JP5828818B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP5828818B2
JP5828818B2 JP2012197258A JP2012197258A JP5828818B2 JP 5828818 B2 JP5828818 B2 JP 5828818B2 JP 2012197258 A JP2012197258 A JP 2012197258A JP 2012197258 A JP2012197258 A JP 2012197258A JP 5828818 B2 JP5828818 B2 JP 5828818B2
Authority
JP
Japan
Prior art keywords
voltage
phase
power converter
value
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012197258A
Other languages
Japanese (ja)
Other versions
JP2014054089A (en
Inventor
松本 和則
和則 松本
順二 小澤
順二 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2012197258A priority Critical patent/JP5828818B2/en
Publication of JP2014054089A publication Critical patent/JP2014054089A/en
Application granted granted Critical
Publication of JP5828818B2 publication Critical patent/JP5828818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、各々直流電圧検出器を有する単相インバータを複数個直列に接続して各相を構成した電力変換装置に関する。   The present invention relates to a power conversion device in which a plurality of single-phase inverters each having a DC voltage detector are connected in series to constitute each phase.

交流電圧を直流電圧に変換し、任意の周波数の交流電圧に変換する直列多重方式の電力変換装置において、各単位インバータの直流電源は交流電源から整流して得ているが、接続する変圧器の2次側のインピーダンスのばらつきにより電力変換装置を構成する単位インバータの直流電圧には差が生じて、その影響により装置出力側の各相の出力電圧電流にアンバランスが生じる。そのアンバランスの問題を解消するために各単位インバータの直流電圧を検出して、検出した直流電圧をアンバランス補正のフィードバック制御に応用することが考えられる(例えば特許文献1参照。)。   In the serial multiplex type power converter that converts AC voltage to DC voltage and converts it to AC voltage of any frequency, the DC power source of each unit inverter is obtained by rectifying from AC power source, Due to the impedance variation on the secondary side, a difference occurs in the DC voltage of the unit inverter constituting the power conversion device, and the influence causes an imbalance in the output voltage current of each phase on the device output side. In order to solve the problem of unbalance, it is conceivable to detect the DC voltage of each unit inverter and apply the detected DC voltage to feedback control for unbalance correction (see, for example, Patent Document 1).

特開2006−271045号公報(図1)Japanese Patent Laying-Open No. 2006-271045 (FIG. 1)

直列多重の電力変換装置では、直流電圧検出回路は各単位インバータ毎に設ける必要があるため、検出回路の数が多く検出回路が故障する可能性が高くなり、故障の場合アンバランスを補正できなくなる等、運転継続できなくなるという問題があった。   In a serial multiplex power conversion device, since it is necessary to provide a DC voltage detection circuit for each unit inverter, there is a large number of detection circuits, and there is a high possibility that the detection circuits will fail. In the case of a failure, the imbalance cannot be corrected. There was a problem that operation could not be continued.

本発明は上記に鑑みて為されたものであり、単位インバータ内の直流電圧検出回路が故障しても、運転を継続することが可能な電力変換装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a power conversion device capable of continuing operation even when a DC voltage detection circuit in a unit inverter fails.

上記目的を達成するために、本発明の電力変換装置は、1次側が交流電源に接続され、3N(Nは2以上の整数)個の2次巻線を有する入力変圧器と、前記各々の2次巻線に接続され、3相整流回路と直流平滑コンデンサと、直流を単相交流に変換する単相インバータ回路とから成り、N台の単相交流出力を直列接続して1相を得て3相直列多重電力変換器を構成するようにした3N台の単位インバータと、前記各々の直流平滑コンデンサに印加される直流電圧を検出する直流電圧検出器と、前記各々の単相インバータ回路の出力電圧を制御する共通の電圧制御手段とを具備し、前記電圧制御手段は、前記3N台の直流電圧検出器の出力をフィードバックして前記3相直列多重電力変換器を運転制御すると共に、前記3N台の直流電圧検出器のうち、1台が異常となったとき、この異常となった直流電圧検出器の出力を、当該異常直流電圧検出器を有する単位インバータが接続されている前記入力変圧器の2次巻線と等価なインピーダンスを持つ対応2次巻線に接続された単位インバータ内の直流電圧検出器の出力に切替えることを特徴としている。   In order to achieve the above object, a power conversion device of the present invention includes an input transformer having a primary side connected to an AC power source and having 3N (N is an integer of 2 or more) secondary windings, It is connected to the secondary winding and consists of a three-phase rectifier circuit, a DC smoothing capacitor, and a single-phase inverter circuit that converts DC to single-phase AC. N single-phase AC outputs are connected in series to obtain one phase. 3N unit inverters configured to form a three-phase serial multiple power converter, a DC voltage detector for detecting a DC voltage applied to each DC smoothing capacitor, and each single-phase inverter circuit Common voltage control means for controlling the output voltage, the voltage control means feedbacks the outputs of the 3N DC voltage detectors to control the operation of the three-phase serial multiple power converter, and 3N DC voltage detectors When one unit becomes abnormal, the output of the abnormal DC voltage detector is equivalent to the secondary winding of the input transformer to which the unit inverter having the abnormal DC voltage detector is connected. It is characterized in that the output is switched to the output of the DC voltage detector in the unit inverter connected to the corresponding secondary winding having a proper impedance.

この発明によれば、単位インバータの直流電圧検出回路が故障しても運転を継続することが可能な電力変換装置を提供することが可能となる。   According to the present invention, it is possible to provide a power converter that can continue operation even if the DC voltage detection circuit of the unit inverter fails.

本発明の実施例1に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 1 of this invention. 電力変換装置を構成する単位インバータの内部構成図。The internal block diagram of the unit inverter which comprises a power converter device. データ切換え回路の周辺を詳細に示す回路構成図。The circuit block diagram which shows the periphery of a data switching circuit in detail. 直流電圧検出器異常検出回路の内部構成図。The internal block diagram of a DC voltage detector abnormality detection circuit. 本発明の実施例1に係る相バランス補正回路の内部構成図。The internal block diagram of the phase balance correction circuit which concerns on Example 1 of this invention. 本発明の実施例2に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 2 of this invention. 本発明の実施例2に係る過電圧防止制御回路の内部構成図。The internal block diagram of the overvoltage prevention control circuit which concerns on Example 2 of this invention.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る電力変換装置を、図1を参照して説明する。図1は本発明の実施例1に係る電力変換装置の回路構成図である。   Hereinafter, the power converter concerning Example 1 of the present invention is explained with reference to FIG. FIG. 1 is a circuit configuration diagram of a power conversion apparatus according to Embodiment 1 of the present invention.

3相電源1から2次側に3N個(Nは2以上の整数)の巻線を持った入力変圧器2に3相交流電力を供給する。図1はN=3の場合を示している。入力変圧器2の各々の2次巻線からの3相交流電力を夫々単位インバータ3(3U1、3U2、3U3、3V1、3V2、3V3、3W1、3W2、3W3)へ供給する。単位インバータ3U1、3U2、3U3の単相出力、単位インバータ3V1、3V2、3V3の単相出力、並びに単位インバータ3W1、3W2、3W3の単相出力は夫々直列に接続されてU相、V相及びW相の相電圧を形成し、これらの直列接続体の一方を中性点として互いに接続し、他方を3相の交流電動機4の3相入力端子に接続することにより、複数台の単位インバータから成る多重電力変換器が交流電動機4に3相交流電力を供給する。   Three-phase AC power is supplied from the three-phase power source 1 to the input transformer 2 having 3N windings (N is an integer of 2 or more) on the secondary side. FIG. 1 shows a case where N = 3. Three-phase AC power from each secondary winding of the input transformer 2 is supplied to unit inverters 3 (3U1, 3U2, 3U3, 3V1, 3V2, 3V3, 3W1, 3W2, 3W3), respectively. Single-phase outputs of unit inverters 3U1, 3U2, 3U3, single-phase outputs of unit inverters 3V1, 3V2, and 3V3, and single-phase outputs of unit inverters 3W1, 3W2, and 3W3 are connected in series to form U-phase, V-phase, and W-phase, respectively. A plurality of unit inverters are formed by forming phase voltages of phases, connecting one of these series connection bodies to each other as a neutral point, and connecting the other to the three-phase input terminal of the three-phase AC motor 4 The multiple power converter supplies three-phase AC power to the AC motor 4.

その詳細を後述する電圧制御回路5においては、電力変換装置の出力電圧が所定の電圧指令58となるように補正電圧指令Vu*、Vv*、Vw*を決定し、これをPWM制御回路60に出力する。PWM制御回路60は出力電圧指令に対応した出力電圧Vu、Vv、Vwを発生するように各単位インバータを構成するスイッチング素子に与えるゲート信号を出力し、これらのスイッチング素子をオン・オフ制御する。また、3相電源1の電圧は、計器用変圧器6によって検出され、電圧制御回路5に与えられている。   In the voltage control circuit 5, which will be described in detail later, the correction voltage commands Vu *, Vv *, Vw * are determined so that the output voltage of the power converter becomes a predetermined voltage command 58, and this is supplied to the PWM control circuit 60. Output. The PWM control circuit 60 outputs a gate signal applied to the switching elements constituting each unit inverter so as to generate output voltages Vu, Vv, and Vw corresponding to the output voltage command, and controls these switching elements on and off. Further, the voltage of the three-phase power source 1 is detected by the instrument transformer 6 and given to the voltage control circuit 5.

図2は図1に示した単位インバータ3の内部構成図である。入力変圧器2の2次巻線からの交流電力をダイオード整流回路31及び直流平滑コンデンサ33によって直流電力に変換し、さらに単相インバータ回路32で任意の周波数、電圧を持った単相交流に変換する。単相インバータ回路32は各々スイッチング素子を有する2つの正側アームと2つの負側アームをブリッジ接続して構成する。直流平滑コンデンサ33の両端の電圧は電圧検出器34によって検出され図1の電圧制御回路5に供給される。   FIG. 2 is an internal configuration diagram of the unit inverter 3 shown in FIG. AC power from the secondary winding of the input transformer 2 is converted to DC power by the diode rectifier circuit 31 and the DC smoothing capacitor 33, and further converted to single-phase AC having an arbitrary frequency and voltage by the single-phase inverter circuit 32. To do. The single-phase inverter circuit 32 is formed by bridge-connecting two positive side arms and two negative side arms each having a switching element. The voltage across the DC smoothing capacitor 33 is detected by the voltage detector 34 and supplied to the voltage control circuit 5 of FIG.

以下、図1の電圧制御回路5の内部構成について説明する。   Hereinafter, the internal configuration of the voltage control circuit 5 of FIG. 1 will be described.

各々の単位インバータ3の電圧検出器34で検出された直流電圧検出値VdcfU1〜VdcfU3、VdcfV1〜VdcfV3、VdcfW1〜VdcfW3は、直流電圧検出バッファ51に保存されると同時に置換データバッファ52にも保存される。その詳細を後述する直流電圧検出器異常検出回路54で故障が検出されてない場合には、直流電圧検出バッファ51の値がデータ切換回路53を介して直流電圧バッファ55に送られるが、直流電圧検出器異常検出回路54で故障が検出された場合には、故障ユニット番号がデータ切換え回路53に送られ、このユニット番号に従い、当該ユニット番号に対応する他のユニット番号の置換データバッファ52における保存値が選択され直流電圧バッファ55に送られる。   The DC voltage detection values VdcfU1 to VdcfU3, VdcfV1 to VdcfV3, and VdcfW1 to VdcfW3 detected by the voltage detector 34 of each unit inverter 3 are stored in the DC voltage detection buffer 51 and simultaneously in the replacement data buffer 52. The When a failure is not detected by the DC voltage detector abnormality detection circuit 54 described later in detail, the value of the DC voltage detection buffer 51 is sent to the DC voltage buffer 55 via the data switching circuit 53. When a failure is detected by the detector abnormality detection circuit 54, the failure unit number is sent to the data switching circuit 53, and another unit number corresponding to the unit number is stored in the replacement data buffer 52 according to the unit number. A value is selected and sent to the DC voltage buffer 55.

直流電圧バッファ55の出力から各々の相を構成する単位インバータの直流電圧の和を各相毎に電圧加算回路56で求めて各相直流電圧として相バランス補正回路57に与える。相バランス補正回路57は、電圧指令58の指令を電圧指令3相変換回路を介して得られた3相の電圧指令を、各相直流電圧のアンバランス分に基づいて補正する。すなわち、結果として各相の単位インバータの出力電圧がバランスするようなアンバランスな補正電圧指令Vu*、Vv*、Vw*を相バランス補正回路57が出力し、これをPWM制御回路60に送信して単位インバータのゲートパルス幅を得る。   The sum of the DC voltages of the unit inverters constituting each phase is obtained from the output of the DC voltage buffer 55 by the voltage adding circuit 56 for each phase, and is given to the phase balance correction circuit 57 as each phase DC voltage. The phase balance correction circuit 57 corrects the three-phase voltage command obtained from the voltage command 58 command via the voltage command three-phase conversion circuit based on the unbalance of each phase DC voltage. That is, as a result, the phase balance correction circuit 57 outputs unbalanced correction voltage commands Vu *, Vv *, and Vw * that balance the output voltages of the unit inverters of each phase, and transmits them to the PWM control circuit 60. To obtain the gate pulse width of the unit inverter.

以下、図3を用いて前記直流電圧検出器異常時のデータ切換え処理の一例を説明する。図3はデータ切換え回路53の周辺を詳細に示す回路構成図である。   Hereinafter, an example of the data switching process when the DC voltage detector is abnormal will be described with reference to FIG. FIG. 3 is a circuit configuration diagram showing the periphery of the data switching circuit 53 in detail.

単位インバータ3の直流電圧は、入力側に接続された多巻線の入力変圧器2の2次巻線のインピーダンス(%IZ)により電圧降下して直流平滑コンデンサ33に充電されるが、このインピーダンスは、入力変圧器2の1次−2次巻線間の位置関係で決まる磁気的な結合の強弱によってその大小が決まる。すなわち、結合が弱いほど%IZは大きく、強いほど%IZは小さくなる。そのため多巻線の入力変圧器2の2次巻線においては、鉄心の長手方向の両側の端部に配設された(1次−2次の磁気的結合が弱い)巻線では%IZが大きく、鉄心の長手方向の中央部に配置された磁気的結合の強い巻線ほど%IZは小さくなる。すなわち、鉄心の中央部に対し、長手方向両側の巻線の%IZの大きさは、中心に対して線対称の関係にあるため、1a、2a、…Na、 1b、2b、…Nb、1c、2c、…Ncの3×N巻線変圧器の場合、各巻線の2次側インピーダンスIzは、1a≒Nc、 2a≒(N-1)c,3a≒(N-2)c…1b≒Nb、2b≒(N-1)bとなる対称性があり、従って各巻線から充電される単位インバータの直流電圧も基本的にこの対称性を持っている。この対称性を利用するため、直流電圧検出バッファ51には単位インバータが接続されている入力変圧器2の鉄心の長手方向の一方の端部から他方の端部に向かって1a、2a、…Na、 1b、2b、…Nb、1c、2c、…Ncの順に直流電圧を保存し、置換データバッファには逆方向にNc、(N-1)c、…1c、Nb、(N-1)b…1b、Na、(N-1)a、…、1aの順に保存する。正常時には直流電圧検出バッファ51の値はそのまま直流電圧バッファ55に送られるが、直流電圧検出器故障検出回路54において直流電圧検出値に異常を検知した場合、直流電圧検出器故障検出回路54は検出器異常単位インバータ番号をデータ切換え回路53に出力し、置換データバッファ52の値の中から検出器異常単位インバータ番号に該当する順に保存されているデータを選択して直流電圧バッファ55に送って制御用に使用する。すなわち、直流電圧検出バッファ51に入力された故障信号を、当該故障単位インバータと等価なインピーダンスを有する2次巻線に接続された単位インバータの正常な直流電圧信号に切替える。また、図3に示すように2次巻線数が奇数の場合、中央の巻線に接続された単位インバータは対称相手を持たないため、前後に隣接する2個の2次巻線に接続された2台の単位インバータの直流電圧検出値の平均値を平均演算回路61で演算して置き換える。尚、この場合、対と成る単位インバータの何れかの検出回路が異常となった場合、置換えることはできないため、上記の置き換えは行わない。   The DC voltage of the unit inverter 3 is dropped by the impedance (% IZ) of the secondary winding of the multi-winding input transformer 2 connected to the input side and charged to the DC smoothing capacitor 33. Is determined by the strength of the magnetic coupling determined by the positional relationship between the primary and secondary windings of the input transformer 2. That is, the weaker the bond, the larger% IZ, and the stronger, the smaller% IZ. Therefore, in the secondary winding of the multi-winding input transformer 2, the% IZ is set in the windings disposed at both ends in the longitudinal direction of the iron core (the primary-secondary magnetic coupling is weak). The larger the magnetically coupled winding arranged at the center in the longitudinal direction of the iron core, the smaller the% IZ. That is, since the size of% IZ of the windings on both sides in the longitudinal direction is axisymmetric with respect to the center with respect to the central portion of the iron core, 1a, 2a,..., Na, 1b, 2b,. , 2c, ... Nc 3 x N winding transformer, the secondary impedance Iz of each winding is 1a ≒ Nc, 2a ≒ (N-1) c, 3a ≒ (N-2) c ... 1b ≒ There is a symmetry such that Nb, 2b≈ (N−1) b, and therefore the DC voltage of the unit inverter charged from each winding basically has this symmetry. In order to utilize this symmetry, the direct current voltage detection buffer 51 has 1a, 2a,... Na from one end portion in the longitudinal direction of the iron core of the input transformer 2 to which the unit inverter is connected to the other end portion. , 1b, 2b, ... Nb, 1c, 2c, ... Nc in that order, and the replacement data buffer stores Nc, (N-1) c, ... 1c, Nb, (N-1) b in the reverse direction ... 1b, Na, (N-1) a, ..., 1a are saved in this order. When normal, the value of the DC voltage detection buffer 51 is sent to the DC voltage buffer 55 as it is. However, when the DC voltage detector failure detection circuit 54 detects an abnormality in the DC voltage detection value, the DC voltage detector failure detection circuit 54 detects it. The unit abnormality unit inverter number is output to the data switching circuit 53, and the data stored in the order corresponding to the detector abnormality unit inverter number is selected from the values in the replacement data buffer 52 and sent to the DC voltage buffer 55 for control. Used for. That is, the fault signal input to the DC voltage detection buffer 51 is switched to a normal DC voltage signal of the unit inverter connected to the secondary winding having an impedance equivalent to the fault unit inverter. Also, as shown in FIG. 3, when the number of secondary windings is an odd number, the unit inverter connected to the central winding does not have a symmetrical counterpart, so it is connected to two secondary windings adjacent to the front and rear. The average value of the DC voltage detection values of the two unit inverters is calculated by the average calculation circuit 61 and replaced. In this case, if any of the detection circuits of the paired unit inverters becomes abnormal, the replacement cannot be performed, and thus the above replacement is not performed.

次に、図4を用いて直流電圧検出器異常検出回路54の内部構成の一例を説明する。計器用変圧器6によって検出された交流電圧は、直流電圧演算回路541に与えられる。直流電圧演算回路541は、電圧検出器34が検出するであろう直流電圧を演算によって求める。すなわち、計器用変圧器6の入力線間電圧×√2により直流電圧演算値を求める。直流電圧入力切換回路542により順に単位インバータの直流電圧検出値と前述の直流電圧演算値との差をとり、これを絶対値回路534によって絶対値に変換し、比較器544に与える。比較器544においてはこれらの絶対値を次々と直流電圧検出器故障判定基準545の値と比較し、差の絶対値が所定値を超えたとき、警報表示回路546に表示すると共に、直流電圧検出器故障ユニット番号メモリ547に保存してこの値を前記データ切換え回路53に送信する。   Next, an example of the internal configuration of the DC voltage detector abnormality detection circuit 54 will be described with reference to FIG. The AC voltage detected by the instrument transformer 6 is supplied to the DC voltage calculation circuit 541. The DC voltage calculation circuit 541 calculates the DC voltage that the voltage detector 34 will detect by calculation. That is, the DC voltage calculation value is obtained from the input line voltage of the instrument transformer 6 × √2. The DC voltage input switching circuit 542 sequentially takes the difference between the DC voltage detection value of the unit inverter and the above-described DC voltage calculation value, converts this to an absolute value by the absolute value circuit 534, and supplies it to the comparator 544. In the comparator 544, these absolute values are successively compared with the value of the DC voltage detector failure determination standard 545, and when the absolute value of the difference exceeds a predetermined value, it is displayed on the alarm display circuit 546 and the DC voltage detection. The value is stored in the unit failure unit number memory 547 and this value is transmitted to the data switching circuit 53.

次に図5を参照して相アンバランス制御回路57の内部構成の一例を説明する。直流電圧演算回路541の出力である直流電圧演算値は直流電圧の平均値を示していると考えられ、この値と各相の直流電圧検出値の比を相毎に除算器571で除算し、得られた比を相毎に各相の電圧指令と乗算器572で乗算する。これにより各相の補正電圧指令Vu*、Vv*、Vw*を得てPWM制御回路60に与える。上記の直流電圧演算値に代えて、直流電圧バッファ55の各出力の平均を求めるようにしても良いことは明らかである。   Next, an example of the internal configuration of the phase imbalance control circuit 57 will be described with reference to FIG. The DC voltage calculation value that is the output of the DC voltage calculation circuit 541 is considered to indicate the average value of the DC voltage, and the ratio of this value and the DC voltage detection value of each phase is divided by the divider 571 for each phase, The obtained ratio is multiplied by a voltage command for each phase by a multiplier 572 for each phase. As a result, correction voltage commands Vu *, Vv *, and Vw * for each phase are obtained and supplied to the PWM control circuit 60. It is obvious that the average of the outputs of the DC voltage buffer 55 may be obtained instead of the DC voltage calculation value.

図6は本発明の実施例2に係る電力変換装置の回路構成図である。この実施例2の各部について、図1の本発明の実施例1に係る電力変換装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、相バランス補正回路57を省くと共に、電圧加算回路56の各相出力を平均値回路62に与え、この出力を過電圧防止制御回路63に与え、過電圧防止制御回路63の出力を電圧指令58の出力に加算するようにした点である。   FIG. 6 is a circuit configuration diagram of the power conversion device according to the second embodiment of the present invention. In the second embodiment, the same parts as those in the circuit configuration diagram of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. The second embodiment is different from the first embodiment in that the phase balance correction circuit 57 is omitted, the respective phase outputs of the voltage addition circuit 56 are given to the average value circuit 62, and this output is given to the overvoltage prevention control circuit 63. The output of the prevention control circuit 63 is added to the output of the voltage command 58.

図7に過電圧防止制御回路63の内部構成図の一例を示す。交流電動機4が回生運転となった場合、回生エネルギーが単位インバータ3の直流平滑コンデンサ33を充電するため直流電圧が上昇する。このとき、過電圧防止制御回路63において、平均値回路62で検出された直流電圧検出値と直流電圧目標値とを比較器632で比較し、この差が正の値を取る場合、すなわち直流電圧検出値が直流電圧目標値より大きくなった場合、PI制御回路631の制御動作を開始して電圧指令補正値を電圧指令58の電圧指令出力に加える。これによって、交流電動機4の端子電圧と単位インバータ3の合成出力電圧の差が小さくなるので、回生エネルギーによる直流平滑コンデンサ33への充電が抑えられ、直流電圧が過電圧となることを防止することが可能となる。   FIG. 7 shows an example of an internal configuration diagram of the overvoltage prevention control circuit 63. When the AC motor 4 is in a regenerative operation, the regenerative energy charges the DC smoothing capacitor 33 of the unit inverter 3, so that the DC voltage increases. At this time, in the overvoltage prevention control circuit 63, the DC voltage detection value detected by the average value circuit 62 and the DC voltage target value are compared by the comparator 632, and when this difference takes a positive value, that is, DC voltage detection. When the value becomes larger than the DC voltage target value, the control operation of the PI control circuit 631 is started and the voltage command correction value is added to the voltage command output of the voltage command 58. As a result, the difference between the terminal voltage of the AC motor 4 and the combined output voltage of the unit inverter 3 is reduced, so that charging of the DC smoothing capacitor 33 due to regenerative energy can be suppressed and the DC voltage can be prevented from becoming an overvoltage. It becomes possible.

以上本発明のいくつかの実施例を説明したが、これらの実施例は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

実施例1及び実施例2は直流電圧フィードバックを制御に使用する例としてとりあげたものであり、バランス補正制御、過電圧防止制御に限らず、個別に直流電圧を検出して電力変換装置の運転制御に用いているものであれば本発明は有効である。   Example 1 and Example 2 are taken as an example of using DC voltage feedback for control, and are not limited to balance correction control and overvoltage prevention control, but individually detect DC voltage and control operation of the power converter. The present invention is effective as long as it is used.

また、2次巻線のインピーダンス(%IZ)を入力変圧器2の鉄心の長手方向の位置関係で決めるように記述したが、入力変圧器2の各々の2次巻線のインピーダンスを予め実測して求めるようにしても良い。   Moreover, the impedance (% IZ) of the secondary winding is described so as to be determined by the positional relationship in the longitudinal direction of the iron core of the input transformer 2, but the impedance of each secondary winding of the input transformer 2 is measured in advance. You may make it ask.

1 交流電源
2 入力変圧器
3 単位インバータ
4 交流電動機
5 電圧制御回路
6 計器用変圧器
5 置換データバッファ
31 ダイオード整流回路
32 単相インバータ回路
33 直流平滑コンデンサ
34 直流電圧検出回路
52 置換データバッファ
53 データ切換回路
54 直流電圧検出器異常検出回路
55 直流電圧バッファ
56 電圧加算回路
57 相バランス補正回路
58 電圧指令
59 電圧指令3相変換回路
60 PWM制御回路
61 平均回路
62 平均値回路
63 過電圧防止制御回路
541 直流電圧演算回路
542 直流電圧入力切換回路
543 絶対値回路
544 比較器
545 直流電圧検出器故障判定基準
546 警報表示回路
547 検出器故障ユニット番号メモリ
571 除算回路
572 乗算回路
631 PI制御回路
632 比較器
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Input transformer 3 Unit inverter 4 AC motor 5 Voltage control circuit 6 Instrument transformer 5 Replacement data buffer 31 Diode rectifier circuit 32 Single phase inverter circuit 33 DC smoothing capacitor 34 DC voltage detection circuit 52 Replacement data buffer 53 Data Switching circuit 54 DC voltage detector abnormality detection circuit 55 DC voltage buffer 56 Voltage addition circuit 57 Phase balance correction circuit 58 Voltage command 59 Voltage command three-phase conversion circuit 60 PWM control circuit 61 Average circuit 62 Average value circuit 63 Overvoltage prevention control circuit 541 DC voltage calculation circuit 542 DC voltage input switching circuit 543 Absolute value circuit 544 Comparator 545 DC voltage detector failure judgment criterion 546 Alarm display circuit 547 Detector failure unit number memory 571 Division circuit 572 Multiplication circuit 631 PI control circuit 632 Comparator

Claims (6)

1次側が交流電源に接続され、3N(Nは2以上の整数)個の2次巻線を有する入力変圧器と、
前記各々の2次巻線に接続され、3相整流回路と直流平滑コンデンサと、直流を単相交流に変換する単相インバータ回路とから成り、N台の単相交流出力を直列接続して1相を得て3相直列多重電力変換器を構成するようにした3N台の単位インバータと、
前記各々の直流平滑コンデンサに印加される直流電圧を検出する直流電圧検出器と、
前記各々の単相インバータ回路の出力電圧を制御する共通の電圧制御手段と
を具備し、
前記電圧制御手段は、
前記3N台の直流電圧検出器の出力をフィードバックして前記3相直列多重電力変換器を運転制御すると共に、前記3N台の直流電圧検出器のうち、1台が異常となったとき、この異常となった直流電圧検出器の出力を、当該異常直流電圧検出器を有する単位インバータが接続されている前記入力変圧器の2次巻線と等価なインピーダンスを持つ対応2次巻線に接続された単位インバータ内の直流電圧検出器の出力に切替えることを特徴とする電力変換装置。
An input transformer having a primary side connected to an AC power source and having 3N (N is an integer of 2 or more) secondary windings;
Each of the secondary windings is connected to each of the secondary windings, and includes a three-phase rectifier circuit, a DC smoothing capacitor, and a single-phase inverter circuit that converts DC to single-phase AC. N single-phase AC outputs are connected in series. 3N unit inverters that obtain a phase and constitute a three-phase series multiple power converter;
A DC voltage detector for detecting a DC voltage applied to each DC smoothing capacitor;
A common voltage control means for controlling the output voltage of each of the single-phase inverter circuits,
The voltage control means includes
The output of the 3N DC voltage detectors is fed back to control the operation of the three-phase serial multiple power converter, and when one of the 3N DC voltage detectors becomes abnormal, this abnormality is detected. The output of the DC voltage detector is connected to the corresponding secondary winding having an impedance equivalent to the secondary winding of the input transformer to which the unit inverter having the abnormal DC voltage detector is connected. A power converter that switches to an output of a DC voltage detector in a unit inverter.
前記対応2次巻線は、
前記異常直流電圧検出器を有する単位インバータが接続されている前記入力変圧器の2次巻線の巻装位置に対し、前記入力変圧器の鉄心の長手方向の中心に対して線対称の位置に巻装された2次巻線であることを特徴とする請求項1に記載の電力変換装置。
The corresponding secondary winding is
With respect to the winding position of the secondary winding of the input transformer to which the unit inverter having the abnormal DC voltage detector is connected, the line is symmetrical with respect to the longitudinal center of the iron core of the input transformer. The power converter according to claim 1, wherein the power converter is a wound secondary winding.
Nが奇数で且つ、前記異常直流電圧検出器を有する単位インバータが接続されている前記入力変圧器の2次巻線が前記入力変圧器の鉄心の長手方向の中心位置にあるとき、前記対応2次巻線は、当該2次巻線に隣接した位置にある2つの2次巻線とし、前記異常直流電圧検出器の出力を、これら2つの2次巻線の各々の直流電圧検出器の平均値に切替えることを特徴とする請求項2に記載の電力変換装置。   When N is an odd number and the secondary winding of the input transformer to which the unit inverter having the abnormal DC voltage detector is connected is at the center position in the longitudinal direction of the iron core of the input transformer, the correspondence 2 The secondary winding is two secondary windings adjacent to the secondary winding, and the output of the abnormal DC voltage detector is the average of the DC voltage detectors of each of these two secondary windings. The power conversion device according to claim 2, wherein the power conversion device is switched to a value. 前記単位インバータの直流電圧の平均値を求める手段を有し、
前記直流電圧の平均値と各々の前記直流電圧検出器の検出値を順次比較し、その差が所定値を超えたとき当該直流電圧検出器を異常と判断するようにしたことを特徴とする請求項1乃至3の何れか1項に記載の電力変換装置。
Means for obtaining an average value of the DC voltage of the unit inverter;
The average value of the DC voltage and the detection value of each of the DC voltage detectors are sequentially compared, and when the difference exceeds a predetermined value, the DC voltage detector is determined to be abnormal. Item 4. The power conversion device according to any one of Items 1 to 3.
前記単位インバータの直流電圧の平均値を求める手段を有し、
この直流電圧の平均値と、前記3相直列多重電力変換器の各相毎の前記直流電圧検出器の加算値の各々の比を前記3相直列多重電力変換器の各相の電圧指定に夫々乗算して補正する相バランス補正手段を備えたことを特徴とする請求項1乃至請求項4の何れか1項に記載の電力変換装置。
Means for obtaining an average value of the DC voltage of the unit inverter;
The ratio between the average value of the DC voltage and the added value of the DC voltage detector for each phase of the three-phase series multiplex power converter is used to specify the voltage of each phase of the three-phase series multiplex power converter. The power converter according to any one of claims 1 to 4, further comprising phase balance correction means for correcting by multiplication.
前記直流電圧検出器の加算値が所定の閾値を越えたとき、前記3相直列多重電力変換器の電圧指令に対して補正値を加算する過電圧防止制御手段を備えたことを特徴とする請求項1乃至請求項5の何れか1項に記載の電力変換装置。   The overvoltage prevention control means for adding a correction value to the voltage command of the three-phase serial multiple power converter when the addition value of the DC voltage detector exceeds a predetermined threshold value. The power converter according to any one of claims 1 to 5.
JP2012197258A 2012-09-07 2012-09-07 Power converter Active JP5828818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197258A JP5828818B2 (en) 2012-09-07 2012-09-07 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197258A JP5828818B2 (en) 2012-09-07 2012-09-07 Power converter

Publications (2)

Publication Number Publication Date
JP2014054089A JP2014054089A (en) 2014-03-20
JP5828818B2 true JP5828818B2 (en) 2015-12-09

Family

ID=50612043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197258A Active JP5828818B2 (en) 2012-09-07 2012-09-07 Power converter

Country Status (1)

Country Link
JP (1) JP5828818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318443B2 (en) * 2019-09-19 2023-08-01 株式会社明電舎 Series multiple inverter and control method for serial multiple inverter
JP7036270B1 (en) 2021-09-03 2022-03-15 富士電機株式会社 Power converter and power converter for induction furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737370B2 (en) * 2001-01-31 2006-01-18 株式会社東芝 Inverter control device
JP3773794B2 (en) * 2001-01-31 2006-05-10 東芝三菱電機産業システム株式会社 Power converter
JP4701770B2 (en) * 2005-03-23 2011-06-15 株式会社明電舎 Multiphase series multiple power converter
JP2006304456A (en) * 2005-04-19 2006-11-02 Fuji Electric Systems Co Ltd Power converter
US8279640B2 (en) * 2008-09-24 2012-10-02 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in symmetric multi-level power converter

Also Published As

Publication number Publication date
JP2014054089A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP6585713B2 (en) Uninterruptible power system
JP6243554B2 (en) Uninterruptible power system
JP5939411B2 (en) Power converter
US9374030B2 (en) Generator excitation apparatus and power conversion system
US20120275202A1 (en) Series multiplex power conversion apparatus
JP2007259688A (en) Three phase ac-ac conversion apparatus
CN109204445A (en) Monitoring system for electric power steering
JP5828818B2 (en) Power converter
US8716881B2 (en) Three phase inverter type generator
US20240055994A1 (en) Method for paralleling of interleaved power converters
US20130323136A1 (en) Power supply arrangement with an inverter for producing a single-phase alternating current
JP6749862B2 (en) Series multiple inverter device
JP2011091897A (en) Charge balance correction circuit of multi-series power accumulation cell
JP2016214030A (en) Power conversion device
Cougo et al. Impact of PWM methods and load configuration in the design of intercell transformers used in parallel three-phase inverters
JP5523297B2 (en) Power converter
TWI721818B (en) Dc-dc conversion system and control method of dc-dc conversion system
JP2015089217A (en) Power conversion device
JP6365012B2 (en) Distributed power system
JP6570073B2 (en) Failure detection device
JP6092737B2 (en) Uninterruptible power supply system
US11784586B2 (en) Power conversion device
JP2013223279A (en) Power conversion apparatus
JP2021097595A (en) Semiconductor switch circuit, and uninterruptible power system
JP4214078B2 (en) Voltage fluctuation compensation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5828818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250