JP5523297B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP5523297B2
JP5523297B2 JP2010281550A JP2010281550A JP5523297B2 JP 5523297 B2 JP5523297 B2 JP 5523297B2 JP 2010281550 A JP2010281550 A JP 2010281550A JP 2010281550 A JP2010281550 A JP 2010281550A JP 5523297 B2 JP5523297 B2 JP 5523297B2
Authority
JP
Japan
Prior art keywords
phase
winding
voltage
current
rectifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010281550A
Other languages
Japanese (ja)
Other versions
JP2012130210A (en
Inventor
昭彦 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2010281550A priority Critical patent/JP5523297B2/en
Publication of JP2012130210A publication Critical patent/JP2012130210A/en
Application granted granted Critical
Publication of JP5523297B2 publication Critical patent/JP5523297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、高調波低減のために改良された電力変換装置に関する。   The present invention relates to an improved power converter for reducing harmonics.

交流から直流に変換する整流回路を有する電力変換装置において、入力高調波低減のために、絶縁トランスを用いて3相ブリッジ整流器を多重化したものが知られている。このような絶縁トランスを用いた方式では、多重化の程度と入力高調波の大きさの関係が明確であり、必要な入力高調波低減度合いに対して3相ブリッジ整流器を何台用いて多重化すべきかを簡単な演算で求めることが可能である。しかしながら適切な位相差の2次巻線を有する絶縁トランスは高価であり、また大型となってしまう。   In a power converter having a rectifier circuit for converting from alternating current to direct current, a three-phase bridge rectifier is multiplexed using an insulating transformer to reduce input harmonics. In such a system using an isolation transformer, the relationship between the degree of multiplexing and the magnitude of input harmonics is clear, and multiplexing is performed using a number of three-phase bridge rectifiers for the required degree of input harmonic reduction. It is possible to find out what should be done by a simple calculation. However, an insulating transformer having a secondary winding with an appropriate phase difference is expensive and large.

これに対して、入力トランスとして非絶縁の単巻トランスを用い、2次巻線の位相差を40°ずつシフトする方法が提案されている(例えば特許文献1参照。)。   On the other hand, a method has been proposed in which a non-insulated single-winding transformer is used as an input transformer and the phase difference of the secondary winding is shifted by 40 ° (see, for example, Patent Document 1).

米国特許第5124904号明細書US Pat. No. 5,124,904

特許文献1に示された手法は、3相ブリッジ整流器に印加される電圧が常に最大振幅となるため、単巻トランス特有の異常な整流経路による高調波が生じない利点があるが、単巻トランスの各巻線を40°シフトするには、例えば15°シフトする方式に比べて位相をシフトするための巻線の量を増加させる必要があるため、単巻トランスが大型になってしまう。   The technique disclosed in Patent Document 1 has the advantage that the voltage applied to the three-phase bridge rectifier always has the maximum amplitude, so that harmonics due to an abnormal rectification path peculiar to the single-winding transformer do not occur. In order to shift each of the windings by 40 °, for example, it is necessary to increase the amount of windings for shifting the phase as compared with the method of shifting by 15 °, so that the single-winding transformer becomes large.

本発明は上記問題点に鑑みて為されたもので、小型の単巻トランスを使用して高調波低減を行うことが可能な電力変換装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power conversion device capable of reducing harmonics using a small single-winding transformer.

上記目的を達成するために、本発明の第1の発明である電力変換装置は、3相交流電源の交流電圧をバランスリアクトルを介して整流する整流器と、3相交流電源の交流電圧を1次入力とし、2次巻線の出力位相が0°を中心としてプラス側とマイナス側対称に60°/M(Mは3以上の奇数)の位相差間隔となる(M−1)個の2次巻線を有する単巻トランスと、前記(M−1)個の2次巻線の各々の出力電圧を整流する(M−1)個の3相整流器と、合計M個の前記3相整流器の各々を入力とし、夫々の出力を共通の負荷に並列接続するM個の零相電流抑制直流リアクトルとから構成したことを特徴としている。   In order to achieve the above object, a power conversion device according to a first aspect of the present invention includes a rectifier that rectifies an AC voltage of a three-phase AC power source through a balance reactor, and a primary AC voltage of the three-phase AC power source. The input phase of the secondary winding is 60 ° / M (M is an odd number of 3 or more) phase difference intervals symmetrical to the plus side and the minus side centered on 0 °. A single-winding transformer having windings, (M-1) three-phase rectifiers that rectify output voltages of the (M-1) secondary windings, and a total of M three-phase rectifiers. It is characterized by comprising M zero-phase current-suppressing DC reactors, each of which is an input and each output is connected in parallel to a common load.

また、本発明の第2の発明である電力変換装置は、3相交流電源の交流電圧を1次入力とし、巻線間の位相差が60°/N(Nは2以上の整数)であるN個の2次巻線を有する単巻トランスと、前記N個の2次巻線の各々の出力電圧を整流するN個の3相整流器と、前記N個の3相整流器の各々を入力とし、その出力を共通の負荷に並列接続するN個の零相電流抑制直流リアクトルとから構成したことを特徴としている。   The power conversion device according to the second aspect of the present invention has an AC voltage of a three-phase AC power supply as a primary input, and a phase difference between windings is 60 ° / N (N is an integer of 2 or more). A single-winding transformer having N secondary windings, N three-phase rectifiers for rectifying the output voltages of the N secondary windings, and the N three-phase rectifiers as inputs. , And N outputs zero-phase current suppression DC reactors whose outputs are connected in parallel to a common load.

この発明によれば、小型の単巻トランスを使用して高調波低減を行うことが可能な電力変換装置を提供することが可能となる。   According to the present invention, it is possible to provide a power conversion device capable of reducing harmonics using a small single-winding transformer.

本発明の実施例1に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 1 of this invention. 本発明の実施例1に係る電力変換装置の電圧ベクトル図。The voltage vector figure of the power converter device which concerns on Example 1 of this invention. 本発明の実施例2に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 2 of this invention. 本発明の実施例3に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 3 of this invention.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る電力変換装置を図1及び図2を参照して説明する。   Hereinafter, the power converter concerning Example 1 of the present invention is explained with reference to FIG.1 and FIG.2.

図1は、本発明の実施例1に係る電力変換装置の回路構成図である。3相の交流電源1から、単巻トランス2を介して3相整流器4B、4Cに、またバランスリアクトル3を介して3相整流器4Aに給電している。3相整流器4A、4B、4Cの各々は、ダイオードをブリッジ接続した構成であり、直流電圧を出力する。単巻トランス2は1次巻線21、2次巻線22、23を有し、1次巻線の反給電端は中性点Nとして共通接続されている。2次巻線22は1次巻線21に対して15°進んだ位相の3相電圧を3相整流器4Bに供給する。同様に2次巻線23は1次巻線21に対して15°遅れた位相の3相電圧を3相整流器4Cに供給する。ここで、バランスリアクトル3は、2次巻線22、23のインピーダンス降下を考慮し、3相整流器4Aの入力電圧を3相整流器4B、4Cに合わせる為に設けられている。   FIG. 1 is a circuit configuration diagram of a power conversion apparatus according to Embodiment 1 of the present invention. Power is supplied from the three-phase AC power source 1 to the three-phase rectifiers 4B and 4C via the single-winding transformer 2 and to the three-phase rectifier 4A via the balance reactor 3. Each of the three-phase rectifiers 4A, 4B, and 4C has a configuration in which diodes are bridge-connected, and outputs a DC voltage. The single-winding transformer 2 has a primary winding 21 and secondary windings 22 and 23, and a counter feed end of the primary winding is commonly connected as a neutral point N. The secondary winding 22 supplies a three-phase voltage having a phase advanced by 15 ° with respect to the primary winding 21 to the three-phase rectifier 4B. Similarly, the secondary winding 23 supplies a three-phase voltage having a phase delayed by 15 ° with respect to the primary winding 21 to the three-phase rectifier 4C. Here, the balance reactor 3 is provided for adjusting the input voltage of the three-phase rectifier 4A to the three-phase rectifiers 4B and 4C in consideration of the impedance drop of the secondary windings 22 and 23.

3相整流器4A、4B、4Cの各々の直流出力は夫々零相電流抑制用直流リアクトル5A、5B、5Cを介して共通の負荷6に並列に接続されている。ここで、負荷6は必ずしも受動素子で構成された直流負荷でなくても良く、例えば、インバータによって交流電動機を駆動するようなアクティブな負荷であっても良い。零相電流抑制用直流リアクトル5は、正側及び負側に巻線を有し、正側巻線を流れる電流が変化したとき、この電流が負側の巻線を流れて戻ってきたときインピーダンスが最小となるような働きをする。ここで最小とは正側と負側のリアクタンスが打ち消しあってゼロとなり、原理的に巻線の抵抗分のみのインピーダンスになるということである。   The DC outputs of the three-phase rectifiers 4A, 4B, and 4C are connected in parallel to a common load 6 via zero-phase current suppressing DC reactors 5A, 5B, and 5C, respectively. Here, the load 6 does not necessarily have to be a DC load composed of passive elements, and may be an active load such as an AC motor driven by an inverter, for example. The zero-phase current suppressing DC reactor 5 has windings on the positive side and the negative side, and when the current flowing through the positive side winding changes, the impedance flows when this current flows back through the negative side winding. It works to minimize. Here, “minimum” means that the reactances of the positive side and the negative side cancel each other and become zero, and in principle, the impedance becomes only the resistance of the winding.

以下、図2を参照して本発明の実施例1に係る電力変換装置の動作を説明する。図2は、3相整流器4A、4B、4Cの各々に印加される電圧をベクトルで示したものである。図示したように、3相整流器4Aには120°位相のずれた線間電圧UA−VA、VA−WA、WA−UAが印加される。ここで、UA、VA、WAとは、夫々3相整流器4AのU相、V相及びW相の入力端子を示し、他の3相整流器についても同様である。3相整流器4Bには、上記各電圧より20°位相が進み、互いに120°の位相間隔の線間電圧UB−VB、VB−WB、WA−UAが印加され、3相整流器4Cには、3相整流器4Aの各電圧より20°位相が遅れ、互いに120°の位相間隔の線間電圧UC−VC、VC−WC、WC−UCが印加される。この状態でバランスした整流が行われると、交流電源1から電力変換装置に流入する電流は所謂18パルス整流相当の電流となり、高調波は大幅に低減されると考えられる。   Hereinafter, the operation of the power conversion apparatus according to the first embodiment of the present invention will be described with reference to FIG. FIG. 2 shows the voltages applied to each of the three-phase rectifiers 4A, 4B, and 4C as vectors. As shown in the figure, line voltages UA-VA, VA-WA, and WA-UA that are 120 ° out of phase are applied to the three-phase rectifier 4A. Here, UA, VA, and WA indicate the U-phase, V-phase, and W-phase input terminals of the three-phase rectifier 4A, respectively, and the same applies to the other three-phase rectifiers. The three-phase rectifier 4B is applied with line voltages UB-VB, VB-WB, WA-UA having a phase interval of 120 ° relative to each other, with a phase advance of 20 ° from the above voltages. The line voltages UC-VC, VC-WC, and WC-UC, which are delayed by 20 ° from each voltage of the phase rectifier 4A and have a phase interval of 120 °, are applied. If balanced rectification is performed in this state, the current flowing from the AC power source 1 into the power converter becomes a current equivalent to so-called 18-pulse rectification, and the harmonics are considered to be greatly reduced.

ところが、単巻トランス2の各相は互いに絶縁されていないので、図2に破線で示したように、各3相整流器に与えられる線間電圧より大きい電圧(例えばUB−VC、VB−WC、WB−UC)が3相整流器を跨いで印加される。このため例えば、3相整流器4BのU相(UB)から流入した電流が零相電流抑制用直流リアクトル5Bの正側巻線を通って負荷6を流れ、零相電流抑制用直流リアクトル5Bの負側巻線でなく、零相電流抑制用直流リアクトル5Cの負側巻線を通って3相整流器4CのV相(VC)に戻るような電流ルートが生じる。このようなリプル電流が流れることにより、交流電源1から電力変換装置に流入する電流の高調波成分が増加することは勿論、負荷6に印加される直流電圧に余分なリプル分が生じ、場合によっては、直流電圧が過電圧となって保護装置を動作させてしまう恐れが生じる。   However, since the phases of the single-winding transformer 2 are not insulated from each other, as shown by broken lines in FIG. 2, voltages higher than the line voltage applied to each three-phase rectifier (for example, UB-VC, VB-WC, WB-UC) is applied across the three-phase rectifier. For this reason, for example, the current flowing from the U phase (UB) of the three-phase rectifier 4B flows through the load 6 through the positive side winding of the zero-phase current suppression DC reactor 5B, and the zero-phase current suppression DC reactor 5B is negative. A current route is generated that returns to the V phase (VC) of the three-phase rectifier 4C through the negative side winding of the zero-phase current suppressing DC reactor 5C instead of the side winding. When such a ripple current flows, not only the harmonic component of the current flowing from the AC power supply 1 into the power converter increases, but also an extra ripple occurs in the DC voltage applied to the load 6, depending on circumstances. In such a case, the DC voltage may become an overvoltage, causing the protection device to operate.

零相電流抑制用直流リアクトル5は、このような3相整流器を跨ぐ零相電流を抑制するために設けられたものである。すなわち、上述したような零相電流抑制用直流リアクトル5Bの正側巻線を通って零相電流抑制用直流リアクトル5Cの負側巻線を通るルートに対して、零相電流抑制用直流リアクトル5のインピーダンスは、正負両者を合算したインピーダンスとなる。従って、前述した零相電流抑制用直流リアクトル5Bの正側から負側に通流したときのインピーダンスに比べて極端に大きくなる。このため、上記リプル電流はその大きさが制限され、直流電圧が過電圧になることも抑制される。   The zero-phase current suppressing DC reactor 5 is provided to suppress such a zero-phase current across the three-phase rectifier. That is, with respect to the route passing through the negative side winding of the zero-phase current suppressing DC reactor 5C through the positive side winding of the zero-phase current suppressing DC reactor 5B as described above, the zero-phase current suppressing DC reactor 5 is used. The impedance of is the sum of both positive and negative. Accordingly, the impedance is extremely larger than the impedance when the zero-phase current suppressing DC reactor 5B is passed from the positive side to the negative side. For this reason, the magnitude of the ripple current is limited, and the DC voltage is also prevented from being overvoltage.

この実施例1においては、交流電源1と同位相の3相整流器4Aを中心に正負に20°位相をシフトさせた3相整流器4B、4Cを用いて18パルス整流相当の出力を得ているが、更に2台の3相整流器を追加して30パルス整流相当の出力を得ることも可能である。この場合は、単巻トランス2の2次巻線を4個設け、交流電源1と同位相の3相整流器を中心に正側に12°及び24°位相シフトした3相整流器2台と負側に12°及び24°位相シフトした3相整流器2台を用いれば良い。   In the first embodiment, an output equivalent to 18-pulse rectification is obtained using the three-phase rectifiers 4B and 4C whose phases are shifted by 20 ° positively and negatively around the three-phase rectifier 4A having the same phase as that of the AC power supply 1. Further, it is possible to obtain an output equivalent to 30 pulse rectification by adding two three-phase rectifiers. In this case, four secondary windings of the single-winding transformer 2 are provided, and two three-phase rectifiers shifted by 12 ° and 24 ° to the positive side around the three-phase rectifier having the same phase as the AC power source 1 and the negative side Two three-phase rectifiers that are shifted in phase by 12 ° and 24 ° may be used.

更に拡張すれば、3相交流電源の交流電圧をバランスリアクトルを介して整流する整流器と、3相交流電源の交流電圧を1次入力とし、2次巻線の出力位相が0°を中心としてプラス側に60°/M(Mは3以上の奇数)の位相差間隔で(M−1)/2個の2次巻線、マイナス側にも60°/M(Mは3以上の奇数)の位相差間隔で(M−1)/2個の2次巻線を有する単巻トランスと、これらの2次巻線の各々の出力電圧を整流する(M−1)個の3相整流器と、合計M個となる3相整流器の各々を入力とし、その出力を共通の負荷に並列接続するM個の零相電流抑制直流リアクトルとから電力変換装置を構成すれば良い。   If further expanded, a rectifier that rectifies the AC voltage of the three-phase AC power supply through a balance reactor and the AC voltage of the three-phase AC power supply as the primary input, and the output phase of the secondary winding is positive around 0 °. (M-1) / 2 secondary windings at a phase difference interval of 60 ° / M (M is an odd number of 3 or more) on the side, and 60 ° / M (M is an odd number of 3 or more) on the negative side A single-winding transformer having (M−1) / 2 secondary windings at a phase difference interval, and (M−1) three-phase rectifiers for rectifying the output voltage of each of these secondary windings; What is necessary is just to comprise a power converter device from the M zero-phase current suppression DC reactor which takes each of the three-phase rectifiers which become M in total as an input, and connects the output to a common load in parallel.

尚、上記においてMは奇数としたが、0°を中心とした出力位相のバランスを考慮しなければMは偶数であっても良い。この場合は単巻トランスのプラス側またはマイナス側の2次巻線を1個多く設けるようにすれば良い。   In the above description, M is an odd number, but M may be an even number if the balance of the output phase centered on 0 ° is not taken into consideration. In this case, it is sufficient to provide one more secondary winding on the plus side or minus side of the single-winding transformer.

図3は本発明の実施例2に係る電力変換装置の回路構成図である。この実施例2の各部について、図1の本発明の実施例1に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、1次巻線を切り離す開閉器7、負荷電流を検出する電流検出器8及び開閉制御器9を設け、開閉制御器9は負荷電流が所定値以下となったとき開閉器7をオフする構成とした点である。   FIG. 3 is a circuit configuration diagram of the power conversion apparatus according to the second embodiment of the present invention. About each part of this Example 2, the same part as each part of the power converter device which concerns on Example 1 of this invention of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The difference between the second embodiment and the first embodiment is that a switch 7 for separating the primary winding, a current detector 8 for detecting a load current, and a switch controller 9 are provided. The switch controller 9 has a load current of a predetermined value. It is the point which set it as the structure which turns off the switch 7 when it becomes below.

前述したように、零相電流抑制用直流リアクトル5の効果によって、上述したリプル電流はその大きさが制限され、直流電圧が過電圧になることが抑制されるが、負荷電流が小さくなると、零相電流抑制用直流リアクトル5の効果が薄れ、直流電圧が大きく変動して過電圧となり、保護装置を動作させてしまう。これを防止するため、電流検出器8によって検出された負荷電流が所定値以下となったとき、開閉器7をオフする。開閉器7がオフすれば、図2の破線で示した相間を跨ぐ最大電圧は印加されなくなる。但し、2次巻線22及び23による位相シフトも同時に行われなくなり、3相整流器4A、4B、4Cの各々には基本的に交流電源1と同相の交流電圧が印加され、6パルス整流相当の波形となり入力高調波は増大する。しかしながら、この場合は負荷電流が所定値以下であり、その絶対値は小さい。従ってこのようにすれば、直流電圧の変動を抑制できるので、装置が過電圧となって保護装置を動作させてしまうことはない。   As described above, the magnitude of the ripple current described above is limited by the effect of the DC reactor 5 for suppressing the zero-phase current and the DC voltage is suppressed from being overvoltage. The effect of the current suppressing direct current reactor 5 is weakened, the direct current voltage fluctuates greatly and becomes an overvoltage, and the protection device is operated. To prevent this, the switch 7 is turned off when the load current detected by the current detector 8 becomes a predetermined value or less. When the switch 7 is turned off, the maximum voltage across the phases indicated by the broken line in FIG. 2 is not applied. However, the phase shift by the secondary windings 22 and 23 is not performed at the same time, and an AC voltage having the same phase as that of the AC power supply 1 is basically applied to each of the three-phase rectifiers 4A, 4B, and 4C. It becomes a waveform and the input harmonics increase. However, in this case, the load current is below a predetermined value, and the absolute value is small. Accordingly, since the fluctuation of the DC voltage can be suppressed in this way, the device will not be overvoltaged to operate the protection device.

尚、図3は単巻トランスの結線が中性点Nを有するスター結線で表記しているが、デルタ結線であっても同様に1次巻線を切り離して励磁電流を遮断すれば同一の効果が得られることは明らかである。   Although FIG. 3 shows the connection of the single-winding transformer as a star connection having a neutral point N, the same effect can be obtained if the primary winding is disconnected and the excitation current is cut off even in the case of the delta connection. It is clear that is obtained.

図4は本発明の実施例3に係る電力変換装置の回路構成図である。この実施例3の各部について、図1の本発明の実施例1に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、交流電源と同相の整流を行うためのバランスリアクトル3、3相整流器4A及び零相電流抑制リアクトル5Aを省いた点、単巻トランス2Aを2次4巻線型とし、2次巻線24、25の出力を、夫々3相整流器4D、4Eに与え、3相整流器4D、4Eの出力を夫々零相電流抑制リアクトル5D、5Eを介して共通の負荷6に給電する構成とした点である。   FIG. 4 is a circuit configuration diagram of the power conversion apparatus according to the third embodiment of the present invention. The same parts of the third embodiment as those of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. The third embodiment is different from the first embodiment in that the balance reactor 3, the three-phase rectifier 4A and the zero-phase current suppressing reactor 5A for rectifying the same phase as the AC power supply are omitted, and the single transformer 2A is used as a secondary. The four-winding type is used, and the outputs of the secondary windings 24 and 25 are given to the three-phase rectifiers 4D and 4E, respectively. 6 is a configuration in which power is supplied to 6.

この実施例3における電力変換装置は24パルス整流相当の高調波抑制システムを構成する。従って、単巻トランス2Aの2次巻線22、23、24、25は交流電源1に対して夫々−22.5°、−7.5°、+7.5°、+22.5°の位相となるようにすれば良い。このように、実施例1で示したバランスリアクトルを用いずに単巻トランス2Aの2次巻線のみを使用して必要となる位相シフトを実現すれば、単巻トランス2Aの2次巻線は増加するが、3相整流器に与える電圧の自由度が増す利点がある。   The power converter in Example 3 constitutes a harmonic suppression system equivalent to 24-pulse rectification. Therefore, the secondary windings 22, 23, 24, and 25 of the single-winding transformer 2A have phases of −22.5 °, −7.5 °, + 7.5 °, and + 22.5 ° with respect to the AC power supply 1, respectively. What should I do? As described above, if the necessary phase shift is realized by using only the secondary winding of the single-winding transformer 2A without using the balance reactor shown in the first embodiment, the secondary winding of the single-winding transformer 2A is Although it increases, there is an advantage that the degree of freedom of voltage applied to the three-phase rectifier is increased.

また、実施例3の変形として単巻トランスの2次巻線を、−15°、+15°の2個として12パルス整流相当の高調波抑制システムを構成することができる。以上をまとめると、6Nパルス整流相当の高調波抑制システムを構成するには、単巻トランスによって60°/N(Nは2以上の整数)の位相差をもつN個の2次巻線の各々の出力を夫々N個の3相整流器に与えるように構成すれば良いことが分かる。   Further, as a modification of the third embodiment, it is possible to configure a harmonic suppression system equivalent to 12-pulse rectification by using the secondary winding of the single-winding transformer as two pieces of −15 ° and + 15 °. In summary, in order to construct a harmonic suppression system equivalent to 6N pulse rectification, each of N secondary windings having a phase difference of 60 ° / N (N is an integer of 2 or more) by a single-winding transformer. It can be seen that it may be configured so that the outputs of N are supplied to N three-phase rectifiers.

この実施例3に示した電力変換装置に対し、図3に示した開閉器7、電流検出器8及び開閉制御器9を設け、開閉制御器9によって負荷電流が所定値以下となったとき開閉器7をオフする構成とすれば、負荷電流が減少しても直流電圧の変動を抑制できるので、装置の過電圧を防ぐことが可能となることは明らかである。   The power converter shown in the third embodiment is provided with the switch 7, the current detector 8 and the switch controller 9 shown in FIG. 3, and opens and closes when the load current becomes a predetermined value or less by the switch controller 9. Obviously, if the device 7 is turned off, fluctuations in the DC voltage can be suppressed even if the load current is reduced, so that overvoltage of the device can be prevented.

以上本発明のいくつかの実施例を説明したが、これらの実施例は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、実施例2において電流検出器8に代えて直流電圧を検出し、直流電圧が所定値を超えたとき開閉器7をオフするようにしても良い。また、必ずしも電流検出器8によって負荷電流を検出する必要は無く、何れかの3相整流器4の入力電流によってこれを代用しても良い。   Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof. For example, a DC voltage may be detected instead of the current detector 8 in the second embodiment, and the switch 7 may be turned off when the DC voltage exceeds a predetermined value. Further, it is not always necessary to detect the load current by the current detector 8, and this may be substituted by the input current of any three-phase rectifier 4.

1 交流電源
2、2A 単巻トランス
3 バランスリアクトル
4、4A、4B、4C、4D、4E 3相整流装置
5、5A、5B、5C、5D、5E 零相電流抑制リアクトル
6 負荷
7 開閉器
8 電流検出器
9 開閉制御器
DESCRIPTION OF SYMBOLS 1 AC power source 2, 2A Single volume transformer 3 Balance reactor 4, 4A, 4B, 4C, 4D, 4E Three-phase rectifier 5, 5A, 5B, 5C, 5D, 5E Zero-phase current suppression reactor 6 Load 7 Switch 8 Current Detector 9 Open / close controller

Claims (6)

3相交流電源の交流電圧をバランスリアクトルを介して整流する整流器と、
3相交流電源の交流電圧を1次入力とし、2次巻線の出力位相が0°を中心としてプラス側とマイナス側対称に60°/M(Mは3以上の奇数)の位相差間隔となる(M−1)個の2次巻線を有する単巻トランスと、
前記(M−1)個の2次巻線の各々の出力電圧を整流する(M−1)個の3相整流器と、
合計M個の前記3相整流器の各々を入力とし、夫々の出力を共通の負荷に並列接続するM個の零相電流抑制直流リアクトルと
から構成したことを特徴とする電力変換装置。
A rectifier that rectifies the AC voltage of the three-phase AC power source through a balance reactor;
A phase difference interval of 60 ° / M (M is an odd number of 3 or more) symmetrically on the plus side and the minus side with the AC voltage of the three-phase AC power supply as the primary input and the output phase of the secondary winding as a center around 0 °. A single-winding transformer having (M-1) secondary windings,
(M-1) three-phase rectifiers for rectifying the output voltage of each of the (M-1) secondary windings;
A power conversion apparatus comprising: a total of M three-phase rectifiers as inputs, and M zero-phase current-suppressing DC reactors each having an output connected in parallel to a common load.
3相交流電源の交流電圧を1次入力とし、巻線間の位相差が60°/N(Nは2以上の整数)であるN個の2次巻線を有する単巻トランスと、
前記N個の2次巻線の各々の出力電圧を整流するN個の3相整流器と、
前記N個の3相整流器の各々を入力とし、その出力を共通の負荷に並列接続するN個の零相電流抑制直流リアクトルと
から構成したことを特徴とする電力変換装置。
A single-winding transformer having N secondary windings having an AC voltage of a three-phase AC power supply as a primary input and a phase difference between the windings of 60 ° / N (N is an integer of 2 or more);
N three-phase rectifiers for rectifying the output voltage of each of the N secondary windings;
A power conversion device comprising N number of three-phase rectifiers as inputs and N number of zero-phase current suppressing DC reactors whose outputs are connected in parallel to a common load.
前記位相差間隔は20°であり、前記2次巻線の前記交流電源から見た位相差を各々−20°、+20°としたことを特徴とする請求項1に記載の電力変換装置。   2. The power converter according to claim 1, wherein the phase difference interval is 20 °, and the phase difference of the secondary winding viewed from the AC power source is −20 ° and + 20 °, respectively. 前記巻線間の位相差は15°であり、前記交流電源から見た位相差を各々−22.5°、−7.5°、+7.5°、+22.5°としたことを特徴とする請求項2に記載の電力変換装置。   The phase difference between the windings is 15 °, and the phase differences viewed from the AC power source are −22.5 °, −7.5 °, + 7.5 °, and + 22.5 °, respectively. The power conversion device according to claim 2. 前記巻線間の位相差は30°であり、前記交流電源から見た位相差を各々−15°、+15°としたことを特徴とする請求項2に記載の電力変換装置。   The power converter according to claim 2, wherein a phase difference between the windings is 30 °, and a phase difference viewed from the AC power supply is −15 ° and + 15 °, respectively. 前記単巻トランスの1次巻線が前記交流電源によって励磁されないように開路することができる開閉器を備え、
実質的に前記負荷に流れる電流が所定値以下となったとき、前記開閉器を開路するようにしたことを特徴とする請求項1乃至請求項5の何れか1項に記載の電力変換装置。
A switch that can be opened so that the primary winding of the single-winding transformer is not excited by the AC power supply;
The power converter according to any one of claims 1 to 5, wherein the switch is opened when a current flowing through the load substantially becomes a predetermined value or less.
JP2010281550A 2010-12-17 2010-12-17 Power converter Active JP5523297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281550A JP5523297B2 (en) 2010-12-17 2010-12-17 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281550A JP5523297B2 (en) 2010-12-17 2010-12-17 Power converter

Publications (2)

Publication Number Publication Date
JP2012130210A JP2012130210A (en) 2012-07-05
JP5523297B2 true JP5523297B2 (en) 2014-06-18

Family

ID=46646613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281550A Active JP5523297B2 (en) 2010-12-17 2010-12-17 Power converter

Country Status (1)

Country Link
JP (1) JP5523297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555594B2 (en) * 2016-11-28 2019-08-07 株式会社創発システム研究所 Power supply circuit system for driving a jet fan using a non-insulated transformer
WO2023112318A1 (en) * 2021-12-17 2023-06-22 株式会社創発システム研究所 Power supply circuit system for jet fan drive dependent on 18 rectifier circuits using non-isolated transformer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122754A (en) * 1984-07-11 1986-01-31 Fuji Electric Corp Res & Dev Ltd Noise absorber of power converter
JPH0667198B2 (en) * 1984-10-12 1994-08-24 株式会社東芝 Power converter
JPH0732534B2 (en) * 1986-10-08 1995-04-10 川崎製鉄株式会社 Rectifier load abnormality detection method
US4876634A (en) * 1988-07-01 1989-10-24 Westinghouse Electric Corp. Multi-pulse converter system
AU644153B2 (en) * 1990-08-17 1993-12-02 Westinghouse Electric Corporation Optimized 18-pulse type AC/DC, or DC/AC, converter system
US7619906B2 (en) * 2005-03-01 2009-11-17 York International Corporation System for precharging a DC link in a variable speed drive
JP4069945B2 (en) * 2006-01-05 2008-04-02 ダイキン工業株式会社 Rectifier circuit and three-phase rectifier
JP2008005685A (en) * 2006-06-20 2008-01-10 Toshiaki Yanai Dc-dc converter
JP4765006B2 (en) * 2006-09-04 2011-09-07 富士電機株式会社 Power conversion system
JP4973306B2 (en) * 2007-05-07 2012-07-11 富士電機株式会社 Parallel 24 pulse rectifier circuit

Also Published As

Publication number Publication date
JP2012130210A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5662757B2 (en) Power distribution system
JP6289825B2 (en) Generator excitation device and power conversion system
US9577544B2 (en) Device and method for connecting an electric power generator to an HVDC transmission system
US8923024B2 (en) Series connected multi-level power conversion device
US9722502B2 (en) Converter arrangement
US9742331B2 (en) Doubly-fed, variable-speed, dual-voltage AC generation and distribution systems
WO2016198370A1 (en) Modular multilevel converter with cascaded h-bridges and phase-shifted transformer groups
JP2008178180A (en) Rectifier circuit
EP3249799B1 (en) Power conversion device
JP5523297B2 (en) Power converter
JP5047210B2 (en) Power converter
JP4765006B2 (en) Power conversion system
JP2010220332A (en) Power converting device
US20130258729A1 (en) Medium voltage power apparatus
JP5828818B2 (en) Power converter
WO2015145713A1 (en) Rectifier circuit
JP3208369U (en) Delta-less harmonic cancellation device
JP6100452B2 (en) Conversion device
JP6591374B2 (en) Excitation device
US20220247307A1 (en) Distorsion filter arrangement
CN113692699A (en) Converter, arrangement comprising a converter and method for operating the same
JP2016015817A (en) Power supply device
KR20080109543A (en) Power converter system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250