar 52 supported by the transmission case 41 so as to be movable in a certain range in the front-rear direction. A compression spring 53 is interposed between the slide bar 52 and between the transmission case 41 and the front surface of the holder 50. The holder 50 is urged by the compression spring 53 in the direction of sliding backward. When the holder 50 slides to the rear side, the speed change roller 9 is displaced to the smaller diameter side of each planetary roller 5, so that the continuously variable transmission 1 is shifted to the high speed side (initial position). When the holder 50 slides against the compression spring 53 to the front side, the speed change roller 9 is displaced to the larger diameter side of each planetary roller 5, so that the continuously variable transmission 1 is changed to the low speed side. In this way, the speed change roller 9 moves in parallel between the small diameter side and the large diameter side of each planetary roller 5 in accordance with the parallel movement of the holder 50, so that the continuously variable transmission 1 is in a high speed, low torque output state and a low speed. The speed is continuously variable between the high torque output state.
The holder 50 moves using the transmission motor 51 as a drive source. A screw shaft 54 is attached to the output shaft of the transmission motor 51. A nut 55 is engaged with the screw shaft 54. The front end of the nut 55 is abutted against the rear surface of the holder 50. When the transmission motor 51 is started to the low speed side, the screw shaft 54 rotates and the nut 55 is displaced to the front side. When the nut 55 is displaced forward, the holder 50 is pushed forward against the compression spring 53, and the transmission roller 9 is displaced toward the low speed side. When the speed change motor 51 is started to the high speed side, the screw shaft 54 is reversely rotated and the nut 55 is returned to the rear side. When the nut 55 is returned to the rear side, the holder 50 is pushed rearward by the compression spring 53 and the transmission roller 9 is returned to the high speed side. The start and stop timing of the transmission motor 51 to the low speed side or the high speed side is a grinding resistance applied to the grindstone 37 and is based on the load of the electric motor 34. When the load of the electric motor 34 increases, the speed change motor 51 is started to the low speed side, the continuously variable transmission 1 is shifted to the low speed high torque output state, and when the load of the electric motor 34 is reduced, the speed change motor 51 starts to the high speed side. Then, the continuously variable transmission 1 is returned to the high speed and low torque output state. In this way, the continuously variable transmission 1 is automatically and continuously variable based on the load of the electric motor 34 that increases or decreases depending on the grinding resistance of the grindstone 37 (load-sensitive automatic transmission function).
A compression spring 7 d is interposed between the front portion of the output shaft 8 (in this embodiment, the bevel gear 35 a) and the pressing portion 7 b of the thrust cam mechanism 7. Due to the urging force of the compression spring 7d and the engagement state of the steel balls 7c with the engaging recesses 7e and 7f, the pressing force of the sun roller 4, the thrust roller 6 and the transmission roller 9 to the planetary rollers 5 is generated.
A bevel gear 35 a on the drive side of the speed reduction unit 33 is coupled to the output shaft 8. The drive-side bevel gear 35 a rotates integrally with the output shaft 8. The drive-side bevel gear 35a meshes with the drive-side bevel gear 35b. The driven-side bevel gear 35 b is fixed to the upper portion of the spindle 36. The spindle 36 is supported so as to be rotatable around the axis J2 via bearings 36a and 36b. The grindstone 37 is firmly fixed to the lower portion of the spindle 36 while being sandwiched between the fixing flange 37a and the fixing nut 37b. The range of the substantially half circumference on the rear side of the grindstone 37 is covered with a grindstone cover 39.
In the disc grinder 30 illustrated as described above, the thrust cam mechanism 7 that also functions as a clutch is connected in series between the continuously variable transmission 1 and the auxiliary reduction mechanism (bevel gear train 35) having a fixed reduction ratio. It is the composition arranged in.

次に、トラクションドライブ式の無段変速機1では、遊星ローラ5〜5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の圧接部に油膜を形成するための潤滑剤が変速機ケース41内に充填されている。通常、この潤滑剤としてトラクションオイル(液体)が用いられるが、本実施形態ではこのトラクションオイルに代えて、これよりも流動性が低くペースト状(半固体)を有するトラクショングリスが潤滑剤として用いられている。
このトラクショングリスは、合成油若しくは鉱物油等のベースオイル(基油)に、金属石けん系若しくは非石けん系の増ちょう剤と、酸化防止剤や個体潤滑剤や防錆剤等の添加剤を添加したもので、ベースオイルが70〜90パーセントを占め、増ちょう剤が10〜20パーセントを占め、高いトラクション係数を有するものが用いられる。
また、本実施形態では、ちょう度(稠度)が265〜475(1/10mm)の範囲内であって、NLGI(国際グリース協会、National Luburicatiing Grease Institute)のちょう度番号が2号〜000号の範囲内のトラクショングリスが用いられている。
当該無段変速機1の組み立て工程において、太陽ローラ4の周囲、各遊星ローラ5の円周面全周及びその下面と圧接溝部5bの全周、推力ローラ6の全周、及び変速ローラ9の内周側全周についてこのトラクショングリスがそれぞれ適量ずつ塗布されている。また、変速機ケース41の内部には、各遊星ローラ5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の圧接部に対して当該トラクショングリスを補給するためのグリス溜まり60が設けられている。変速機ケース41内の、前部には前ブロック体61が取り付けられ、後部には後ろブロック体62が取り付けられている。前ブロック体61と後ろブロック体62の間の空間部がグリス溜まり60とされている。このグリス溜まり60内に十分な量のトラクショングリスが充填されている。図示するように前ブロック体61と後ろブロック体62との間の空間部に、各遊星ローラ5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の圧接部が位置して、これら圧接部に対するトラクショングリスの補給が確実になされるようになっている。
前後のブロック体61,62は、金属部品あるいは合成樹脂の成型品とする他、フェルト材で製作してもよい。
また、前ブロック体61と後ろブロック体62によってグリス溜まり60が区画されることにより、当該トラクショングリスの前ブロック体61の前側への流出、及び変速機ケース41の外側への流出が防止されている。さらに、トラクショングリスはトラクションオイルとは異なって流動性が低いため、当該ディスクグラインダ30の向き(姿勢)には関係なく常時グリス溜まり60に充填された状態に保持される。
また、トラクションドライブ用潤滑剤として流動性(拡散性)の低いペースト状のトラクショングリスを用いる構成であるので、液状のトラクションオイルを封入した場合のように、変速機ケース41に対して高度なシール機能を施す必要がない。このため、変速機ケース41にオイルシールあるいはオーリング等のシール部材を装着する必要がないので、潤滑剤シール構造の簡略化を図ることができ、ひいては当該無段変速機1の構成の簡略化を図ることができる。また、液体であるトラクションオイルに比して洩れが少ないことからそのメンテナンス期間を長くすることができ、ひいては当該無段変速機1のメンテナンス性を高めることができる。
上記の構成にはさらに改良を加えることができる。例えば、図5において二点鎖線で示すように変速ローラ9の後部に沿って同じく円環形状を有するフェルト材63を取り付け、このフェルト材63を推力ローラ6の周縁部及び遊星ローラ5との圧接部に摺接させる構成とすることができる。また、これに加えて変速ローラ9の前側にも同じ円環形状を有するフェルト材64を取り付けて、これを各遊星ローラ5の円錐面に摺接させる構成としてもよい。この構成によれば、フェルト材63,64には適度にトラクショングリスが浸み込むため、これが各遊星ローラ5の円錐面、あるいは各遊星ローラ5と推力ローラ6の圧接部位等に直接接触されることにより、これらの潤滑がより確実になされる。
各遊星ローラ5の円錐面あるいは推力ローラ6の周縁部であって、トラクション力を発生させる圧接部は鏡面仕上げ加工がなされているため、これらにフェルト材63,64を摺接させてもその摩耗は実質的に発生しない。
また、後ろ側のフェルト材63を用いることにより、このフェルト材63と前ブロック体61との間にグリス溜まり60が形成されることから後ろブロック体61を省略することもできる。
Next, in the traction drive type continuously variable transmission 1, a lubricant for forming an oil film in the pressure contact portions of the sun roller 4, the thrust roller 6, and the transmission roller 9 with respect to the planetary rollers 5 to 5 is contained in the transmission case 41. Filled. Normally, traction oil (liquid) is used as the lubricant, but in this embodiment, traction grease having a lower fluidity and a paste (semi-solid) is used as the lubricant instead of the traction oil. ing.
This traction grease is made by adding metal soap or non-soap thickener and additives such as antioxidant, solid lubricant and rust preventive to base oil (base oil) such as synthetic oil or mineral oil. The base oil accounts for 70 to 90 percent, the thickener accounts for 10 to 20 percent, and has a high traction coefficient.
In the present embodiment, the consistency (consistency) is in the range of 265 to 475 (1/10 mm), and the consistency number of NLGI (National Luburicatiing Grease Institute) is No. 2 to No. 000. In range traction grease is used.
In the assembly process of the continuously variable transmission 1, the circumference of the sun roller 4, the entire circumference of each planetary roller 5, the lower surface thereof and the entire circumference of the pressure contact groove 5 b, the entire circumference of the thrust roller 6, and the transmission roller 9 An appropriate amount of this traction grease is applied to the entire inner circumference. Further, inside the transmission case 41, a grease reservoir 60 is provided for replenishing the traction grease to the contact portions of the sun roller 4, the thrust roller 6, and the transmission roller 9 with respect to each planetary roller 5. In the transmission case 41, a front block body 61 is attached to the front portion, and a rear block body 62 is attached to the rear portion. A space between the front block body 61 and the rear block body 62 is a grease reservoir 60. This grease reservoir 60 is filled with a sufficient amount of traction grease. As shown in the drawing, in the space between the front block body 61 and the rear block body 62, the press contact portions of the sun roller 4, the thrust roller 6 and the transmission roller 9 with respect to each planetary roller 5 are located, and the traction with respect to these press contact portions The grease is surely replenished.
The front and rear block bodies 61 and 62 may be made of felt material in addition to metal parts or synthetic resin moldings.
Further, since the grease pool 60 is partitioned by the front block body 61 and the rear block body 62, the traction grease is prevented from flowing out to the front side of the front block body 61 and from the transmission case 41 to the outside. Yes. Further, unlike the traction oil, the traction grease has low fluidity, so that the grease reservoir 60 is always held in a state of being filled regardless of the direction (posture) of the disc grinder 30.
Further, since the paste-type traction grease having low fluidity (diffusibility) is used as the traction drive lubricant, a high-grade seal is provided with respect to the transmission case 41 as in the case where liquid traction oil is enclosed. There is no need to apply functions. For this reason, since it is not necessary to attach a seal member such as an oil seal or an O-ring to the transmission case 41, the structure of the lubricant seal can be simplified, and as a result, the configuration of the continuously variable transmission 1 can be simplified. Can be achieved. Further, since there is less leakage than traction oil, which is a liquid, the maintenance period can be extended, and as a result, the maintainability of the continuously variable transmission 1 can be improved.
Further improvements can be added to the above configuration. For example, as shown by a two-dot chain line in FIG. 5, a felt material 63 having an annular shape is attached along the rear portion of the speed change roller 9, and the felt material 63 is pressed against the peripheral edge of the thrust roller 6 and the planetary roller 5. It can be set as the structure made to slidably contact a part. In addition, a felt material 64 having the same annular shape may be attached to the front side of the speed change roller 9 so as to be in sliding contact with the conical surface of each planetary roller 5. According to this configuration, since the traction grease permeates the felt materials 63 and 64 appropriately, this directly contacts the conical surface of each planetary roller 5 or the pressure contact portion between each planetary roller 5 and the thrust roller 6. Thus, these lubrications are more reliably performed.
The conical surface of each planetary roller 5 or the peripheral edge portion of the thrust roller 6 and the pressure contact portion that generates the traction force are mirror-finished, so that even if the felt members 63 and 64 are slidably contacted with each other, the wear is also caused. Does not occur substantially.
Further, since the grease reservoir 60 is formed between the felt material 63 and the front block body 61 by using the felt material 63 on the rear side, the rear block body 61 can be omitted.

次に、図6には、動力工具の一例としてエンジンチェーンソー70が示されている。このエンジンチェーンソー70も無段変速機1を内装している。このエンジンチェーンソー70は、出力の変速手段としてトラクションドライブ式の無段変速機1と、1方向にのみ回転動力を伝達するクラッチ80を備える点に大きな特徴を有するものであり、チェーンソーとしての基本的な構成については従来公知の構成で足りることからその詳細な説明は省略する。なお、このチェーンソー70の説明では、部材等の左右方向については使用者を基準とする。
このエンジンチェーンソー70は、駆動源としての2ストロークエンジン(内燃機関)75を内装した本体部71と、本体部71の上部に設けたメインハンドル72と、本体部71の左側部に設けたサブハンドル73を備えている。図7には本体部71の詳細な内部構造が示されているが、主な部材についてのみ説明する。図7中、符号75eはシリンダブロックを示している。このシリンダブロック75eのボアにはピストン75aが前後に往復動可能に収容されている。このピストン75aにコネクティングロッド75bの一端側が回転可能に連結されている。コネクティングロッド75bの他端側は、クランク軸75dに回転可能に連結されている。ピストン75aの燃焼室側には点火プラグ75cが取り付けられている。図示省略した燃料供給経路を経て燃焼室内に供給された混合気に点火プラグ75cのスパークが引火してピストン75aが往復動する。ピストン75aが2ストロークする過程で給排気、燃焼等の内燃機関としての工程が繰り返されることによりクランク軸75dから回転動力が出力される。クランク軸75dの回転動力は、クラッチ80と無段変速機1を経てスピンドル76に伝達される。スピンドル76には、チェーンスプロケット77が取り付けられている。このチェーンスプロケット77とガイドバー78との間にチェーン刃(図示省略)が掛け渡されている。
ガイドバー78は、長尺平板形状をなすもので、その一端側は本体部71の右側部に設けたケース部74に支持されている。このガイドバー78は、ケース部74から前方へ長く延びている。
Next, FIG. 6 shows an engine chain saw 70 as an example of a power tool. The engine chain saw 70 also includes the continuously variable transmission 1. This engine chain saw 70 has a great feature in that it has a traction drive type continuously variable transmission 1 as an output speed change means and a clutch 80 that transmits rotational power only in one direction. Since a known configuration is sufficient for this configuration, a detailed description thereof will be omitted. In the description of the chainsaw 70, the user is used as a reference in the left-right direction of the members and the like.
The engine chain saw 70 includes a main body 71 having a two-stroke engine (internal combustion engine) 75 as a driving source, a main handle 72 provided on the upper portion of the main body 71, and a sub handle provided on the left side of the main body 71. 73 is provided. FIG. 7 shows a detailed internal structure of the main body 71, but only main members will be described. In FIG. 7, reference numeral 75e indicates a cylinder block. A piston 75a is accommodated in the bore of the cylinder block 75e so as to be capable of reciprocating back and forth. One end of a connecting rod 75b is rotatably connected to the piston 75a. The other end side of the connecting rod 75b is rotatably connected to the crankshaft 75d. A spark plug 75c is attached to the combustion chamber side of the piston 75a. The spark of the spark plug 75c ignites in the air-fuel mixture supplied into the combustion chamber via a fuel supply path (not shown), and the piston 75a reciprocates. Rotational power is output from the crankshaft 75d by repeating processes as an internal combustion engine such as supply / exhaust and combustion in the course of two strokes of the piston 75a. The rotational power of the crankshaft 75d is transmitted to the spindle 76 through the clutch 80 and the continuously variable transmission 1. A chain sprocket 77 is attached to the spindle 76. A chain blade (not shown) is spanned between the chain sprocket 77 and the guide bar 78.
The guide bar 78 has a long flat plate shape, and one end side thereof is supported by a case portion 74 provided on the right side portion of the main body portion 71. The guide bar 78 extends forward from the case portion 74.

クラッチ80は、入力側のクランク軸75dの回転数が一定以上である場合にその出力軸81に回転動力を伝達し、クランク軸75dの回転数が小さいアイドル回転状態では出力軸81への回転動力の伝達を遮断する遠心クラッチ機構を有するもので、これには従来公知のものが用いられている。クランク軸75dの回転数は、別途設けられている調整機構(スロットルレバー)を使用者が操作することにより任意に調整することができる。
このクラッチ80の出力軸81に、無段変速機1の入力軸3及び太陽ローラ4が結合されている。無段変速機1には、図3及び図5に示す3点圧接形のトラクションドライブが用いられている。この無段変速機1は、上記太陽ローラ4の他、遊星ローラ5〜5、推力ローラ6、推力カム機構7及び変速ローラ9等の各部材を備えている。これらについては、図中同位の符号を用いてその説明を省略する。なお、出力軸8と推力カム機構7の押圧部7bとの間に介装された圧縮ばね7dの図示が図7では省略されている。出力軸8の右端部に上記チェーンスプロケット77が取り付けられている。当該エンジンチェーンソー70では、出力軸8がスピンドル76として機能する。チェーン刃は、チェーンスプロケット77とガイドバー78との間に掛け渡されている。チェーンスプロケット77が回転すると、チェーン刃がガイドバー78の周囲に沿って回転する。ガイドバー78に沿って回転するチェーン刃を樹木等の被切断材に押し当てることにより切断加工を行うことができる。
スロットルレバーの調整によりエンジン75の出力回転数が一定以上であり、従ってクラッチ80の動力伝達状態において、チェーン刃に負荷される切断抵抗が一定以上に達すると、これが別途設けた検知手段により検知され、これに基づいて変速ローラ9がアクチュエータの起動により自動的に低速側へ変位し、これによりスピンドル76に高トルクが出力される。切断抵抗に基づいて無段変速機1が自動的に高トルク側に変速されることにより、使用者はそのまま切断加工を続行することができる。なお、変速ローラ9の移動については、手動操作により行う構成としてもよい。
切断加工が完了してチェーン刃の切断抵抗が小さくなると、これが上記検知手段で検知されて変速ローラ9が自動的に高速側(初期位置)に変位する。スロットルレバーの調整によりエンジン75の出力回転数が小さくなったアイドリング状態では、クラッチ80が動力遮断側に切り換わるためスピンドル76への回転動力の伝達が遮断され、従ってチェーン刃の回転が停止したアイドリング状態となる。スロットルレバーを操作してエンジン75の出力回転数を高めると、クラッチ80が回転動力接続状態に切り換わってチェーン刃が再びガイドバー78の周囲に沿って高速回転し始める。
The clutch 80 transmits rotational power to the output shaft 81 when the rotational speed of the crankshaft 75d on the input side is equal to or higher than a certain value, and the rotational power to the output shaft 81 in the idle rotational state where the rotational speed of the crankshaft 75d is small. In this case, a conventionally known one is used. The rotation speed of the crankshaft 75d can be arbitrarily adjusted by a user operating an adjustment mechanism (throttle lever) provided separately.
The input shaft 3 and the sun roller 4 of the continuously variable transmission 1 are coupled to the output shaft 81 of the clutch 80. The continuously variable transmission 1 uses a three-point press-contact traction drive shown in FIGS. 3 and 5. The continuously variable transmission 1 includes members such as the planetary rollers 5 to 5, the thrust roller 6, the thrust cam mechanism 7, and the transmission roller 9 in addition to the sun roller 4. About these, the description is abbreviate | omitted using the same code | symbol in a figure. In addition, illustration of the compression spring 7d interposed between the output shaft 8 and the press part 7b of the thrust cam mechanism 7 is abbreviate | omitted in FIG. The chain sprocket 77 is attached to the right end portion of the output shaft 8. In the engine chain saw 70, the output shaft 8 functions as a spindle 76. The chain blade is stretched between the chain sprocket 77 and the guide bar 78. When the chain sprocket 77 rotates, the chain blade rotates along the periphery of the guide bar 78. Cutting can be performed by pressing a chain blade rotating along the guide bar 78 against a material to be cut such as a tree.
Adjustment of the throttle lever causes the output speed of the engine 75 to be above a certain level. Therefore, when the cutting resistance applied to the chain blade reaches a certain level in the power transmission state of the clutch 80, this is detected by a separate detection means. Based on this, the speed change roller 9 is automatically displaced to the low speed side by the activation of the actuator, whereby a high torque is output to the spindle 76. Since the continuously variable transmission 1 is automatically shifted to the high torque side based on the cutting resistance, the user can continue the cutting process as it is. The movement of the speed change roller 9 may be performed manually.
When the cutting process is completed and the cutting resistance of the chain blade is reduced, this is detected by the detecting means, and the speed change roller 9 is automatically displaced to the high speed side (initial position). In an idling state in which the output speed of the engine 75 is reduced by adjusting the throttle lever, the clutch 80 is switched to the power cut-off side, so that the transmission of the rotational power to the spindle 76 is cut off, and therefore the idling in which the rotation of the chain blade is stopped. It becomes a state. When the output speed of the engine 75 is increased by operating the throttle lever, the clutch 80 is switched to the rotational power connection state and the chain blade starts to rotate at high speed along the periphery of the guide bar 78 again.

次に、図8には、同じく3点圧接式の無段変速機1を内装したねじ締め工具90が示されている。このねじ締め工具90は、駆動源としての電動モータ92を内装した本体部91と、本体部91の側部から側方に延びるハンドル部93を備えている。ハンドル部93の先端には、電源としてのバッテリパック95が装着されている。このバッテリパック95を電源として電動モータ92が起動する。ハンドル部93の基部には、トリガ形式のスイッチレバー96が配置されている。このスイッチレバー96を指先で引き操作すると電動モータ92がバッテリパック95から供給される電力により起動する。電動モータ92が起動すると、本体部91の前部に装着したねじ締め用のビット(図ではビットを装着するためのビットソケット110のみが示されている。)がねじ締め方向に回転する。
電動モータ92は、本体部91の本体ハウジング91aの後部側に内装されている。電動モータ92の出力軸92aには、無段変速機1の入力軸3が結合されている。入力軸3は、出力軸92aと一体で回転する。無段変速機1には、図3、図5及び図7に示す構成と同じく3点圧接式のトラクションドライブが用いられている。無段変速機1の各構成部材については同位の符号を用いてその説明を省略する。
但し、図8に示す無段変速機1では、変速ローラ9の移動(変速)を手動操作で行うための変速レバー9aが設けられている。締め付けるねじ径が太い場合には、予め低速側に変速しておき、締め付けるねじ径が細い場合には、予め高速側に変速してねじ締め作業を行うことにより、太いねじを大きな締め付けトルクで確実に締め付けることができ、細いねじは高速回転により迅速にねじ締め作業を行うことができる。
無段変速機1の出力軸8は、電動モータ92の出力軸92aと同軸(回転軸線J0)上に配置されている。また、無段変速機1の出力軸8に対して同軸(回転軸線J0)でスピンドル100が配置されている。無段変速機1の出力軸8と、スピンドル100との間には、ねじの締め付けトルクを設定するための締め付けトルク設定機構94が介装されている。
Next, FIG. 8 shows a screw tightening tool 90 in which the three-point press-contact continuously variable transmission 1 is housed. The screw tightening tool 90 includes a main body 91 that includes an electric motor 92 as a drive source, and a handle 93 that extends laterally from the side of the main body 91. A battery pack 95 as a power source is attached to the tip of the handle portion 93. The electric motor 92 is activated using the battery pack 95 as a power source. A trigger type switch lever 96 is disposed at the base of the handle portion 93. When the switch lever 96 is pulled with a fingertip, the electric motor 92 is activated by the electric power supplied from the battery pack 95. When the electric motor 92 is activated, a screw fastening bit (only the bit socket 110 for attaching the bit is shown in the figure) attached to the front portion of the main body 91 rotates in the screw fastening direction.
The electric motor 92 is provided on the rear side of the main body housing 91 a of the main body 91. The input shaft 3 of the continuously variable transmission 1 is coupled to the output shaft 92 a of the electric motor 92. The input shaft 3 rotates integrally with the output shaft 92a. The continuously variable transmission 1 uses a three-point press-contact traction drive as in the configurations shown in FIGS. 3, 5, and 7. About each structural member of the continuously variable transmission 1, the description is abbreviate | omitted using a same code | symbol.
However, the continuously variable transmission 1 shown in FIG. 8 is provided with a shift lever 9a for manually moving the shift roller 9 (shifting). If the screw diameter to be tightened is thick, shift to the low speed side in advance, and if the screw diameter to be tightened is thin, shift the speed to the high speed side in advance and perform the screw tightening operation to secure the thick screw with a large tightening torque. The thin screw can be quickly screwed by high-speed rotation.
The output shaft 8 of the continuously variable transmission 1 is disposed on the same axis (rotation axis J0) as the output shaft 92a of the electric motor 92. A spindle 100 is arranged coaxially (rotating axis J0) with respect to the output shaft 8 of the continuously variable transmission 1. A tightening torque setting mechanism 94 for setting a screw tightening torque is interposed between the output shaft 8 of the continuously variable transmission 1 and the spindle 100.

無段変速機1の出力軸8には、伝達フランジ97が取り付けられている。この伝達フランジ97は軸受け98を介して本体ハウジング91aに回転自在に支持されている。この伝達フランジ97と同軸(回転軸線J0)上にスピンドル100が相対的に回転自在かつ軸線方向には相互に一体化された状態で配置されている。伝達フランジ97の前面には、複数の鋼球99〜99を挟み込んだ状態でクラッチ板101が当接されている。このクラッチ板101と、スピンドル100の前部に設けたトルク設定フランジ103との間には圧縮ばね102が介装されている。この圧縮ばね102によって、クラッチ板101は、伝達フランジ97の前面に押し付けられる方向に付勢されている。
圧縮ばね102の付勢力によりクラッチ板101が鋼球99〜99を間に挟み込んで伝達フランジ97に押し付けられることにより、伝達フランジ97の回転動力がスピンドル100に伝達される。
クラッチ板101の溝部101aとスピンドル100の溝部100aとの間にも、一つの鋼球104が挟み込まれている。両溝部101a,100aはそれぞれ軸線J0に沿って形成されている。このため、クラッチ板101はスピンドル100に対して一体回転しつつ軸線J0方向に相対変位する。スピンドル100に大きな回転抵抗(ねじ締め抵抗)が負荷されると、クラッチ板101が相対回転しつつ圧縮ばね102に抗し前側へ変位する。クラッチ板101が前側へ変位すると、鋼球99〜99の係合状態が外れて伝達プレート97に対する動力伝達状態が遮断される。
スピンドル100の前部に、ビット装着用のソケット110が取り付けられている。ソケット110は、本体ケース91aの前部に軸受け106,106を介して回転自在に支持されている。本体ケース91aの前部には、作動設定トルク調整用の窓部91bが設けられている。この窓部91bは、トルク設定フランジ103の側方に配置されている。このトルク設定フランジ103はスピンドル100にねじ結合されている。このため、このトルク設定フランジ103は軸線J0回りに回転させると軸線J0方向の位置を調整することができる。トルク設定フランジ103の軸線J0方向の位置を調整することにより、圧縮ばね102の付勢力を変化させて、作動設定トルク(スピンドル100に対するトルク伝達が遮断されるトルク値)を調整することができる。トルク設定フランジ103は、上記窓部91bを経て専用工具を用いることにより回転させることができる。
この締め付けトルク設定機構94の作動設定トルクを適切に設定することにより、ねじが作動設定トルクで締め付けられると、伝達フランジ97とクラッチ板101間において鋼球99〜99が外れることにより動力の伝達が遮断される。
なお、上記締め付けトルクの設定が過大である場合には、無段変速機1の推力カム機構7において、鋼球7c〜7cが外れることにより基台部7aが空回りして、この場合も動力の伝達が遮断されることにより当該無段変速機1あるいは電動モータ92等の駆動系に損傷を及ぼすことが防止される。このように、無段変速機1の推力カム機構7は、各遊星ローラ5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の圧接力を発生させる機能に加えて、駆動系の過負荷防止機能をも兼ね備えている。
A transmission flange 97 is attached to the output shaft 8 of the continuously variable transmission 1. The transmission flange 97 is rotatably supported by the main body housing 91a via a bearing 98. The spindle 100 is disposed on the same axis (rotation axis J0) as the transmission flange 97 so as to be relatively rotatable and integrated with each other in the axial direction. The clutch plate 101 is in contact with the front surface of the transmission flange 97 with a plurality of steel balls 99 to 99 sandwiched therebetween. A compression spring 102 is interposed between the clutch plate 101 and a torque setting flange 103 provided at the front portion of the spindle 100. By this compression spring 102, the clutch plate 101 is urged in a direction to be pressed against the front surface of the transmission flange 97.
The clutch plate 101 is pressed against the transmission flange 97 with the steel balls 99 to 99 sandwiched therebetween by the urging force of the compression spring 102, whereby the rotational power of the transmission flange 97 is transmitted to the spindle 100.
One steel ball 104 is also sandwiched between the groove 101 a of the clutch plate 101 and the groove 100 a of the spindle 100. Both groove portions 101a and 100a are formed along the axis J0. Therefore, the clutch plate 101 is relatively displaced in the direction of the axis J0 while rotating integrally with the spindle 100. When a large rotational resistance (screw tightening resistance) is applied to the spindle 100, the clutch plate 101 is displaced to the front side against the compression spring 102 while relatively rotating. When the clutch plate 101 is displaced to the front side, the engagement state of the steel balls 99 to 99 is released, and the power transmission state to the transmission plate 97 is interrupted.
A bit mounting socket 110 is attached to the front portion of the spindle 100. The socket 110 is rotatably supported at the front portion of the main body case 91a via bearings 106 and 106. A window 91b for adjusting the operation setting torque is provided at the front of the main body case 91a. The window portion 91 b is disposed on the side of the torque setting flange 103. This torque setting flange 103 is screwed to the spindle 100. For this reason, when the torque setting flange 103 is rotated about the axis J0, the position in the direction of the axis J0 can be adjusted. By adjusting the position of the torque setting flange 103 in the direction of the axis J0, the urging force of the compression spring 102 can be changed to adjust the operation setting torque (the torque value at which torque transmission to the spindle 100 is interrupted). The torque setting flange 103 can be rotated by using a dedicated tool through the window portion 91b.
By appropriately setting the operation setting torque of the tightening torque setting mechanism 94, when the screw is tightened with the operation setting torque, the steel balls 99 to 99 are disengaged between the transmission flange 97 and the clutch plate 101, thereby transmitting power. Blocked.
In addition, when the setting of the tightening torque is excessive, in the thrust cam mechanism 7 of the continuously variable transmission 1, the base portion 7a is idled by the removal of the steel balls 7c to 7c. By interrupting the transmission, it is possible to prevent damage to the drive system such as the continuously variable transmission 1 or the electric motor 92. In this way, the thrust cam mechanism 7 of the continuously variable transmission 1 has a function of preventing the overload of the drive system in addition to the function of generating the pressure contact force of the sun roller 4, the thrust roller 6, and the transmission roller 9 with respect to each planetary roller 5. Has both.

以上説明した本実施形態のディスクグラインダ30によれば、電動モータ34の回転動力がトラクションドライブ式の無段変速機1で減速された後にクラッチ機構としても機能する推力カム機構7を経てスピンドル36に出力される。先端工具としての砥石37を経てスピンドル36に大きな負荷トルクが付加されると、推力カム機構7において鋼球7c〜7cが係合凹部7e,7fから離脱して基台部7aが押圧部7bに対して相対回転することにより、両者7a,7b間の回転動力の伝達が遮断される。こうして推力カム機構7がクラッチ機構として作動することにより回転動力の伝達が遮断されると、無段変速機1とスピンドル36との間の動力伝達経路が遮断されて砥石37への回転動力の出力が停止されることにより電動モータ34等の駆動系に損傷を及ぼすことが未然に防止される。
このように、推力カム機構7の機能として、無段変速機1に圧接力を発生させためのカム機構として機能する場合と、回転動力を遮断するクラッチ機構として機能する場合とが先端工具(砥石37)の負荷トルクの大小によって切り換えられる。例えば、砥石37の他部位への干渉等により研削作業中に大きな負荷トルクが作用した段階で、推力カム機構7がクラッチとして機能することにより回転動力の出力が遮断されて駆動系(電動モータ34、無段変速機1及びかさ歯車列35等)に対する過負荷が回避されてこれらの損傷が防止される。
この点は、例示したねじ締め工具90についても同様であり、締め付けトルク設定機構94による作動設定トルクが過大であったためにねじ締め完了後にスピンドル100に過大なトルクが付加された場合に、当該締め付けトルク設定機構94が接続状態であっても、推力カム機構7が遮断されることにより駆動系に対する損傷が回避される。
According to the disc grinder 30 of the present embodiment described above, after the rotational power of the electric motor 34 is decelerated by the traction drive type continuously variable transmission 1, the thrust cam mechanism 7 that also functions as a clutch mechanism is applied to the spindle 36. Is output. When a large load torque is applied to the spindle 36 through the grindstone 37 as the tip tool, the steel balls 7c to 7c are detached from the engaging recesses 7e and 7f in the thrust cam mechanism 7, and the base portion 7a becomes the pressing portion 7b. As a result of relative rotation, transmission of rotational power between the two 7a and 7b is interrupted. When the thrust cam mechanism 7 operates as a clutch mechanism in this manner and the transmission of rotational power is interrupted, the power transmission path between the continuously variable transmission 1 and the spindle 36 is interrupted and the rotational power is output to the grindstone 37. By stopping the operation, it is possible to prevent the drive system such as the electric motor 34 from being damaged.
As described above, when the thrust cam mechanism 7 functions as a cam mechanism for generating a pressure contact force in the continuously variable transmission 1 and when it functions as a clutch mechanism for cutting off rotational power, the tip tool (grinding stone) is used. 37) is switched according to the magnitude of the load torque. For example, when a large load torque is applied during grinding work due to interference with other parts of the grindstone 37 or the like, the thrust cam mechanism 7 functions as a clutch, whereby the output of rotational power is cut off and the drive system (electric motor 34 ), An overload on the continuously variable transmission 1 and the bevel gear train 35, etc.) is avoided, and these damages are prevented.
This also applies to the exemplified screw tightening tool 90. When the operation setting torque by the tightening torque setting mechanism 94 is excessive, when the excessive torque is applied to the spindle 100 after the screw tightening is completed, the tightening is performed. Even if the torque setting mechanism 94 is in the connected state, the thrust cam mechanism 7 is cut off, so that damage to the drive system is avoided.

また、例示したディスクグラインダ30は、推力カム機構7とスピンドル36との間に補助減速機構としてかさ歯車列35を備えている。このため、クラッチ機構としての推力カム機構7が接続された状態では無段変速機1を経て回転動力がこのかさ歯車列35でさらに減速されてスピンドル36から出力され、推力カム機構7が遮断された状態では、かさ歯車列35に対して回転動力が伝達されない。このように電動モータ34の回転動力が、無段変速機1に加えて補助減速機構としてのかさ歯車列35により更に減速されて出力されるので、砥石37に対して大きな回転トルクを与えることができる。
さらに例示したディスクグラインダ30によれば、砥石37の負荷トルクにより増大する電動モータ34の負荷に基づいて変速モータ51が起動することにより無段変速機1が自動的に変速するので、使用者は特別の操作をすることなく迅速かつ確実な作業を行うことができる。
動力を遮断するタイミングは、上記のようにスピンドル36の出力トルク(負荷トルク)ではなく回転数に基づいて設定することもできる。例えば、前記例示したエンジンチェーンソー70では、推力カム機構7に加えてその上流側に遠心クラッチ式のクラッチ80を備えている。この場合、出力軸としてのクランク軸75dの回転数に基づいて遠心クラッチ(クラッチ80)が接続され、逆に遮断される。この場合、クランク軸75dの回転数が一定値以上の場合にクラッチ80が接続されて回転動力がスピンドル76に出力され、クランク軸75dの回転数が一定値以下になるとクラッチ80が遮断されて回転動力の出力がなされなくなる。
このように、1系統の回転動力伝達経路上に2つのクラッチ機構を直列に介在させて様々な状況に応じて回転動力の断続をすることができる。図7に示すエンジンチェーンソー70では、推力カム機構7とクラッチ80がこの2つのクラッチ機構に相当し、図8に示すねじ締め工具90では、同じく推力カム機構7と締め付けトルク設定機構94のクラッチ板101が2つのクラッチ機構に相当し、いずれの場合もこれら2つのクラッチ機構が1系統の回転動力伝達経路上に直列に配置された構成となっている。
また、ねじ締め工具90の場合、2つのクラッチ機構の一方(締め付けトルク設定機構94のクラッチ板101)が作動設定トルクで動力遮断側に正常動作しない場合であっても、他方のクラッチ機構(推力カム機構7)が動力遮断側に正常動作することによって回転動力の伝達が遮断されることから、動力伝達経路のより確実な断続がなされる。
The illustrated disc grinder 30 includes a bevel gear train 35 as an auxiliary reduction mechanism between the thrust cam mechanism 7 and the spindle 36. Therefore, in a state where the thrust cam mechanism 7 as a clutch mechanism is connected, the rotational power is further decelerated by the bevel gear train 35 via the continuously variable transmission 1 and output from the spindle 36, and the thrust cam mechanism 7 is shut off. In this state, rotational power is not transmitted to the bevel gear train 35. As described above, the rotational power of the electric motor 34 is further decelerated and output by the bevel gear train 35 as an auxiliary reduction mechanism in addition to the continuously variable transmission 1, so that a large rotational torque can be given to the grindstone 37. it can.
Furthermore, according to the exemplified disc grinder 30, the continuously variable transmission 1 is automatically shifted by the start of the speed change motor 51 based on the load of the electric motor 34 that is increased by the load torque of the grindstone 37. Quick and reliable work can be performed without any special operation.
The timing for shutting off the power can be set based on the rotation speed instead of the output torque (load torque) of the spindle 36 as described above. For example, the engine chain saw 70 exemplified above includes a centrifugal clutch type clutch 80 on the upstream side in addition to the thrust cam mechanism 7. In this case, the centrifugal clutch (clutch 80) is connected based on the number of rotations of the crankshaft 75d as the output shaft, and is disconnected on the contrary. In this case, the clutch 80 is connected when the rotational speed of the crankshaft 75d is equal to or greater than a predetermined value, and the rotational power is output to the spindle 76. No power output is made.
In this way, two clutch mechanisms can be interposed in series on one system of rotational power transmission path, and the rotational power can be interrupted according to various situations. In the engine chain saw 70 shown in FIG. 7, the thrust cam mechanism 7 and the clutch 80 correspond to these two clutch mechanisms. In the screw tightening tool 90 shown in FIG. 8, the clutch plate of the thrust cam mechanism 7 and the tightening torque setting mechanism 94. Reference numeral 101 corresponds to two clutch mechanisms, and in each case, these two clutch mechanisms are arranged in series on one rotational power transmission path.
In the case of the screw tightening tool 90, even if one of the two clutch mechanisms (the clutch plate 101 of the tightening torque setting mechanism 94) does not operate normally on the power cut-off side with the operation setting torque, the other clutch mechanism (thrust) Since the cam mechanism 7) operates normally on the power cut-off side, the transmission of the rotational power is cut off, so that the power transmission path is more reliably interrupted.

以上説明した実施形態には種々変更を加えることができる。例えば、無段変速機1として3点圧接式のトラクションドライブを例示したが、遊星ローラを出力側に備える2点圧接式のトラクションドライブを用いる構成としてもよい。
遊星ローラ5に対する太陽ローラ4、推力ローラ6及び変速ローラ9の圧接力を発生させるための手段として推力カム機構7を例示したが、例えばねじ軸機構等の別形態の圧接力発生手段に置き換えることができる。
また、動力工具として、手持ち式の携帯マルノコ10、ディスクグラインダ20,30、エンジンチェーンソー70及びねじ締め工具90を例示したが、本発明はその他に、据え置き型のテーブルソー等の動力工具についても適用でき、また電動モータではなくエアモータを駆動源とする動力工具について広く適用することができる。
Various modifications can be made to the embodiment described above. For example, although the three-point press contact type traction drive is illustrated as the continuously variable transmission 1, a configuration using a two point press contact type traction drive provided with a planetary roller on the output side may be used.
The thrust cam mechanism 7 is illustrated as a means for generating the pressure contact force of the sun roller 4, the thrust roller 6 and the transmission roller 9 with respect to the planetary roller 5, but it is replaced with another form of pressure contact force generation means such as a screw shaft mechanism. Can do.
Further, as the power tools, the hand-held portable marnoco 10, the disc grinders 20 and 30, the engine chain saw 70 and the screw tightening tool 90 are illustrated, but the present invention is also applied to a power tool such as a stationary table saw. In addition, the present invention can be widely applied to power tools that use an air motor as a drive source instead of an electric motor.

1…無段変速機(3点圧接式トラクションドライブ)
3…入力軸
4…太陽ローラ
5…遊星ローラ、5a…キャリア
6…推力ローラ
7…推力カム機構
7a…基台部、7b…押圧部、7c…鋼球、7d…圧縮ばね、7e,7f…係合凹部
8…出力軸
9…変速ローラ
J0…回転軸線
30…ディスクグラインダ
33…ギヤヘッド部
34…電動モータ、34a…出力軸
35…かさ歯車列
36…スピンドル
37…砥石
40…減速部
50…ホルダ
51…変速モータ
70…エンジンチェーンソー
75…2ストロークエンジン(内燃機関)、75d…クランク軸
76…スピンドル
77…チェーンスプロケット
80…クラッチ(遠心クラッチ)
90…ねじ締め工具
94…締め付けトルク設定機構
97…伝達フランジ
99…鋼球
100…スピンドル
101…クラッチ板
110…ビットソケット
1 ... Continuously variable transmission (3-point pressure traction drive)
DESCRIPTION OF SYMBOLS 3 ... Input shaft 4 ... Sun roller 5 ... Planetary roller 5a ... Carrier 6 ... Thrust roller 7 ... Thrust cam mechanism 7a ... Base part, 7b ... Press part, 7c ... Steel ball, 7d ... Compression spring, 7e, 7f ... Engaging recess 8 ... output shaft 9 ... speed change roller J0 ... rotation axis 30 ... disc grinder 33 ... gear head part 34 ... electric motor 34a ... output shaft 35 ... bevel gear train 36 ... spindle 37 ... grinding wheel 40 ... speed reduction part 50 ... holder DESCRIPTION OF SYMBOLS 51 ... Variable speed motor 70 ... Engine chain saw 75 ... Two stroke engine (internal combustion engine), 75d ... Crankshaft 76 ... Spindle 77 ... Chain sprocket 80 ... Clutch (centrifugal clutch)
90 ... Screw tightening tool 94 ... Tightening torque setting mechanism 97 ... Transmission flange 99 ... Steel ball 100 ... Spindle 101 ... Clutch plate 110 ... Bit socket

Claims (7)

先端工具の負荷に基づいて自動的に変速するトラクションドライブ式の無段変速機を備えた動力工具であって、前記先端工具を取り付けたスピンドルと前記無段変速機との間の動力伝達経路に、前記先端工具の負荷トルクに基づいて回転動力を遮断するクラッチ機構を備えるとともに、前記無段変速機は、圧接力を発生させるための推力カム機構を備えており、該推力カム機構が動力伝達を遮断するためのクラッチとしても機能する動力工具。 A power tool having a traction drive type continuously variable transmission that automatically shifts based on a load on the tip tool, and a power transmission path between the spindle to which the tip tool is attached and the continuously variable transmission. The continuously variable transmission includes a thrust cam mechanism for generating a pressure contact force, and the thrust cam mechanism transmits power. Power tool that also functions as a clutch to shut off 請求項1記載の動力工具であって、前記クラッチ機構は、前記負荷トルクにより鋼球の係合状態が解除されると動力伝達を遮断する構成とした動力工具。 The power tool according to claim 1, wherein the clutch mechanism is configured to interrupt power transmission when the engagement state of the steel ball is released by the load torque. 請求項1又は2記載の動力工具であって、減速比が固定された補助減速機構を有し、該補助減速機構と前記無段変速機との間に前記クラッチ機構を備えた動力工具。 3. The power tool according to claim 1, further comprising an auxiliary reduction mechanism having a fixed reduction ratio, and the clutch mechanism provided between the auxiliary reduction mechanism and the continuously variable transmission. 請求項記載の動力工具であって、前記推力カム機構は、前記先端工具の負荷トルクが小さい状態では前記圧接力を発生させ、前記負荷トルクが一定値に達するとクラッチとして機能する動力工具。 4. The power tool according to claim 3 , wherein the thrust cam mechanism generates the pressure contact force when the load torque of the tip tool is small, and functions as a clutch when the load torque reaches a constant value. 請求項1〜のいずれか1項に記載した動力工具であって、動力伝達経路について少なくとも2つのクラッチ機構を直列に備えた動力工具。 The power tool according to any one of claims 1 to 4 , wherein the power tool includes at least two clutch mechanisms in series with respect to a power transmission path. 請求項記載の動力工具であって、前記2つのクラッチ機構の一方が作動設定トルクで動力遮断側に切り換わらない場合に他方のクラッチ機構を動力遮断側に作動させる動力工具。 6. The power tool according to claim 5 , wherein when one of the two clutch mechanisms does not switch to the power cut-off side with an operation setting torque, the other clutch mechanism is operated to the power cut-off side. 請求項1〜のいずれか1項に記載した動力工具であって、前記クラッチ機構が動力を遮断するための作動設定トルクを調整可能な動力工具。
A power tool as set forth in any one of claims 1 to 6 adjustable power tool actuation set torque for the clutch mechanism and the power is shut down.
JP2009197762A 2009-08-28 2009-08-28 Power tools Expired - Fee Related JP5523767B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009197762A JP5523767B2 (en) 2009-08-28 2009-08-28 Power tools
PCT/JP2010/063979 WO2011024698A1 (en) 2009-08-28 2010-08-19 Power tool
EP10811748.2A EP2471634B1 (en) 2009-08-28 2010-08-19 Power tool
CN201080043367.1A CN102548716B (en) 2009-08-28 2010-08-19 Power tool
US13/392,707 US9186808B2 (en) 2009-08-28 2010-08-19 Power tool with continuously-variable transmission traction drive
RU2012111814/02A RU2012111814A (en) 2009-08-28 2010-08-19 MECHANIZED TOOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197762A JP5523767B2 (en) 2009-08-28 2009-08-28 Power tools

Publications (2)

Publication Number Publication Date
JP2011045976A JP2011045976A (en) 2011-03-10
JP5523767B2 true JP5523767B2 (en) 2014-06-18

Family

ID=43832808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197762A Expired - Fee Related JP5523767B2 (en) 2009-08-28 2009-08-28 Power tools

Country Status (1)

Country Link
JP (1) JP5523767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620338B2 (en) * 2011-06-02 2014-11-05 株式会社マキタ Power tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190740A (en) * 1992-12-22 1994-07-12 Shimpo Ind Co Ltd Screw driving machine
DE4432973B4 (en) * 1994-09-16 2009-10-01 Robert Bosch Gmbh Electric hand tool with a spindle lock
DE19845018C1 (en) * 1998-09-30 1999-12-16 Fein C & E Powered screwdriver tool
JP2002283255A (en) * 2001-03-22 2002-10-03 Makita Corp Power tool
JP2006326766A (en) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd Rotating tool
JP2009083033A (en) * 2007-09-28 2009-04-23 Hitachi Koki Co Ltd Screw fastening tool

Also Published As

Publication number Publication date
JP2011045976A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2011024697A1 (en) Power tool
WO2011024698A1 (en) Power tool
EP2298504B1 (en) Power tool
JP5523766B2 (en) Power tools
US5868208A (en) Power tool
JP5378964B2 (en) Power tools
JP5653843B2 (en) Power tools
US8667694B2 (en) Power tool
EP2505307B1 (en) Power tool
JP2013144340A (en) Electric power tool
EP2505309B1 (en) Power Tool
JP5523767B2 (en) Power tools
JP5484830B2 (en) Power tools
US7168505B2 (en) Rotary tool
KR20120077500A (en) Clutch actuator for vehicle
SU1547959A1 (en) Multipurpose lathe
BE519248A (en)
JPH11285954A (en) Cutter polishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5523767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees