JP5521144B2 - Steel pipe bending apparatus and steel pipe bending method - Google Patents

Steel pipe bending apparatus and steel pipe bending method Download PDF

Info

Publication number
JP5521144B2
JP5521144B2 JP2008311246A JP2008311246A JP5521144B2 JP 5521144 B2 JP5521144 B2 JP 5521144B2 JP 2008311246 A JP2008311246 A JP 2008311246A JP 2008311246 A JP2008311246 A JP 2008311246A JP 5521144 B2 JP5521144 B2 JP 5521144B2
Authority
JP
Japan
Prior art keywords
steel pipe
rotating body
bending
heating
gripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008311246A
Other languages
Japanese (ja)
Other versions
JP2010131649A (en
Inventor
勝利 宮坂
健 一柳
徹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikuchi Seisakusho Co Ltd
Original Assignee
Kikuchi Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikuchi Seisakusho Co Ltd filed Critical Kikuchi Seisakusho Co Ltd
Priority to JP2008311246A priority Critical patent/JP5521144B2/en
Publication of JP2010131649A publication Critical patent/JP2010131649A/en
Application granted granted Critical
Publication of JP5521144B2 publication Critical patent/JP5521144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、鋼管の曲げ加工装置及び鋼管の曲げ加工方法に関する。   The present invention relates to a steel pipe bending apparatus and a steel pipe bending method.

鋼管の曲げ加工方法としては、例えば、押しロールを用いて鋼管を曲げる「押しロール曲げ」と、軸圧縮力を利用して鋼管を曲げる「軸圧縮曲げ」とがある。   As a method of bending a steel pipe, there are, for example, “push roll bending” in which a steel pipe is bent using a push roll, and “axial compression bending” in which a steel pipe is bent using an axial compression force.

「押しロール曲げ」の加工方法が、例えば、特許文献1、2、3、4に開示され、「軸圧縮曲げ」の加工方法が、例えば、特許文献5、6、7に開示されている。   A processing method of “push roll bending” is disclosed in, for example, Patent Documents 1, 2, 3, and 4, and a processing method of “axial compression bending” is disclosed in, for example, Patent Documents 5, 6, and 7.

まず、「押しロール曲げ」の加工方法の一例として、特許文献3の加工方法について説明する。特許文献3の加工方法では、まず、送り機構部Aにより送り出されるパイプ1を加熱コイル6が局部的に加熱すると共に、押曲げローラ10がパイプ1にその側面から押圧力を加える(特許文献3の図1参照)。これにより局部的な加熱部位にある角度で曲がりが形成される。そしてこれら一連の操作を、Xテーブル8とYテーブル9の移動の組み合わせにより曲げローラ10を所定軌跡で移動させつつ繰り返すことで所定の曲げ半径による曲げを所望の曲げ角度で形成することができる。   First, as an example of the “push roll bending” processing method, the processing method of Patent Document 3 will be described. In the processing method of Patent Document 3, first, the heating coil 6 locally heats the pipe 1 fed by the feeding mechanism section A, and the pressing roller 10 applies a pressing force to the pipe 1 from its side surface (Patent Document 3). FIG. 1). This forms a bend at an angle at the local heating site. Then, by repeating these series of operations while moving the bending roller 10 along a predetermined locus by a combination of movements of the X table 8 and the Y table 9, bending with a predetermined bending radius can be formed at a desired bending angle.

このような「押しロール曲げ」の加工方法は、簡便である一方で、曲げ半径精度が劣り、曲げによる肉厚減少が発生するという問題点がある。   Such a “push roll bending” processing method is simple, but has a problem that the bending radius accuracy is inferior and the thickness is reduced by bending.

次に、「軸圧縮曲げ」の加工方法の一例として、特許文献6の加工方法について説明する。   Next, as an example of the “axial compression bending” processing method, the processing method of Patent Document 6 will be described.

特許文献6の加工方法では、鋼管移動装置7を駆動して鋼管1を前方に送り、油圧ジャッキ5によりチェーン4に引張り力を加えると、両者4、5の固定端は鋼管1の偏心軸線上にあるから、鋼管1は、その偏心軸線方向の圧縮力を受けながら順次後方へ移動する環状の局部加熱部tにおいて連続して曲がっていく(特許文献6の図2参照)。   In the processing method of Patent Document 6, when the steel pipe moving device 7 is driven to feed the steel pipe 1 forward and a tensile force is applied to the chain 4 by the hydraulic jack 5, the fixed ends of both 4 and 5 are on the eccentric axis of the steel pipe 1. Therefore, the steel pipe 1 is continuously bent at the annular local heating portion t that sequentially moves backward while receiving the compressive force in the eccentric axial direction (see FIG. 2 of Patent Document 6).

このとき、チェーン4の引張り速度を上げれば(引張り力を大きくすれば)、単時間あたりの曲げ量が大きくなるので、曲げ半径を小さくすることができる。逆に、チェーン4の引張り速度を下げれば(引張り力を小さくすれば)、単位時間あたりの曲げ量が小さくなるので、曲げ半径を大きくすることができる。また、鋼管移動装置7の移動速度を下げれば、同様の理由で曲げ半径を小さくすることができる。   At this time, if the pulling speed of the chain 4 is increased (if the pulling force is increased), the amount of bending per hour increases, so the bending radius can be reduced. On the contrary, if the pulling speed of the chain 4 is decreased (decreasing the pulling force), the amount of bending per unit time is decreased, so that the bending radius can be increased. Moreover, if the moving speed of the steel pipe moving device 7 is lowered, the bending radius can be reduced for the same reason.

したがって、いま、チェーン4の引張り速度をV、鋼管移動装置7の移動速度をVとすると、両者の比(V/V)の値を大きくすれば、曲げ半径は小さくなり、小さくすれば、曲げ半径は大きくなる。 Therefore, if the pulling speed of the chain 4 is V 1 and the moving speed of the steel pipe moving device 7 is V 2 , the bending radius becomes smaller and smaller if the value of the ratio (V 1 / V 2 ) is increased. As a result, the bending radius increases.

このように、特許文献6の加工方法においては、鋼管1の偏心軸線上に設定した2つの力の作用点の間に引張り力を付与することにより鋼管の曲げ加工をする際に、前記引張り速度(引張り力)と、前記局部加熱部と鋼管の相対速度を調節できるから、鋼管1曲げ半径を、例えば、床に描いた曲げ加工線を基準にして制御することができる。   As described above, in the processing method of Patent Document 6, when the steel pipe is bent by applying a tensile force between two acting points set on the eccentric axis of the steel pipe 1, the tensile speed is set. Since (tensile force) and the relative speed of the local heating part and the steel pipe can be adjusted, the bending radius of the steel pipe 1 can be controlled, for example, based on a bending line drawn on the floor.

また、特許文献6の加工方法においては、鋼管の曲げ加工をする際に、鋼管の偏心軸線上に設定した2つの力の作用点の間に引張り力を付与し、鋼管を長さ方向に圧縮するから、鋼管の曲げ加工による減肉を抑制することができる。
特開昭47−034067号公報 特開昭47−034155号公報 特開平11−221626号公報 特開平11−226656号公報 特開2000−015350号公報 特開2001−239321号公報 特開2004−337960号公報
Moreover, in the processing method of patent document 6, when bending a steel pipe, a tensile force is provided between the application points of two forces set on the eccentric axis of the steel pipe, and the steel pipe is compressed in the length direction. Therefore, it is possible to suppress thinning due to bending of the steel pipe.
JP 47-034067 A JP 47-034155 A JP-A-11-221626 Japanese Patent Laid-Open No. 11-226656 JP 2000-015350 A JP 2001-239321 A JP 2004-337960 A

しかしながら、上記のような「軸圧縮曲げ」の加工方法では、「押しロール曲げ」の加工方法に比べ、曲げ半径精度が高く、曲げによる肉厚減少が抑制できるが、装置が大型化してしまう。   However, the “axial compression bending” processing method as described above has higher bending radius accuracy than the “push roll bending” processing method, and can suppress a reduction in thickness due to bending, but the apparatus becomes large.

本発明は、上記事実を考慮し、鋼管をその軸線方向に沿って圧縮して鋼管を曲げる構成において、構成の小型化を図ることを目的とする。   An object of the present invention is to reduce the size of the structure in which the steel pipe is bent by compressing the steel pipe along the axial direction in consideration of the above facts.

本発明の請求項1に係る鋼管の曲げ加工装置は、一方向に回転する回転体と、前記回転体に設けられ、前記回転体の回転軸から偏心した位置に前記回転体の回転方向が湾曲方向となるように鋼管の一端部を把持する第1把持部と、前記回転体の外部に設けられ、前記鋼管の他端部を把持する第2把持部と、前記鋼管の一部を環状に加熱する加熱手段と、前記加熱手段によって加熱された前記鋼管の環状加熱部を環状に冷却する冷却手段と、前記回転体が回転しながら前記第1把持部が前記第2把持部に近づくように前記回転体を前記第2把持部に対して相対移動させることで、前記環状加熱部にその軸線方向に沿って圧縮力を付与する圧縮力付与手段と、前記環状加熱部に前記圧縮力が作用している状態で当該環状加熱部にせん断力を付与するせん断力付与手段と、曲げられた鋼管が所定の形状を保つように前記鋼管を拘束する拘束手段と、前記鋼管に対して前記加熱手段及び前記冷却手段を、前記鋼管の未だ曲げられていない部位側へ前記鋼管の軸方向に相対移動させる移動手段と、を備えている。 A steel pipe bending apparatus according to claim 1 of the present invention includes a rotating body that rotates in one direction and a rotating body that is provided in the rotating body and is eccentric to a position that is eccentric from a rotating shaft of the rotating body. A first gripping part that grips one end of the steel pipe so as to be in a direction, a second gripping part that is provided outside the rotating body and grips the other end of the steel pipe, and a part of the steel pipe is annular Heating means for heating, cooling means for cooling the annular heating portion of the steel pipe heated by the heating means in an annular shape, and the first gripping portion approaching the second gripping portion while the rotating body rotates By moving the rotating body relative to the second gripping portion, a compressive force applying means for applying a compressive force to the annular heating portion along an axial direction thereof, and the compressive force acts on the annular heating portion. to impart shearing force to the annular heating section in to that state Shear force applying means, restraining means for restraining the steel pipe so that the bent steel pipe maintains a predetermined shape, the heating means and the cooling means for the steel pipe, and a portion where the steel pipe has not been bent yet Moving means for relatively moving the steel pipe in the axial direction to the side.

この構成によれば、加熱手段により鋼管の一部が環状に加熱される。この加熱手段は、移動手段により、鋼管の未だ曲げられていない部位側へ前記鋼管の軸方向に相対移動されるので、鋼管の軸方向に沿って連続的に環状加熱部を形成することができる。   According to this structure, a part of steel pipe is heated cyclically by a heating means. Since this heating means is relatively moved in the axial direction of the steel pipe by the moving means toward the unbent part of the steel pipe, an annular heating portion can be formed continuously along the axial direction of the steel pipe. .

加熱手段によって加熱された鋼管の環状加熱部は、冷却手段により環状に冷却される。   The annular heating part of the steel pipe heated by the heating means is cooled in an annular shape by the cooling means.

環状加熱部には、圧縮力付与手段より、その軸線方向に沿って圧縮力を付与される。また、環状加熱部には、せん断力付与手段により鋼管の曲がる方向にせん断力を付与する。   A compressive force is applied to the annular heating portion along the axial direction by the compressive force applying means. In addition, a shearing force is applied to the annular heating portion in a bending direction of the steel pipe by a shearing force applying means.

このように、本発明の請求項1の構成では、軸圧縮力及びせん断力が環状加熱部に作用するので、圧縮力のみにより鋼管を曲げる場合に比べて、小さな軸圧縮荷重で鋼管を曲げることができる。そのため、圧縮力付与手段の構成を小さくでき、装置構成の小型化が図れる。なお、圧縮力のみによる変形に比べて、圧縮力とせん断力とを組み合わせて変形させると、圧縮力を小さくすることができるという現象は、ミーゼスの降伏条件として知られている。   Thus, in the structure of Claim 1 of this invention, since an axial compressive force and a shear force act on a cyclic | annular heating part, compared with the case where a steel pipe is bent only by compressive force, a steel pipe is bent with a small axial compressive load. Can do. Therefore, the configuration of the compression force applying means can be reduced, and the apparatus configuration can be reduced in size. Note that the phenomenon that the compressive force can be reduced when the compressive force and the shearing force are combined in combination as compared with the deformation by only the compressive force is known as Mises' yield condition.

本発明の請求項2に係る鋼管の曲げ加工装置は、請求項1の構成において、前記圧縮力付与手段は、前記回転体の外周一部に巻き掛けられた巻掛部材の一端部を前記一方向へ繰り出すと共に、前記一端部における繰り出し速度よりも速い速度で前記巻掛部材の他端部を前記一方向へ引っ張ることで、前記回転体を回転させながら前記圧縮力を付与する。 According to a second aspect of the present invention, there is provided the bending apparatus for a steel pipe according to the first aspect, wherein the compressive force applying means includes one end portion of a winding member wound around a part of the outer periphery of the rotating body. The compressing force is applied while rotating the rotating body by pulling in the direction and pulling the other end of the winding member in the one direction at a speed faster than the feeding speed at the one end.

本発明の請求項3に係る鋼管の曲げ加工方法は、一方向に回転する回転体に設けられた第1把持部によって、前記回転体の回転軸から偏心した位置に前記回転体の回転方向が湾曲方向となるように鋼管の一端部を把持させると共に、前記回転体の外部に設けられた第2把持部によって、前記鋼管の他端部を把持させる工程と、前記鋼管の一部を環状に加熱して、前記鋼管の軸方向に沿って連続的に環状加熱部を形成する加熱工程と、前記環状加熱部を連続的に冷却する冷却工程と、前記回転体が回転しながら前記第1把持部が前記第2把持部に近づくように前記回転体を前記第2把持部に対して相対移動させることで、前記環状加熱部にその軸線方向に圧縮力を付与すると共に、前記環状加熱部にせん断力を付与して鋼管を連続的に曲げる付与工程と、を備えている。 In the steel pipe bending method according to claim 3 of the present invention , the rotating direction of the rotating body is shifted to a position eccentric from the rotating shaft of the rotating body by the first grip portion provided on the rotating body rotating in one direction. Gripping one end of the steel pipe so as to be in a bending direction, and gripping the other end of the steel pipe by a second gripping part provided outside the rotating body; and part of the steel pipe in an annular shape A heating step of heating and continuously forming an annular heating portion along the axial direction of the steel pipe, a cooling step of continuously cooling the annular heating portion, and the first gripping while the rotating body rotates The rotary body is moved relative to the second gripping portion so that the portion approaches the second gripping portion, thereby applying a compressive force in the axial direction to the annular heating portion, and Applying shear force to bend steel pipe continuously It is provided with a step.

この構成によれば、加熱工程において、鋼管の一部を環状に加熱して、鋼管の軸方向に沿って連続的に環状加熱部を形成する。冷却工程において、環状加熱部を連続的に冷却する。付与工程において、環状加熱部にその軸線方向に圧縮力を付与すると共に、環状加熱部にせん断力を付与して鋼管を連続的に曲げる。   According to this structure, in a heating process, a part of steel pipe is heated cyclically | annularly and an annular heating part is formed continuously along the axial direction of a steel pipe. In the cooling step, the annular heating part is continuously cooled. In the applying step, a compressive force is applied to the annular heating portion in the axial direction, and a shear force is applied to the annular heating portion to continuously bend the steel pipe.

このように、本発明の請求項3の構成では、環状加熱部には、軸圧縮力及びせん断力が作用するので、圧縮力のみにより鋼管を曲げる場合に比べて、小さな軸圧縮荷重で鋼管を曲げることができる。そのため、圧縮力付与手段の構成を小さくでき、装置構成の小型化が図れる。   Thus, in the structure of Claim 3 of this invention, since an axial compressive force and a shear force act on an annular heating part, compared with the case where a steel pipe is bent only by compressive force, a steel pipe is made with a small axial compressive load. Can be bent. Therefore, the configuration of the compression force applying means can be reduced, and the apparatus configuration can be reduced in size.

本発明の請求項4に係る鋼管の曲げ加工方法は、請求項3の構成において、前記付与工程は、前記回転体の外周一部に巻き掛けられた巻掛部材の一端部を前記一方向へ繰り出すと共に、前記一端部における繰り出し速度よりも速い速度で前記巻掛部材の他端部を前記一方向へ引っ張ることで、前記回転体を回転させながら前記圧縮力を付与する。 According to a fourth aspect of the present invention, there is provided the method of bending a steel pipe according to the third aspect, wherein in the applying step, the one end of the winding member wound around a part of the outer periphery of the rotating body is in the one direction. The compressing force is applied while rotating the rotating body by pulling the other end of the winding member in the one direction at a speed faster than the feeding speed at the one end.

本発明は、上記構成としたので、鋼管をその軸線方向に沿って圧縮して鋼管を曲げる構成において、構成の小型化を図ることができる。   Since this invention set it as the said structure, size reduction of a structure can be achieved in the structure which compresses a steel pipe along the axial direction, and bends a steel pipe.

以下に、本発明に係る実施形態の一例を図面に基づき説明する。
(第1実施形態に係る鋼管の曲げ加工装置100の構成)
まず、第1実施形態に係る鋼管の曲げ加工装置100の構成を説明する。図1は、第1実施形態に係る曲げ加工装置100の構成を示す概略図である。
Below, an example of an embodiment concerning the present invention is described based on a drawing.
(Configuration of the steel pipe bending apparatus 100 according to the first embodiment)
First, the structure of the steel pipe bending apparatus 100 according to the first embodiment will be described. FIG. 1 is a schematic diagram illustrating a configuration of a bending apparatus 100 according to the first embodiment.

第1実施形態に係る曲げ加工装置100は、鋼管支え装置7と、前部押圧板15を有する把持装置8と、後部押圧板16と、回転体としての円板17と、架台14と、チェーン20と、ジャッキ21と、ジャッキ22と、せん断力付与手段の一例としての押しローラ12と、加熱手段及び冷却手段の一例としての加熱冷却装置9と、移動手段の一例としての台車23と、レール25とを備えて構成されている。   A bending apparatus 100 according to the first embodiment includes a steel pipe support device 7, a gripping device 8 having a front pressing plate 15, a rear pressing plate 16, a circular plate 17 as a rotating body, a mount 14, and a chain. 20, a jack 21, a jack 22, a pressing roller 12 as an example of a shearing force applying unit, a heating / cooling device 9 as an example of a heating unit and a cooling unit, a carriage 23 as an example of a moving unit, a rail 25.

曲げ加工装置100が曲げようとする鋼管1は、その中間部が鋼管支え装置7で支持され、前部(一端部)が把持装置8の前部押圧板15により把持され、後部(他端部)が後部押圧板16により把持されている。鋼管1の前部側が、曲げられる曲げ開始側となる。   The steel pipe 1 to be bent by the bending apparatus 100 is supported by a steel pipe support device 7 at its intermediate portion, a front portion (one end portion) is gripped by a front pressing plate 15 of a gripping device 8, and a rear portion (the other end portion). ) Is held by the rear pressing plate 16. The front side of the steel pipe 1 is the bending start side to be bent.

後部押圧板16は架台14に固着されている。一方、把持装置8は、円板17の側面に固着されている。   The rear pressing plate 16 is fixed to the gantry 14. On the other hand, the gripping device 8 is fixed to the side surface of the disc 17.

把持装置8の前部押圧板15は、円板17の半径方向に平行に配置されている。この円板17は、鋼管1を曲げる方向に回転可能に台車23に設けられている。円板17に固着された把持装置8は、円板17と一体に鋼管1を曲げる方向に回転するようになっている。   The front pressing plate 15 of the gripping device 8 is arranged in parallel to the radial direction of the disc 17. The disc 17 is provided on the carriage 23 so as to be rotatable in a direction in which the steel pipe 1 is bent. The gripping device 8 fixed to the disk 17 rotates in a direction in which the steel pipe 1 is bent integrally with the disk 17.

円板17は、チェーンに適合したスプロケット加工が外周に施されており、円板17の外周に巻き掛けられたチェーン20は、円板17の外周に形成された係合歯に係合している。チェーン20の一端部は、繰り出しジャッキ22に締結されており、チェーン20の他端部は、引張りジャッキ21に締結されている。ジャッキ22および21は、その軸方向に移動可能に架台14に設けられている。   The disc 17 is sprocket-processed on the outer periphery to match the chain, and the chain 20 wound around the outer periphery of the disc 17 is engaged with engagement teeth formed on the outer periphery of the disc 17. Yes. One end of the chain 20 is fastened to the feeding jack 22, and the other end of the chain 20 is fastened to the pulling jack 21. The jacks 22 and 21 are provided on the gantry 14 so as to be movable in the axial direction.

ジャッキ22および21は、前部押圧板15及び後部押圧板16で把持される鋼管1を挟んで、半径方向の両側(図1の上方と下方)に、鋼管1の軸方向に沿って配置されている。   The jacks 22 and 21 are arranged along the axial direction of the steel pipe 1 on both sides in the radial direction (upward and downward in FIG. 1) with the steel pipe 1 held by the front pressing plate 15 and the rear pressing plate 16 in between. ing.

ジャッキ22および21が、鋼管1にその軸線方向に沿って圧縮力を発生させるための駆動部として機能し、その駆動力を伝達する伝達部材として、チェーン20、円板17及び前部押圧板15が機能する。   The jacks 22 and 21 function as a driving unit for causing the steel pipe 1 to generate a compressive force along the axial direction thereof, and the chain 20, the disc 17 and the front pressing plate 15 are used as transmission members for transmitting the driving force. Works.

この駆動部及び伝達部材が、鋼管1の環状加熱部2にその軸線方向に沿って圧縮力を付与する圧縮力付与手段として機能する。   The drive unit and the transmission member function as a compressive force applying unit that applies a compressive force to the annular heating unit 2 of the steel pipe 1 along the axial direction thereof.

鋼管1の上部には押しローラ12が置かれ、鋼管1を半径方向(図1における下方)に押すことができる。   A push roller 12 is placed on the upper portion of the steel pipe 1, and the steel pipe 1 can be pushed in the radial direction (downward in FIG. 1).

円板17は台車23に搭載されており、台車23は、レール25の上を車輪24により走行できる。加熱冷却装置9および押しローラ12は、例えば、台車23に設けられ、鋼管1の軸方向に走行できる構造になっている。押しローラ12と加熱冷却装置9と円板17と台車23は一体となって、走行可能とされ、その走行速度は任意に制御でき、速度Vとされる。 The disc 17 is mounted on a carriage 23, and the carriage 23 can travel on a rail 25 by wheels 24. The heating / cooling device 9 and the push roller 12 are provided, for example, on the carriage 23 and have a structure capable of traveling in the axial direction of the steel pipe 1. A press roller 12 and the heating and cooling device 9 disc 17 and carriage 23 are integrally configured to be running, its speed can be arbitrarily controlled, it is velocity V 2.

また、円板17には、拘束板19を挿入する穴18があり、図2に示すように、曲がり部の外側半径部分に拘束板19を挿入することにより、鋼管1の曲がり部の変形が抑制される。図1及び図2に示す構成では、円板17が1枚で構成され、鋼管1を片持ちで支えている。なお、図3に示すように、円板17が2枚で構成され、鋼管1を両持ちで支える構成であってもよい。   Further, the circular plate 17 has a hole 18 for inserting the constraining plate 19. As shown in FIG. 2, by inserting the constraining plate 19 into the outer radius portion of the bending portion, the bending portion of the steel pipe 1 is deformed. It is suppressed. In the configuration shown in FIG. 1 and FIG. 2, the disc 17 is configured by one piece, and the steel pipe 1 is supported by cantilever. In addition, as shown in FIG. 3, the disk 17 may be comprised by 2 sheets, and the structure which supports the steel pipe 1 by both ends may be sufficient.

図4には、加熱冷却装置9の構成が示されている。加熱冷却装置9は、例えば、加熱しようとする鋼管1の外周に配置される高周波誘導加熱コイルを備えて構成される。   FIG. 4 shows the configuration of the heating / cooling device 9. The heating / cooling device 9 includes, for example, a high-frequency induction heating coil disposed on the outer periphery of the steel pipe 1 to be heated.

高周波誘導加熱コイルは、コイルに電流を通ずると鋼管1には誘導電流が発生し、鋼管1の電気抵抗により鋼管1は発熱し、鋼管1の周方向に環状加熱部2が形成される。鋼管1の軸線に対して垂直方向に環状加熱部2が形成される。すなわち、鋼管1の半径方向から見たときに、鋼管1の軸線と環状加熱部2が直交する。   In the high-frequency induction heating coil, when an electric current is passed through the coil, an induced current is generated in the steel pipe 1, the steel pipe 1 generates heat due to the electric resistance of the steel pipe 1, and an annular heating portion 2 is formed in the circumferential direction of the steel pipe 1. An annular heating part 2 is formed in a direction perpendicular to the axis of the steel pipe 1. That is, when viewed from the radial direction of the steel pipe 1, the axis of the steel pipe 1 and the annular heating part 2 are orthogonal to each other.

鋼管1の材質により適正な加熱温度があるが、炭素鋼鋼管であれば、A3変態点以上の例えば900℃前後であり、ステンレス鋼鋼管であれば溶体化熱処理温度以上の1000℃以上である。   There is an appropriate heating temperature depending on the material of the steel pipe 1, but if it is a carbon steel pipe, it is, for example, around 900 ° C. above the A3 transformation point, and if it is a stainless steel pipe, it is 1000 ° C. above the solution heat treatment temperature.

加熱コイルには大電流が流れるのでコイルを冷却するための水ないしエアーが循環している。また加熱コイルには鋼管1の円周を冷却するための冷却水11を噴出する噴出孔があけられており、環状加熱部2を環状に冷却している。このようにして加熱しながら、鋼管1をVの速度で押し出すと鋼管は加熱コイルを通過しながら加熱と冷却を受けるので、鋼管1の軸方向に連続的に狭い幅の環状加熱部2を形成することができる。環状加熱部2とその両側の鋼管1は温度差が大きいので機械的性質にも大きな差があり、鋼管1に力を加えると環状加熱部2に塑性変形が集中する。塑性変形の直後は水冷されるので塑性変形の形状を保つことができる。 Since a large current flows through the heating coil, water or air for cooling the coil circulates. Further, the heating coil is provided with an ejection hole for ejecting cooling water 11 for cooling the circumference of the steel pipe 1, and the annular heating unit 2 is cooled in an annular shape. When the steel pipe 1 is pushed out at a speed of V 2 while being heated in this way, the steel pipe is heated and cooled while passing through the heating coil. Therefore, the annular heating portion 2 having a narrow width continuously in the axial direction of the steel pipe 1 Can be formed. Since the temperature difference between the annular heating part 2 and the steel pipes 1 on both sides thereof is large, there is also a great difference in mechanical properties. When a force is applied to the steel pipe 1, plastic deformation concentrates on the annular heating part 2. Immediately after plastic deformation, water cooling is performed, so that the shape of plastic deformation can be maintained.

(ジャッキ21及びジャッキ22の操作態様)
次に、ジャッキ21及びジャッキ22の操作態様について説明する。
(Operation mode of jack 21 and jack 22)
Next, operation modes of the jack 21 and the jack 22 will be described.

図5に、外径D、長さLのパイプが半径R、曲げ角度θで曲がったときの一般的な軸方向変形挙動を示す。曲げる前と曲げた後において、軸方向長さLが変化しない位置の半径を塑性中立半径bとする。半径bより大きい位置においては軸方向に伸びが生じ、半径bより小さい位置においては軸方向に圧縮されている。いま塑性中立半径bに注目すると、半径bの仮想円が仮想直線X−X’に接しながら互いに滑らずに転がることにより、曲げ半径R及び曲げ角度θで曲げられていると考えることができる。従ってこの運動は、半径bの円が直線X−X’に接しながらサイクロイド運動していると見ることができるのである。   FIG. 5 shows a general axial deformation behavior when a pipe having an outer diameter D and a length L is bent at a radius R and a bending angle θ. The radius at a position where the axial length L does not change before and after bending is defined as a plastic neutral radius b. In the position larger than the radius b, elongation occurs in the axial direction, and in the position smaller than the radius b, it is compressed in the axial direction. Now, paying attention to the plastic neutral radius b, it can be considered that the virtual circle of the radius b is bent at the bending radius R and the bending angle θ by rolling without touching each other while contacting the virtual straight line X-X ′. Therefore, this movement can be regarded as a cycloid movement while the circle of radius b is in contact with the straight line X-X '.

図6に半径bの円が直線X−X’に接しながら滑ることなく180°転がったときのサイクロイド運動の軌跡を示す。前記の図5に示した外径Dで長さLのパイプが、半径Rで曲がったときの塑性中立半径bの運動に注目して示している。   FIG. 6 shows the trajectory of the cycloid motion when the circle with the radius b rolls 180 ° without sliding while touching the straight line X-X ′. 5 shows the movement of the plastic neutral radius b when the pipe having the outer diameter D and the length L shown in FIG.

図7では、半径aおよび半径bの2つの円が一体となって同心円に置かれたモデルを考える。その同心円が前記図6と同様に半径bの円が直線X−X’に接しながら互いに滑ることなく180°転がったときのサイクロイド運動の軌跡を示す。半径bの円が角度θだけ転がったときX方向の円板移動距離Sは、S=bθである。   In FIG. 7, a model in which two circles having a radius a and a radius b are integrated and placed on a concentric circle is considered. The concentric circles indicate the trajectory of the cycloid motion when the circles having the radius b roll 180 degrees without sliding with each other while contacting the straight line X-X ′ as in FIG. When the circle of radius b rolls by an angle θ, the disc travel distance S in the X direction is S = bθ.

次に図7をXY座標上のサイクロイド運動として解析する。円板の半径をaとし曲げ管の塑性中立半径をbとする。パイプ先端は円板に固定されている。塑性中立半径bの円が直線X−X’と互いに滑ることなく右方向にころがるときの半径aの円板外周の座標(Xa,Ya)および塑性中立半径bの座標(Xb,Yb)のサイクロイド運動は次のように表すことができる。   Next, FIG. 7 is analyzed as a cycloid motion on the XY coordinates. The radius of the disc is a, and the plastic neutral radius of the bending tube is b. The pipe tip is fixed to a disk. A cycloid of the coordinates (Xa, Ya) of the outer periphery of the disk with the radius a and the coordinates (Xb, Yb) of the plastic neutral radius b when the circle with the plastic neutral radius b rolls to the right without sliding with the straight line XX ′. Movement can be expressed as:

a:円板の半径、b:塑性中立半径、θ:ころがり角度、S:ころがり距離、λ:a/b
D:パイプ外径 とすると、
Xa=b(θ−λsinθ)、Ya=b(λcosθ−1)
Xb=b(θ−sinθ)、Yb=b(cosθ−1)
図8には半径aおよび半径bの円板が一体となって同心円に置かれたモデルを考える。このモデルにおいて半径bの円が直線X−X’に接しながら互いに滑ることなく角度θだけ転がったときのサイクロイド運動を示す。このとき半径aの円板17の外周には、チェーン20が巻かれている。転がる前のチェーン20の両端末をFおよびGとし、円板17が角度θだけ転がった後のチェーン20の両端末をF’およびG’とする。端末Fの移動距離は(a+b)θであり、端末Gの移動距離は(a−b)θである。従って逆に言えば、端末Fを(a+b)θだけ引張り、端末Gを(a−b)θだけ繰り出せば、半径bの円板は直線X−X’に接しながら滑ることなく角度θだけ転がり、S=bθだけ移動することになる。従って以上のことから、図8のように、チェーン20が移動するように、ジャッキ21及びジャッキ22を操作すれば、曲げ加工装置100において曲げ加工が実行できることがわかる。以下、具体的にその方法について述べる。
a: disc radius, b: plastic neutral radius, θ: rolling angle, S: rolling distance, λ: a / b
D: Pipe outer diameter
Xa = b (θ−λsinθ), Ya = b (λcosθ−1)
Xb = b (θ−sinθ), Yb = b (cosθ−1)
FIG. 8 considers a model in which discs having a radius a and a radius b are integrally placed on a concentric circle. In this model, a cycloid motion is shown when a circle of radius b rolls at an angle θ without touching each other while touching a straight line XX ′. At this time, the chain 20 is wound around the outer periphery of the disk 17 having the radius a. Both ends of the chain 20 before rolling are denoted by F and G, and both ends of the chain 20 after the disk 17 has been rolled by an angle θ are denoted by F ′ and G ′. The moving distance of the terminal F is (a + b) θ, and the moving distance of the terminal G is (a−b) θ. Therefore, conversely, if the terminal F is pulled by (a + b) θ and the terminal G is extended by (a−b) θ, the disk of radius b rolls by the angle θ without sliding while contacting the straight line XX ′. , S = bθ. Therefore, from the above, it can be seen that bending can be performed in the bending apparatus 100 by operating the jack 21 and the jack 22 so that the chain 20 moves as shown in FIG. The method will be specifically described below.

先ず、半径bなる仮想円の大きさは任意に計画し設定することができる。すなわち前述の、端末Fの移動距離=(a+b)θおよび、端末Gの移動距離=(a−b)θにおいて、円板の半径aおよび曲げ角度θは変わらないとしたとき、bを任意に計画すれば、bの計画値に応じて端末Fの移動距離=(a+b)θおよび、端末Gの移動距離=(a−b)θもそれぞれ決定される。逆に言えば、目標としているbの大きさとなるように、端末Fおよび、端末Gの移動距離を調節すれば目標のbを得ることができる。   First, the size of a virtual circle having a radius b can be arbitrarily planned and set. That is, when the moving distance of the terminal F = (a + b) θ and the moving distance of the terminal G = (a−b) θ, the radius a and the bending angle θ of the disk are not changed, and b is arbitrarily set. If planned, the moving distance of the terminal F = (a + b) θ and the moving distance of the terminal G = (a−b) θ are also determined according to the planned value of b. In other words, the target b can be obtained by adjusting the movement distances of the terminal F and the terminal G so as to be the target b.

前記までは半径bの仮想円が、これと接する仮想直線と「すべらないで」反時計回りに転がるようにジャッキ21および22を操作した。次に応用として、半径bの仮想円が、これと接する仮想直線と「すべりながら」時計回りに転がるようにジャッキを操作することもできる。   Until now, the jacks 21 and 22 have been operated so that the virtual circle with the radius b rolls counterclockwise “without sliding” with the virtual straight line in contact with the virtual circle. Next, as an application, the jack can be operated so that the virtual circle of radius b rolls clockwise while “sliding” with the virtual straight line in contact with the virtual circle.

すべりながら転がる形態としてはS>bθおよびS<bθの2つがある。
S>bθとする場合は ΔLF および ΔL の長さを同じ比率で増加させる。すると塑性中立半径bが増大し、パイプを押し縮める効果が増大するので曲がり部の肉厚は、S=bθの場合より増加する。
There are two forms of rolling while sliding, S> bθ and S <bθ.
If the S> bθ increases the length of the [Delta] L F and [Delta] L G in the same ratio. Then, the plastic neutral radius b increases and the effect of compressing and shrinking the pipe increases, so that the thickness of the bent portion increases compared to the case of S = bθ.

S<bθ とするときは ΔLF および ΔL の長さを同じ比率で減少させる。すると塑性中立半径bが減少し、パイプを押し縮める効果が減少するので曲がり部の肉厚は、S=bθの場合より減少する。さらにもう一つのすべりながら転がる形態としては、ΔLFおよび ΔL の長さをそれぞれ異なる比率で減少あるいは増加させることもできる。 When the S <bθ reduces the length of the [Delta] L F and [Delta] L G in the same ratio. Then, the plastic neutral radius b is reduced, and the effect of compressing and shrinking the pipe is reduced. Therefore, the thickness of the bent portion is reduced as compared with the case of S = bθ. Still form rolling while another slip may be reduced or increased the length of the [Delta] L F and [Delta] L G in different ratios.

なお、図1では、架台14を固定し、円板17を移動させているが、これと逆に架台14を距離Sだけ移動させ、円板17は固定する構成であってもよい。   In FIG. 1, the gantry 14 is fixed and the disc 17 is moved, but conversely, the gantry 14 may be moved by a distance S and the disc 17 may be fixed.

(第1実施形態に係る曲げ加工装置100の作用効果)
次に、第1実施形態に係る曲げ加工装置100の作用効果を説明する。
(Operational effects of the bending apparatus 100 according to the first embodiment)
Next, the function and effect of the bending apparatus 100 according to the first embodiment will be described.

第1実施形態に係る曲げ加工装置100による加工方法は、加熱工程と、冷却工程と、付与工程とで構成される。   The processing method by the bending apparatus 100 according to the first embodiment includes a heating process, a cooling process, and an applying process.

加熱工程では、鋼管1の一部を環状に加熱して、鋼管1の軸方向に沿って連続的に環状加熱部2を形成する。冷却工程で、環状加熱部2が連続的に冷却される。   In the heating step, a part of the steel pipe 1 is heated in an annular shape, and the annular heating part 2 is continuously formed along the axial direction of the steel pipe 1. In the cooling process, the annular heating unit 2 is continuously cooled.

付与工程では、ジャッキ22を速度V1Gで繰り出し、ジャッキ21を速度V1Fで引張る。両ジャッキの速度関係は、V1G<V1Fである。ジャッキ22は引張り荷重Wが発生し、ジャッキ21は引張り荷重Wが発生する。このため、鋼管1にはその軸方向に軸圧縮荷重(W+W)が強力に作用するので、鋼管1を押し縮めながら曲げ加工される。 In the application step, the jack 22 is unwound at a speed V 1G , and the jack 21 is pulled at a speed V 1F . The speed relationship between both jacks is V 1G <V 1F . The jack 22 is tensile load W G is generated, the jack 21 is tensile load W F is generated. Therefore, the steel pipe 1 because the axial compression load in the axial direction (W G + W F) acts strongly, is bent while compressing press steel tube 1.

すなわち、環状加熱部2は集中的に軸圧縮されるのであるが、環状加熱部2の断面の軸方向圧縮速度は不均等な傾きを与えられているので、圧縮速度の傾きによる圧縮量の傾きに応じて圧縮されるから、環状加熱部2は曲げ角度θ及び曲げ半径Rをもつ形状に曲がる。このような局部的な圧縮加工が連続的に行われるので曲げ加工は連続して進行する。   That is, although the annular heating unit 2 is intensively axially compressed, the axial compression speed of the cross section of the annular heating unit 2 is given an unequal inclination, so the inclination of the compression amount due to the inclination of the compression speed. Therefore, the annular heating part 2 bends into a shape having a bending angle θ and a bending radius R. Since such a local compression process is continuously performed, the bending process proceeds continuously.

鋼管1が曲がり始めたら押しローラ12を鋼管1に押し当て、鋼管1にせん断力を作用させる。尚、図1(A)においては、前部押圧板15と加熱冷却装置9との間隔が狭い構成となっているので、鋼管1が曲がり始めたら押しローラ12を鋼管1に押し当てているが、押しローラ12がこの間隔に予め入ることができるように構成すれば、軸圧縮力とせん断力を曲げ開始と同時に付与することもできる。   When the steel pipe 1 begins to bend, the pushing roller 12 is pressed against the steel pipe 1 to apply a shearing force to the steel pipe 1. In FIG. 1A, since the distance between the front pressing plate 15 and the heating / cooling device 9 is narrow, the push roller 12 is pressed against the steel pipe 1 when the steel pipe 1 begins to bend. If the push roller 12 is configured to be able to enter this interval in advance, the axial compression force and the shearing force can be applied simultaneously with the start of bending.

このように、軸圧縮力とせん断力とが作用するので、図9に示すように、鋼管1が円弧状に曲がる。例えば、軸圧縮力が作用せず、せん断力のみであれば、図10に示すように、せん断ひずみを生じ、鋼管1は円弧状に曲げることができない。   As described above, since the axial compression force and the shearing force act, the steel pipe 1 bends in an arc shape as shown in FIG. For example, if the axial compression force does not act and only the shear force is generated, as shown in FIG. 10, a shear strain is generated and the steel pipe 1 cannot be bent in an arc shape.

鋼管1の環状加熱部2には、軸圧縮力とせん断力が同時に作用するので、圧縮力のみによる曲げ加工に比べて、小さな軸圧縮荷重で曲げることができる。そのため、ジャッキ22および21とチェーン20を小さくでき、装置の小型化が図れる。   Since the axial compression force and the shearing force are simultaneously applied to the annular heating portion 2 of the steel pipe 1, it can be bent with a small axial compression load as compared with the bending process using only the compression force. Therefore, the jacks 22 and 21 and the chain 20 can be made small, and the apparatus can be miniaturized.

また、本実施形態では、ワイヤロープの配置位置を、曲げようとする側の(パイプ外径/2)の範囲の外側に置くことができるので、ワイヤロープの曲げ直径A=2aを十分に大きくすることが可能となった。これによりワイヤロープの疲労寿命を向上することとなる。   Further, in this embodiment, the wire rope can be placed outside the range of (pipe outer diameter / 2) on the side to be bent, so the wire rope bending diameter A = 2a is sufficiently large. It became possible to do. As a result, the fatigue life of the wire rope is improved.

また、本実施形態では、従来に比較して、加工後の管の減肉率と曲げ半径の制御が容易となる。
(第2実施形態に係る鋼管の曲げ加工装置200の構成)
まず、第2実施形態に係る鋼管の曲げ加工装置200の構成を説明する。図11は、第2実施形態に係る曲げ加工装置200の構成を示す概略図である。
Moreover, in this embodiment, compared with the past, it becomes easy to control the thickness reduction rate and bending radius of the tube after processing.
(Configuration of the steel pipe bending apparatus 200 according to the second embodiment)
First, the configuration of a steel pipe bending apparatus 200 according to the second embodiment will be described. FIG. 11 is a schematic diagram illustrating a configuration of a bending apparatus 200 according to the second embodiment.

第2実施形態に係る曲げ加工装置200は、鋼管1の一端部を支持する支持部材30と、鋼管1の他端部を支持する支持部材32と、圧縮力付与手段、せん断力付与手段及び移動手段として機能する押圧装置34と、支持部材32に回転可能に設けられたコロ36と、加熱手段及び冷却手段としての加熱冷却装置9とを備えて構成されている。   The bending apparatus 200 according to the second embodiment includes a support member 30 that supports one end of the steel pipe 1, a support member 32 that supports the other end of the steel pipe 1, a compressive force applying unit, a shearing force applying unit, and a movement. A pressing device 34 functioning as a means, a roller 36 rotatably provided on the support member 32, and a heating / cooling device 9 as a heating means and a cooling means are configured.

支持部材32は、コロ36が転がることにより、鋼管1の半径方向に沿って形成された壁体36に沿って、鋼管1の半径方向に移動可能とされている。   The support member 32 is movable in the radial direction of the steel pipe 1 along the wall body 36 formed along the radial direction of the steel pipe 1 when the roller 36 rolls.

押圧装置34は、支持部材30を介して鋼管1の一端部を鋼管1の軸線方向へ押圧する。加熱冷却装置9は、鋼管1がクランク形状に曲がるように、鋼管1の軸線に対して斜めに鋼管1の一部を環状に加熱して、環状加熱部2を形成する。なお、加熱冷却装置9は、図4に示す構成と同様に構成されている。   The pressing device 34 presses one end of the steel pipe 1 in the axial direction of the steel pipe 1 via the support member 30. The heating / cooling device 9 forms part of the annular heating section 2 by heating a part of the steel pipe 1 in an oblique manner with respect to the axis of the steel pipe 1 so that the steel pipe 1 bends in a crank shape. The heating / cooling device 9 is configured similarly to the configuration shown in FIG.

本実施形態では、側面視にて、環状加熱部2は、上部がコロ36側(曲げ開始側)に傾けられ、下部が押圧装置34側(曲げ終了側)に傾けられており、鋼管1の軸線に対して斜めに配置されている。   In the present embodiment, as viewed from the side, the annular heating unit 2 has an upper portion inclined toward the roller 36 (bending start side) and a lower portion inclined toward the pressing device 34 (bending end side). It is arranged obliquely with respect to the axis.

本実施形態の構成によれば、例えば、加熱冷却装置9の加熱コイルを、鋼管1の軸線方向に対して、任意の角度φ°傾けて配設することにより、鋼管の軸線方向に対してφ°傾いた環状加熱部2を形成される(角度φ°の範囲は 0°<φ°<90°)。   According to the configuration of the present embodiment, for example, the heating coil of the heating / cooling device 9 is arranged at an arbitrary angle φ ° with respect to the axial direction of the steel pipe 1 so as to be φ with respect to the axial direction of the steel pipe. An annular heating section 2 tilted is formed (the range of the angle φ ° is 0 ° <φ ° <90 °).

この状態で鋼管の軸線方向に圧縮応力σを作用させると、分力として環状加熱部2に対して垂直方向の圧縮応力成分σ’および環状加熱部2に対して平行方向のせん断応力成分τが発生する。これにより環状加熱部にはτ=σ・sinφおよびσ’=σ・cosφの組み合わせ応力が形成される。軸方向圧縮速度をVCとし、せん断速度をVSに制御すると環状加熱部2が逐次変形することにより、鋼管1はクランク状に変形する。このように、押圧装置34は、鋼管1を押圧することにより、鋼管1の環状加熱部2に軸圧縮力及びせん断力を発生させるとともに、鋼管1に対して、加熱冷却装置9を相対移動させる。鋼管1の変形部は、拘束手段としての拘束装置38で拘束する。これにより、変形された鋼管1の形状を維持できる。 When compressive stress σ is applied in the axial direction of the steel pipe in this state, a compressive stress component σ ′ perpendicular to the annular heating portion 2 and a shear stress component τ parallel to the annular heating portion 2 are generated as component forces. Occur. As a result, combined stresses of τ = σ · sinφ and σ ′ = σ · cosφ are formed in the annular heating portion. When the axial compression speed is V C and the shear speed is controlled to V S , the annular heating portion 2 is sequentially deformed, so that the steel pipe 1 is deformed into a crank shape. As described above, the pressing device 34 generates axial compression force and shearing force in the annular heating portion 2 of the steel pipe 1 by pressing the steel pipe 1, and moves the heating / cooling device 9 relative to the steel pipe 1. . The deformed portion of the steel pipe 1 is restrained by a restraining device 38 as restraining means. Thereby, the shape of the deformed steel pipe 1 can be maintained.

このように、鋼管1の環状加熱部2には、軸圧縮力とせん断力が同時に作用するので、圧縮力のみによる曲げ加工に比べて、小さな軸圧縮荷重で曲げることができる。そのため、押圧装置34を小さくでき、装置の小型化が図れる。
なお、鋼管1を下方へ押して、鋼管1にせん断力およびせん断速度を付与する装置を別途配置しても良い。
Thus, since the axial compression force and the shearing force act simultaneously on the annular heating part 2 of the steel pipe 1, it can be bent with a small axial compression load as compared with the bending process using only the compression force. Therefore, the pressing device 34 can be made small, and the size of the device can be reduced.
In addition, you may arrange | position separately the apparatus which pushes the steel pipe 1 below and provides a shearing force and a shear rate to the steel pipe 1. FIG.

第1実施形態に係る曲げ加工装置の構成を示す概略図である。It is the schematic which shows the structure of the bending apparatus which concerns on 1st Embodiment. 第1実施形態に係る曲げ加工装置において、拘束板で鋼管を拘束する状態を示す概略図である。In the bending apparatus which concerns on 1st Embodiment, it is the schematic which shows the state which restrains a steel pipe with a restraint board. 第1実施形態に係る曲げ加工装置において、円板を2枚構成とした変形例を示す概略図である。In the bending apparatus which concerns on 1st Embodiment, it is the schematic which shows the modification which made the disk a 2 piece structure. 第1実施形態に係る加熱冷却装置の構成を示す概略図である。It is the schematic which shows the structure of the heating-cooling apparatus which concerns on 1st Embodiment. 曲げ加工によるパイプの軸方向長さ変化量と塑性中立半径の説明図である。It is explanatory drawing of the axial direction length variation | change_quantity and plastic neutral radius by bending. 塑性中立半径bのサイクロイド運動の説明図である。It is explanatory drawing of the cycloid motion of plastic neutral radius b. 半径aおよびbからなる同心円のサイクロイド運動説明図である。It is cycloid motion explanatory drawing of the concentric circle which consists of radius a and b. 半径aの円板を操作して半径bの円板をサイクロイド運動させる説明図である。It is explanatory drawing which makes the disk of radius b perform cycloid motion by operating the disk of radius a. 軸圧縮力とせん断力とを作用させた場合において、鋼管が曲がる様子を示した図である。It is the figure which showed a mode that a steel pipe bent, when an axial compressive force and a shear force were made to act. せん断力のみを作用させた場合において、鋼管が曲がる様子を示した図である。It is the figure which showed a mode that a steel pipe bent in the case where only a shearing force was made to act. 第2実施形態に係る曲げ加工装置の構成を示す概略図である。It is the schematic which shows the structure of the bending apparatus which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1 鋼管
2 環状加熱部
9 加熱冷却装置(加熱手段、冷却手段)
12 押しローラ(せん断力付与手段)
15 前部押圧板(圧縮力付与手段)
17 円板(圧縮力付与手段)
19 拘束板(拘束手段)
20 チェーン(圧縮力付与手段)
21 ジャッキ(圧縮力付与手段)
22 ジャッキ(圧縮力付与手段)
23 台車(移動手段)
34 押圧装置(せん断力付与手段、圧縮力付与手段、移動手段)
38 拘束装置(拘束手段)
100 曲げ加工装置
200 曲げ加工装置
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Annular heating part 9 Heating / cooling device (heating means, cooling means)
12 Push roller (means for applying shear force)
15 front pressing plate (compression force applying means)
17 disk (compressive force applying means)
19 Restraint plate (restraint means)
20 Chain (compressive force applying means)
21 Jack (Compression force applying means)
22 Jack (Compression force applying means)
23 trolley (transportation)
34 Pressing device (shearing force applying means, compressive force applying means, moving means)
38 Restraint device (restraint means)
100 Bending device 200 Bending device

Claims (4)

一方向に回転する回転体と、
前記回転体に設けられ、前記回転体の回転軸から偏心した位置に前記回転体の回転方向が湾曲方向となるように鋼管の一端部を把持する第1把持部と、
前記回転体の外部に設けられ、前記鋼管の他端部を把持する第2把持部と、
前記鋼管の一部を環状に加熱する加熱手段と、
前記加熱手段によって加熱された前記鋼管の環状加熱部を環状に冷却する冷却手段と、
前記回転体が回転しながら前記第1把持部が前記第2把持部に近づくように前記回転体を前記第2把持部に対して相対移動させることで、前記環状加熱部にその軸線方向に沿って圧縮力を付与する圧縮力付与手段と、
前記環状加熱部に前記圧縮力が作用している状態で当該環状加熱部にせん断力を付与するせん断力付与手段と、
曲げられた鋼管が所定の形状を保つように前記鋼管を拘束する拘束手段と、
前記鋼管に対して前記加熱手段及び前記冷却手段を、前記鋼管の未だ曲げられていない部位側へ前記鋼管の軸方向に相対移動させる移動手段と、
を備えた鋼管の曲げ加工装置。
A rotating body that rotates in one direction;
A first gripping portion that is provided on the rotating body and grips one end of the steel pipe so that the rotating direction of the rotating body is a curved direction at a position eccentric from the rotation axis of the rotating body;
A second gripping part provided outside the rotating body and gripping the other end of the steel pipe;
A heating means for heating the annular part of the steel pipe,
Cooling means for annularly cooling the annular heating portion of the steel pipe heated by the heating means;
By moving the rotating body relative to the second gripping part so that the first gripping part approaches the second gripping part while the rotating body rotates, the annular heating part is moved along the axial direction thereof. Compressive force applying means for applying a compressive force;
A shearing force applying means for applying a shearing force to the annular heating part in a state where the compressive force is acting on the annular heating part;
Restraining means for restraining the steel pipe so that the bent steel pipe maintains a predetermined shape;
Moving means for relatively moving the heating means and the cooling means relative to the steel pipe in the axial direction of the steel pipe toward a portion of the steel pipe that is not yet bent;
Steel pipe bending machine equipped with.
前記圧縮力付与手段は、
前記回転体の外周一部に巻き掛けられた巻掛部材の一端部を前記一方向へ繰り出すと共に、前記一端部における繰り出し速度よりも速い速度で前記巻掛部材の他端部を前記一方向へ引っ張ることで、前記回転体を回転させながら前記圧縮力を付与する
請求項1に記載の鋼管の曲げ加工装置。
The compressive force applying means is
One end of the winding member wound around a part of the outer periphery of the rotating body is fed out in the one direction, and the other end of the winding member is moved in the one direction at a speed faster than the feeding speed at the one end. The steel pipe bending apparatus according to claim 1, wherein the compressive force is applied by pulling the rotating body while rotating the rotating body .
一方向に回転する回転体に設けられた第1把持部によって、前記回転体の回転軸から偏心した位置に前記回転体の回転方向が湾曲方向となるように鋼管の一端部を把持させると共に、前記回転体の外部に設けられた第2把持部によって、前記鋼管の他端部を把持させる工程と、
前記鋼管の一部を環状に加熱して、前記鋼管の軸方向に沿って連続的に環状加熱部を形成する加熱工程と、
前記環状加熱部を連続的に冷却する冷却工程と、
前記回転体が回転しながら前記第1把持部が前記第2把持部に近づくように前記回転体を前記第2把持部に対して相対移動させることで、前記環状加熱部にその軸線方向に圧縮力を付与すると共に、前記環状加熱部にせん断力を付与して鋼管を連続的に曲げる付与工程と、
を備えた鋼管の曲げ加工方法。
While gripping one end of the steel pipe so that the rotation direction of the rotating body is a curved direction at a position eccentric from the rotation axis of the rotating body by the first gripping portion provided in the rotating body rotating in one direction, A step of gripping the other end of the steel pipe by a second gripping portion provided outside the rotating body;
Heating the portion of the steel pipe in an annular, a heating process of forming a continuous annular heating section along the axial direction of the steel pipe,
A cooling step for continuously cooling the annular heating section;
The annular heating unit is compressed in the axial direction by moving the rotating body relative to the second gripping part so that the first gripping part approaches the second gripping part while the rotating body rotates. An application step of applying a force and continuously bending the steel pipe by applying a shearing force to the annular heating unit;
Bending method of steel pipe provided with.
前記付与工程は、
前記回転体の外周一部に巻き掛けられた巻掛部材の一端部を前記一方向へ繰り出すと共に、前記一端部における繰り出し速度よりも速い速度で前記巻掛部材の他端部を前記一方向へ引っ張ることで、前記回転体を回転させながら前記圧縮力を付与する
請求項3に記載の鋼管の曲げ加工方法。
The application step includes
One end of the winding member wound around a part of the outer periphery of the rotating body is fed out in the one direction, and the other end of the winding member is moved in the one direction at a speed faster than the feeding speed at the one end. Pulling to apply the compressive force while rotating the rotating body
The method for bending a steel pipe according to claim 3.
JP2008311246A 2008-12-05 2008-12-05 Steel pipe bending apparatus and steel pipe bending method Expired - Fee Related JP5521144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311246A JP5521144B2 (en) 2008-12-05 2008-12-05 Steel pipe bending apparatus and steel pipe bending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311246A JP5521144B2 (en) 2008-12-05 2008-12-05 Steel pipe bending apparatus and steel pipe bending method

Publications (2)

Publication Number Publication Date
JP2010131649A JP2010131649A (en) 2010-06-17
JP5521144B2 true JP5521144B2 (en) 2014-06-11

Family

ID=42343514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311246A Expired - Fee Related JP5521144B2 (en) 2008-12-05 2008-12-05 Steel pipe bending apparatus and steel pipe bending method

Country Status (1)

Country Link
JP (1) JP5521144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896400A (en) * 2018-08-01 2018-11-27 同济大学 A kind of structural testing system applying tension and compression curved scissors power

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102784821B (en) * 2012-08-06 2015-03-25 江苏兴洋管业股份有限公司 Coreless pipe-bending machine
KR101648174B1 (en) * 2015-06-29 2016-08-12 (유)성문 helix pipe bending apparatus
CN108405682B (en) * 2018-02-09 2019-03-29 浙江大学 A kind of pipe fitting bending forming assist device of variable thrust
JP7541269B2 (en) * 2021-03-31 2024-08-28 日本製鉄株式会社 Manufacturing method and device for hollow curved member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586731A (en) * 1981-07-01 1983-01-14 Mitsubishi Heavy Ind Ltd Bending work method for thin pipe
JPH0813385B2 (en) * 1991-12-06 1996-02-14 日鋼特機株式会社 Elbow tube forming method and apparatus
JP3400767B2 (en) * 2000-02-28 2003-04-28 徹 佐藤 Steel pipe bending apparatus and method
JP2002219521A (en) * 2001-01-19 2002-08-06 Shibayama Kikai:Kk Method and apparatus for warm-forming elbow tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896400A (en) * 2018-08-01 2018-11-27 同济大学 A kind of structural testing system applying tension and compression curved scissors power

Also Published As

Publication number Publication date
JP2010131649A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5521144B2 (en) Steel pipe bending apparatus and steel pipe bending method
JP2013010109A (en) Metal tube bender
JPS5938048B2 (en) Continuous bending method and device for long materials
JP6043018B2 (en) Hot coil spring manufacturing equipment
CN205851613U (en) A kind of can the straight plate of bending and the device of steel pipe
TW200924870A (en) Bending device of metallic tube and method of manufacturing metallic tube with bent part
JP2006326667A (en) Hot bending method for metal tube and device therefor
WO2012015009A1 (en) Apparatus for manufacturing coil spring
JPH0310493B2 (en)
GB2559865A (en) Machining tool
JP4726884B2 (en) Steel pipe bending apparatus and steel pipe bending method
JP4822505B2 (en) Glass tube spiral processing apparatus and method for manufacturing spiral glass tube
JP2007015014A (en) Roller device correctly and simply bending tapered tube and fan-shaped plate
KR20130120955A (en) Winding apparatus for material
US20200346274A1 (en) Wire feeding unit and wire bending apparatus including the same
JP4514579B2 (en) Pipe lining method and lining apparatus
CN110325298B (en) Mandrel bar, bent pipe, and method and apparatus for manufacturing the same
JP2006289488A (en) Pipe bending device, and pipe bending method
CN105033658B (en) Equipment for processing elongate blank
JP6527500B2 (en) Pinch roll apparatus and strip supply apparatus having the same
CN106111752A (en) A kind of can the straight plate of bending and the device of steel pipe
EP3827910B1 (en) Molding device for multi-wound tube and molding method for multi-wound tube
JP7208009B2 (en) Cold pilger rolling mill and tube manufacturing method
JP2000153311A (en) Method for compressively bending metal bar and device therefor
JP2016182615A (en) Rotational bending method and rotational bending device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5521144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees