JP5522124B2 - Substrate processing apparatus, substrate processing method, and storage medium - Google Patents

Substrate processing apparatus, substrate processing method, and storage medium Download PDF

Info

Publication number
JP5522124B2
JP5522124B2 JP2011143336A JP2011143336A JP5522124B2 JP 5522124 B2 JP5522124 B2 JP 5522124B2 JP 2011143336 A JP2011143336 A JP 2011143336A JP 2011143336 A JP2011143336 A JP 2011143336A JP 5522124 B2 JP5522124 B2 JP 5522124B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
liquid
fluid supply
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011143336A
Other languages
Japanese (ja)
Other versions
JP2013012538A (en
Inventor
広基 大野
元 楊
武彦 折居
一行 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47686201&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5522124(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011143336A priority Critical patent/JP5522124B2/en
Priority to KR1020120056619A priority patent/KR20130007418A/en
Publication of JP2013012538A publication Critical patent/JP2013012538A/en
Application granted granted Critical
Publication of JP5522124B2 publication Critical patent/JP5522124B2/en
Priority to KR1020160098118A priority patent/KR101824809B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、高圧流体を接触させて基板の表面に付着した液体を除去する技術に関する。   The present invention relates to a technique for removing a liquid adhering to a surface of a substrate by bringing a high-pressure fluid into contact therewith.

基板である半導体ウエハ(以下、ウエハという)などの表面に集積回路の積層構造を形成する半導体装置の製造工程においては、薬液などの洗浄液によりウエハ表面の微小なごみや自然酸化膜を除去するなど、液体を利用してウエハ表面を処理する液処理工程が設けられている。   In the manufacturing process of a semiconductor device in which a laminated structure of integrated circuits is formed on the surface of a semiconductor wafer (hereinafter referred to as a wafer) as a substrate, a minute dust or a natural oxide film on the wafer surface is removed by a cleaning liquid such as a chemical solution. A liquid processing step for processing the wafer surface using a liquid is provided.

ところが半導体装置の高集積化に伴い、こうした液処理工程にてウエハの表面に付着した液体などを除去する際に、いわゆるパターン倒れと呼ばれる現象が問題となっている。パターン倒れは、例えばウエハ表面に残った液体を乾燥させる際に、パターンを形成する凹凸の例えば凸部の左右に残っている液体が不均一に乾燥することにより、この凸部を左右に引っ張る表面張力のバランスが崩れて液体の多く残っている方向に凸部が倒れる現象である。   However, with the high integration of semiconductor devices, a phenomenon called so-called pattern collapse has become a problem when removing liquid adhering to the wafer surface in such a liquid processing step. For example, when the liquid that remains on the wafer surface is dried, the liquid that remains on the left and right of the projections and recesses that form the pattern is dried unevenly, for example, and the surface that pulls the projections to the left and right. This is a phenomenon in which the balance of tension collapses and the convex part falls down in the direction in which a large amount of liquid remains.

こうしたパターン倒れの発生を抑えつつウエハ表面に付着した液体を除去する手法として超臨界状態や亜臨界状態の流体(背景技術の説明では、これらをまとめて超臨界流体という)を用いる方法が知られている。超臨界流体は、液体と比べて粘度が小さく、また液体を抽出する能力も高いことに加え、超臨界流体と平衡状態にある液体や気体との間で界面が存在しない。そこで、ウエハ表面に付着した液体を超臨界流体に溶解させたり、置換したりした後、超臨界流体を気体に状態変化させると、表面張力の影響を受けることなく液体を乾燥させることができる。   As a method for removing the liquid adhering to the wafer surface while suppressing the occurrence of such pattern collapse, a method using supercritical and subcritical fluids (in the description of the background art, these are collectively referred to as supercritical fluids) is known. ing. The supercritical fluid has a smaller viscosity than the liquid and has a high ability to extract the liquid, and there is no interface between the supercritical fluid and the liquid or gas in an equilibrium state. Therefore, after the liquid adhering to the wafer surface is dissolved or replaced in the supercritical fluid, the state of the supercritical fluid is changed to a gas, so that the liquid can be dried without being affected by the surface tension.

発明者らは、このような超臨界流体を利用してウエハ表面の液体を除去する技術の実用化開発を行っている。この開発実験の過程において、予めクリーニングした処理容器内にて超臨界流体を用いてウエハ表面の液体を除去する実験を行った後、同じ処理容器内で別のウエハに対して同様の処理を行うと、2枚目以降のウエハには、1枚目のウエハと比べて多くのパーティクルが付着する現象が観察された。   The inventors have developed and commercialized a technique for removing the liquid on the wafer surface using such a supercritical fluid. In the course of this development experiment, after performing an experiment to remove the liquid on the wafer surface using a supercritical fluid in a pre-cleaned processing container, the same processing is performed on another wafer in the same processing container. In addition, a phenomenon was observed in which more particles adhered to the second and subsequent wafers than in the first wafer.

ここで特許文献1には、基板上に形成されたパターンに付着したリンス液を液体二酸化炭素と置換し、この二酸化炭素を加温して超臨界状態にしてから気化させることにより基板を乾燥させる方法が記載されている。しかしながら当該特許文献1には、上述のパーティクル付着現象を見出した旨の既述もなく、その解決方法も記載されていない。   Here, in Patent Document 1, the rinse liquid adhering to the pattern formed on the substrate is replaced with liquid carbon dioxide, and the carbon dioxide is heated to a supercritical state and then vaporized, and then the substrate is dried. A method is described. However, the patent document 1 does not mention that the above-mentioned particle adhesion phenomenon has been found, and does not describe a solution.

またここで上述の特許文献1に記載されているように、基板に付着している液体を除去する処理を終えた後は、反応室(処理容器)に液体二酸化炭素を供給する配管(供給配管)のバルブを閉じてから、排出口側のバルブを開いて反応室内の圧力を低下させる動作が一般に採用される。この場合には、供給側のバルブよりも上流側の配管内には液体二酸化炭素が残っていることになる。   In addition, as described in Patent Document 1 described above, after finishing the process of removing the liquid adhering to the substrate, a pipe (supply pipe) for supplying liquid carbon dioxide to the reaction chamber (processing vessel) In general, an operation of lowering the pressure in the reaction chamber by closing the valve of) and then opening the valve on the outlet side is adopted. In this case, liquid carbon dioxide remains in the pipe upstream of the supply side valve.

特開2004−158591号公報:段落0029、0039〜0040、図1、2JP 2004-1558591 A: Paragraphs 0029, 0039 to 0040, FIGS.

本発明はこのような背景の下になされたものであり、高圧流体と接触させて基板に付着した液体を除去する処理を実施する過程で、基板にパーティクルが付着しにくい基板処理装置、基板処理方法及びこの方法を記憶した記憶媒体を提供することを目的とする。   The present invention has been made under such a background, and in the process of removing the liquid adhering to the substrate by being brought into contact with the high-pressure fluid, the substrate processing apparatus and substrate processing in which particles are less likely to adhere to the substrate. It is an object to provide a method and a storage medium storing the method.

本発明に係る基板処理装置は、基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理が行われる処理容器と、
前記高圧流体またはこの高圧流体の原料流体を、大気圧よりも高圧の状態で供給するための流体供給源と、
この流体供給源と処理容器とを接続する流体供給路と、
この流体供給路に上流側からこの順に設けられた流量調整部及び開閉弁と、
前記流体供給路における流量調整部の上流側に設けられ、または流量調整部を兼用する遮断部と、
前記処理容器内の圧力を減圧するための減圧弁が設けられ、当該処理容器内の流体の排出が行われる排出路と、
前記遮断部を開き、流量調整部により流量を調整した状態で前記開閉弁を開いて処理容器に高圧流体を導入し、または前記原料流体を導入して高圧流体に変化させ、基板の表面から乾燥防止用の液体を除去するステップと、次いで、前記遮断部を遮断状態とする一方、前記開閉弁と減圧弁とを開いた状態とすることにより、前記流体供給路と処理容器との内部を減圧するステップと、その後、前記基板を当該処理容器から搬出し、前記開閉弁を閉じるステップと、を実行するように制御信号を出力する制御部と、を備えたことを特徴とする。
A substrate processing apparatus according to the present invention includes a processing container in which a high-pressure fluid is brought into contact with a liquid for preventing drying on the surface of a substrate to perform a process for removing the liquid for preventing drying,
A fluid supply source for supplying the high-pressure fluid or a raw material fluid of the high-pressure fluid at a pressure higher than atmospheric pressure;
A fluid supply path connecting the fluid supply source and the processing container;
A flow rate adjusting unit and an on-off valve provided in this order from the upstream side in the fluid supply path;
A shut-off unit provided on the upstream side of the flow rate adjustment unit in the fluid supply path, or also serving as a flow rate adjustment unit;
A pressure reducing valve for reducing the pressure in the processing container, and a discharge path for discharging the fluid in the processing container;
Open the shut-off unit and open the on-off valve with the flow rate adjusted by the flow rate adjustment unit to introduce a high-pressure fluid into the processing vessel, or introduce the raw material fluid to change into a high-pressure fluid, and dry from the surface of the substrate. Removing the liquid for prevention, and then reducing the pressure inside the fluid supply path and the processing container by bringing the shut-off portion into a shut-off state and opening the on-off valve and the pressure reducing valve. And a controller that outputs a control signal so as to execute the step of unloading the substrate from the processing container and then closing the on-off valve .

また、他の発明に係わる基板処理装置は、基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理が行われる処理容器と、
前記高圧流体またはこの高圧流体の原料流体を、大気圧よりも高圧の状態で供給するための流体供給源と、
この流体供給源と処理容器とを接続する流体供給路と、
この流体供給路に上流側からこの順に設けられた流量調整部及び開閉弁と、
前記流体供給路における流調調整部の上流側に設けられ、または流量調整部を兼用する遮断部と、
前記遮断部と開閉弁との間の流体供給路から分岐し、当該流体供給路内の流体を排出して減圧するための第1の減圧弁が設けられた分岐路と、
前記処理容器内の圧力を減圧するための第2の減圧弁が設けられ、当該処理容器内の流体の排出が行われる排出路と、
前記第1の減圧弁を閉じる一方、前記遮断部を開き、流量調整部により流量を調整した状態で前記開閉弁を開いて処理容器に高圧流体を導入し、または前記原料流体を導入して高圧流体に変化させ、基板の表面から乾燥防止用の液体を除去するステップと、次いで、前記遮断部を遮断状態とすると共に開閉弁を閉じる一方、第2の減圧弁を開いた状態とすることにより、前記処理容器の内部を減圧するステップと、前記遮断部が遮断状態となり、開閉弁が閉じられた後、前記第1の減圧弁を開いて、前記流体供給路に残存する流体を分岐路から排出するステップと、を実行するように制御信号を出力する制御部と、を備えたことを特徴とする。
Further, a substrate processing apparatus according to another invention includes a processing container in which a high-pressure fluid is brought into contact with a liquid for preventing drying on the surface of the substrate to remove the liquid for preventing drying,
A fluid supply source for supplying the high-pressure fluid or a raw material fluid of the high-pressure fluid at a pressure higher than atmospheric pressure;
A fluid supply path connecting the fluid supply source and the processing container;
A flow rate adjusting unit and an on-off valve provided in this order from the upstream side in the fluid supply path;
A shut-off unit provided on the upstream side of the flow adjustment unit in the fluid supply path, or also serving as a flow rate adjustment unit;
A branch path provided with a first pressure reducing valve for branching from the fluid supply path between the shut-off portion and the on-off valve and discharging and depressurizing the fluid in the fluid supply path;
A second pressure reducing valve for reducing the pressure in the processing container, and a discharge path for discharging the fluid in the processing container;
While closing the first pressure reducing valve, the shut-off unit is opened, the flow rate is adjusted by the flow rate adjusting unit, the open / close valve is opened to introduce a high-pressure fluid into the processing vessel, or the raw material fluid is introduced to increase the pressure A step of removing the liquid for preventing drying from the surface of the substrate by changing to a fluid; and then, the shut-off portion is shut off and the on-off valve is closed, while the second pressure reducing valve is opened. Reducing the pressure inside the processing container; and after the shut-off section is shut off and the on-off valve is closed, the first pressure reducing valve is opened to allow the fluid remaining in the fluid supply path to flow from the branch path. And a control unit that outputs a control signal so as to execute the discharging step.

上述の各基板処理装置は以下の特徴を備えていてもよい。
(a)前記高圧流体は、超臨界状態または亜臨界状態の流体であり、前記処理容器には、前記流体供給源から高圧流体が供給されるか、または当該処理容器内で前記原料流体が加熱されて高圧流体となることにより、前記乾燥防止用の液体が当該高圧流体に抽出されて基板の表面から除去されること。
(b)前記処理容器は、基板の表面の乾燥防止用の液体を加熱するための加熱部を備え、前記高圧流体は、前記乾燥防止用の液体を加熱して超臨界状態または亜臨界状態にしたときに液体にならず、当該乾燥防止用の液体の気化を防止するための加圧用の流体であり、前記乾燥防止用の液体は、前記高圧流体と接触して加圧された雰囲気下で前記加熱部により加熱され、液体から超臨界状態また亜臨界状態に直接変化することにより基板の表面から除去されること。
(c)線幅が20nm以下のパターンが形成された基板から乾燥防止用の液体を除去する処理が行われること。
(d)基板から乾燥防止用の液体を除去する処理を行う際の前記処理容器内の圧力が5MPa以上であり、当該処理容器内の圧力が大気圧まで減圧されること。
Each substrate processing apparatus described above may have the following features.
(A) The high-pressure fluid is a fluid in a supercritical state or a subcritical state, and the processing vessel is supplied with a high-pressure fluid from the fluid supply source, or the raw material fluid is heated in the processing vessel. Then, the liquid for preventing drying is extracted into the high-pressure fluid and removed from the surface of the substrate.
(B) The processing container includes a heating unit for heating a liquid for preventing drying on the surface of the substrate, and the high-pressure fluid heats the liquid for preventing drying to be in a supercritical state or a subcritical state. A fluid for pressurization to prevent vaporization of the anti-drying liquid, and the anti-drying liquid is in a pressurized atmosphere in contact with the high-pressure fluid. It is heated by the heating unit and removed from the surface of the substrate by directly changing from a liquid to a supercritical state or a subcritical state.
(C) A process for removing the drying preventing liquid from the substrate on which the pattern having a line width of 20 nm or less is formed.
(D) The pressure in the processing container when performing the process of removing the liquid for preventing drying from the substrate is 5 MPa or more, and the pressure in the processing container is reduced to atmospheric pressure.

本発明は、基板に付着した液体に高圧流体を接触させて、当該液体を除去する処理を終えた後、処理が行われた処理容器、及びこの処理容器に前記高圧流体等を供給する流体供給路の減圧を併せて行うので、流体供給路と処理容器との間に急激な圧力差を発生させずに、処理容器を介して流体供給路内に残存する流体を外部へと排出できる。この結果、流体供給路に残存する流体が処理容器に流れ込む際の圧力低下幅を小さくして、当該流体の密度低下に起因する処理容器内部の汚染の発生を抑制できる。   The present invention relates to a processing container in which a high-pressure fluid is brought into contact with a liquid adhering to a substrate and the processing for removing the liquid is finished, and a fluid supply for supplying the high-pressure fluid and the like to the processing container. Since the passage is decompressed together, the fluid remaining in the fluid supply path can be discharged to the outside via the processing container without generating a sudden pressure difference between the fluid supply path and the processing container. As a result, the pressure drop width when the fluid remaining in the fluid supply path flows into the processing container can be reduced, and the occurrence of contamination inside the processing container due to the density reduction of the fluid can be suppressed.

また他の発明は、基板に付着した液体に高圧流体を接触させて、当該液体を除去する処理を行った処理容器から流体を排出して減圧を行う排出路とは別に、前記処理容器に高圧流体等を供給する流体供給路から分岐させた分岐路を設けている。この結果、処理容器を経由することなく流体供給路内部に残存する流体を排出できるので、当該流体が処理容器に流れ込む際の密度低下に起因する汚染の発生を抑制できる。   In another aspect of the invention, a high pressure fluid is brought into contact with the liquid attached to the substrate, and the high pressure fluid is discharged to the processing container separately from the discharge path for discharging the fluid from the processing container that has performed the processing for removing the liquid. A branch path branched from a fluid supply path for supplying fluid or the like is provided. As a result, since the fluid remaining in the fluid supply path can be discharged without going through the processing container, it is possible to suppress the occurrence of contamination due to density reduction when the fluid flows into the processing container.

洗浄処理システムの横断平面図である。It is a cross-sectional top view of a washing | cleaning processing system. 前記洗浄処理システムの外観斜視図である。It is an external appearance perspective view of the said washing | cleaning processing system. 前記洗浄処理システムに設けられている洗浄装置の縦断側面図である。It is a vertical side view of the washing | cleaning apparatus provided in the said washing | cleaning processing system. 実施の形態に係わる超臨界処理装置の構成図である。It is a block diagram of the supercritical processing apparatus concerning embodiment. 前記超臨界処理装置の処理容器の外観斜視図である。It is an external appearance perspective view of the processing container of the supercritical processing apparatus. 前記超臨界処理装置の作用を示す第1の説明図である。It is a 1st explanatory view showing an operation of the supercritical processing device. 前記超臨界処理装置の作用を示す第2の説明図である。It is the 2nd explanatory view showing an operation of the supercritical processing device. 前記超臨界処理装置の作用を示す第3の説明図である。It is the 3rd explanatory view showing an operation of the supercritical processing device. 前記超臨界処理装置の作用を示す第4の説明図である。It is a 4th explanatory view showing an operation of the supercritical processing device. 前記超臨界処理装置の作用を示す第5の説明図である。It is 5th explanatory drawing which shows the effect | action of the said supercritical processing apparatus. 他の実施の形態に係わる超臨界処理装置の作用を示す第1の説明図である。It is 1st explanatory drawing which shows the effect | action of the supercritical processing apparatus concerning other embodiment. 前記他の超臨界処理装置の作用を示す第2の説明図である。It is the 2nd explanatory view showing an operation of the other supercritical processing device. 前記他の超臨界処理装置の作用を示す第3の説明図である。It is 3rd explanatory drawing which shows the effect | action of the said other supercritical processing apparatus. 前記他の超臨界処理装置の作用を示す第4の説明図である。It is the 4th explanatory view showing an operation of the other supercritical processing equipment. 前記他の超臨界処理装置の作用を示す第5の説明図である。It is a 5th explanatory view showing an operation of the other supercritical processing device. 実施例の結果を示す説明図である。It is explanatory drawing which shows the result of an Example. 比較例の結果を示す説明図である。It is explanatory drawing which shows the result of a comparative example. 超臨界処理装置から処理後の流体を排出する動作の従来法を示す第1の説明図である。It is the 1st explanatory view showing the conventional method of the operation which discharges the fluid after processing from a supercritical processing device. 前記処理後の流体を排出する動作の従来法を示す第2の説明図である。It is the 2nd explanatory view showing the conventional method of the operation which discharges the fluid after the processing.

本発明に係わる基板処理装置の実施の形態である超臨界処理装置の具体的構成を説明する前に、背景技術にて説明したウエハへのパーティクル付着現象の発生原因について説明する。例えば二酸化炭素(CO:臨界温度31℃、臨界圧力(絶対圧)7.4MPa)を高圧流体として、超臨界状態のCOをウエハW表面の液体と接触させて除去する超臨界処理装置について考える。 Before describing a specific configuration of a supercritical processing apparatus as an embodiment of a substrate processing apparatus according to the present invention, the cause of the phenomenon of particle adhesion to a wafer described in the background art will be described. For example, a supercritical processing apparatus that uses carbon dioxide (CO 2 : critical temperature 31 ° C., critical pressure (absolute pressure) 7.4 MPa) as a high-pressure fluid to remove CO 2 in a supercritical state by contacting with the liquid on the surface of the wafer W. Think.

例えば図18、図19には、ウエハWに付着した液体を除去する処理を終えた後、高圧流体(超臨界CO)を排出する際の超臨界処理装置の従来の動作を示している。図中、31はウエハWから液体を除去する処理を行う処理容器、37は処理容器31に超臨界状態のCOを供給する流体供給源、351は流体供給源37から供給された超臨界COを処理容器31に送る流体供給ライン(流体供給路)、341は処理容器31内の超臨界COを排出する排出ライン(排出路)である。 For example, FIGS. 18 and 19 show the conventional operation of the supercritical processing apparatus when the high-pressure fluid (supercritical CO 2 ) is discharged after the process of removing the liquid adhering to the wafer W is finished. In the figure, 31 is a processing container for performing processing for removing liquid from the wafer W, 37 is a fluid supply source for supplying supercritical CO 2 to the processing container 31, and 351 is supercritical CO supplied from the fluid supply source 37. 2 is a fluid supply line (fluid supply path) for sending 2 to the processing container 31, and 341 is a discharge line (discharge path) for discharging supercritical CO 2 in the processing container 31.

また流体供給ライン351には、超臨界COの供給量を調節する流量調整部である流量調整弁354、流体供給源37に含まれているパーティクルを除去するためのフィルター353、流体供給源37から供給された超臨界COを処理容器31に導入し、また停止するための開閉弁352が上流側からこの順に介設されている。ここで、排出ライン341に介設された342は処理容器31の圧力を減圧すると共に、処理容器31に設けられた後述の圧力計の検出値に基づいて開度を調整し、処理容器31内の圧力を調整する機能を備えた減圧弁である。 The fluid supply line 351 includes a flow rate adjustment valve 354 that is a flow rate adjustment unit that adjusts the supply amount of supercritical CO 2 , a filter 353 for removing particles contained in the fluid supply source 37, and a fluid supply source 37. An on-off valve 352 for introducing the supercritical CO 2 supplied from the process vessel 31 into the processing vessel 31 and stopping it is provided in this order from the upstream side. Here, 342 interposed in the discharge line 341 reduces the pressure of the processing container 31 and adjusts the opening degree based on a detection value of a pressure gauge (described later) provided in the processing container 31, so that the inside of the processing container 31 This is a pressure reducing valve having a function of adjusting the pressure.

この超臨界処理装置では、ウエハW表面の液体に超臨界COを接触させて、当該液体を除去する処理を終えたら、流体供給ライン351の流量調整弁354、開閉弁352を閉じて超臨界COの供給を停止した後、COを排出して処理容器31内部を減圧し、ウエハWを取り出す準備を行う(図18)。 In this supercritical processing apparatus, after supercritical CO 2 is brought into contact with the liquid on the surface of the wafer W and the processing for removing the liquid is finished, the flow rate adjustment valve 354 and the on-off valve 352 of the fluid supply line 351 are closed to close the supercriticality. After the supply of CO 2 is stopped, CO 2 is discharged, the inside of the processing container 31 is decompressed, and preparations for taking out the wafer W are made (FIG. 18).

このとき、流体供給ライン351の配管内は超臨界COで満たされた高圧雰囲気となっている。しかし、この流体供給ライン351内を高圧雰囲気としたまま次の処理を開始するために開閉弁352を開くと、当該配管内に残存している超臨界COが、流量調節弁354によって流量調整されることなく処理容器31内に急激に流れ込むことになる。この結果、処理容器31内のウエハWの位置がずれてしまったり、ウエハWを損傷してしまったりするおそれがあるため、処理後は流体供給ライン351の超臨界COも排出しておく必要がある。 At this time, the inside of the pipe of the fluid supply line 351 is a high-pressure atmosphere filled with supercritical CO 2 . However, when the on-off valve 352 is opened to start the next process while the fluid supply line 351 is kept in a high-pressure atmosphere, the supercritical CO 2 remaining in the pipe is adjusted by the flow rate control valve 354. It will flow rapidly into the processing container 31 without being carried out. As a result, the position of the wafer W in the processing container 31 may be displaced or the wafer W may be damaged. Therefore, it is necessary to discharge the supercritical CO 2 in the fluid supply line 351 after the processing. There is.

こうした理由から、処理容器31内に次のウエハWが搬入されるまでに流体供給ライン351においても大気開放が行われる。このとき図19に示すように、流体供給ライン351の開閉弁352、排出ライン341の減圧弁342を開くことにより、流体供給ライン351内のCOが処理容器31、排出ライン341を介して外部に排出される。 For these reasons, the atmosphere is also released from the fluid supply line 351 until the next wafer W is loaded into the processing container 31. At this time, as shown in FIG. 19, by opening the opening / closing valve 352 of the fluid supply line 351 and the pressure reducing valve 342 of the discharge line 341, CO 2 in the fluid supply line 351 is externally passed through the processing container 31 and the discharge line 341. To be discharged.

そして背景技術にて説明したように、クリーニングを行った処理容器31にてウエハWを処理した後、上記の操作を行い、2枚目のウエハWを処理すると、1枚目よりも多くのパーティクルが付着する現象が観察される。   As described in the background art, after the wafer W is processed in the cleaned processing container 31, the above operation is performed to process the second wafer W, so that more particles than the first wafer are processed. The phenomenon of adhering is observed.

図18、図19に示すように、超臨界処理装置の流体供給ライン351にはフィルター353が設けられており、流体供給源37内の原料に含まれるパーティクルを予め除去してから処理容器31へと供給されているにも係わらず、パーティクルの付着現象が見られる原因を究明するため、ウエハWに付着したパーティクルの組成を分析した。分析の結果によれば、流体供給源として市販のCOボンベを用いた場合、上記パーティクルの発生源の一つは原料CO中に含まれる水分や油分であった。 As shown in FIGS. 18 and 19, the fluid supply line 351 of the supercritical processing apparatus is provided with a filter 353, and the particles contained in the raw material in the fluid supply source 37 are removed in advance and then transferred to the processing container 31. The composition of particles adhering to the wafer W was analyzed in order to investigate the cause of the phenomenon of particle adhesion despite being supplied. According to the results of analysis, when a commercially available CO 2 cylinder was used as the fluid supply source, one of the generation sources of the particles was water and oil contained in the raw material CO 2 .

これらの事実から、発明者らは、原料CO中に流体の状態で保持された水分や油分がフィルター353を通過した後、何らかの理由により処理容器31内でミスト化し、ウエハWに付着するのではないかと考えた。また、1枚目より、2枚目以降に処理したウエハWに多くのパーティクルが付着することから、これら水分や油分のミスト化は、1枚目のウエハWの処理を取り出した後、2枚目のウエハWの処理を開始する前に発生しているものと推定した。 From these facts, the inventors, after the moisture and oil content held in the raw material CO 2 in a fluid state pass through the filter 353, become mist in the processing container 31 for some reason and adhere to the wafer W. I thought that. In addition, since many particles adhere to the wafer W processed from the first to the second and subsequent wafers, mist formation of these moisture and oil is performed after the processing of the first wafer W is taken out. It was estimated that it occurred before starting the processing of the eye wafer W.

さらに発明者らは、高圧流体であるCOの密度と水分や油分の保持能力との関係に注目した。一般に流体はその密度が高い程、これらパーティクルの原因物質を保持し易く、その保持能力は「液体>超臨界流体>高圧ガス>大気圧ガス」の順に小さくなる。 Furthermore, the inventors paid attention to the relationship between the density of CO 2 as a high-pressure fluid and the ability to retain moisture and oil. In general, the higher the density of a fluid, the easier it is to hold the causative substances of these particles, and the holding capacity decreases in the order of “liquid> supercritical fluid> high pressure gas> atmospheric pressure gas”.

このため、高圧流体(液体COや超臨界CO、高圧ガスCO)の密度が急激に低下して大気圧になる領域では、COに保持可能な水分や油分の量が低下して、これらの物質がミスト化することが予想できる。そこで、図18に示した処理容器31の大気開放操作において、超臨界COが急激に減圧される減圧弁342下流側の排出ライン341の配管内面を観察したところ、当該配管内にも多量のパーティクルが付着しており、これらの組成も原料COに含まれる水分や油分であった。ここで発明者らは、大気圧以上の例えば5MPaまで加圧された流体を大気圧まで減圧するといった大きな圧力差が存在する場合に、このようなパーティクルの生成量が顕著になることを把握している。 For this reason, in the region where the density of the high-pressure fluid (liquid CO 2 , supercritical CO 2 , high-pressure gas CO 2 ) suddenly decreases to atmospheric pressure, the amount of water or oil that can be held in CO 2 decreases. These substances can be expected to become mist. Therefore, when the inside of the discharge line 341 on the downstream side of the pressure reducing valve 342 in which the supercritical CO 2 is rapidly depressurized in the operation of releasing the processing container 31 shown in FIG. 18 is observed, a large amount of the inside of the pipe is also observed. Particles were adhered, and these compositions were also water and oil contained in the raw material CO 2 . Here, the inventors have grasped that the generation amount of such particles becomes remarkable when there is a large pressure difference such as reducing the pressure of the fluid pressurized to atmospheric pressure or higher, for example, 5 MPa to atmospheric pressure. ing.

上述の検討結果から、2枚目以降のウエハWの処理に際して、1枚目の場合よりも多くのパーティクルが付着する原因は、流体供給ライン351内に残存する超臨界COが処理容器31を介して外部に排出される際に、処理容器31内で急激に減圧され、処理容器31内で多量のミスト(パーティクル)が生成されることに起因していると推定した。 From the above examination results, when the second and subsequent wafers W are processed, the reason why more particles are attached than in the case of the first wafer is that supercritical CO 2 remaining in the fluid supply line 351 causes the processing vessel 31 to remain. It is presumed that this is caused by the fact that the pressure is rapidly reduced in the processing container 31 and a large amount of mist (particles) is generated in the processing container 31 when being discharged to the outside.

また、これら水分や油分の含有量は、同じ純度のCOを使用した場合であっても製造元毎、ボンベ毎に異なり、原料段階でパーティクルの発生原因を排除することは難しい。従って、COの使用先である超臨界処理装置側にてパーティクルの発生対策を行う必要がある。特にこのようなプロセスで生成するパーティクルには、粒径が40nm程度といった微小なサイズのパーティクルが含まれ、例えば線幅の間隔が20nm以下といった微細な配線パターンが形成されたウエハWの洗浄処理、及びその後の乾燥を行う場合に問題となる。 In addition, even when CO 2 having the same purity is used, the contents of these moisture and oil are different for each manufacturer and each cylinder, and it is difficult to eliminate the cause of the generation of particles at the raw material stage. Therefore, it is necessary to take measures against the generation of particles on the supercritical processing apparatus side where CO 2 is used. In particular, the particles generated by such a process include particles having a minute size such as a particle size of about 40 nm. For example, a cleaning process of the wafer W on which a fine wiring pattern having a line width interval of 20 nm or less is formed. And it becomes a problem when performing subsequent drying.

上記の観点から本実施の形態に係わる超臨界処理装置3は、ウエハWの処理を行った後、流体供給ライン351内に残存している高圧流体(超臨界COや液体CO、高圧ガスCO)を排出して大気開放を行う際に、処理容器31内にて急激な圧力変化を発生させないことにより、ミスト化した水分や油分による処理容器31の内部の汚染やウエハWの汚染を防止している。この手法により、2枚目以降の処理時にウエハWに付着するパーティクルを大幅に低減できることは、後述する実施例にて実験的に確認している。 From the above viewpoint, the supercritical processing apparatus 3 according to the present embodiment performs high-pressure fluid (supercritical CO 2 , liquid CO 2 , high-pressure gas) remaining in the fluid supply line 351 after processing the wafer W. When releasing the CO 2 ) and releasing the atmosphere, a sudden pressure change is not generated in the processing container 31, so that contamination inside the processing container 31 and contamination of the wafer W due to mist water or oil are prevented. It is preventing. It has been experimentally confirmed in an example described later that this method can significantly reduce particles adhering to the wafer W during the second and subsequent processing.

以下、本実施の形態に係わる超臨界処理装置3、及びこの超臨界処理装置3を備えた洗浄システム1の構成について説明する。
はじめに、本実施の形態の超臨界処理装置3を備えた基板処理システムの一例として、被処理基板であるウエハWに洗浄液を供給して洗浄処理を行う洗浄装置2と、洗浄処理後のウエハWに付着している乾燥防止用の液体(IPA)を超臨界COと接触させて除去する超臨界処理装置3とを備えた洗浄処理システム1について説明する。
Hereinafter, the structure of the supercritical processing apparatus 3 concerning this Embodiment and the washing | cleaning system 1 provided with this supercritical processing apparatus 3 is demonstrated.
First, as an example of a substrate processing system including the supercritical processing apparatus 3 of the present embodiment, a cleaning apparatus 2 that supplies a cleaning liquid to a wafer W that is a substrate to be processed and performs the cleaning process, and a wafer W that has been subjected to the cleaning process A cleaning processing system 1 including a supercritical processing apparatus 3 that removes a liquid for preventing drying (IPA) adhering to the surface by contacting with supercritical CO 2 will be described.

図1は洗浄処理システム1の全体構成を示す横断平面図、図2はその外観斜視図であり、これらの図に向かって左側を前方とする。洗浄処理システム1では、載置部11にFOUP100が載置され、このFOUP100に格納された例えば直径300mmの複数枚のウエハWが、搬入出部12及び受け渡し部13を介して後段の洗浄処理部14、超臨界処理部15との間で受け渡され、洗浄装置2、超臨界処理装置3内に順番に搬入されて洗浄処理や乾燥防止用の液体を除去する処理が行われる。図中、121はFOUP100と受け渡し部13との間でウエハWを搬送する第1の搬送機構、131は搬入出部12と洗浄処理部14、超臨界処理部15との間を搬送されるウエハWが一時的に載置されるバッファとしての役割を果たす受け渡し棚である。   FIG. 1 is a cross-sectional plan view showing the overall configuration of the cleaning processing system 1, and FIG. 2 is an external perspective view thereof. In the cleaning system 1, the FOUP 100 is mounted on the mounting unit 11, and a plurality of wafers W having a diameter of, for example, 300 mm stored in the FOUP 100 are transferred to the subsequent cleaning processing unit via the loading / unloading unit 12 and the transfer unit 13. 14 is transferred to and from the supercritical processing unit 15 and is sequentially carried into the cleaning device 2 and the supercritical processing device 3 to perform a cleaning process and a process for removing the liquid for preventing drying. In the figure, reference numeral 121 denotes a first transfer mechanism for transferring a wafer W between the FOUP 100 and the transfer unit 13, and 131 denotes a wafer transferred between the loading / unloading unit 12, the cleaning processing unit 14, and the supercritical processing unit 15. W is a delivery shelf that serves as a buffer on which W is temporarily placed.

洗浄処理部14及び超臨界処理部15は、受け渡し部13との間の開口部から前後方向に向かって伸びるウエハ搬送路162に沿って前方からこの順番に設けられている。洗浄処理部14には、当該ウエハ搬送路162を挟んで洗浄装置2が1台ずつ配置されている。一方、超臨界処理部15には、本実施の形態の基板処理装置である超臨界処理装置3が、ウエハ搬送路162を挟んで3台ずつ、合計6台配置されている。   The cleaning processing unit 14 and the supercritical processing unit 15 are provided in this order from the front along the wafer transfer path 162 extending in the front-rear direction from the opening between the transfer processing unit 13 and the transfer processing unit 13. In the cleaning processing unit 14, one cleaning device 2 is disposed across the wafer transfer path 162. On the other hand, in the supercritical processing section 15, six supercritical processing apparatuses 3, which are substrate processing apparatuses according to the present embodiment, are arranged in three units with the wafer transfer path 162 interposed therebetween.

ウエハWは、ウエハ搬送路162に配置された第2の搬送機構161によってこれら各洗浄装置2、超臨界処理装置3及び受け渡し部13の間を搬送される。ここで洗浄処理部14や超臨界処理部15に配置される洗浄装置2や超臨界処理装置3の個数は、単位時間当たりのウエハWの処理枚数や、洗浄装置2、超臨界処理装置3での処理時間の違いなどにより適宜選択され、これら洗浄装置2や超臨界処理装置3の配置数などに応じて最適なレイアウトが選択される。   The wafer W is transferred between the cleaning device 2, the supercritical processing device 3, and the delivery unit 13 by the second transfer mechanism 161 arranged in the wafer transfer path 162. Here, the number of cleaning apparatuses 2 and supercritical processing apparatuses 3 arranged in the cleaning processing section 14 and the supercritical processing section 15 is the same as the number of wafers W processed per unit time, the cleaning apparatus 2 and the supercritical processing apparatus 3. The optimum layout is selected according to the number of the cleaning apparatuses 2 and supercritical processing apparatuses 3 arranged.

洗浄装置2は例えばスピン洗浄によりウエハWを1枚ずつ洗浄する枚葉式の洗浄装置2として構成され、図3の縦断側面図に示すように、処理空間を形成するアウターチャンバー21内に配置されたウエハ保持機構23にてウエハWをほぼ水平に保持し、このウエハ保持機構23を鉛直軸周りに回転させることによりウエハWを回転させる。そして回転するウエハWの上方にノズルアーム24を進入させ、その先端部に設けられた薬液ノズル241から薬液及びリンス液を予め定められた順に供給することによりウエハの面の洗浄処理が行われる。また、ウエハ保持機構23の内部にも薬液供給路231が形成されており、ここから供給された薬液及びリンス液によってウエハWの裏面洗浄が行われる。   The cleaning apparatus 2 is configured as a single wafer cleaning apparatus 2 that cleans wafers W one by one, for example, by spin cleaning, and is disposed in an outer chamber 21 that forms a processing space, as shown in a vertical side view of FIG. The wafer holding mechanism 23 holds the wafer W substantially horizontally, and the wafer W is rotated by rotating the wafer holding mechanism 23 around the vertical axis. Then, the nozzle arm 24 is advanced above the rotating wafer W, and the chemical liquid and the rinsing liquid are supplied in a predetermined order from the chemical liquid nozzle 241 provided at the tip of the wafer arm 24, whereby the wafer surface is cleaned. Further, a chemical solution supply path 231 is also formed inside the wafer holding mechanism 23, and the back surface of the wafer W is cleaned by the chemical solution and the rinsing solution supplied therefrom.

洗浄処理は、例えばアルカリ性の薬液であるSC1液(アンモニアと過酸化水素水の混合液)によるパーティクルや有機性の汚染物質の除去→リンス液である脱イオン水(DeIonized Water:DIW)によるリンス洗浄→酸性薬液である希フッ酸水溶液(以下、DHF(Diluted HydroFluoric acid))による自然酸化膜の除去→DIWによるリンス洗浄が行われる。これらの薬液はアウターチャンバー21内に配置されたインナーカップ22やアウターチャンバー21に受け止められて排液口221、211より排出される。またアウターチャンバー21内の雰囲気は排気口212より排気されている。   The cleaning process is, for example, removal of particles and organic pollutants with an SC1 solution (a mixture of ammonia and hydrogen peroxide solution), which is an alkaline chemical solution, and a rinse with deionized water (DIW), which is a rinse solution. → Removal of natural oxide film by dilute hydrofluoric acid aqueous solution (hereinafter referred to as DHF (Diluted HydroFluoric acid)) which is an acidic chemical solution → Rinse cleaning by DIW is performed. These chemical solutions are received by the inner cup 22 or the outer chamber 21 disposed in the outer chamber 21 and discharged from the drain ports 221 and 211. The atmosphere in the outer chamber 21 is exhausted from the exhaust port 212.

薬液による洗浄処理を終えたら、ウエハ保持機構23の回転を停止してからウエハWの表面及び裏面にIPA(IsoPropyl Alcohol)を供給し、これらの面に残存しているDIWと置換する。こうして洗浄処理を終えたウエハWは、その表面にIPAが液盛りされた状態(ウエハW表面にIPAの液膜が形成された状態)のままウエハ保持機構23に設けられた不図示の受け渡し機構により第2の搬送機構161に受け渡され、洗浄装置2より搬出される。   When the cleaning process using the chemical solution is completed, the rotation of the wafer holding mechanism 23 is stopped, and then IPA (IsoPropyl Alcohol) is supplied to the front and back surfaces of the wafer W to replace the DIW remaining on these surfaces. The wafer W that has been cleaned in this manner has a delivery mechanism (not shown) provided in the wafer holding mechanism 23 in a state in which IPA is accumulated on the surface (a state in which an IPA liquid film is formed on the surface of the wafer W). Is transferred to the second transport mechanism 161 and unloaded from the cleaning device 2.

洗浄装置2にてウエハW表面に液盛りされたIPAは、洗浄装置2から超臨界処理装置3へのウエハWの搬送中や、超臨界処理装置3への搬入動作中に当該IPAが蒸発(気化)することによってパターン倒れが発生することを防ぐ乾燥防止用の液体としての役割を果たしている。   The IPA accumulated on the surface of the wafer W by the cleaning apparatus 2 evaporates during the transfer of the wafer W from the cleaning apparatus 2 to the supercritical processing apparatus 3 or during the loading operation to the supercritical processing apparatus 3 ( It plays a role as an anti-drying liquid that prevents pattern collapse from occurring due to vaporization.

洗浄装置2での洗浄処理を終え、表面に乾燥防止用のIPAが液盛りされたウエハWは、超臨界処理装置3に搬送され、処理容器31内にてウエハW表面のIPAに超臨界COを接触させることにより、当該IPAを超臨界COに溶解させて除去し、ウエハWを乾燥する処理が行われる。以下、本実施の形態に係る超臨界処理装置3の構成について図4、図5を参照しながら説明する。また、図4、図5に示した超臨界処理装置3において、図18、図19を用いて説明した従来の超臨界処理装置3と共通の構成要素には、これらの図面にて使用したものと同様の符号を付してある。 After the cleaning process in the cleaning apparatus 2 is completed, the wafer W on which the IPA for preventing drying is deposited on the surface is transferred to the supercritical processing apparatus 3, and the supercritical CO is transferred to the IPA on the surface of the wafer W in the processing container 31. 2 , the IPA is dissolved and removed in supercritical CO 2 and the wafer W is dried. Hereinafter, the configuration of the supercritical processing apparatus 3 according to the present embodiment will be described with reference to FIGS. 4 and 5. Further, in the supercritical processing apparatus 3 shown in FIGS. 4 and 5, the same components as those of the conventional supercritical processing apparatus 3 described with reference to FIGS. 18 and 19 are used in these drawings. The same code | symbol is attached | subjected.

本実施の形態に係わる超臨界処理装置3は、ウエハW表面に付着した乾燥防止用の液体であるIPAを除去する処理が行われる処理容器31と、この処理容器31に高圧流体である超臨界COを供給する流体供給源37と、を備えている。 The supercritical processing apparatus 3 according to the present embodiment includes a processing container 31 that performs a process for removing IPA that is a liquid for preventing drying adhered to the surface of a wafer W, and a supercritical fluid that is a high-pressure fluid in the processing container 31. And a fluid supply source 37 for supplying CO 2 .

図5に示すように処理容器31は、ウエハWの搬入出用の開口部312が形成された筐体状の容器本体311と、処理対象のウエハWを横向きに保持する保持板331と、この保持板331を支持すると共に、ウエハWを容器本体311内に搬入したとき前記開口部312を密閉する蓋部材332とを備えている。   As shown in FIG. 5, the processing container 31 includes a housing-like container main body 311 in which an opening 312 for carrying in / out the wafer W is formed, a holding plate 331 for holding the wafer W to be processed horizontally, A lid member 332 that supports the holding plate 331 and seals the opening 312 when the wafer W is loaded into the container body 311 is provided.

容器本体311は、例えば直径300mmのウエハWを収容可能な、200〜10000cm程度の処理空間が形成された容器であり、その壁部には、処理容器31内に高圧流体を供給するための流体供給ライン351(流体供給路)と、処理容器31内の流体を排出するための排出ライン341(排出路)とが接続されている。また、処理容器1には処理空間内に供給された高圧状態の高圧流体から受ける内圧に抗して、容器本体311に向けて蓋部材332を押し付け、処理空間を密閉するための不図示の押圧機構が設けられている。 The container main body 311 is a container in which a processing space of about 200 to 10000 cm 3 that can accommodate a wafer W having a diameter of 300 mm, for example, is formed, and a wall for supplying a high-pressure fluid into the processing container 31 A fluid supply line 351 (fluid supply path) and a discharge line 341 (discharge path) for discharging the fluid in the processing container 31 are connected. Further, the processing container 1 is pressed against the internal pressure received from the high-pressure fluid in a high-pressure state supplied into the processing space, and the lid member 332 is pressed toward the container main body 311 to seal the processing space (not shown). A mechanism is provided.

処理容器1に接続された流体供給ライン351は、処理容器1への高圧流体の供給、停止に合わせて開閉する開閉弁352、フィルター353及び流量調整弁354を介して流体供給源37に接続されている。流体供給源37は、例えば液体COを貯留するCOボンベと、このCOボンベから供給された液体COを昇圧して超臨界状態とするための、シリンジポンプやダイヤフラムポンプなどからなる昇圧ポンプとを備えている。図4等には、これらCOボンベや昇圧ポンプを総括的にボンベの形状で示してある。 A fluid supply line 351 connected to the processing container 1 is connected to a fluid supply source 37 through an on-off valve 352, a filter 353, and a flow rate adjustment valve 354 that open and close in accordance with the supply and stop of high-pressure fluid to the processing container 1. ing. Fluid supply source 37, for example, a CO 2 cylinder for storing the liquid CO 2, to a supercritical state by boosting the liquid CO 2 which is supplied from the CO 2 cylinder, the booster made of a syringe pump or a diaphragm pump With a pump. In FIG. 4 and the like, these CO 2 cylinders and booster pumps are generally shown in the form of cylinders.

流体供給源37から供給された超臨界COは、流量調整弁354にて流量を調節され、処理容器31に供給される。この流量調整弁354弁は、例えばニードルバルブなどから構成され、流体供給源37からの超臨界COの供給を遮断する遮断部としても兼用されている。 The flow rate of supercritical CO 2 supplied from the fluid supply source 37 is adjusted by the flow rate adjustment valve 354 and supplied to the processing vessel 31. The flow rate adjustment valve 354 is constituted by, for example, a needle valve, and is also used as a shut-off unit that shuts off the supply of supercritical CO 2 from the fluid supply source 37.

また、排出ライン341の減圧弁342は圧力コントローラー343と接続されており、この圧力コントローラー343は、処理容器31に設けられた圧力計321から取得した処理容器31内の圧力の測定結果と、予め設定された設定圧力との比較結果に基づいて開度を調整するフィードバック制御機能を備えている。   In addition, the pressure reducing valve 342 of the discharge line 341 is connected to a pressure controller 343, and the pressure controller 343 includes a measurement result of the pressure in the processing container 31 obtained from the pressure gauge 321 provided in the processing container 31, in advance. A feedback control function is provided for adjusting the opening degree based on the comparison result with the set pressure.

以上に説明した構成を備えた洗浄処理システム1や洗浄装置2、超臨界処理装置3は図1、図4に示すように制御部4に接続されている。制御部4は図示しないCPUと記憶部とを備えたコンピュータからなり、記憶部にはこれら洗浄処理システム1や洗浄装置2、超臨界処理装置3の作用、即ちFOUP100からウエハWを取り出して洗浄装置2にて洗浄処理を行い、次いで超臨界処理装置3にてウエハWを乾燥する処理を行ってからFOUP100内にウエハWを搬入するまでの動作に係わる制御についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。   The cleaning processing system 1, the cleaning apparatus 2, and the supercritical processing apparatus 3 having the configuration described above are connected to the control unit 4 as shown in FIGS. 1 and 4. The control unit 4 includes a computer including a CPU and a storage unit (not shown). The storage unit is operated by the cleaning processing system 1, the cleaning apparatus 2, and the supercritical processing apparatus 3, that is, the wafer W is taken out from the FOUP 100 and cleaned. Steps (commands) for control related to operations from the cleaning process at 2 and the drying process of the wafer W by the supercritical processing apparatus 3 to the loading of the wafer W into the FOUP 100 are assembled. Recorded programs. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.

特に超臨界処理装置3について制御部4は、処理を終えたウエハWを取り出す前に、処理容器31と流体供給ライン351とを併せて減圧することにより、流体供給ライン351から処理容器31へ向けて、減圧方向への急激な圧力変化が発生することを避けるように制御信号を出力する機能を備えている。このような観点から、図4に示すように制御部4は、排出ライン341に設けられた減圧弁342の開度を調節する圧力コントローラー343や、流体供給ライン351側の開閉弁352、流量調整弁354と電気的に接続されている。   In particular, for the supercritical processing apparatus 3, the control unit 4 depressurizes the processing container 31 and the fluid supply line 351 together before taking out the processed wafer W, thereby moving the fluid supply line 351 toward the processing container 31. And a function of outputting a control signal so as to avoid a sudden pressure change in the pressure reducing direction. From such a viewpoint, as shown in FIG. 4, the control unit 4 includes a pressure controller 343 that adjusts the opening degree of the pressure reducing valve 342 provided in the discharge line 341, an on-off valve 352 on the fluid supply line 351 side, and a flow rate adjustment. The valve 354 is electrically connected.

以上に説明した構成を備えた超臨界処理装置3の作用について図6〜図10の作用図を参照しながら説明する。各図においてバルブ354、352、342に付された「S」の符号は、その開閉バルブが閉状態となっていることを示し、「O」の符号は開状態となっていることを示している。   The operation of the supercritical processing apparatus 3 having the above-described configuration will be described with reference to the operation diagrams of FIGS. In each figure, the symbol “S” attached to the valves 354, 352, and 342 indicates that the open / close valve is closed, and the symbol “O” indicates that the valve is open. Yes.

既述のように洗浄装置2における洗浄処理を終え、乾燥防止用のIPAを液盛りしたウエハWが第2の搬送機構161に受け渡されると、第2の搬送機構161は、ウエハWを受け入れ可能な超臨界処理装置3が配置されている筐体内に進入する。   As described above, after the cleaning process in the cleaning apparatus 2 is completed and the wafer W on which the IPA for preventing drying is accumulated is transferred to the second transfer mechanism 161, the second transfer mechanism 161 receives the wafer W. A possible supercritical processing device 3 is entered into the housing.

このときウエハWの搬入が行われる前の超臨界処理装置3は、処理容器31内を大気開放してから流体供給ライン351の開閉弁352、排出ライン341の減圧弁342を閉じた状態で待機している。また、流体供給ライン351についても予め大気開放操作が行われており、内部に高圧のCOが残存していない状態にて開閉弁352及び流量調整弁354が閉じられている。 At this time, the supercritical processing apparatus 3 before carrying in the wafer W waits in a state where the opening / closing valve 352 of the fluid supply line 351 and the pressure reducing valve 342 of the discharge line 341 are closed after the inside of the processing container 31 is opened to the atmosphere. doing. In addition, the fluid supply line 351 is previously opened to the atmosphere, and the on-off valve 352 and the flow rate adjustment valve 354 are closed in a state where high-pressure CO 2 does not remain inside.

上記の状態で待機している処理容器31内にIPAが液盛りされたウエハWが搬入されてきたら、図5に示すように容器本体311の外に保持板331を移動させ、不図示の支持ピンを介して第2の搬送機構161の搬送アームから保持板331にウエハWを受け渡す。そして、保持板331を移動させて開口部312を介してウエハWを容器本体311の内部に搬入し、蓋部材332にて開口部312を閉じ処理容器31内を密閉する(図6)。   When the wafer W filled with IPA is loaded into the processing container 31 waiting in the above state, the holding plate 331 is moved out of the container body 311 as shown in FIG. The wafer W is transferred from the transfer arm of the second transfer mechanism 161 to the holding plate 331 via the pins. Then, the holding plate 331 is moved to carry the wafer W into the container main body 311 through the opening 312, the opening 312 is closed by the lid member 332, and the inside of the processing container 31 is sealed (FIG. 6).

次いで、流体供給ライン351の開閉弁352を開くと共に、流量調整弁354の開度を調節して、予め定められた流量で超臨界COを処理容器31に導入する(図7)。このとき、既述のように原料COに含まれていた水分や油分も処理容器31内に持ち込まれるが、超臨界COを導入することにより、処理容器31内は大気圧からCOの臨界圧以上の圧力まで昇圧されるので、これらの水分や油分は超臨界COに保持された状態を維持する。ここで図7等に示す太線の矢印は、流体供給ライン351や排出ライン341等の配管内を流体が流れていることを示している。 Next, the opening / closing valve 352 of the fluid supply line 351 is opened and the opening degree of the flow rate adjustment valve 354 is adjusted to introduce supercritical CO 2 into the processing vessel 31 at a predetermined flow rate (FIG. 7). At this time, as described above, the moisture and oil contained in the raw material CO 2 are also brought into the processing container 31, but by introducing supercritical CO 2 , the processing container 31 is changed from atmospheric pressure to CO 2 . Since the pressure is increased to a pressure equal to or higher than the critical pressure, these water and oil components are maintained in the supercritical CO 2 state. Here, the thick arrows shown in FIG. 7 and the like indicate that the fluid flows in the piping such as the fluid supply line 351 and the discharge line 341.

圧力コントローラー343には、処理容器31内の目標圧力が設定されており、処理容器31内の圧力が前記目標圧力を超えたら、減圧弁342を開いて処理容器31内の超臨界COの一部を排出ライン341から抜き出すことにより、処理容器31内の圧力調整を行う(図8)。このときウエハWの表面では、ウエハWに液盛りされたIPAが超臨界COと接触して、超臨界COに抽出されウエハWの表面からIPAが除去されていく。 In the pressure controller 343, a target pressure in the processing container 31 is set. When the pressure in the processing container 31 exceeds the target pressure, the pressure reducing valve 342 is opened and one of the supercritical CO 2 in the processing container 31 is opened. The pressure in the processing container 31 is adjusted by extracting the part from the discharge line 341 (FIG. 8). In the surface of this time the wafer W, puddle been IPA on the wafer W is in contact with the supercritical CO 2, IPA from the surface of the wafer W is extracted into the supercritical CO 2 is gradually removed.

やがて超臨界COは、ウエハWの表面に形成されたパターン内に進入して、当該パターン内のIPAを抽出して除去する。この結果、パターン内を満たしていたIPAは、超臨界COに置換され、ウエハWの表面から除去される。 Eventually, the supercritical CO 2 enters the pattern formed on the surface of the wafer W, and extracts and removes the IPA in the pattern. As a result, the IPA filling the pattern is replaced with supercritical CO 2 and removed from the surface of the wafer W.

このとき図8に示すように、処理容器31内でIPAを抽出した超臨界COの一部を排出ライン341から抜き出し、流体供給ライン351からの新たな超臨界COの供給を継続する。これにより、処理容器31内の超臨界COによるIPAの抽出能力を大きく低下させずに、IPAを除去する処理を進行させることができる。 At this time, as shown in FIG. 8, a part of the supercritical CO 2 from which IPA is extracted in the processing vessel 31 is extracted from the discharge line 341, and the supply of new supercritical CO 2 from the fluid supply line 351 is continued. Thereby, the process of removing IPA can be advanced without significantly reducing the extraction ability of IPA by supercritical CO 2 in the processing container 31.

こうして、パターン内に入り込んだIPAを抽出し、超臨界COにて置換するのに十分な時間が経過したら、圧力コントローラー343による圧力制御を解除して排出ライン341の減圧弁342を閉じると共に、流量調整弁354を閉止して、流体供給源37からの超臨界COの供給を遮断する(図9)。このとき、処理容器31及び流体供給ライン351の配管内部は超臨界COで満たされた状態となっている。 Thus, when sufficient time has passed to extract the IPA that has entered the pattern and replace it with supercritical CO 2 , the pressure control by the pressure controller 343 is canceled and the pressure reducing valve 342 of the discharge line 341 is closed, The flow rate adjustment valve 354 is closed to shut off the supply of supercritical CO 2 from the fluid supply source 37 (FIG. 9). At this time, the insides of the processing vessel 31 and the fluid supply line 351 are filled with supercritical CO 2 .

超臨界COの供給が停止されたら、減圧弁342を開いて処理容器31及び流体供給ライン351の配管の内部の超臨界COを排出することにより、処理容器31と流体供給ライン351とを併せて減圧する。この操作において、処理容器31や流体供給ライン351内に残存する超臨界COは、圧力の低下に伴って「超臨界CO→高圧COガス→低圧COガス」と変化し、水分や油分の保持能力が低下していく。 When the supply of supercritical CO 2 is stopped, the pressure reducing valve 342 is opened to discharge the supercritical CO 2 inside the piping of the processing container 31 and the fluid supply line 351, thereby connecting the processing container 31 and the fluid supply line 351. Combine with reduced pressure. In this operation, the supercritical CO 2 remaining in the processing vessel 31 and the fluid supply line 351 changes as “supercritical CO 2 → high pressure CO 2 gas → low pressure CO 2 gas” as the pressure decreases, The oil retention capacity declines.

しかしながら、このとき処理容器31の内部と流体供給ライン351の配管内とを併せて減圧することにより、流体供給ライン351-処理容器31間に大きな圧力差が形成されないようにしながら内部のCOを排出できる。即ち本例の超臨界処理装置3では、流体供給ライン351内のCOが処理容器31内に流れ込んだとき、図19にて説明した従来の超臨界処理装置と比べて急激な減圧を生じない。 However, at this time, the inside of the processing container 31 and the inside of the pipe of the fluid supply line 351 are decompressed together, so that a large pressure difference is not formed between the fluid supply line 351 and the processing container 31, and the internal CO 2 is reduced. Can be discharged. That is, in the supercritical processing apparatus 3 of the present example, when CO 2 in the fluid supply line 351 flows into the processing container 31, a rapid pressure reduction is not generated as compared with the conventional supercritical processing apparatus described in FIG. .

この結果、超臨界COに保持されていた水分や油分が処理容器31でミスト化することを防ぎ、これらの水分や油分を保持した状態のままCOを外部へ排出することができる。なお、超臨界COに保持されていた水分や油分は、排出ライン341の減圧弁342の下流側にてミスト化するが、排出ライン341から排出されたCOを処理容器31へ逆流させなければ、これらのミストは処理容器31内を汚染する汚染源とはならない。 As a result, it is possible to prevent the moisture and oil content held in the supercritical CO 2 from being misted in the processing container 31, and to discharge CO 2 to the outside while maintaining the moisture and oil content. The water and oil that has been held in the supercritical CO 2 is to mist at a location downstream of the pressure reducing valve 342 of the discharge line 341, it is allowed to flow back CO 2 discharged from the discharge line 341 to the processing chamber 31 For example, these mists do not become a contamination source that contaminates the inside of the processing container 31.

このように、COに保持された水分や油分が、処理容器31内にてミスト化しにくい条件下で減圧を行うことにより、処理容器31内に残存し、また容器本体311の内壁面に付着するミストの量を低減し、次に処理するウエハWへのパーティクルの付着を低減できる。
そして、大気圧まで減圧された処理容器31の内部には、パターン内から液体IPAが除去され、乾燥した状態となったウエハWを得ることができる。ここで、容器本体311にテープヒーターなどの加熱部を設け、処理容器31内の温度をIPAの露点よりも高い温度に維持し、COの断熱膨張による温度低下に伴うウエハW表面へのIPAの結露を防止してもよい。
In this way, the water and oil retained in CO 2 remain in the processing container 31 and adhere to the inner wall surface of the container main body 311 by reducing the pressure in the processing container 31 so that it is not easily misted. The amount of mist to be reduced can be reduced, and the adhesion of particles to the wafer W to be processed next can be reduced.
Then, the liquid IPA is removed from the pattern and the wafer W in a dry state can be obtained inside the processing container 31 whose pressure is reduced to atmospheric pressure. Here, the container body 311 is provided with a heating unit such as a tape heater, the temperature in the processing container 31 is maintained at a temperature higher than the dew point of IPA, and the IPA to the surface of the wafer W accompanying a temperature decrease due to adiabatic expansion of CO 2. Condensation may be prevented.

処理容器31内を大気開放して乾燥した状態のウエハWが得られたら、保持板331を移動させて処理容器31からウエハWを搬出し、第2の搬送機構161の搬送アームにウエハWを受け渡す。しかる後、ウエハWは搬出棚43を介して第1の搬送機構121に受け渡され、搬入時とは逆の経路を通ってFOUP100内に格納され、ウエハWに対する一連の動作が完了する。   After the inside of the processing container 31 is opened to the atmosphere and a dried wafer W is obtained, the holding plate 331 is moved to unload the wafer W from the processing container 31, and the wafer W is transferred to the transfer arm of the second transfer mechanism 161. Deliver. Thereafter, the wafer W is transferred to the first transfer mechanism 121 via the carry-out shelf 43 and stored in the FOUP 100 through a path opposite to that at the time of loading, and a series of operations on the wafer W is completed.

本実施の形態に係わる超臨界処理装置3によれば以下の効果がある。超臨界COを用いてウエハWに付着した液体IPAに超臨界COを接触させて、当該液体IPAを除去する処理を終えた後、処理が行われた処理容器31、及びこの処理容器31に超臨界COを供給する流体供給ライン351の減圧を併せて行うので、流体供給ライン351と処理容器31との間に急激な圧力差を発生させずに、処理容器31を介して流体供給ライン351内部の超臨界COを外部へと排出できる。この結果、流体供給ライン351に残存する超臨界COが処理容器31に流れ込む際の圧力低下幅を小さくして、当該超臨界COの密度低下に起因する処理容器31内部の汚染の発生を抑制できる。 The supercritical processing apparatus 3 according to the present embodiment has the following effects. Contacting the supercritical CO 2 in the liquid IPA attached to the wafer W with supercritical CO 2, after finishing the process of removing the liquid IPA, the processing vessel 31 of the processing is performed, and the processing chamber 31 Since the pressure of the fluid supply line 351 for supplying supercritical CO 2 is reduced at the same time, the fluid is supplied via the processing container 31 without causing a sudden pressure difference between the fluid supply line 351 and the processing container 31. Supercritical CO 2 inside the line 351 can be discharged to the outside. As a result, the pressure reduction width when the supercritical CO 2 remaining in the fluid supply line 351 flows into the processing container 31 is reduced, and contamination inside the processing container 31 due to the density reduction of the supercritical CO 2 is generated. Can be suppressed.

このように、処理容器31内で超臨界COや高圧COガスの急激な減圧操作を行わないことにより処理容器31の内部の汚染を防ぐという考え方によれば、流体供給ライン351内の超臨界COの排出ルートは、処理容器31を介して排出ライン341から排出する場合に限定されない。 Thus, according to the idea of preventing contamination inside the processing container 31 by not performing a rapid depressurization operation of supercritical CO 2 or high-pressure CO 2 gas in the processing container 31, the super The discharge route of critical CO 2 is not limited to the case of discharging from the discharge line 341 through the processing container 31.

例えば図11〜図15に示した超臨界処理装置3は、流体供給ライン351から超臨界COを抜き出す専用の分岐ライン361(分岐路)を、当該流体供給ライン351から分岐するように設けた点が図4に示した第1の実施の形態の超臨界処理装置3と異なっている。図11〜図15に示した超臨界処理装置3において、図4に示した超臨界処理装置3と同じ構成要素には、図4に示したものと同じ符号を付してある。また図11〜図15では、圧力計321や圧力コントローラー343の記載は省略してある。 For example, in the supercritical processing apparatus 3 shown in FIGS. 11 to 15, a dedicated branch line 361 (branch path) for extracting supercritical CO 2 from the fluid supply line 351 is provided so as to branch from the fluid supply line 351. This is different from the supercritical processing apparatus 3 of the first embodiment shown in FIG. In the supercritical processing apparatus 3 shown in FIGS. 11 to 15, the same components as those in the supercritical processing apparatus 3 shown in FIG. 4 are denoted by the same reference numerals as those shown in FIG. Moreover, in FIGS. 11-15, description of the pressure gauge 321 and the pressure controller 343 is abbreviate | omitted.

分岐ライン361は、開閉弁352と流量調整弁354とに挟まれた流体供給ライン351の配管から分岐しており、処理容器31や流体供給源37から切り離された流体供給ライン351の配管内に残存している超臨界COを排出することができる。また分岐ライン361には、減圧弁362(第1の開閉弁)が介設されている。 The branch line 361 branches from a pipe of the fluid supply line 351 sandwiched between the on-off valve 352 and the flow rate adjustment valve 354 and is inserted into the pipe of the fluid supply line 351 separated from the processing container 31 and the fluid supply source 37. The remaining supercritical CO 2 can be discharged. The branch line 361 is provided with a pressure reducing valve 362 (first on-off valve).

ウエハWの搬入時において、処理容器31、流体供給ライン351、分岐ライン361は大気開放された後、各弁342、352、354、362を閉じた状態で待機している(図11)。この処理容器31に、IPAが液盛りされた状態のウエハWが搬入されてきたら、流体供給ライン351の開閉弁352を開くと共に、流量調整弁354の開度を調整して予め設定した量の超臨界COを処理容器31内に供給する(図12)。 When the wafer W is carried in, the processing container 31, the fluid supply line 351, and the branch line 361 are opened to the atmosphere, and then waited with the valves 342, 352, 354, and 362 being closed (FIG. 11). When the wafer W filled with IPA is loaded into the processing container 31, the opening / closing valve 352 of the fluid supply line 351 is opened and the opening of the flow rate adjustment valve 354 is adjusted to a preset amount. Supercritical CO 2 is supplied into the processing vessel 31 (FIG. 12).

そして、処理容器31内の圧力が目標圧力を超えたら、図13に示すように減圧弁342の開度を調整して排出ライン341から超臨界COを抜き出しながら、ウエハW表面に付着した液体IPAを超臨界COと置換する点は、図7、図8に示した第1の実施の形態に係わる超臨界処理装置3の動作と同様である。 When the pressure in the processing vessel 31 exceeds the target pressure, the liquid adhering to the surface of the wafer W is adjusted while the supercritical CO 2 is extracted from the discharge line 341 by adjusting the opening of the pressure reducing valve 342 as shown in FIG. The point of replacing IPA with supercritical CO 2 is the same as the operation of the supercritical processing apparatus 3 according to the first embodiment shown in FIGS.

こうしてウエハW表面の液体IPAを除去したら、流体供給ライン351の開閉弁352、流量調整弁354及び排出ライン341の減圧弁342(第2の減圧弁)を閉じて超臨界COの供給、排出を停止する。しかる後、図14に示すように排出ライン341の減圧弁342を開いて処理容器31内の超臨界COを排出し、処理容器31内を大気開放してウエハWを取り出す準備をする。このとき、流体供給ライン351の開閉弁352や分岐ライン361の減圧弁362は「閉」となっているので、流体供給ライン351の配管内には超臨界COが残存している。なお、排出ライン341の減圧弁342を一旦、閉じることなく、流体供給ライン351側の開閉弁352、流量調整弁354のみを閉じて処理容器31の大気開放を行ってもよい。 When the liquid IPA on the surface of the wafer W is removed in this way, the on-off valve 352 of the fluid supply line 351, the flow rate adjustment valve 354, and the pressure reducing valve 342 (second pressure reducing valve) of the discharge line 341 are closed to supply and discharge supercritical CO 2. To stop. Thereafter, as shown in FIG. 14, the pressure reducing valve 342 of the discharge line 341 is opened to discharge the supercritical CO 2 in the processing container 31, and the inside of the processing container 31 is opened to the atmosphere to prepare for taking out the wafer W. At this time, since the on-off valve 352 of the fluid supply line 351 and the pressure reducing valve 362 of the branch line 361 are “closed”, supercritical CO 2 remains in the piping of the fluid supply line 351. Note that the processing vessel 31 may be opened to the atmosphere by closing only the on-off valve 352 and the flow rate adjustment valve 354 on the fluid supply line 351 side without temporarily closing the pressure reducing valve 342 of the discharge line 341.

処理容器31の大気開放の後、またはこの操作と並行して、分岐ライン361の減圧弁362を開き、流体供給ライン351の配管内に残存している超臨界COを外部に向かって排出する(図15)。このとき、分岐ライン361を流れる超臨界COや高圧COガスは、減圧弁362を通過するところで急激に減圧され、原料COに含まれる水分や油分がミスト化する可能性があるが、当該COは処理容器31内を通過しない。このため、流体供給ライン351内の超臨界COを排出する際に発生するミスト等が処理容器31内部に残留したり、処理容器31の壁面に付着したりすることがなく、次回の処理時にウエハWを汚染する原因とならない。 After the processing vessel 31 is opened to the atmosphere or in parallel with this operation, the pressure reducing valve 362 of the branch line 361 is opened, and supercritical CO 2 remaining in the pipe of the fluid supply line 351 is discharged to the outside. (FIG. 15). At this time, the supercritical CO 2 and high-pressure CO 2 gas flowing through the branch line 361 are suddenly depressurized when passing through the pressure reducing valve 362, and the water and oil contained in the raw material CO 2 may be misted. The CO 2 does not pass through the processing container 31. Therefore, mist generated when supercritical CO 2 in the fluid supply line 351 is discharged does not remain inside the processing container 31 or adhere to the wall surface of the processing container 31, and the next processing time. This does not cause contamination of the wafer W.

第2の実施の形態に係わる超臨界処理装置3によれば以下の効果がある。ウエハWに付着した液体IPAに超臨界COを接触させて、当該液体IPAを除去する処理を行った処理容器31から流体を排出して減圧を行う排出ライン341とは別に、前記処理容器31に超臨界COを供給する流体供給ライン351から分岐させた分岐ライン361を設けている。この結果、処理容器31を経由することなく流体供給ライン351内部に残存する超臨界COを排出できるので、当該超臨界COが処理容器に流れ込む際の密度低下に起因する汚染の発生を抑制できる。 The supercritical processing apparatus 3 according to the second embodiment has the following effects. Separately from the discharge line 341 that discharges the fluid from the processing container 31 that has been subjected to the process of removing the liquid IPA by bringing supercritical CO 2 into contact with the liquid IPA that has adhered to the wafer W, the processing container 31. A branch line 361 branched from a fluid supply line 351 for supplying supercritical CO 2 is provided. As a result, the supercritical CO 2 remaining in the fluid supply line 351 can be discharged without going through the processing container 31, thereby suppressing the occurrence of contamination due to the density reduction when the supercritical CO 2 flows into the processing container. it can.

ここで上述の各実施の形態では、図8、図13に示すように、流体供給ライン351から超臨界COを連続供給しながら、排出ライン341より処理容器31内の超臨界COを抜き出して、ウエハW表面のIPAと置換する場合について説明したが、IPAの置換法は本法に限定されない。例えば、排出ライン341、流体供給ライン351の各弁342、352を閉じてバッチ状態とした処理容器31内で超臨界流体に乾燥防止用の液体を抽出し、当該液体の置換、除去を行ってもよい。 Here, in the above-described embodiments, as shown in FIG. 8, FIG. 13, while continuously supplying supercritical CO 2 from the fluid supply line 351, withdrawn supercritical CO 2 in the processing chamber 31 from the discharge line 341 Although the case where the IPA on the surface of the wafer W is replaced has been described, the IPA replacement method is not limited to this method. For example, the valves 342 and 352 of the discharge line 341 and the fluid supply line 351 are closed to extract a liquid for preventing drying as a supercritical fluid in the processing container 31 in a batch state, and the liquid is replaced and removed. Also good.

この他、流体供給源37に設けられる供給遮断部の構成は、図4や図11に示した流量調整弁354を用いる場合に限定されない。例えば流量調整弁354に替えて開閉弁を設けてもよいし、COボンベから供給された液体COを超臨界状態にするための昇圧ポンプを供給遮断部としてもよい。後者の場合には、シリンジポンプなどの昇圧ポンプの稼働、停止により高圧流体の供給、遮断が切り替えられることになる。 In addition, the configuration of the supply blocking unit provided in the fluid supply source 37 is not limited to the case where the flow rate adjustment valve 354 shown in FIGS. 4 and 11 is used. For example, an on-off valve may be provided in place of the flow rate adjustment valve 354, or a booster pump for bringing the liquid CO 2 supplied from the CO 2 cylinder into a supercritical state may be used as the supply cutoff unit. In the latter case, supply and shutoff of high-pressure fluid are switched by operating and stopping a booster pump such as a syringe pump.

また、既述の各実施の形態では、超臨界COを高圧流体として供給し、ウエハW表面の液体を除去する場合について説明したが、流体供給ライン351から供給する高圧流体の状態はこれに限られるものではない。例えば、亜臨界状態のCOを供給してウエハW表面の液体と置換してもよい。 In each of the above-described embodiments, the case where supercritical CO 2 is supplied as a high-pressure fluid and the liquid on the surface of the wafer W is removed has been described, but the state of the high-pressure fluid supplied from the fluid supply line 351 is the same. It is not limited. For example, CO 2 in a subcritical state may be supplied to replace the liquid on the surface of the wafer W.

また、液体COや高圧COガスを原料流体として処理容器31に供給し、当該COを処理容器31内で加熱して超臨界状態や亜臨界状態にして液体との置換を行ってもよい。大気開放に伴って密度が低下することにより、原料に含まれているパーティクルの原因物質の保持可能量が低下する性質を持つ流体であれば、超臨界状態、亜臨界状態、液体、高圧ガスのいずれの状態で供給された流体に対しても本発明の効果を得ることができる。 Alternatively, liquid CO 2 or high-pressure CO 2 gas may be supplied to the processing vessel 31 as a raw material fluid, and the CO 2 may be heated in the processing vessel 31 to be replaced with a liquid in a supercritical state or a subcritical state. Good. If the fluid has the property that the retention of the causative substance of the particles contained in the raw material decreases due to the decrease in density as the atmosphere is released to the atmosphere, supercritical state, subcritical state, liquid, high-pressure gas The effect of the present invention can be obtained for the fluid supplied in any state.

そして、高圧流体の種類もCOに限られず、IPAやメタノールやエタノールなどの各種アルコール、各種のHFE(Hydro Fluoro Ether)やアセトンなどの超臨界流体、亜臨界流体、高圧ガスを用いてウエハW上の乾燥防止用の液体と置換してもよい。また、乾燥防止用の液体の種類についてもIPAに限られるものではなく、メタノールやエタノールなどの各種アルコール、各種のHFE(Hydro Fluoro Ether)やアセトン、純水などを用いてもよい。 The type of high-pressure fluid is not limited to CO 2 , and wafers using various alcohols such as IPA, methanol and ethanol, various supercritical fluids such as HFE (Hydro Fluoro Ether) and acetone, subcritical fluids, and high-pressure gas are used. It may be replaced with the above anti-drying liquid. Also, the type of liquid for preventing drying is not limited to IPA, and various alcohols such as methanol and ethanol, various HFE (Hydro Fluoro Ether), acetone, pure water, and the like may be used.

さらに本発明を適用可能なウエハ処理は、流体供給源37から高圧流体を超臨界状態や亜臨界状態(これらをまとめて高圧状態という)で供給したり、また高圧流体を処理容器31内で高圧状態としたりすることにより、ウエハW表面の液体を高圧流体に抽出して当該液体を除去する処理に限定されない。例えば、処理容器31にウエハW表面の乾燥防止用の液体を加熱する加熱部を設け、前記液体を高圧状態(超臨界状態または亜臨界状態)に変化させることによりウエハWの表面から除去するウエハ処理装置に対しても本発明は適用することができる。   Further, in wafer processing to which the present invention can be applied, a high-pressure fluid is supplied from a fluid supply source 37 in a supercritical state or a subcritical state (collectively referred to as a high-pressure state), or a high-pressure fluid is high-pressure in a processing vessel 31. It is not limited to the process of extracting the liquid on the surface of the wafer W into a high-pressure fluid and removing the liquid by setting the state. For example, a wafer to be removed from the surface of the wafer W by providing a heating unit for heating the liquid for preventing drying of the surface of the wafer W in the processing container 31 and changing the liquid to a high pressure state (supercritical state or subcritical state). The present invention can also be applied to a processing apparatus.

但し、この場合にはウエハW表面の液体が気体の状態を経由して高圧状態に変化するとパターン倒れが発生してしまう。そこで、処理容器31内を加圧するための加圧用の高圧流体を流体供給源37から供給し、処理容器31内の圧力がウエハW表面の液体の蒸気圧よりも高くなるようにしてから加熱を行い、前記液体を直接高圧状態に変化させてウエハWから除去するとよい。ウエハW表面の液体が高圧状態となったら、処理容器31の温度を前記液体の露点以上に維持しながら処理容器31を大気開放することにより、乾燥したウエハWを得ることができる。   However, in this case, the pattern collapse occurs when the liquid on the surface of the wafer W changes to a high pressure state via a gas state. Therefore, a pressurizing high-pressure fluid for pressurizing the inside of the processing container 31 is supplied from the fluid supply source 37 so that the pressure in the processing container 31 becomes higher than the vapor pressure of the liquid on the surface of the wafer W before heating. The liquid may be removed from the wafer W by directly changing the liquid to a high pressure state. When the liquid on the surface of the wafer W is in a high pressure state, the dried wafer W can be obtained by opening the processing container 31 to the atmosphere while maintaining the temperature of the processing container 31 at or above the dew point of the liquid.

ウエハW表面の乾燥防止用の液体を高圧状態に直接変化させる手法の具体例を挙げておくと、乾燥防止用の液体としてIPA(臨界温度235℃、臨界圧力4.8MPa(絶対圧))、加圧流体(高圧流体)として超臨界CO(臨界温度31℃、臨界圧力7.4MPa(絶対圧))を用いる場合がある。超臨界COを供給した処理容器31内で液体IPAを加熱すると、IPAの臨界圧力よりも高圧の雰囲気下で加熱が行われるため、気体の状態を経由することなく液体IPAを超臨界IPAに直接変化させることができる。また、IPAの気化を防ぐという観点からすると、加圧流体は超臨界COであることは必要でなく、IPAの臨界圧力よりも高圧のガスCOや亜臨界COを供給してもよいことは勿論である。 Specific examples of a method for directly changing the liquid for preventing drying on the surface of the wafer W to a high pressure state include IPA (critical temperature: 235 ° C., critical pressure: 4.8 MPa (absolute pressure)), Supercritical CO 2 (critical temperature 31 ° C., critical pressure 7.4 MPa (absolute pressure)) may be used as the pressurized fluid (high pressure fluid). When the liquid IPA is heated in the processing vessel 31 supplied with supercritical CO 2 , the liquid IPA is heated to an atmosphere higher than the critical pressure of the IPA, so that the liquid IPA is converted into the supercritical IPA without passing through the gas state. Can be changed directly. Further, from the viewpoint of preventing vaporization of IPA, the pressurized fluid does not need to be supercritical CO 2 , and gas CO 2 or subcritical CO 2 having a pressure higher than the critical pressure of IPA may be supplied. Of course.

このような手法によりウエハW表面の液体を除去する場合には、前記乾燥防止用の液体が高圧状態となる温度、圧力条件下で液体とならない物質であれば、流体供給源37から供給される加圧用の高圧流体は、高圧状態で供給してもよいし、大気圧よりも高圧のガス状態で供給してもよい。このような加圧用の高圧流体を流体供給源37から供給した後においても、図10に示すように処理容器31と流体供給ライン351とを併せて減圧したり、また、図14、図15に示すように処理容器31と流体供給ライン351とを別々のライン341、361を使って減圧したりすることにより、処理容器31内におけるウエハWへのパーティクルの付着を防止できる。   When the liquid on the surface of the wafer W is removed by such a method, the liquid for preventing drying is supplied from the fluid supply source 37 as long as it is a substance that does not become a liquid under the temperature and pressure conditions at which the drying prevention liquid enters a high pressure state. The high-pressure fluid for pressurization may be supplied in a high-pressure state or may be supplied in a gas state having a pressure higher than atmospheric pressure. Even after the high-pressure fluid for pressurization is supplied from the fluid supply source 37, the processing vessel 31 and the fluid supply line 351 are decompressed together as shown in FIG. As shown in the drawing, by reducing the pressure of the processing container 31 and the fluid supply line 351 using separate lines 341 and 361, adhesion of particles to the wafer W in the processing container 31 can be prevented.

(実験1)
図4に示した超臨界処理装置3にて、超臨界COを用いてウエハWの表面のIPAを除去する処理を行った後、処理容器31を大気解放し、処理容器31を介して流体供給ライン351の大気開放を行った場合と、大気開放を行わなかった場合とで、処理容器31に搬入されたウエハWへのパーティクルの付着状況を比較した。
(Experiment 1)
In the supercritical processing apparatus 3 shown in FIG. 4, after processing for removing IPA on the surface of the wafer W using supercritical CO 2 , the processing container 31 is released to the atmosphere, and the fluid is passed through the processing container 31. The state of adhesion of particles to the wafer W carried into the processing container 31 was compared between when the supply line 351 was opened to the atmosphere and when the supply line 351 was not opened to the atmosphere.

A.実験条件
(参考例1)
クリーニングされた処理容器31に、洗浄処理後、IPAが液盛りされたウエハWを搬入し、図8に示すように超臨界COを60分間供給してIPAと置換する処理を行った。この処理の期間中における処理容器31内の温度は40℃、圧力は10MPa(絶対圧)とした。処理後、処理容器31を大気開放して、ウエハWを取り出した。次に、図19に示すように流体供給ライン351の配管内に残存している超臨界COを、処理容器31を介して排出し、大気開放を行った。しかる後、液体の付着していない2枚目のウエハWを処理容器31内に搬入し、600秒間放置後、当該ウエハWを取り出し、当該ウエハWの表面に付着している直径40nm以上の大きさのパーティクル数をカウントした。パーティクルのカウントは、KLAテンコール社製のパーティクル検査装置により行った。
(参考例2)
1枚目のウエハWを取り出した後、流体供給ライン351の大気開放を行わなかった点以外は(参考例1)と同様の条件で処理容器31に2枚目のウエハWを搬入し、取り出したウエハW表面に付着している直径40nm以上の大きさのパーティクル数をカウントした。
A. Experimental conditions
(Reference Example 1)
After the cleaning process, the wafer W filled with IPA was loaded into the cleaned processing container 31, and supercritical CO 2 was supplied for 60 minutes to replace the IPA as shown in FIG. During this treatment, the temperature inside the treatment container 31 was 40 ° C., and the pressure was 10 MPa (absolute pressure). After the processing, the processing container 31 was opened to the atmosphere, and the wafer W was taken out. Next, as shown in FIG. 19, the supercritical CO 2 remaining in the pipe of the fluid supply line 351 was discharged through the processing vessel 31 and released into the atmosphere. Thereafter, the second wafer W, to which no liquid is attached, is carried into the processing container 31 and left for 600 seconds. Then, the wafer W is taken out and has a diameter of 40 nm or more attached to the surface of the wafer W. I counted the number of particles. The particle count was performed by a particle inspection apparatus manufactured by KLA Tencor.
(Reference Example 2)
After the first wafer W is taken out, the second wafer W is loaded into the processing container 31 and taken out under the same conditions as in (Reference Example 1) except that the fluid supply line 351 is not opened to the atmosphere. The number of particles having a diameter of 40 nm or more adhering to the surface of the wafer W was counted.

B.実験結果
(参考例1)の実験において、ウエハW表面に付着したパーティクル数は2712個、(参考例2)の実験においては627個であった。これらの実験の結果から、処理容器31と流体供給ライン351との大気開放を別々に行い、処理容器31を介して、流体供給ライン351の配管内に残存している超臨界COを外部へ排出すると、処理容器31内に存在するパーティクル数が多くなって、2枚目以降に搬入されたウエハWの汚染原因となることが確認できる。
B. Experimental Results In the experiment of (Reference Example 1), the number of particles adhering to the surface of the wafer W was 2712, and in the experiment of (Reference Example 2), 627. From the results of these experiments, the atmosphere of the processing container 31 and the fluid supply line 351 is separately released, and the supercritical CO 2 remaining in the pipe of the fluid supply line 351 is released to the outside through the processing container 31. When discharged, it can be confirmed that the number of particles present in the processing container 31 increases and causes contamination of the wafers W carried in the second and subsequent wafers.

(実験2)
本発明に係わる手法と、従来法とで3枚のウエハWを連続処理し、処理後のウエハWに付着しているパーティクル数を比較した。
(Experiment 2)
Three wafers W were continuously processed by the method according to the present invention and the conventional method, and the number of particles adhering to the processed wafer W was compared.

A.実験条件
(実施例1)
クリーニングされた処理容器31を用い、液体IPAが液盛りされたウエハWから当該IPAを除去する処理を行った後、処理容器31と流体供給ライン351とを併せて減圧し、大気開放を行う処理(図6〜図10)を3枚のウエハWに対して連続して行った。処理容器31内の温度、圧力等、ウエハWの処理条件は(参考例1)と同様である。処理後の各ウエハWの表面に付着している直径40nm以上の大きさのパーティクル数をカウントした。
(比較例1)
超臨界COを用いてウエハW表面の液体IPAを除去する処理(図6〜図8)を行った後、図18、図19に示すように、処理容器31及び流体供給ライン351の大気開放を別々に行った点以外は、(実施例1)と同様の条件で3枚のウエハWを連続して処理した。処理後、各ウエハWに付着している直径40nm以上の大きさのパーティクル数をカウントした。
A. Experimental conditions
Example 1
Processing that removes the IPA from the wafer W on which the liquid IPA is accumulated using the cleaned processing container 31, and then decompresses the processing container 31 and the fluid supply line 351 together to release the atmosphere. (FIGS. 6 to 10) were continuously performed on the three wafers W. The processing conditions of the wafer W such as the temperature and pressure in the processing container 31 are the same as in (Reference Example 1). The number of particles having a diameter of 40 nm or more adhering to the surface of each wafer W after processing was counted.
(Comparative Example 1)
After performing the process of removing the liquid IPA on the surface of the wafer W using supercritical CO 2 (FIGS. 6 to 8), the processing container 31 and the fluid supply line 351 are opened to the atmosphere as shown in FIGS. The three wafers W were successively processed under the same conditions as in Example 1 except that the processes were performed separately. After the treatment, the number of particles having a diameter of 40 nm or more attached to each wafer W was counted.

B.実験結果
(実施例1)の結果を図16に示し、(比較例1)の結果を図17に示す。図16に示した(実施例1)の結果によれば、ウエハWに付着している直径40nm以上のパーティクルの数は600〜700個程度であり、ウエハWの処理順に係わらず、パーティクルの付着数の大きな変動はなかった。
B. Experimental result
The result of (Example 1) is shown in FIG. 16, and the result of (Comparative Example 1) is shown in FIG. According to the result of (Example 1) shown in FIG. 16, the number of particles having a diameter of 40 nm or more adhering to the wafer W is about 600 to 700, and the adhering of particles irrespective of the processing order of the wafer W. There were no major fluctuations in numbers.

これに対して、処理容器31と流体供給ライン351とを別々に大気開放した(比較例1)の実験結果では、処理の順番が2、3枚目のウエハWにおいて、1枚目のウエハWの4倍以上のパーティクルが付着し、パーティクル汚染が大幅に増大している。これは(参考例1)で確認したように、処理容器31と流体供給ライン351とを別々に大気開放すると共に、流体供給ライン351の大気開放を処理容器31に向けて行うことにより、処理容器31内にパーティクルが発生し、このパーティクルが原因となって2枚目以降のウエハWの汚染が引き起こされた結果であると考えられる。   On the other hand, in the experimental result in which the processing container 31 and the fluid supply line 351 are separately opened to the atmosphere (Comparative Example 1), the first wafer W is the second wafer W in the processing order. More than four times as many particles are attached, and the particle contamination is greatly increased. As confirmed in (Reference Example 1), the processing container 31 and the fluid supply line 351 are separately opened to the atmosphere, and the atmosphere of the fluid supply line 351 is opened toward the processing container 31, thereby processing containers. It is considered that this is a result of the generation of particles in 31 and the contamination of the second and subsequent wafers W caused by the particles.

(実施例1)、(比較例1)の実験結果を比較すると、図10に示すように処理容器31と流体供給ライン351とを併せて減圧し、大気開放を行うことにより、処理容器31内におけるパーティクルの発生を抑え、後続する処理におけるウエハWのパーティクル汚染を抑制できることが確認できた。   When the experimental results of (Example 1) and (Comparative Example 1) are compared, the processing container 31 and the fluid supply line 351 are decompressed together and opened to the atmosphere as shown in FIG. It was confirmed that the generation of particles in the wafer can be suppressed and particle contamination of the wafer W in the subsequent processing can be suppressed.

また先に検討したように、(参考例1)と(参考例2)とを比較したとき、処理容器31へ向けて流体供給ライン351の大気開放を行わない(参考例2)の場合の方が、次に処理容器31に搬入されたウエハWへ付着するパーティクルの数が少なかった。この事実から、図11〜図15に示すように、流体供給ライン351に分岐ライン361を設け、処理容器31を通らないように流体供給ライン351の減圧、大気開放を行う手法についても、ウエハWへのパーティクルの付着を抑制するうえで有効な手法であることが分かる。   Further, as discussed above, when (Reference Example 1) and (Reference Example 2) are compared, the fluid supply line 351 is not opened to the atmosphere toward the processing container 31 (Reference Example 2). However, the number of particles adhering to the wafer W loaded next into the processing container 31 was small. From this fact, as shown in FIGS. 11 to 15, the wafer W is also applied to a method in which a branch line 361 is provided in the fluid supply line 351 and the fluid supply line 351 is decompressed and released to the atmosphere so as not to pass through the processing container 31. It can be seen that this is an effective technique for suppressing the adhesion of particles to the surface.

W ウエハ
1 洗浄システム
2 洗浄装置
3 超臨界処理装置
31 処理容器
341 排出ライン
342 減圧弁
351 流体供給ライン
352 開閉弁
354 流量調整弁
361 分岐ライン
362 減圧弁
37 流体供給源
4 制御部
W Wafer 1 Cleaning system 2 Cleaning device 3 Supercritical processing device 31 Processing vessel 341 Discharge line 342 Pressure reducing valve 351 Fluid supply line 352 On-off valve 354 Flow rate adjusting valve 361 Branching line 362 Pressure reducing valve 37 Fluid supply source 4 Control unit

Claims (11)

基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理が行われる処理容器と、
前記高圧流体またはこの高圧流体の原料流体を、大気圧よりも高圧の状態で供給するための流体供給源と、
この流体供給源と処理容器とを接続する流体供給路と、
この流体供給路に上流側からこの順に設けられた流量調整部及び開閉弁と、
前記流体供給路における流量調整部の上流側に設けられ、または流量調整部を兼用する遮断部と、
前記処理容器内の圧力を減圧するための減圧弁が設けられ、当該処理容器内の流体の排出が行われる排出路と、
前記遮断部を開き、流量調整部により流量を調整した状態で前記開閉弁を開いて処理容器に高圧流体を導入し、または前記原料流体を導入して高圧流体に変化させ、基板の表面から乾燥防止用の液体を除去するステップと、次いで、前記遮断部を遮断状態とする一方、前記開閉弁と減圧弁とを開いた状態とすることにより、前記流体供給路と処理容器との内部を減圧するステップと、その後、前記基板を当該処理容器から搬出し、前記開閉弁を閉じるステップと、を実行するように制御信号を出力する制御部と、を備えたことを特徴とする基板処理装置。
A processing container in which a high-pressure fluid is brought into contact with the liquid for preventing drying on the surface of the substrate to remove the liquid for preventing drying;
A fluid supply source for supplying the high-pressure fluid or a raw material fluid of the high-pressure fluid at a pressure higher than atmospheric pressure;
A fluid supply path connecting the fluid supply source and the processing container;
A flow rate adjusting unit and an on-off valve provided in this order from the upstream side in the fluid supply path;
A shut-off unit provided on the upstream side of the flow rate adjustment unit in the fluid supply path, or also serving as a flow rate adjustment unit;
A pressure reducing valve for reducing the pressure in the processing container, and a discharge path for discharging the fluid in the processing container;
Open the shut-off unit and open the on-off valve with the flow rate adjusted by the flow rate adjustment unit to introduce a high-pressure fluid into the processing vessel, or introduce the raw material fluid to change into a high-pressure fluid, and dry from the surface of the substrate. Removing the liquid for prevention, and then reducing the pressure inside the fluid supply path and the processing container by bringing the shut-off portion into a shut-off state and opening the on-off valve and the pressure reducing valve. And a controller that outputs a control signal so as to execute the step of unloading the substrate from the processing container and then closing the on-off valve .
基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理が行われる処理容器と、
前記高圧流体またはこの高圧流体の原料流体を、大気圧よりも高圧の状態で供給するための流体供給源と、
この流体供給源と処理容器とを接続する流体供給路と、
この流体供給路に上流側からこの順に設けられた流量調整部及び開閉弁と、
前記流体供給路における流調調整部の上流側に設けられ、または流量調整部を兼用する遮断部と、
前記遮断部と開閉弁との間の流体供給路から分岐し、当該流体供給路内の流体を排出して減圧するための第1の減圧弁が設けられた分岐路と、
前記処理容器内の圧力を減圧するための第2の減圧弁が設けられ、当該処理容器内の流体の排出が行われる排出路と、
前記第1の減圧弁を閉じる一方、前記遮断部を開き、流量調整部により流量を調整した状態で前記開閉弁を開いて処理容器に高圧流体を導入し、または前記原料流体を導入して高圧流体に変化させ、基板の表面から乾燥防止用の液体を除去するステップと、次いで、前記遮断部を遮断状態とすると共に開閉弁を閉じる一方、第2の減圧弁を開いた状態とすることにより、前記処理容器の内部を減圧するステップと、前記遮断部が遮断状態となり、開閉弁が閉じられた後、前記第1の減圧弁を開いて、前記流体供給路に残存する流体を分岐路から排出するステップと、を実行するように制御信号を出力する制御部と、を備えたことを特徴とする基板処理装置。
A processing container in which a high-pressure fluid is brought into contact with the liquid for preventing drying on the surface of the substrate to remove the liquid for preventing drying;
A fluid supply source for supplying the high-pressure fluid or a raw material fluid of the high-pressure fluid at a pressure higher than atmospheric pressure;
A fluid supply path connecting the fluid supply source and the processing container;
A flow rate adjusting unit and an on-off valve provided in this order from the upstream side in the fluid supply path;
A shut-off unit provided on the upstream side of the flow adjustment unit in the fluid supply path, or also serving as a flow rate adjustment unit;
A branch path provided with a first pressure reducing valve for branching from the fluid supply path between the shut-off portion and the on-off valve and discharging and depressurizing the fluid in the fluid supply path;
A second pressure reducing valve for reducing the pressure in the processing container, and a discharge path for discharging the fluid in the processing container;
While closing the first pressure reducing valve, the shut-off unit is opened, the flow rate is adjusted by the flow rate adjusting unit, the open / close valve is opened to introduce a high-pressure fluid into the processing vessel, or the raw material fluid is introduced to increase the pressure A step of removing the liquid for preventing drying from the surface of the substrate by changing to a fluid; and then, the shut-off portion is shut off and the on-off valve is closed, while the second pressure reducing valve is opened. Reducing the pressure inside the processing container; and after the shut-off section is shut off and the on-off valve is closed, the first pressure reducing valve is opened to allow the fluid remaining in the fluid supply path to flow from the branch path. A substrate processing apparatus comprising: a control unit that outputs a control signal so as to execute the discharging step.
前記高圧流体は、超臨界状態または亜臨界状態の流体であり、前記処理容器には、前記流体供給源から高圧流体が供給されるか、または当該処理容器内で前記原料流体が加熱されて高圧流体となることにより、前記乾燥防止用の液体が当該高圧流体に抽出されて基板の表面から除去されることを特徴とする請求項1または2に記載の基板処理装置。   The high-pressure fluid is a fluid in a supercritical state or a subcritical state, and the processing vessel is supplied with a high-pressure fluid from the fluid supply source, or the raw material fluid is heated in the processing vessel to increase the pressure. 3. The substrate processing apparatus according to claim 1, wherein the liquid for preventing drying is extracted into the high-pressure fluid and removed from the surface of the substrate by becoming a fluid. 前記処理容器は、基板の表面の乾燥防止用の液体を加熱するための加熱部を備え、
前記高圧流体は、前記乾燥防止用の液体を加熱して超臨界状態または亜臨界状態にしたときに液体にならず、当該乾燥防止用の液体の気化を防止するための加圧用の流体であり、
前記乾燥防止用の液体は、前記高圧流体と接触して加圧された雰囲気下で前記加熱部により加熱され、液体から超臨界状態また亜臨界状態に直接変化することにより基板の表面から除去されることを特徴とする請求項1または2に記載の基板処理装置。
The processing container includes a heating unit for heating the liquid for preventing drying of the surface of the substrate,
The high-pressure fluid is a fluid for pressurization for preventing vaporization of the liquid for preventing drying, which does not become liquid when the liquid for preventing drying is heated to a supercritical state or a subcritical state. ,
The drying-preventing liquid is heated by the heating unit in a pressurized atmosphere in contact with the high-pressure fluid, and is removed from the surface of the substrate by directly changing from the liquid to a supercritical state or a subcritical state. The substrate processing apparatus according to claim 1, wherein the apparatus is a substrate processing apparatus.
線幅が20nm以下のパターンが形成された基板から乾燥防止用の液体を除去する処理が行われることを特徴とする請求項1ないし4のいずれか一つに記載された基板処理装置。   5. The substrate processing apparatus according to claim 1, wherein a process for removing a liquid for preventing drying is performed from a substrate on which a pattern having a line width of 20 nm or less is formed. 基板から乾燥防止用の液体を除去する処理を行う際の前記処理容器内の圧力が5MPa以上であり、当該処理容器内の圧力が大気圧まで減圧されることを特徴とする請求項1ないし5のいずれか一つに記載の基板処理装置。   6. The pressure in the processing container at the time of performing the process of removing the drying preventing liquid from the substrate is 5 MPa or more, and the pressure in the processing container is reduced to atmospheric pressure. The substrate processing apparatus according to any one of the above. 基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理が行われる処理容器と、前記高圧流体またはこの高圧流体の原料流体を、大気圧よりも高圧の状態で供給するための流体供給源と、この流体供給源と処理容器とを接続する流体供給路と、この流体供給路に上流側からこの順に設けられた流量調整部及び開閉弁と、前記流体供給路における当該流量調整部の上流側に設けられ、または流量調整部を兼用する遮断部と、前記処理容器内の圧力を減圧するための減圧弁が設けられ、当該処理容器内の流体の排出が行われる排出路と、を用いた基板処理方法であって、
前記遮断部を開き、流量調整部により流量を調整した状態で前記開閉弁を開いて処理容器に高圧流体を導入し、または前記原料流体を導入して高圧流体に変化させ、基板の表面から乾燥防止用の液体を除去する工程と、
次いで、前記遮断部を遮断状態とする一方、前記開閉弁と減圧弁とを開いた状態とすることにより、前記流体供給路と処理容器との内部を減圧する工程と、
その後、前記基板を前記処理容器から搬出し、前記開閉弁を閉じる工程と、を含むことを特徴とする基板処理方法。
A processing vessel in which a high-pressure fluid is brought into contact with the drying-preventing liquid on the surface of the substrate to remove the drying-preventing liquid, and the high-pressure fluid or a raw material fluid of the high-pressure fluid A fluid supply source for supplying in a high pressure state, a fluid supply path connecting the fluid supply source and the processing container, a flow rate adjusting unit and an on-off valve provided in this order from the upstream side to the fluid supply path, Provided upstream of the flow rate adjusting unit in the fluid supply path, or a shut-off unit that also serves as the flow rate adjusting unit, and a pressure reducing valve for reducing the pressure in the processing vessel are provided, and the fluid in the processing vessel A substrate processing method using a discharge path for discharging
Open the shut-off unit and open the on-off valve with the flow rate adjusted by the flow rate adjustment unit to introduce a high-pressure fluid into the processing vessel, or introduce the raw material fluid to change into a high-pressure fluid, and dry from the surface of the substrate. Removing the prevention liquid;
Next, the process of depressurizing the inside of the fluid supply path and the processing container by setting the shut-off part in a shut-off state while opening the on-off valve and the pressure reducing valve,
And then unloading the substrate from the processing container and closing the on-off valve .
基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理が行われる処理容器と、前記高圧流体またはこの高圧流体の原料流体を、大気圧よりも高圧の状態で供給するための流体供給源と、この流体供給源と処理容器とを接続する流体供給路と、この流体供給路に上流側からこの順に設けられた流量調整部及び開閉弁と、前記流体供給路における流量調整部の上流側に設けられ、または流量調整部を兼用する遮断部と、前記遮断部と開閉弁との間の流体供給路から分岐し、当該流体供給路内の流体を排出して減圧するための第1の減圧弁が設けられた分岐路と、前記処理容器内の圧力を減圧するための第2の減圧弁が設けられ、当該処理容器内の流体の排出が行われる排出路と、を用いた基板処理方法であって、
前記第1の減圧弁を閉じる一方、前記遮断部を開き、流量調整部により流量を調整した状態で前記開閉弁を開いて処理容器に高圧流体を導入し、または前記原料流体を導入して高圧流体に変化させ、基板の表面から乾燥防止用の液体を除去する工程と、
次いで、前記遮断部を遮断状態とすると共に開閉弁を閉じる一方、第2の減圧弁を開いた状態とすることにより、前記処理容器の内部を減圧する工程と、
遮断部が遮断状態となり、開閉弁が閉じられた後、前記第1の減圧弁を開いて、前記流体供給路に残存する流体を分岐路から排出する工程と、を含むことを特徴とする基板処理方法。
A processing vessel in which a high-pressure fluid is brought into contact with the drying-preventing liquid on the surface of the substrate to remove the drying-preventing liquid, and the high-pressure fluid or a raw material fluid of the high-pressure fluid A fluid supply source for supplying in a high pressure state, a fluid supply path connecting the fluid supply source and the processing container, a flow rate adjusting unit and an on-off valve provided in this order from the upstream side to the fluid supply path, A fluid that is provided upstream of the flow rate adjusting unit in the fluid supply path, or is branched from a fluid supply path between the shut-off unit and the on-off valve, and a fluid in the fluid supply path. And a branch passage provided with a first pressure reducing valve for reducing pressure and a second pressure reducing valve for reducing the pressure in the processing container are provided to discharge the fluid in the processing container. And a substrate processing method using I,
While closing the first pressure reducing valve, the shut-off unit is opened, the flow rate is adjusted by the flow rate adjusting unit, the open / close valve is opened to introduce a high-pressure fluid into the processing vessel, or the raw material fluid is introduced to increase the pressure Changing to a fluid and removing the anti-drying liquid from the surface of the substrate;
Next, the process of depressurizing the inside of the processing vessel by setting the shut-off portion in a shut-off state and closing the on-off valve while opening the second pressure reducing valve,
And a step of opening the first pressure reducing valve and discharging the fluid remaining in the fluid supply passage from the branch passage after the shut-off portion is in a shut-off state and the on-off valve is closed. Processing method.
線幅が20nm以下のパターンが形成された基板から乾燥防止用の液体を除去する処理が行われることを特徴とする請求項7または8に記載された基板処理方法。   9. The substrate processing method according to claim 7, wherein a process for removing a liquid for preventing drying is performed from a substrate on which a pattern having a line width of 20 nm or less is formed. 基板から乾燥防止用の液体を除去する処理を行う際の前記処理容器内の圧力が5MPa以上であり、当該処理容器内の圧力が大気圧まで減圧されることを特徴とする請求項7ないし9のいずれか一つに記載の基板処理方法。   10. The pressure in the processing container when performing the process of removing the liquid for preventing drying from the substrate is 5 MPa or more, and the pressure in the processing container is reduced to atmospheric pressure. The substrate processing method as described in any one of these. 基板の表面の乾燥防止用の液体に高圧流体を接触させて、前記乾燥防止用の液体を除去する処理を行う基板処理装置に用いられるコンピュータプログラムを格納した記憶媒体であって、
前記プログラムは請求項7ないし10のいずれか一つに記載された基板処理方法を実行するためにステップが組まれていることを特徴とする記憶媒体。
A storage medium storing a computer program used in a substrate processing apparatus for performing a process of removing a liquid for preventing drying by bringing a high-pressure fluid into contact with the liquid for preventing drying on the surface of the substrate,
A storage medium characterized in that the program includes steps for executing the substrate processing method according to any one of claims 7 to 10.
JP2011143336A 2011-06-28 2011-06-28 Substrate processing apparatus, substrate processing method, and storage medium Active JP5522124B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011143336A JP5522124B2 (en) 2011-06-28 2011-06-28 Substrate processing apparatus, substrate processing method, and storage medium
KR1020120056619A KR20130007418A (en) 2011-06-28 2012-05-29 Substrate processing apparatus, substrate processing method and storage medium
KR1020160098118A KR101824809B1 (en) 2011-06-28 2016-08-01 Substrate processing apparatus, substrate processing method and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143336A JP5522124B2 (en) 2011-06-28 2011-06-28 Substrate processing apparatus, substrate processing method, and storage medium

Publications (2)

Publication Number Publication Date
JP2013012538A JP2013012538A (en) 2013-01-17
JP5522124B2 true JP5522124B2 (en) 2014-06-18

Family

ID=47686201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143336A Active JP5522124B2 (en) 2011-06-28 2011-06-28 Substrate processing apparatus, substrate processing method, and storage medium

Country Status (2)

Country Link
JP (1) JP5522124B2 (en)
KR (2) KR20130007418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515178B2 (en) 2020-03-16 2022-11-29 Tokyo Electron Limited System and methods for wafer drying

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835195B2 (en) * 2012-11-29 2015-12-24 東京エレクトロン株式会社 Method for manufacturing high-pressure vessel for drying process and method for manufacturing substrate processing apparatus
JP6556074B2 (en) 2016-03-02 2019-08-07 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
WO2017150038A1 (en) * 2016-03-03 2017-09-08 東京エレクトロン株式会社 Substrate treatment device, substrate treatment method, and storage medium
JP6563351B2 (en) 2016-03-03 2019-08-21 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP2017157746A (en) 2016-03-03 2017-09-07 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium
JP6670674B2 (en) * 2016-05-18 2020-03-25 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6759042B2 (en) 2016-10-04 2020-09-23 東京エレクトロン株式会社 Substrate processing method, substrate processing equipment and recording medium
JP6755776B2 (en) 2016-11-04 2020-09-16 東京エレクトロン株式会社 Substrate processing equipment, substrate processing method and recording medium
JP2018081966A (en) 2016-11-14 2018-05-24 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method and storage medium
JP2018082043A (en) 2016-11-16 2018-05-24 東京エレクトロン株式会社 Substrate processing device
JP6740098B2 (en) 2016-11-17 2020-08-12 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method and storage medium
JP6876417B2 (en) 2016-12-02 2021-05-26 東京エレクトロン株式会社 Substrate processing equipment cleaning method and substrate processing equipment cleaning system
JP6804278B2 (en) 2016-12-06 2020-12-23 東京エレクトロン株式会社 Supercritical fluid manufacturing equipment and substrate processing equipment
JP6824069B2 (en) * 2017-03-02 2021-02-03 東京エレクトロン株式会社 Substrate processing equipment
JP6914062B2 (en) 2017-03-03 2021-08-04 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
US10576493B2 (en) 2017-03-14 2020-03-03 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
WO2018173861A1 (en) 2017-03-21 2018-09-27 東京エレクトロン株式会社 Substrate processing device and substrate processing method
TWI787263B (en) 2017-05-24 2022-12-21 日商東京威力科創股份有限公司 Substrate processing apparatus and substrate processing method
JP7109989B2 (en) 2017-08-09 2022-08-01 東京エレクトロン株式会社 SUBSTRATE PROCESSING METHOD, STORAGE MEDIUM AND SUBSTRATE PROCESSING SYSTEM
US11133176B2 (en) 2017-08-09 2021-09-28 Tokyo Electron Limited Substrate processing method, recording medium and substrate processing system
WO2019035351A1 (en) * 2017-08-13 2019-02-21 株式会社フジキン Fluid supply device and liquid discharge method for said device
JP6953286B2 (en) * 2017-11-09 2021-10-27 東京エレクトロン株式会社 Substrate processing equipment, substrate processing method and storage medium
JP7038524B2 (en) * 2017-11-14 2022-03-18 東京エレクトロン株式会社 Cleaning equipment and cleaning method for substrate processing equipment
TWI831656B (en) 2018-01-04 2024-02-01 日商東京威力科創股份有限公司 Substrate processing device and substrate processing method
JP7142494B2 (en) 2018-06-25 2022-09-27 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP7080134B2 (en) * 2018-08-07 2022-06-03 東京エレクトロン株式会社 Particle removal method of board processing device and board processing device
JP7362300B2 (en) 2019-06-04 2023-10-17 東京エレクトロン株式会社 Substrate processing equipment and its control method
KR102262250B1 (en) 2019-10-02 2021-06-09 세메스 주식회사 Apparatus for treating substrate and method for treating substrate
KR102289260B1 (en) * 2019-10-18 2021-08-12 세메스 주식회사 Gas exhaust apparatus and substrate treatment system including the same, gas exhaust method
TWI837441B (en) * 2019-12-06 2024-04-01 日商東京威力科創股份有限公司 Substrate processing device and substrate processing method
KR102341173B1 (en) 2019-12-31 2021-12-21 세메스 주식회사 Apparatus for treating substrate and method for treating substrate
KR102684857B1 (en) * 2020-06-29 2024-07-16 세메스 주식회사 Apparatus for treating substrate
KR20220156137A (en) 2021-05-17 2022-11-25 세메스 주식회사 Apparatus for treating substrate
JP2023177766A (en) 2022-06-03 2023-12-14 東京エレクトロン株式会社 Substrate processing device and substrate processing method
JP2024060806A (en) 2022-10-20 2024-05-07 東京エレクトロン株式会社 Substrate processing apparatus and fluid heating device
KR20240090111A (en) 2022-12-13 2024-06-21 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and substrate processing method
JP2024100508A (en) 2023-01-16 2024-07-26 東京エレクトロン株式会社 Substrate processing device and substrate processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553904B2 (en) * 2001-04-11 2004-08-11 日本電信電話株式会社 Supercritical drying method
JP3939178B2 (en) 2002-03-25 2007-07-04 大日本スクリーン製造株式会社 High pressure drying apparatus, high pressure drying method and substrate processing apparatus
JP3914134B2 (en) 2002-11-06 2007-05-16 日本電信電話株式会社 Supercritical drying method and apparatus
JP3965693B2 (en) * 2003-05-07 2007-08-29 株式会社日立ハイテクサイエンスシステムズ Fine structure drying method and apparatus and high-pressure vessel thereof
JP4230830B2 (en) 2003-06-13 2009-02-25 日本電信電話株式会社 Supercritical processing equipment
JP2007234862A (en) * 2006-03-01 2007-09-13 Dainippon Screen Mfg Co Ltd Apparatus and method for high pressure process
JP2008066495A (en) * 2006-09-07 2008-03-21 Dainippon Screen Mfg Co Ltd High-pressure processing apparatus, and high-pressure processing method
JP2009194092A (en) * 2008-02-13 2009-08-27 Japan Organo Co Ltd Method and apparatus for treating article to be treated with high-pressure carbon dioxide
JP5293459B2 (en) * 2009-07-01 2013-09-18 東京エレクトロン株式会社 Substrate processing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515178B2 (en) 2020-03-16 2022-11-29 Tokyo Electron Limited System and methods for wafer drying
US12002687B2 (en) 2020-03-16 2024-06-04 Tokyo Electron Limited System and methods for wafer drying

Also Published As

Publication number Publication date
KR101824809B1 (en) 2018-02-01
KR20160095657A (en) 2016-08-11
KR20130007418A (en) 2013-01-18
JP2013012538A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5522124B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP6085423B2 (en) Substrate processing method, substrate processing apparatus, and storage medium
CN108022861B (en) Substrate processing apparatus, substrate processing method, and storage medium
CN108074840B (en) Substrate processing apparatus, substrate processing method, and storage medium
WO2012165377A1 (en) Method for treating substrate, device for treating substrate and storage medium
JP6068029B2 (en) Substrate processing method, substrate processing apparatus, and storage medium
JP5716710B2 (en) Substrate processing apparatus, fluid supply method, and storage medium
JP2018082099A (en) Substrate processing apparatus, substrate processing method and storage medium
KR102581314B1 (en) Substrate processing method, recording medium and substrate processing system
US11133176B2 (en) Substrate processing method, recording medium and substrate processing system
KR102609934B1 (en) Substrate processing method, substrate processing device, and storage medium
JP5471886B2 (en) High temperature, high pressure processing method, high temperature, high pressure processing apparatus and storage medium
US20110289793A1 (en) Supercritical drying method
KR20110112195A (en) Substrate processing apparatus, substrate processing method and storage medium
KR102251259B1 (en) Separation and regeneration apparatus and substrate processing apparatus
JP2020025013A (en) Particle removal method for substrate processing apparatus and substrate processing apparatus
JP2021086857A (en) Substrate processing apparatus and substrate processing method
JP6563351B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP6580776B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP6085424B2 (en) Substrate processing method, substrate processing apparatus, and storage medium
JP6922048B2 (en) Substrate processing equipment, substrate processing method and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5522124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250