JP5522857B2 - Method for producing collagen - Google Patents

Method for producing collagen Download PDF

Info

Publication number
JP5522857B2
JP5522857B2 JP2011265694A JP2011265694A JP5522857B2 JP 5522857 B2 JP5522857 B2 JP 5522857B2 JP 2011265694 A JP2011265694 A JP 2011265694A JP 2011265694 A JP2011265694 A JP 2011265694A JP 5522857 B2 JP5522857 B2 JP 5522857B2
Authority
JP
Japan
Prior art keywords
collagen
activated carbon
collagenous
solution
nitrogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011265694A
Other languages
Japanese (ja)
Other versions
JP2013116875A (en
Inventor
竜 前田
勇 山口
貴宏 河上
孝平 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2011265694A priority Critical patent/JP5522857B2/en
Publication of JP2013116875A publication Critical patent/JP2013116875A/en
Application granted granted Critical
Publication of JP5522857B2 publication Critical patent/JP5522857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、水に対する溶解性が酸性領域で高い生物原料由来のコラーゲンの製造方法に関し、特に、コラーゲンの精製方法が、コラーゲンの抽出工程によって得られるコラーゲンと非コラーゲン性窒素化合物とを含有する水溶液と、pHが7以下の活性炭とを接触させることによって、非コラーゲン性窒素化合物を除去する方法であるコラーゲンの製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing collagen derived from biological raw materials having high solubility in water in an acidic region, and in particular, an aqueous solution containing collagen obtained by a collagen extraction step and a non-collagenous nitrogen compound. And a method for producing collagen, which is a method for removing non-collagenous nitrogen compounds by contacting activated carbon having a pH of 7 or less.

コラーゲンは、3重らせん構造を有するタンパク質であり、コラーゲンを加熱変性すると3重らせん構造を有さないゼラチンになる。公知文献では、ゼラチンであってもコラーゲンと称しているものが多数あるが、本発明では、塩析により線維化するタンパク質、即ち、3重らせん構造を有するタンパク質のみを「コラーゲン」と称する。一方、加熱等によるコラーゲンの変性物を「ゼラチン」と称し、コラーゲンとゼラチンは明確に分けて称する。また、タンパク質、ペプチド、アミノ酸等の窒素化合物のうち、塩析により線維化するタンパク質以外のもの、即ち、3重らせん構造を有さない窒素化合物を「非コラーゲン性窒素化合物」と称する。   Collagen is a protein having a triple helical structure, and when collagen is heated and denatured, it becomes gelatin having no triple helical structure. In the known literature, there are many gelatins called collagen, but in the present invention, only a protein that becomes fibrillated by salting out, that is, a protein having a triple helical structure is called “collagen”. On the other hand, a modified product of collagen by heating or the like is referred to as “gelatin”, and collagen and gelatin are clearly divided and referred to. Further, among nitrogen compounds such as proteins, peptides, amino acids, etc., those other than proteins that become fibrillated by salting out, that is, nitrogen compounds that do not have a triple helical structure are referred to as “non-collagenous nitrogen compounds”.

コラーゲンは、哺乳類、魚貝類等の生物原料のコラーゲン含有組織からさまざまな抽出法を用いた抽出工程の後、コラーゲンの純度を高める精製工程を経て製造されている。主な抽出法とそれによって得られるコラーゲンの呼称として、[1]希酸により抽出する方法によって得られる酸可溶性コラーゲン、[2]酵素で可溶化処理する方法によって得られる酵素可溶化コラーゲン、[3]アルカリで可溶化処理する方法によって得られるアルカリ可溶化コラーゲン、が挙げられる。これらのうち、水に対する溶解性が酸性領域で高いのは、酸可溶性コラーゲンと酵素可溶化コラーゲンである。   Collagen is manufactured through extraction steps using various extraction methods from collagen-containing tissues of biological materials such as mammals and fish shellfish, followed by purification steps that increase the purity of the collagen. The main extraction methods and the names of collagen obtained thereby are: [1] acid-soluble collagen obtained by extraction with dilute acid, [2] enzyme-solubilized collagen obtained by solubilization with enzyme, [3 ] Alkali-solubilized collagen obtained by a method of solubilizing with alkali. Among these, acid-soluble collagen and enzyme-solubilized collagen are highly soluble in water in the acidic region.

酸可溶性コラーゲンの製造方法として、特許文献1には、魚鱗を原料とし、コラーゲンを変性させない温度条件下において、酸性溶液による抽出工程、次いで塩析法による精製工程を用いることが開示されている。   As a method for producing acid-soluble collagen, Patent Document 1 discloses that fish scale is used as a raw material and an extraction step using an acidic solution and then a purification step using a salting-out method are performed under temperature conditions that do not denature the collagen.

また、酵素可溶化コラーゲンの製造方法として、特許文献2には、魚鱗からコラーゲンを変性させることなく、純度の高いコラーゲンを抽出する方法が開示されている。この方法では、脱灰した魚鱗に対して魚鱗中のコラーゲンをできるだけ変性させない温度範囲内でプロテアーゼ処理してコラーゲンを可溶化させ残渣を除去した後、塩析法により非コラーゲン性窒素化合物を除去する精製工程を経て純度の高いコラーゲンを得ている。   As a method for producing enzyme-solubilized collagen, Patent Document 2 discloses a method for extracting high-purity collagen without denaturing collagen from fish scales. In this method, protease treatment is performed within a temperature range that does not denature collagen in fish scales as much as possible against decalcified fish scales, so that collagen is solubilized to remove residues, and then non-collagenous nitrogen compounds are removed by salting out. High purity collagen is obtained through a purification process.

塩析法は、塩化ナトリウム等による塩濃度の上昇によりコラーゲンを線維化させる塩析工程、線維化したコラーゲンを遠心分離等によって回収する回収工程、回収したコラーゲンを酸で溶解し、脱塩処理する透析工程からなる。尚、塩析工程には、塩基性溶液や緩衝液などを用いてコラーゲン溶液を中性から塩基性にすることでコラーゲンを線維化する工程も包含される場合がある。いずれにしても、塩析工程では無機塩の添加が必須であるため、最終製品として塩濃度の低いコラーゲンを得るためには透析工程を繰り返す必要があり、精製に煩雑で長時間の操作を行う必要があった。   The salting-out method is a salting-out process in which collagen is fibrillated by an increase in salt concentration due to sodium chloride, etc., a recovery process in which the fibrillated collagen is recovered by centrifugation, etc. It consists of a dialysis process. The salting-out step may include a step of fibrosis of collagen by making the collagen solution neutral to basic using a basic solution or a buffer solution. In any case, since the addition of inorganic salt is essential in the salting out process, it is necessary to repeat the dialysis process in order to obtain collagen with a low salt concentration as the final product. There was a need.

一方、コラーゲンまたはゼラチンの製造において、脱臭、脱色目的で活性炭を添加することが広く行われている。例えば、特許文献3では、ゼラチンの酵素分解物の脱臭、脱色を目的として活性炭を添加している。   On the other hand, in the production of collagen or gelatin, it is widely performed to add activated carbon for the purpose of deodorization and decolorization. For example, in Patent Document 3, activated carbon is added for the purpose of deodorizing and decolorizing the enzymatic degradation product of gelatin.

特開平5−93000JP-A-5-93000 特開2010−193808号公報JP 2010-193808 A 特開2003−238597号公報JP 2003-238597 A

上述のように、コラーゲンの精製工程において、非コラーゲン性窒素化合物を除去するために塩析法が用いられているが、塩析法では添加した塩類の除去に透析工程が必須で、煩雑な長時間の操作を要するものであった。そこで、塩析法に代わる非コラーゲン性窒素化合物の簡便な除去方法の開発が強く要望されていた。   As described above, the salting-out method is used in the collagen purification process to remove non-collagenous nitrogen compounds. However, the salting-out method requires a dialysis process to remove the added salts, which is a complicated process. Time-consuming operation was required. Therefore, there has been a strong demand for the development of a simple method for removing non-collagenous nitrogen compounds in place of the salting-out method.

本発明者らは上記課題を解決するため鋭意検討を行った結果、驚くべきことに、コラーゲンやゼラチン等の脱臭、脱色の目的で通常広く使用されている活性炭のうち、pHが7以下の活性炭によって、コラーゲン量がほとんど維持されたまま、非コラーゲン性窒素化合物を効率的に除去できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that activated carbon having a pH of 7 or less among activated carbons commonly used for the purpose of deodorizing and decoloring collagen and gelatin. As a result, it was found that the non-collagenous nitrogen compound can be efficiently removed while maintaining almost the amount of collagen, and the present invention has been completed.

即ち、本発明は、以下に関するものである。
(1)水に対する溶解性が酸性領域で高い生物原料由来のコラーゲンの製造において、コラーゲンの精製方法が、コラーゲンと非コラーゲン性窒素化合物とを含有する水溶液と、pHが7以下の活性炭とを接触させる方法であるコラーゲンの製造方法。
(2)前記水溶液と前記活性炭との接触方法が、前記水溶液に前記活性炭を添加して撹拌下で混合する方法であり、前記活性炭の添加量が、非コラーゲン性窒素化合物に対し質量比で2〜50倍である上記(1)記載のコラーゲンの製造方法。
(3)前記活性炭が粉末状である上記(1)又は(2)記載のコラーゲンの製造方法。
That is, the present invention relates to the following.
(1) In the production of collagen derived from biological raw materials with high solubility in water in the acidic region, the collagen purification method involves contacting an aqueous solution containing collagen and a non-collagenous nitrogen compound with activated carbon having a pH of 7 or less. A method for producing collagen,
(2) The contact method between the aqueous solution and the activated carbon is a method in which the activated carbon is added to the aqueous solution and mixed with stirring. The added amount of the activated carbon is 2 by mass ratio to the non-collagenous nitrogen compound. The method for producing collagen according to the above (1), which is -50 times.
(3) The method for producing collagen according to (1) or (2) above, wherein the activated carbon is in a powder form.

本発明によれば、pHが7以下の活性炭を用いるという簡便な方法によって非コラーゲン性窒素化合物を効率的に除去できるため、塩析法に比べるとコラーゲンの精製工程に要する時間が格段に短くなり、また、作業労力を大幅に削減できる。
さらに、活性炭を用いているため脱臭効果も併有する。
According to the present invention, since the non-collagenous nitrogen compound can be efficiently removed by a simple method using activated carbon having a pH of 7 or less, the time required for the collagen purification step is significantly shorter than the salting-out method. In addition, work labor can be greatly reduced.
Further, since activated carbon is used, it also has a deodorizing effect.

以下、本発明のコラーゲンの精製方法について詳細に説明する。
本発明は、水に対する溶解性が酸性領域で高い生物原料由来のコラーゲンの製造において、コラーゲンの精製方法が、コラーゲンと非コラーゲン性窒素化合物とを含有する水溶液と、pHが7以下の活性炭とを接触させることによって、非コラーゲン性窒素化合物を除去する方法であるコラーゲンの製造方法に関するものである。
Hereinafter, the method for purifying collagen of the present invention will be described in detail.
In the production of collagen derived from biological raw materials having a high solubility in water in an acidic region, the present invention provides a method for purifying collagen comprising an aqueous solution containing collagen and a non-collagenous nitrogen compound, and activated carbon having a pH of 7 or less. It is related with the manufacturing method of collagen which is a method of removing a non-collagenous nitrogen compound by making it contact.

水に対する溶解性が酸性領域で高い生物原料由来のコラーゲンの製造方法として、該コラーゲンが得られる製造方法であれば特に制限はないが、一般的には酸可溶性コラーゲン及び酵素可溶化コラーゲンの公知の製造方法を用いることが好ましい。両者いずれの方法においても酸又はプロテアーゼ等の酵素を用いた抽出工程によって、コラーゲンと非コラーゲン性窒素化合物とを含有する水溶液(以下、「粗コラーゲン溶液」と称する)が得られる。コラーゲンは、3重らせん構造を有していれば良く、テロ部位を除去したアテロコラーゲンでも良い。また、後段の精製工程の作業負荷を少なくするために、抽出工程の後に、遠心分離等による物理的な除去法によって除去できる粗大残渣及びプロテアーゼの分解残渣等を除去した溶液を粗コラーゲン溶液とすることがより望ましい。   As a method for producing collagen derived from biological raw materials having high solubility in water in the acidic region, there is no particular limitation as long as it is a production method for obtaining the collagen, but generally known acid-soluble collagen and enzyme-solubilized collagen are known. It is preferable to use a manufacturing method. In both methods, an aqueous solution containing collagen and a non-collagenous nitrogen compound (hereinafter referred to as “crude collagen solution”) is obtained by an extraction step using an enzyme such as acid or protease. The collagen only needs to have a triple helical structure, and may be atelocollagen from which the terror site has been removed. In order to reduce the work load of the subsequent purification process, a solution obtained by removing coarse residues and protease degradation residues that can be removed by a physical removal method such as centrifugation after the extraction process is used as a crude collagen solution. It is more desirable.

ここで粗コラーゲン溶液について説明する。
粗コラーゲン溶液中のコラーゲン濃度は、コラーゲン濃度が高くなると粘度が高くなるためハンドリング性が悪くなり、一方、コラーゲン濃度が低くなると製造効率が低下するので、適切な濃度範囲となるように適宜調整することが好ましい。例として、上記特許文献2の方法で魚鱗由来のコラーゲンから得られる粗コラーゲン溶液で示すと、コラーゲン濃度が0.7〜1.5質量%となるように調整する。このとき、非コラーゲン性窒素化合物濃度は概ね0.1〜0.4質量%の範囲となることが多い。
Here, the crude collagen solution will be described.
The collagen concentration in the crude collagen solution is increased as the collagen concentration increases, resulting in poor handling because the collagen concentration decreases. On the other hand, the production efficiency decreases as the collagen concentration decreases, so adjust the concentration to an appropriate concentration range. It is preferable. As an example, when the crude collagen solution obtained from fish scale-derived collagen by the method of Patent Document 2 is used, the collagen concentration is adjusted to 0.7 to 1.5 mass%. At this time, the non-collagenous nitrogen compound concentration is often in the range of about 0.1 to 0.4% by mass.

また、粗コラーゲン溶液のpHについては、コラーゲンを析出させずに水溶液の状態として保つために酸性に調整するが、pH値で示すと5以下が好ましく、より好ましくは1〜4の範囲である。魚鱗由来のコラーゲンで云えば、コラーゲンの溶解度が最も高くなるpH2〜3の範囲が好ましい。   Further, the pH of the crude collagen solution is adjusted to be acidic in order to keep it in an aqueous solution state without precipitating collagen, but is preferably 5 or less, more preferably in the range of 1 to 4 in terms of pH value. In the case of collagen derived from fish scales, a pH range of 2 to 3 where the solubility of collagen is highest is preferable.

コラーゲンと非コラーゲン性窒素化合物との区別は、溶液中の塩濃度を高めるとコラーゲンが自己組織化して線維化する性質を利用して行う。具体的には、粗コラーゲン溶液に塩化ナトリウムを添加して溶液中の塩濃度を上昇させてコラーゲンを十分に線維化させる。次に、遠心分離によって、沈殿したコラーゲン線維と、非コラーゲン性窒素化合物を含有した上清とに分離する。コラーゲン量は、医薬部外品原料規格2006 成分規格:水溶性コラーゲン液(3)の定量法に沿って求めることができる。具体的には、沈殿物の窒素量をケルダール法等によって分析した後、該窒素量にコラーゲン量を算定するのに用いる換算係数である5.6を乗じることによって求めることができる。また、本発明における非コラーゲン性窒素化合物量は、上清の窒素量を沈殿物と同様にケルダール法等によって分析した後、該窒素量に5.6を乗じたものとする。   The distinction between collagen and non-collagenous nitrogen compounds is made by utilizing the property that collagen is self-organized and fibrillated when the salt concentration in the solution is increased. Specifically, sodium chloride is added to the crude collagen solution to increase the salt concentration in the solution to sufficiently fibrillate the collagen. Next, it is separated into precipitated collagen fibers and a supernatant containing a non-collagenous nitrogen compound by centrifugation. The amount of collagen can be determined according to a quasi-drug raw material standard 2006 component standard: a quantitative method of water-soluble collagen liquid (3). Specifically, it can be obtained by analyzing the nitrogen amount of the precipitate by the Kjeldahl method or the like and then multiplying the nitrogen amount by 5.6 which is a conversion coefficient used for calculating the collagen amount. Further, the amount of non-collagenous nitrogen compound in the present invention is obtained by analyzing the amount of nitrogen in the supernatant by the Kjeldahl method or the like in the same manner as the precipitate, and then multiplying the amount of nitrogen by 5.6.

粗コラーゲン溶液は、次の精製工程において非コラーゲン性窒素化合物を除去することによって、コラーゲンの純度を高める。精製工程で用いる精製方法として、粗コラーゲン溶液とpHが7以下の活性炭とを接触させる。   The crude collagen solution increases the purity of the collagen by removing non-collagenous nitrogen compounds in the next purification step. As a purification method used in the purification step, a crude collagen solution is brought into contact with activated carbon having a pH of 7 or less.

粗コラーゲン溶液と接触させる活性炭としてはpHが7以下のものを用いる。ここで、活性炭のpHは、JIS K-1474に従って測定された値である。通常、活性炭のpH値は製造ロットによってバラツキがあるため、市販品の活性炭は4.5〜7.5あるいは5〜8のように幅を持たせてpHの範囲を設定しているが、中央値が7以下であれば本発明の活性炭として適用できる。   As the activated carbon to be brought into contact with the crude collagen solution, one having a pH of 7 or less is used. Here, the pH of the activated carbon is a value measured according to JIS K-1474. Normally, the pH value of activated carbon varies depending on the production lot, so the activated carbon of the commercial product has a range of pH such as 4.5 to 7.5 or 5 to 8, but the median is 7 or less If so, it can be applied as the activated carbon of the present invention.

本発明では、活性炭のpHが7以下であることにより、コラーゲンの析出を回避しながら、非コラーゲン性窒素化合物を除去できる。非コラーゲン性窒素化合物の除去をさらに効率的にするには、粗コラーゲン溶液のpHをコラーゲンの溶解度が高いpH範囲内に設定した上で、当該pH範囲と合致したpH値を有する活性炭を適用すればよい。そのような活性炭として、pH1〜5の範囲のものが好ましく、さらに好ましくはpH2〜4の範囲のものである。尚、市販品の活性炭については、pH範囲の中央値が1〜5、より好ましくは2〜4の範囲内であればよい。
また本発明では、活性炭のpHを無機酸によって所望の値に調製した活性炭を用いてもよい。例えば、市販の高pHの活性炭を、適度な濃度に調整した塩酸、硫酸等の無機酸溶液中で一定時間加温した後、水洗することにより活性炭のpHを調製する。
In the present invention, when the activated carbon has a pH of 7 or less, non-collagenous nitrogen compounds can be removed while avoiding collagen precipitation. In order to more efficiently remove non-collagenous nitrogen compounds, the pH of the crude collagen solution should be set within a pH range where the solubility of collagen is high, and activated carbon having a pH value that matches the pH range should be applied. That's fine. Such activated carbon is preferably in the range of pH 1-5, more preferably in the range of pH 2-4. In addition, about the activated carbon of a commercial item, the median value of pH range should just be in the range of 1-5, More preferably, it is in the range of 2-4.
In the present invention, activated carbon prepared by adjusting the pH of the activated carbon to a desired value with an inorganic acid may be used. For example, commercially available high pH activated carbon is heated in an inorganic acid solution such as hydrochloric acid and sulfuric acid adjusted to an appropriate concentration for a certain period of time, and then washed with water to adjust the pH of the activated carbon.

活性炭の形状、原料、賦活法等は特に限定されない。形状としては、粉末状、破砕状、粒状等のいずれであっても適用することができる。粉末の活性炭の粒子径としては、粒子径D90が5〜150μmのものを好例として挙げることができる。ここで、粒子径D90とは、一般的な粉粒体の粒子径を表す指標のことであり、より詳しくは、活性炭を篩分けしたときの累積重量百分率が90質量%となる粒子径を意味する。
原料としては、ヤシ殻、木、石炭等が挙げられるが、このうちヤシ殻と木が特に好ましい。賦活剤としては水蒸気、二酸化炭素、塩化亜鉛、リン酸等を挙げることができる。
The shape, raw material, activation method and the like of the activated carbon are not particularly limited. Any shape such as powder, crushed, and granular can be applied. As a particle diameter of powdered activated carbon, a particle diameter of D90 of 5 to 150 μm can be cited as a good example. Here, the particle diameter D90 is an index representing the particle diameter of a general powder, and more specifically, means a particle diameter at which the cumulative weight percentage when sieving activated carbon is 90% by mass. To do.
Examples of the raw material include coconut shell, wood, coal and the like, among which coconut shell and wood are particularly preferable. Examples of the activator include water vapor, carbon dioxide, zinc chloride, and phosphoric acid.

非コラーゲン性窒素化合物は、多様な分子量の窒素化合物で構成されているため、細孔径の異なる複数種類の活性炭を用いることが好ましい。また吸着特性の異なる活性炭を複数種類用いることも好ましい。複数種類の活性炭を用いる場合においては、粗コラーゲン溶液を複数種類の活性炭と同時に、即ち、複数種類の活性炭の混合物に接触させてもよいし、活性炭の種類ごとに多段階で接触させてもよい。   Since the non-collagenous nitrogen compound is composed of nitrogen compounds having various molecular weights, it is preferable to use a plurality of types of activated carbon having different pore diameters. It is also preferable to use a plurality of types of activated carbon having different adsorption characteristics. In the case of using a plurality of types of activated carbon, the crude collagen solution may be contacted simultaneously with a plurality of types of activated carbon, that is, a mixture of a plurality of types of activated carbon, or may be contacted in multiple stages for each type of activated carbon. .

粗コラーゲン溶液と活性炭との接触方法は、非コラーゲン性窒素化合物を活性炭に吸着させることにより非コラーゲン性窒素化合物を除去できれば特に限定されるものではない。具体例として、[1] 粗コラーゲン溶液に活性炭を添加して撹拌下で混合する方法、[2] 粗コラーゲン溶液を単段または多段の活性炭カラムに通液する方法を挙げることができる。   The contact method between the crude collagen solution and the activated carbon is not particularly limited as long as the non-collagenous nitrogen compound can be removed by adsorbing the non-collagenous nitrogen compound to the activated carbon. Specific examples include [1] a method of adding activated carbon to a crude collagen solution and mixing with stirring, and [2] a method of passing the crude collagen solution through a single-stage or multistage activated carbon column.

[1]の方法について説明する。
[1]の方法では、活性炭の除去が必要であるため、精製工程は、(a) 粗コラーゲン溶液に活性炭を添加して撹拌下で混合、(b) 活性炭の除去の2工程で構成される。
上記(a)における活性炭の添加方法として、粗コラーゲン溶液に所定量の活性炭を一度に添加してもよいし、分割添加してもよい。分割添加する場合は、前回添加の活性炭を除去してから添加してもよい。
The method [1] will be described.
Since the method [1] requires removal of activated carbon, the purification step consists of two steps: (a) adding activated carbon to the crude collagen solution and mixing with stirring; and (b) removing activated carbon. .
As the method for adding activated carbon in (a) above, a predetermined amount of activated carbon may be added to the crude collagen solution at once, or may be added in portions. When adding in divided portions, the activated carbon added last time may be removed and then added.

活性炭の形状としては、撹拌中に粉化する破砕状でもよいが、非コラーゲン性窒素化合物の吸着効率を高めるために、表面積が大きい粉末状が特に好ましい。   The shape of the activated carbon may be a pulverized form that is pulverized during stirring, but a powder form having a large surface area is particularly preferable in order to increase the adsorption efficiency of the non-collagenous nitrogen compound.

また、撹拌について云えば、非コラーゲン性窒素化合物が活性炭に効果的に吸着するように、撹拌装置、撹拌強度及び時間を適宜選択し設定する。撹拌時間の目安を示すと1〜24時間であり、少なくとも2時間以上であることが望ましい。活性炭を添加してから一定時間経過後に、溶液全体が、分散した活性炭微粒子で懸濁した状態となることが望ましく、この様な状態は粉末活性炭を用いた場合において得られ易い。   Regarding stirring, the stirring device, stirring strength, and time are appropriately selected and set so that the non-collagenous nitrogen compound is effectively adsorbed on the activated carbon. A guideline for the stirring time is 1 to 24 hours, and it is desirable that the stirring time is at least 2 hours. It is desirable that the entire solution be suspended with dispersed activated carbon fine particles after a certain time has elapsed since the addition of activated carbon. Such a state is easily obtained when powdered activated carbon is used.

活性炭の添加量は、非コラーゲン性窒素化合物に対し質量比で2〜50倍であることが好ましい。また、活性炭を分割添加する場合であっても添加総量が前記範囲内となることが好ましい。前記添加量が2倍を下回ると、非コラーゲン性窒素化合物の除去が不十分になる。一方、50倍を超えて活性炭を添加しても、添加量に見合う除去効果が得られ難いため経済的ではなく、また、後段の活性炭の除去操作に要する労力も多大となる。前記添加量は、4〜35倍が好ましく、より好ましくは5〜25倍、さらに好ましくは8〜20倍である。   The addition amount of the activated carbon is preferably 2 to 50 times in mass ratio with respect to the non-collagenous nitrogen compound. In addition, even when activated carbon is added in portions, the total addition amount is preferably within the above range. When the addition amount is less than twice, removal of the non-collagenous nitrogen compound becomes insufficient. On the other hand, adding activated carbon over 50 times is not economical because it is difficult to obtain a removal effect commensurate with the amount of addition, and the labor required for the subsequent removal of activated carbon is also great. The addition amount is preferably 4 to 35 times, more preferably 5 to 25 times, and still more preferably 8 to 20 times.

活性炭の除去について云えば、適切に活性炭が除去できれば除去法は限定されるものではない。除去法としては、遠心分離ろ過、加圧ろ過、減圧ろ過、デカンテーション、フィルタープレス等を例示でき、これらを組み合わせてもよい。   Regarding the removal of activated carbon, the removal method is not limited as long as the activated carbon can be appropriately removed. Examples of the removing method include centrifugal filtration, pressure filtration, vacuum filtration, decantation, filter press and the like, and these may be combined.

次に、[2]の方法について説明する。
[2]の方法では、精製工程は、粗コラーゲン溶液を単段または多段の活性炭カラムに通液することからなる。
活性炭の形状としては、活性炭カラムとして適用できる形状であれば特に制限されない。また、分子量の分布幅が広い非コラーゲン性窒素化合物を効率的に除去するために、同一カラム内に複数種類の活性炭を積層させてもよいし、カラムごとに活性炭の種類を変える多段カラムとしてもよい。カラム径、流量等の条件は適宜設定すればよい。
Next, the method [2] will be described.
In the method [2], the purification step comprises passing the crude collagen solution through a single-stage or multi-stage activated carbon column.
The shape of the activated carbon is not particularly limited as long as it can be applied as an activated carbon column. Also, in order to efficiently remove non-collagenous nitrogen compounds with a wide molecular weight distribution range, multiple types of activated carbon may be stacked in the same column, or as a multi-stage column that changes the type of activated carbon for each column. Good. Conditions such as column diameter and flow rate may be set as appropriate.

精製工程として、上記[1]と[2]の方法を組み合わせてもよく、その場合は活性炭カラムの目詰まりを少なくするために、[1]の方法の後に活性炭の除去を行い、次に[2]の方法を適用することが好ましい。また、さらに活性炭の除去率を上げるために、孔径0.1〜1.0μmのメンブランフィルターによる精密ろ過を行ってもよい。   As a purification step, the above methods [1] and [2] may be combined. In this case, in order to reduce clogging of the activated carbon column, the activated carbon is removed after the method [1], and then [ It is preferable to apply the method of 2]. Further, in order to further increase the removal rate of activated carbon, microfiltration with a membrane filter having a pore diameter of 0.1 to 1.0 μm may be performed.

本発明の精製方法を用いた精製工程によれば、粗コラーゲン溶液から極めて高収率で効率よく高純度のコラーゲン溶液を得ることができる。非コラーゲン性窒素化合物の除去率は、医薬品、化粧品、健康食品等使用目的に応じて適宜設定すればよいが、少なくとも30質量%以上であることが望ましく、より望ましくは50質量%以上である。   According to the purification step using the purification method of the present invention, a highly pure collagen solution can be obtained efficiently from a crude collagen solution with a very high yield. The removal rate of the non-collagenous nitrogen compound may be appropriately set according to the purpose of use, such as pharmaceuticals, cosmetics, and health foods, but is preferably at least 30% by mass, more preferably 50% by mass or more.

また、精製工程は、抽出工程と同様にコラーゲンの変性温度以下で行うことが好ましく、より好ましくは変性温度よりも5℃以上低い温度である。さらに、精製後のコラーゲン溶液は、必要に応じて、加熱によらない水分除去方法、例えば、凍結乾燥や変性温度以下でのエバポレート等により濃縮してもよく、さらには固形化させてもよい。尚、精製後のコラーゲン溶液に着色がみられるときは、公知の方法により脱色すればよい。   Further, the purification step is preferably performed at a temperature lower than the denaturation temperature of collagen as in the extraction step, more preferably at a temperature 5 ° C. or more lower than the denaturation temperature. Further, the purified collagen solution may be concentrated by a moisture removal method not by heating, for example, freeze-drying, evaporation at a denaturation temperature or lower, or the like, if necessary. In addition, what is necessary is just to decolor by a well-known method, when coloring is seen in the collagen solution after refinement | purification.

本発明においては、pHが7以下の活性炭によってコラーゲンはほとんど除去されずに、即ち、ほとんど吸着されることなく、非コラーゲン性窒素化合物のみが選択的に吸着除去される。その理由については定かではないが、コラーゲンと非コラーゲン性窒素化合物の立体構造の違い、即ち、コラーゲンが円筒形の剛直な3重らせん構造を有するのに対し、例えばゼラチンは変形性に富むランダムコイルの形態を有するように、両者はその立体構造を異にするため、その構造上の違いが活性炭への吸着度合いの違いとして現れたものと推察される。   In the present invention, the activated carbon having a pH of 7 or less hardly removes collagen, that is, hardly adsorbs, and selectively adsorbs and removes only non-collagenous nitrogen compounds. The reason for this is not clear, but the difference in the three-dimensional structure between collagen and non-collagenous nitrogen compounds, that is, collagen has a cylindrical rigid triple helical structure, whereas gelatin is a random coil that is highly deformable. Since both have different three-dimensional structures so as to have the form, it is assumed that the difference in the structure appears as a difference in the degree of adsorption to the activated carbon.

以下、本発明の詳細を実施例を挙げて説明するが、本発明はそれらの実施例によって限定されるものではない。尚、特に断らない限り%は全て質量%を示す。   EXAMPLES Hereinafter, although an Example is given and the detail of this invention is demonstrated, this invention is not limited by those Examples. In addition, unless otherwise indicated, all% shows the mass%.

[コラーゲンと非コラーゲン性窒素化合物の濃度の測定法]
粗コラーゲン溶液を撹拌しながら、溶液中の塩化ナトリウム濃度が5.85%になるように塩化ナトリウムを添加してコラーゲンを線維化させた。コラーゲンの線維化の進行により溶液粘度が低下し凝集部と低粘度溶液部に分離した。十分に分離が行われたことを確認した後、さらに約30分間撹拌を継続した。次に、遠心分離により、線維化した沈殿物と上清とを得た。沈殿物及び上清は、それぞれケルダール法により窒素成分量を測定し、換算係数5.6を乗じて、コラーゲン濃度と非コラーゲン性窒素化合物濃度を求めた。また、コラーゲン濃度と非コラーゲン性窒素化合物濃度の合計を全窒素化合物濃度とした。尚、粗コラーゲン溶液の精製後の溶液についても上記同様に測定した。
[Method for measuring the concentration of collagen and non-collagenous nitrogen compounds]
While stirring the crude collagen solution, sodium chloride was added so that the sodium chloride concentration in the solution was 5.85%, and the collagen was fibrillated. The solution viscosity decreased with the progress of collagen fibrosis, and separated into an agglomerated part and a low-viscosity solution part. After confirming that the separation was sufficiently performed, stirring was continued for about 30 minutes. Next, a fibrillated precipitate and a supernatant were obtained by centrifugation. The precipitate and supernatant were each measured for the nitrogen content by the Kjeldahl method and multiplied by a conversion factor of 5.6 to determine the collagen concentration and the non-collagenous nitrogen compound concentration. The total of the collagen concentration and the non-collagenous nitrogen compound concentration was defined as the total nitrogen compound concentration. The solution after purification of the crude collagen solution was measured in the same manner as described above.

[魚鱗由来の粗コラーゲン溶液の調製]
テラピアの鱗を水で十分洗浄し、さらに10%塩化ナトリウム溶液で十分洗浄し、鰭などの夾雑物を除去した後、室温にて乾燥した。含水率は18.5%であった。このテラピア鱗1kgをpH2の塩酸溶液9kgに分散し、1Mの塩酸溶液を添加しながらpHを2に保った状態で、25℃、2時間穏やかに撹拌し、鱗に含まれる無機成分を溶かし出した。これをザルにあげて、十分水洗した後、総重量が4kgとなるようにpH2の塩酸溶液を添加した。これに、ペプシン(和光純薬 1:10000)24gを添加し、撹拌羽根を用いて25℃、72時間、穏やかに撹拌して、鱗からコラーゲンを溶かし出した。これに2kgの水を添加して撹拌し、粘度を下げた後ザルにあげて、鱗残渣(約3kg)と分離した。さらに遠心分離(10000G、60min)により上清を回収して微細な鱗残渣と分離した。これに、ペプシン(和光純薬 1:10000)を0.5g添加し、25℃、24時間保持して、粗コラーゲン溶液2.8kgを得た。粗コラーゲン溶液中のコラーゲン濃度は0.79%であり、非コラーゲン性窒素化合物濃度は0.44%であった。
[Preparation of crude collagen solution derived from fish scales]
The tilapia scales were thoroughly washed with water and further washed with a 10% sodium chloride solution to remove impurities such as wrinkles, and then dried at room temperature. The water content was 18.5%. Disperse 1 kg of this tilapia scale in 9 kg of pH 2 hydrochloric acid solution and gently agitate for 2 hours at 25 ° C with the pH kept at 2 while adding 1 M hydrochloric acid solution to dissolve the inorganic components contained in the scale. did. This was put into a colander and washed thoroughly with water, and then a hydrochloric acid solution having a pH of 2 was added so that the total weight was 4 kg. To this, 24 g of pepsin (Wako Pure Chemicals 1: 10000) was added and gently stirred using a stirring blade at 25 ° C. for 72 hours to dissolve the collagen from the scales. To this was added 2 kg of water and stirred to lower the viscosity, and then the mixture was raised to a colander and separated from scale residue (about 3 kg). Furthermore, the supernatant was recovered by centrifugation (10000 G, 60 min) and separated from fine scale residues. To this, 0.5 g of pepsin (Wako Pure Chemicals 1: 10000) was added and kept at 25 ° C. for 24 hours to obtain 2.8 kg of a crude collagen solution. The collagen concentration in the crude collagen solution was 0.79%, and the non-collagenous nitrogen compound concentration was 0.44%.

〔実施例1〕
粗コラーゲン溶液350gを供した。
活性炭として、「ボンバ110P-FGZ」(粉末状、pH4〜7)(多木化学株式会社)を用いた。活性炭の添加量は、粗コラーゲン溶液中の非コラーゲン性窒素化合物量(1.54g)に対し、1、2、4、8、16倍の重量とした。
粗コラーゲン溶液に、上記各添加量の活性炭を撹拌下で添加し、その後2時間撹拌を継続した。2時間後には溶液全体が懸濁状態となっていた。
これを遠心分離(11120G、120分)し、上清を珪藻土でコートしたヌッチェ式ろ過装置でろ過し、透明度の高い溶液を得た。
得られたコラーゲン溶液のコラーゲン濃度、非コラーゲン性窒素化合物濃度を上述の方法にて測定した。
[Example 1]
350 g of crude collagen solution was provided.
“Bombard 110P-FGZ” (powder, pH 4-7) (Taki Chemical Co., Ltd.) was used as the activated carbon. The amount of activated carbon added was 1, 2, 4, 8, and 16 times the weight of the non-collagenous nitrogen compound amount (1.54 g) in the crude collagen solution.
The above-mentioned added amounts of activated carbon were added to the crude collagen solution with stirring, and then the stirring was continued for 2 hours. After 2 hours, the entire solution was in suspension.
This was centrifuged (11120G, 120 minutes), and the supernatant was filtered with a Nutsche type filtration device coated with diatomaceous earth to obtain a highly transparent solution.
The collagen concentration and non-collagenous nitrogen compound concentration of the obtained collagen solution were measured by the above-described methods.

〔実施例2〕
活性炭として、「ボンバ110P-FGZ」100gに1.8%塩酸を1L添加し、水浴上で5時間加熱した後水洗し、pH3に活性炭を調製したものを用いた。当該活性炭以外は実施例1と同様に試験し、透明度の高い溶液を得た。尚、活性炭添加2時間後には、実施例1と同様に溶液全体が懸濁状態となっていた。
[Example 2]
As activated carbon, 1 L of 1.8% hydrochloric acid was added to 100 g of “bomb 110P-FGZ”, heated for 5 hours in a water bath, washed with water, and activated carbon prepared to pH 3 was used. Except for the activated carbon, the test was performed in the same manner as in Example 1 to obtain a highly transparent solution. In addition, the whole solution was in a suspended state in the same manner as in Example 1 two hours after addition of the activated carbon.

〔比較例1〕
活性炭として、「ボンバ110P-40W」(粉末状、pH9〜11)(多木化学株式会社)を用いた以外は実施例1と同様に試験した。活性炭添加2時間後には、実施例1と同様に溶液全体が懸濁状態となっていた。しかし、活性炭の添加量が増加するにつれて溶液粘度が上昇し、活性炭の分離除去が困難となった。特に4倍以上の添加量においては透明度の高い溶液を得るのが困難であった。
[Comparative Example 1]
The test was performed in the same manner as in Example 1 except that “bomb 110P-40W” (powder, pH 9 to 11) (Taki Chemical Co., Ltd.) was used as the activated carbon. Two hours after the addition of activated carbon, the whole solution was in a suspended state as in Example 1. However, the solution viscosity increased as the amount of activated carbon added increased, making it difficult to separate and remove the activated carbon. In particular, it was difficult to obtain a highly transparent solution at an addition amount of 4 times or more.

結果を表1に示した。
表1より、pHが7以下の活性炭を用いることにより、コラーゲン量はほぼ維持されたまま、非コラーゲン性窒素化合物を除去できることがわかる。尚、活性炭添加量16倍における非コラーゲン性窒素化合物の除去率は、実施例1が86.4%((0.44-0.06)÷0.44×100=86.4%)であり、比較例1が25.0%((0.44-0.33)÷0.44×100=25.0%)である。このように、本発明の方法による非コラーゲン性窒素化合物の除去率は極めて優れたものであることが分かる。
The results are shown in Table 1.
From Table 1, it can be seen that by using activated carbon having a pH of 7 or less, the non-collagenous nitrogen compound can be removed while the amount of collagen is substantially maintained. In addition, the removal rate of the non-collagenous nitrogen compound when activated carbon is added 16 times is 86.4% ((0.44-0.06) ÷ 0.44 × 100 = 86.4%) in Example 1, and 25.0% ((0.44 -0.33) ÷ 0.44 × 100 = 25.0%). Thus, it can be seen that the removal rate of the non-collagenous nitrogen compound by the method of the present invention is extremely excellent.

Figure 0005522857
Figure 0005522857

Claims (2)

水に対する溶解性が酸性領域で高い生物原料由来のコラーゲンの製造において、コラーゲンの精製方法が、コラーゲンと非コラーゲン性窒素化合物とを含有する水溶液と、pHが7以下の活性炭とを接触させることにより非コラーゲン性窒素化合物を除去する方法であり、前記活性炭の量が、非コラーゲン性窒素化合物に対し質量比で2〜50倍であるコラーゲンの製造方法。 In manufacturing solubility of collagen from high biological material in an acidic region to water purification process of collagen, the aqueous solution containing the non-collagenous nitrogen compounds collagen, by a pH contacting the 7 following activated carbon Ri methods der to remove non-collagenous nitrogen compounds, the amount of the activated carbon manufacturing method of the non-collagenous nitrogen compound to Ru 2 to 50 Baidea a weight ratio collagen. 前記活性炭が粉末状である請求項1記載のコラーゲンの製造方法。 The process according to claim 1 Symbol placement of collagen the activated carbon is a powdery.
JP2011265694A 2011-12-05 2011-12-05 Method for producing collagen Active JP5522857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265694A JP5522857B2 (en) 2011-12-05 2011-12-05 Method for producing collagen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265694A JP5522857B2 (en) 2011-12-05 2011-12-05 Method for producing collagen

Publications (2)

Publication Number Publication Date
JP2013116875A JP2013116875A (en) 2013-06-13
JP5522857B2 true JP5522857B2 (en) 2014-06-18

Family

ID=48711691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265694A Active JP5522857B2 (en) 2011-12-05 2011-12-05 Method for producing collagen

Country Status (1)

Country Link
JP (1) JP5522857B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801993B2 (en) * 2015-10-05 2020-12-16 株式会社 ジャパン・ティッシュ・エンジニアリング Chondrocyte injection kit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236850B2 (en) * 2002-02-15 2009-03-11 焼津水産化学工業株式会社 Method for producing fish-derived collagen peptide, and food and drink and cosmetics containing fish-derived collagen peptide obtained by the method
WO2004090151A2 (en) * 2003-04-11 2004-10-21 Ecodynamic Biolab Inc. Method for extracting collagen comprising microbial fermentation
JP5127194B2 (en) * 2006-09-29 2013-01-23 辻製油株式会社 Collagen peptide powder, method for producing the same and polyphenol-containing product

Also Published As

Publication number Publication date
JP2013116875A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP6046779B2 (en) Rice protein composition and method for producing the same
JP2007535948A5 (en)
JP6129559B2 (en) pH adjusted soy protein isolate and uses
JP6408508B2 (en) Improved production of protein solutions from soy
AU2021200549A1 (en) Preparation of pulse protein products ("yp810")
JP7011060B2 (en) Fibrous structure derived from potato protein and foodstuffs containing it
US11882850B2 (en) Preparation of soy protein products (S810)
JP6099632B2 (en) Preparation of soy protein isolate using calcium chloride extraction ("S703CIP")
TW201400497A (en) Improved production of soluble protein products from pulses
KR20140042873A (en) Canola protein product with low phytic acid content("c702")
JP5522857B2 (en) Method for producing collagen
TW201404309A (en) Soy protein product with neutral or near neutral pH (''S701N2'')
JP3592163B2 (en) Method for producing high-purity silk peptide by gel filtration
JP4662846B2 (en) Alcohol lowering agent
JP2000239302A (en) Extraction of fucoidan
CN112250746B (en) Extraction method of moringa seed globulin
WO2022035334A2 (en) Method of obtaining aprotinin and product obtained thereby
JP5372397B2 (en) Method for producing hyaluronic acid and salts thereof
JP3513193B2 (en) Method for producing soybean β-amylase preparation
CN104804078A (en) Method for filtering viruses in blood coagulation factor VIII of human serum
JPS63101402A (en) Purification of galactomannan
JP4023950B2 (en) Production method of flavor stock
JPH0751064A (en) Liquid papain and its production
JP6955216B2 (en) Foaming seasoning
JP2012228234A (en) Method for producing soybean enzyme preparation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5522857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250