JP2016182615A - Rotational bending method and rotational bending device - Google Patents

Rotational bending method and rotational bending device Download PDF

Info

Publication number
JP2016182615A
JP2016182615A JP2015063334A JP2015063334A JP2016182615A JP 2016182615 A JP2016182615 A JP 2016182615A JP 2015063334 A JP2015063334 A JP 2015063334A JP 2015063334 A JP2015063334 A JP 2015063334A JP 2016182615 A JP2016182615 A JP 2016182615A
Authority
JP
Japan
Prior art keywords
bending
metal
metal tube
core
moving speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063334A
Other languages
Japanese (ja)
Inventor
彰啓 安藤
Akihiro Ando
彰啓 安藤
進之助 西島
Shinnosuke Nishijima
進之助 西島
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2015063334A priority Critical patent/JP2016182615A/en
Publication of JP2016182615A publication Critical patent/JP2016182615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress cracking of a bent outer side and decrease of a plate thickness in rotational bending.SOLUTION: A rotational bending method for bending a metal tube 1 by use of a bending metal mold 3, a wiper 7, a side booster 5, a back booster 6 and a core grid 2, in which the core grid 2 is moved without synchronization of a travel speed of the core grid 2 with a travel speed of a neutral axis M of the metal tube 1 thereby suppressing local stretching of the metal tube 1 in the state that a specific part of the metal tube 1 on a bending outer side does not contact the core grid 2 for a long time, dispersing and averaging decrease of a plate thickness of the metal tube 1, and suppressing a remarkable decrease of the plate thickness such that said decrease occurs cracking on the bending outer side or does not satisfy an intended purpose of a finished article.SELECTED DRAWING: Figure 2

Description

本発明は、金属管の回転引き曲げ加工方法及び回転引き曲げ加工装置に関する。   The present invention relates to a rotary drawing bending method and a rotary drawing bending apparatus for a metal tube.

従来、金属管を曲げ加工する方法として、ロール曲げ法やプレス曲げ法、回転引き曲げ法等が実用化されている。金属管の曲げ加工においては、曲げの中立軸を境界として、曲げ外側では中立軸よりも弧長が長いため軸方向に伸ばされ、加工後の板厚が加工前の板厚よりも薄くなる。一方、曲げ内側では中立軸よりも弧長が短いため軸方向に圧縮され、加工後の板厚が加工前の板厚よりも厚くなる。
その結果、曲げ外側では割れもしくは加工品の使用目的を満足しないような板厚減少が発生しやすく、曲げ内側では座屈が発生しやすくなる。更に、曲げ加工後に断面の楕円化も発生しやすい。
Conventionally, a roll bending method, a press bending method, a rotary pulling bending method, and the like have been put to practical use as methods for bending a metal tube. In bending of a metal tube, with the bending neutral axis as a boundary, the arc length is longer than the neutral axis on the outer side of the bending, so that it is extended in the axial direction, and the plate thickness after processing becomes thinner than the plate thickness before processing. On the other hand, the inner side of the bend is compressed in the axial direction because the arc length is shorter than that of the neutral shaft, and the thickness after processing becomes thicker than the thickness before processing.
As a result, cracks are likely to occur on the outer side of the bend, or a reduction in plate thickness that does not satisfy the intended use of the processed product, and buckling tends to occur on the inner side of the bend. Furthermore, the cross section is likely to be elliptical after bending.

回転引き曲げ法は、金属管の軸方向に引張荷重を負荷しながら曲げ加工を行う方法であり、以下の作用により割れ、板厚減少、座屈、及び断面楕円化を抑制できるため、広く使用されている。
(1)金属管の曲げ内側の外表面側に設置されるワイパーと金属管の内部に挿入される芯金との間に金属管を挟んだ状態で、曲げ加工することにより座屈の発生を抑制する。
(2)金属管の曲げ外側の外表面側に設置され金属管に押し付けられた状態で軸方向に移動されるサイドブースターと、金属管の後方に設置され金属管を軸方向に押し出すバックブースターとにより、主に曲げ外側に材料を供給することにより割れや板厚減少を抑制する。
(3)金属管の内部に挿入される芯金で金属管の曲げ内側と外側の間隔を確保することにより、断面楕円化を抑制する。
The rotary pulling bending method is a method of bending while applying a tensile load in the axial direction of the metal tube. It can be widely used because it can suppress cracking, thickness reduction, buckling, and cross-sectional ovalization by the following actions. Has been.
(1) Occurrence of buckling by bending the metal tube between the wiper installed on the outer surface side of the inner side of the metal tube and the core metal inserted into the metal tube. Suppress.
(2) a side booster that is installed on the outer surface of the outer side of the metal tube and is pressed against the metal tube and moved in the axial direction; a back booster that is installed behind the metal tube and pushes the metal tube in the axial direction; Therefore, cracks and plate thickness reduction are suppressed mainly by supplying the material to the outside of the bend.
(3) The cross-section ovalization is suppressed by securing the space between the inner side and the outer side of the metal tube with a metal core inserted into the metal tube.

しかしながら、サイドブースターやバックブースターによる材料供給を多くすると、曲げ外側の割れ及び板厚減少は抑制されるが、曲げ内側では材料が過剰となり座屈が発生しやすくなる。金属管の内側の芯金と金属管の外側の曲げ金型との間のクリアランスを狭くすると、座屈や断面楕円化は発生しにくくなるが、金属管が芯金に強く押し付けられてしごき加工されることにより、曲げ外側の割れ及び板厚減少が発生しやすくなる。また、芯金を使用しない、あるいは芯金と曲げ金型のクリアランスを大きくすると、曲げ外側の割れ及び板厚減少は抑制されるが、曲げ内側の座屈や断面楕円化が発生しやすくなる。   However, if the material supply by the side booster or the back booster is increased, cracks on the outer side of the bend and reduction of the plate thickness are suppressed, but the material becomes excessive on the inner side of the bend, and buckling tends to occur. If the clearance between the metal core inside the metal tube and the bending die outside the metal tube is narrowed, buckling and cross-sectional ovalization are less likely to occur, but the metal tube is strongly pressed against the metal core and ironed. As a result, cracks on the outer side of the bend and reduction of the plate thickness are likely to occur. Further, when the core metal is not used or the clearance between the core metal and the bending mold is increased, cracking on the outer side of the bend and reduction of the plate thickness are suppressed, but buckling on the inner side of the bend and cross-sectional ovalization tend to occur.

そのため、特に、金属管の板厚が薄い場合や、曲げ半径が小さい場合(例えば、曲げ半径が金属管の外径の1.5倍以下である場合)に、曲げ外側の割れ、板厚減少、曲げ内側の座屈、及び断面楕円化をバランスさせて抑制することは難しい。   Therefore, especially when the thickness of the metal tube is thin or when the bending radius is small (for example, when the bending radius is less than 1.5 times the outer diameter of the metal tube), cracks on the outside of the bend and reduction of the plate thickness are reduced. It is difficult to balance and suppress buckling inside the bend and cross-sectional ovalization.

曲げ外側の割れや板厚減少を抑制する方法として、例えば、特許文献1では曲げ金型の回転速度とバックブースターの軸押し速度とを同期制御すること、特許文献2ではバックブースター及びサイドブースターの軸押し速度を曲げ金型の回転速度よりも大きい値に制御すること、及び特許文献3では芯金と金属管の内径とのクリアランスを規定すること、が提案されている。   As a method for suppressing cracks on the outer side of the bend and reduction of the plate thickness, for example, in Patent Document 1, the rotational speed of the bending mold and the axial push speed of the back booster are controlled synchronously, and in Patent Document 2, the back booster and side booster are controlled. Controlling the shaft pressing speed to a value larger than the rotational speed of the bending mold and Patent Document 3 propose to define the clearance between the core metal and the inner diameter of the metal tube.

また、特許文献4では、通常、曲げ加工の途中で固定されて移動しない芯金を、曲げ加工の初期には曲げ加工に影響しない位置まで下げることが提案されている。
特許文献5では、曲げ加工を複数の工程に分割することが提案されている。
Further, in Patent Document 4, it is proposed that a core metal that is fixed and does not move in the middle of bending is lowered to a position that does not affect bending at the initial stage of bending.
In patent document 5, dividing | segmenting a bending process into a some process is proposed.

特許第2544001号公報Japanese Patent No. 2544001 特公平2−15291号公報Japanese Patent Publication No. 2-15291 特許第3974439号公報Japanese Patent No. 3974439 特許第4456489号公報Japanese Patent No. 4456489 特許第4680652号公報Japanese Patent No. 4680652

しかしながら、特許文献1乃至3の曲げ加工方法は、曲げ外側の割れ及び板厚減少抑制の効果はあるものの、必ずしも十分ではない。   However, the bending methods disclosed in Patent Documents 1 to 3 are not always sufficient, although they have the effect of suppressing cracking on the outside of the bend and reducing the plate thickness.

特許文献4の曲げ加工方法は、曲げ加工の初期に芯金の効果が発揮されないため、曲げ外側の割れ及び板厚減少は抑制されるが、曲げ内側の座屈及び断面楕円化を抑制できない。   In the bending method of Patent Document 4, since the effect of the core bar is not exhibited at the initial stage of bending, cracking on the outside of the bend and reduction of the plate thickness are suppressed, but buckling and cross-sectional ovalization on the inside of the bend cannot be suppressed.

特許文献5の曲げ加工方法は、加工工程数が増えるため、各工程に対応した金型が必要となると共に、加工時間も増加するため、加工コストが高くなる。   In the bending method of Patent Document 5, since the number of processing steps increases, a die corresponding to each step is required, and the processing time also increases, so that the processing cost increases.

本発明は、上記の課題を解消するために案出されたものであり、ワイパーと芯金を用いて曲げ内側の座屈及び断面楕円化を抑制する回転引き曲げ加工方法において、特に、金属管の板厚が薄い場合や曲げ半径が小さい場合に、曲げ外側の割れ及び板厚減少を抑制できる回転引き曲げ加工方法、及び当該回転引き曲げ加工方法を実現できる回転引き曲げ加工装置を提供することを目的とする。   The present invention has been devised in order to solve the above-described problems, and particularly in a rotational pull bending method for suppressing buckling and cross-sectional ovalization inside a bend by using a wiper and a cored bar, particularly a metal tube. To provide a rotary bending method that can suppress cracking on the outer side of the bend and reduction of the plate thickness when the plate thickness is small or the bending radius is small, and a rotary drawing bending device that can realize the rotary drawing method. With the goal.

本発明者等は、金属管の回転引き曲げ加工において、曲げ加工の途中における金属管と芯金との接触状態と板厚減少の進行について鋭意検討を重ねた結果、金属管が芯金と接触している領域では芯金との摩擦により金属管が引き伸ばされにくく板厚減少の進行が緩やかとなり、一方、金属管が芯金と接触していない領域では、金属管は芯金との摩擦力が作用しない状態で引き伸ばされるために板厚減少の進行が顕著となるという知見を得た。そのため、曲げ外側の特定の部位が長時間芯金と接触していない状態で曲げ加工を受けると、板厚減少がその部位に集中して割れ、もしくは加工品の使用目的を満足しないような著しい板厚減少を引き起こす。   As a result of intensive studies on the state of contact between the metal tube and the metal core during the bending process and the progress of the plate thickness reduction, the present inventors have made contact with the metal core. In the region where the metal tube is not stretched due to friction with the metal core, the plate thickness decreases slowly. On the other hand, in the region where the metal tube is not in contact with the metal core, the metal tube has a frictional force with the metal core. It was found that the progress of plate thickness reduction becomes remarkable because the film is stretched in a state in which no action occurs. Therefore, if bending is performed in a state where a specific part outside the bend is not in contact with the core metal for a long time, the reduction in thickness is concentrated on the part, and it is remarkable that the purpose of use of the processed product is not satisfied. Causes thickness reduction.

本発明は、このような知見に基づいて開発されたものであり、曲げ金型、ワイパー、サイドブースター、バックブースター、及び芯金を用いて金属管を曲げ加工する回転引き曲げ加工方法において、芯金の移動速度を金属管の中立軸の移動速度と同期させずに移動させることにより、金属管の曲げ外側の特定の部位が長時間芯金と接触していない状態で局所的に引き伸ばされることを抑制し、金属管の板厚減少を分散、平均化することで、曲げ外側で割れもしくは加工品の使用目的を満足しないような著しい板厚減少を抑制できる、金属管の回転引き曲げ加工方法に関する。   The present invention has been developed on the basis of such knowledge, and in a rotary pull bending method for bending a metal tube using a bending die, a wiper, a side booster, a back booster, and a core metal, By moving the movement speed of the gold without synchronizing with the movement speed of the neutral axis of the metal tube, the specific part outside the bending of the metal pipe is stretched locally without being in contact with the metal core for a long time. Rotating and bending metal pipes that can suppress the reduction of the thickness of the metal tube that does not satisfy the purpose of use of the cracked or processed product outside the bend About.

また、本発明は、曲げ金型、ワイパー、サイドブースター、バックブースター及び芯金を用いて金属管を曲げ加工する回転引き曲げ加工装置において、芯金を移動させる芯金移動機構と、芯金を金属管の中立軸の移動速度と同期させずに移動させる制御部と、を更に備えることで、金属管の曲げ外側の特定の部位が長時間芯金と接触していない状態で局所的に引き伸ばされることを抑制して金属管の板厚減少を分散、平均化し、その結果、曲げ外側で割れもしくは加工品の使用目的を満足しないような著しい板厚減少が起こることを抑制できる、金属管の回転引き曲げ加工装置に関する。   Further, the present invention provides a core metal moving mechanism for moving a core metal, and a core metal in a rotary drawing bending apparatus that bends a metal tube using a bending die, a wiper, a side booster, a back booster, and a core metal. And a controller that moves the metal tube without being synchronized with the moving speed of the neutral axis of the metal tube, so that a specific portion outside the bent portion of the metal tube is locally stretched without being in contact with the metal core for a long time. The thickness of the metal tube is dispersed and averaged, and as a result, cracks on the outside of the bend or a significant reduction in the thickness that does not satisfy the intended use of the processed product can be suppressed. The present invention relates to a rotary drawing bending apparatus.

金属管の曲げ加工では、曲げ内側と曲げ外側の移動速度が異なるため、本発明においては、負荷すべき芯金の移動速度の算出基準として、金属管の中立軸の移動速度を用いることとした。金属管の中立軸の移動速度は、曲げ金型に取り付けた回転速度検出器又はバックブースターに取り付けた軸押し速度検出器により求めることができる。   In the metal tube bending process, the moving speeds of the inner side and the outer side of the bending are different. Therefore, in the present invention, the moving speed of the neutral axis of the metal pipe is used as a calculation standard for the moving speed of the core metal to be loaded. . The moving speed of the neutral axis of the metal tube can be determined by a rotational speed detector attached to the bending mold or a shaft pushing speed detector attached to the back booster.

また、本発明の回転引き曲げ加工装置においては、芯金は位置及び移動速度を制御可能な制御部を具備している。芯金は、金属管の中立軸の移動速度を基に算出された所定の移動速度に調整されて移動される。   Moreover, in the rotation drawing bending apparatus of this invention, the metal core is equipped with the control part which can control a position and a moving speed. The mandrel is adjusted and moved to a predetermined moving speed calculated based on the moving speed of the neutral axis of the metal tube.

本発明によれば、ワイパーと芯金を用いて曲げ内側の座屈及び断面楕円化を抑制する回転引き曲げ加工方法において、特に、金属管の板厚が薄い場合や曲げ半径が小さい場合に、曲げ外側の割れ及び板厚減少を抑制できる回転引き曲げ加工方法及び回転引き曲げ加工装置を提供できる。   According to the present invention, in the rotary pull bending method that suppresses buckling and cross-sectional ovalization inside the bend using a wiper and a cored bar, particularly when the plate thickness of the metal tube is thin or the bending radius is small, It is possible to provide a rotary draw bending method and a rotary draw bending apparatus that can suppress cracking on the outer side of the bend and reduction in sheet thickness.

回転引き曲げ加工装置を模式的に示す側面図(a)及び上面図(b)であり、曲げ加工される金属管が取り付けられた状態を示す図である。It is the side view (a) and top view (b) which show a rotation drawing bending apparatus typically, and is a figure which shows the state to which the metal pipe to be bent was attached. 回転引き曲げ加工装置を模式的に示す上面図であり、金属管を曲げ加工した状態を示す図である。It is a top view which shows a rotation drawing bending apparatus typically, and is a figure which shows the state which bent the metal pipe. 芯金との接触状態による金属管の伸びの違いを模式的に示す図である。It is a figure which shows typically the difference in the expansion | extension of the metal pipe by the contact state with a metal core.

以下に本発明の好ましい一実施形態を、図面を参照しながら説明する。図1は、本発明の金属管の回転引き曲げ加工方法に用いられる回転引き曲げ加工装置を模式的に示す図であり、曲げ加工される金属管が取り付けられた状態を示す図である。図2は、図1に示す状態から、金属管が90度曲げ加工された状態を示す図である。尚、図1及び図2の上面図においては、クランプされていない金属管部分については、断面を表示している。   A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing a rotary drawing and bending apparatus used in the method of rotating and bending a metal tube according to the present invention, and shows a state where a metal tube to be bent is attached. FIG. 2 is a view showing a state where the metal tube is bent 90 degrees from the state shown in FIG. In the top views of FIGS. 1 and 2, a cross section is shown for a metal tube portion that is not clamped.

本実施形態の回転引き曲げ加工装置100は、金属管1を回転引き曲げ加工する装置である。この回転引き曲げ加工装置100は、曲げ金型3、クランプ4、サイドブースター5、バックブースター6、ワイパー7及び芯金2を備えている。回転引き曲げ加工装置100では、金属管1の一端を曲げ金型3とクランプ4で挟んで保持し、曲げ金型3を曲げ金型回転軸Cを中心として回転させることにより、金属管1の軸方向に引張荷重を負荷しながら曲げ加工を行う。
その際、金属管1の曲げ内側の外表面側に設置したワイパー7と、金属管1の内部に挿入した芯金2との間に、金属管1を挟んだ状態で曲げ加工することにより座屈の発生を抑制する。また、金属管1の曲げ外側の外表面側に設置して金属管1に押し付けた状態で軸方向に移動させるサイドブースター5と、金属管1の後方に設置して金属管1を軸方向に押し出すバックブースター6とにより、主に曲げ外側に材料を供給することにより割れや板厚減少を抑制する。また、金属管1の内部に挿入した芯金2で金属管1の曲げ内側と外側の間隔を確保することにより、断面楕円化を抑制する。
The rotary drawing / bending apparatus 100 of the present embodiment is an apparatus for rotating and bending the metal tube 1. The rotary pull bending apparatus 100 includes a bending die 3, a clamp 4, a side booster 5, a back booster 6, a wiper 7 and a cored bar 2. In the rotary drawing and bending apparatus 100, one end of the metal tube 1 is held between the bending die 3 and the clamp 4, and the bending die 3 is rotated around the bending die rotation axis C, whereby the metal tube 1. Bending is performed while applying a tensile load in the axial direction.
At that time, the seat is obtained by bending the metal tube 1 between the wiper 7 installed on the outer surface side of the bent inner side of the metal tube 1 and the core 2 inserted inside the metal tube 1. Suppresses the occurrence of bending. Moreover, it installs in the axial direction in the state which installed in the outer surface side of the bending outer side of the metal tube 1, and pressed against the metal tube 1, and is installed in the back of the metal tube 1, and makes the metal tube 1 axial. By the back booster 6 to be extruded, the material is mainly supplied to the outer side of the bend to suppress cracking and reduction of the plate thickness. In addition, by securing a gap between the inner side and the outer side of the metal tube 1 with the metal core 2 inserted inside the metal tube 1, cross-sectional ovalization is suppressed.

ここで、回転引き曲げ加工装置100を用いた従来の回転引き曲げ加工方法について説明する。
従来の手法では、芯金2の位置は、曲げ加工中は固定される。曲げ加工が開始されると、金属管1は、曲げ金型3とクランプ4に保持されて引っ張られると共に、サイドブースター5とバックブースター6により押し出され、加工初期の位置よりも前方に移動する。このとき、曲げ外側では中立軸よりも弧長が長いため軸方向に伸ばされ、加工後の板厚が加工前の板厚よりも薄くなる。その際、図3に示すように、金属管1が芯金2と接触している領域Aでは、芯金2との摩擦により金属管1が引き伸ばされにくく板厚減少の進行が緩やかとなる。一方、金属管1が芯金2と接触していない領域Bでは、金属管1は芯金2との摩擦力が作用しないフリーの状態で引き伸ばされるために板厚減少の進行が顕著となる。
Here, a conventional rotary drawing and bending method using the rotary drawing and bending apparatus 100 will be described.
In the conventional method, the position of the cored bar 2 is fixed during bending. When the bending process is started, the metal tube 1 is held and pulled by the bending mold 3 and the clamp 4 and is pushed out by the side booster 5 and the back booster 6 to move forward from the initial position of the process. At this time, since the arc length is longer than the neutral axis on the outer side of the bend, it is extended in the axial direction, and the plate thickness after processing becomes thinner than the plate thickness before processing. At that time, as shown in FIG. 3, in the region A where the metal tube 1 is in contact with the cored bar 2, the metal tube 1 is hardly stretched due to friction with the cored bar 2, and the progress of the plate thickness reduction becomes gradual. On the other hand, in the region B where the metal tube 1 is not in contact with the cored bar 2, the metal tube 1 is stretched in a free state in which the frictional force with the cored bar 2 does not act, so the progress of the reduction in the plate thickness becomes remarkable.

そのため、芯金2の位置が固定されていると、金属管1と芯金2との相対速度が大きくなり、金属管1が芯金2と接触する位置は金属管1の軸方向で短時間に移動し、金属管1の芯金2と接触していないある部位で板厚減少が拡大し始めた際に、当該部位が芯金2と接触してもすぐに通過して再び芯金2と接触していない状態となって曲げ加工されるため、当該部位の板厚減少が抑制されずに集中的に板厚減少が増大し、あるいは割れに至る。   Therefore, when the position of the metal core 2 is fixed, the relative speed between the metal tube 1 and the metal core 2 increases, and the position where the metal tube 1 contacts the metal core 2 is short in the axial direction of the metal tube 1. When the plate thickness reduction starts to increase at a certain part that is not in contact with the metal core 2 of the metal tube 1, even if the part comes into contact with the metal core 2, it immediately passes and passes again. Since the bending process is performed in a state where it is not in contact with the substrate, the decrease in the thickness of the portion is not suppressed, and the decrease in the thickness is concentrated or cracking occurs.

また、金属管1の断面形状を良好にするために金属管の中立軸Mの移動速度に同期させて芯金2を移動させることもある。この場合、金属管1と芯金2との相対速度が小さく、曲げ加工が進んでも金属管1と芯金2との接触位置は同等の速度で進むことになり、金属管1の芯金2と接触していないある部位で板厚減少が拡大し始めた際に、当該部位が芯金2まで到達せずに芯金2と接触していない状態のまま曲げ加工されるため、当該部位の板厚減少が抑制されずに集中的に板厚減少が増大し、あるいは割れに至る。   In order to improve the cross-sectional shape of the metal tube 1, the cored bar 2 may be moved in synchronization with the moving speed of the neutral axis M of the metal tube. In this case, the relative speed between the metal tube 1 and the cored bar 2 is small, and even if bending progresses, the contact position between the metal tube 1 and the cored bar 2 proceeds at the same speed, and the cored bar 2 of the metal tube 1 When the plate thickness reduction starts to increase at a certain part not in contact with the core, the part does not reach the core metal 2 and is bent without being in contact with the core metal 2. The reduction in thickness is not suppressed, but the reduction in thickness is concentrated or cracking occurs.

そこで、本実施形態においては、図1及び図2に示すように、芯金2の移動速度を金属管1の中立軸Mの移動速度と同期させずに移動させることにより、金属管1の曲げ外側の特定の部位が長時間芯金2と接触していない状態で局所的に引き伸ばされることを抑制し、金属管1の板厚減少を分散、平均化している。
また、回転引き曲げ加工装置100を、芯金2を移動させる芯金移動機構(図示せず)と、曲げ加工中に芯金2の移動速度を金属管1の中立軸Mの移動速度と同期しないように制御する制御部(図示せず)と、を含んで構成することで、金属管1の曲げ外側の特定の部位が長時間芯金2と接触していない状態で局所的に引き伸ばされることを抑制し、金属管1の板厚減少を分散、平均化している。
Therefore, in this embodiment, as shown in FIGS. 1 and 2, the metal tube 1 is bent by moving the moving speed of the cored bar 2 without synchronizing with the moving speed of the neutral axis M of the metal pipe 1. It is suppressed that the specific part on the outside is stretched locally in a state where it is not in contact with the metal core 2 for a long time, and the reduction in the plate thickness of the metal tube 1 is dispersed and averaged.
In addition, the rotary pull bending apparatus 100 is synchronized with a metal core moving mechanism (not shown) for moving the metal core 2 and the movement speed of the metal core 2 during the bending process with the movement speed of the neutral axis M of the metal tube 1. By including a control unit (not shown) that controls so as not to be stretched, a specific portion outside the bend of the metal tube 1 is locally stretched without being in contact with the cored bar 2 for a long time. This is suppressed, and the thickness reduction of the metal tube 1 is dispersed and averaged.

芯金2の移動速度制御の適正な条件は、金属管1の材質、表面状態、寸法、断面形状や曲げ半径R、曲げ角度θ、芯金2の位置、曲げ金型3の回転速度、サイドブースター5の移動速度、バックブースター6の軸押し力、あるいは曲げ加工品に要求される板厚分布、断面楕円化の程度、更には加工時の温度や環境要因等、さまざまな因子の影響を受ける。   Appropriate conditions for controlling the moving speed of the core metal 2 are the material, surface state, dimensions, cross-sectional shape, bending radius R, bending angle θ, position of the core metal 2, rotational speed of the bending mold 3, side of the metal tube 1. It is affected by various factors such as moving speed of booster 5, axial pushing force of back booster 6, or plate thickness distribution required for bent products, degree of cross-sectional ovalization, and temperature and environmental factors during processing. .

芯金2の形状は、図1〜図3に示す、複数のボール2aを有する自在芯金2に限定されず、球面芯金や、半砲弾型芯金等でもよい。   The shape of the cored bar 2 is not limited to the universal cored bar 2 having a plurality of balls 2 a shown in FIGS. 1 to 3, and may be a spherical cored bar or a semi-cannonball type cored bar.

複数のボール2aを有する自在芯金2は、芯金2の支持駆動軸2cの先端に、複数の芯金のボール2aがボール連結部2bを介して相互に回転可能に連結されて構成されており、全体として屈曲自在になっている。そのため、金属管1の曲げ加工部の途中の位置まで芯金2を挿入することができ、金属管1と芯金2とが複数の箇所で接触できることになり、金属管1の曲げ外側の全長にわたる板厚減少を効果的に抑制できる。   A universal core 2 having a plurality of balls 2a is configured such that a plurality of core metal balls 2a are rotatably connected to the tip of a support drive shaft 2c of the core 2 via a ball connecting portion 2b. It is flexible as a whole. Therefore, the metal core 2 can be inserted to a position in the middle of the bent portion of the metal tube 1, and the metal tube 1 and the metal core 2 can be contacted at a plurality of locations. Can be effectively suppressed.

発明の好ましい実施形態においては、芯金2の移動速度を金属管1の中立軸Mの移動速度と同期させずに、芯金2の移動速度を金属管1の中立軸Mの移動速度に対し10%以上50%以下の範囲に設定して移動させることにより、金属管1の板厚減少を分散、平均化し、曲げ外側で割れもしくは加工品の使用目的を満足しないような著しい板厚減少を抑制できる。   In a preferred embodiment of the invention, the moving speed of the metal core 2 is not synchronized with the moving speed of the neutral axis M of the metal tube 1, and the moving speed of the metal core 2 is set to the moving speed of the neutral axis M of the metal pipe 1. By moving within the range of 10% or more and 50% or less, the thickness reduction of the metal tube 1 is dispersed and averaged. Can be suppressed.

尚、芯金2の移動速度を金属管1の中立軸Mの移動速度と同期しないように制御する手法としては、例えば、予め設定値として入力された芯金2の移動速度及び金属管1の中立軸Mの移動速度に基づいて、芯金2を移動させると共に曲げ金型3を回転させる手法が挙げられる。また、回転引き曲げ加工装置100の制御部を、曲げ金型3の回転速度を検出する検出部と、検出部により検出された回転速度から芯金2を移動させる移動速度を算出する算出部と、算出部により算出された移動速度で芯金2を移動させる芯金制御部と、を含んで構成してもよい。   As a method for controlling the movement speed of the metal core 2 so as not to synchronize with the movement speed of the neutral axis M of the metal tube 1, for example, the movement speed of the metal core 2 input in advance as a set value and the metal tube 1. Based on the moving speed of the neutral axis M, there is a method of moving the core metal 2 and rotating the bending mold 3. Further, the control unit of the rotary drawing and bending apparatus 100 includes a detection unit that detects the rotation speed of the bending die 3, and a calculation unit that calculates a moving speed for moving the cored bar 2 from the rotation speed detected by the detection unit; A cored bar control unit that moves the cored bar 2 at the moving speed calculated by the calculating unit may be included.

以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

[板厚減少率の測定1]
外径D40mm、板厚T1.2mmのフェライト系ステンレス鋼管を金属管1として、曲げ中立軸Mの曲率半径(曲げ半径)Rが48mm(曲げ半径R=1.2D)となるように、回転引き曲げ法による曲げ加工を実施した。芯金2には、3ボール式の自在芯金を使用し、金属管1の内径と芯金2とのクリアランスは片側0.5mmとした。曲げ角度は90度とした。曲げ金型3の回転による金属管1の中立軸Mの移動速度に対し、芯金2の移動速度を0%(固定:比較例1)、10%、20%、30%、40%、50%、60%(実施例1〜6)のそれぞれ一定の速度の条件で曲げに伴う金属管1の移動と同じ方向に移動させ、曲げ外側の板厚減少最大位置の板厚減少率を評価した。結果を表1に示す。
[Measurement of plate thickness reduction rate 1]
Using a ferritic stainless steel pipe having an outer diameter D of 40 mm and a plate thickness T of 1.2 mm as a metal pipe 1, rotation pulling is performed so that the radius of curvature (bending radius) R of the bending neutral axis M is 48 mm (bending radius R = 1.2 D). Bending by the bending method was performed. As the core metal 2, a three-ball free core metal was used, and the clearance between the inner diameter of the metal tube 1 and the core metal 2 was 0.5 mm on one side. The bending angle was 90 degrees. The moving speed of the cored bar 2 is 0% (fixed: Comparative Example 1), 10%, 20%, 30%, 40%, 50 with respect to the moving speed of the neutral axis M of the metal tube 1 due to the rotation of the bending mold 3. % And 60% (Examples 1 to 6), respectively, were moved in the same direction as the movement of the metal tube 1 accompanying bending under the condition of a constant speed, and the plate thickness reduction rate at the plate thickness reduction maximum position outside the bend was evaluated. . The results are shown in Table 1.

Figure 2016182615
Figure 2016182615

芯金2を固定した比較例1の場合、曲げ外側の最大板厚減少率は約32%であった。芯金2の移動速度を増していくと、板厚減少率は徐々に低下していき、金属管1の中立軸Mの移動速度に対し芯金2の移動速度を30%とした場合に板厚減少率は約15%で、芯金2を固定した条件の1/2以下に改善された。更に芯金2の移動速度を増すと板厚減少率は徐々に増大した。本実施例では、芯金2の移動速度が、金属管1の中立軸Mの移動速度に対し10%〜50%の場合に、割れや座屈が起こらず、しかも局所的な板厚減少が特に抑制された。芯金2の移動速度を上記範囲に規定することにより、金属管1と芯金2との接触位置が逐次移動して、金属管1の板厚減少が局所的に集中せず、板厚減少が特に好適に抑制されたと考えられる。   In the case of Comparative Example 1 in which the core metal 2 was fixed, the maximum thickness reduction rate on the outside of the bend was about 32%. As the moving speed of the cored bar 2 is increased, the sheet thickness reduction rate gradually decreases. When the moving speed of the cored bar 2 is set to 30% with respect to the moving speed of the neutral axis M of the metal tube 1, the sheet is reduced. The thickness reduction rate was about 15%, which was improved to ½ or less of the condition in which the core metal 2 was fixed. Furthermore, when the moving speed of the core metal 2 was increased, the plate thickness reduction rate gradually increased. In the present embodiment, when the moving speed of the metal core 2 is 10% to 50% with respect to the moving speed of the neutral axis M of the metal tube 1, cracks and buckling do not occur, and a local reduction in the plate thickness occurs. Especially suppressed. By defining the moving speed of the cored bar 2 within the above range, the contact position between the metal tube 1 and the cored bar 2 sequentially moves, so that the thickness reduction of the metal tube 1 does not concentrate locally and the thickness decreases. Is considered to be particularly suitably suppressed.

[板厚減少率の測定2]
外径D35mm、板厚T1.0mmのフェライト系ステンレス鋼管を金属管1として、曲げ中立軸Mの曲率半径(曲げ半径)Rが35mm(曲げ半径R=1.0D)となるように、回転引き曲げ法による曲げ加工を実施した。芯金2には、3ボール式の自在芯金を使用し、金属管1の内径と芯金2とのクリアランスは片側0.55mmとした。曲げ角度は90度とした。曲げ金型3の回転による金属管1の中立軸Mの移動速度に対し、芯金2の移動速度を0%(固定:比較例2)、10%、20%、30%、40%、50%(実施例7〜11)のそれぞれ一定の速度の条件で曲げに伴う金属管1の移動と同じ方向に移動させ、曲げ外側の板厚減少最大位置の板厚減少率を評価した。結果を表2に示す。
[Measurement of plate thickness reduction rate 2]
Using a ferritic stainless steel pipe having an outer diameter D of 35 mm and a plate thickness T of 1.0 mm as a metal pipe 1, the bending radius R of the bending neutral axis M (bending radius) R is 35 mm (bending radius R = 1.0 D). Bending by the bending method was performed. As the core metal 2, a three-ball free core metal was used, and the clearance between the inner diameter of the metal tube 1 and the core metal 2 was 0.55 mm on one side. The bending angle was 90 degrees. The moving speed of the cored bar 2 is 0% (fixed: Comparative Example 2), 10%, 20%, 30%, 40%, 50 with respect to the moving speed of the neutral axis M of the metal tube 1 due to the rotation of the bending mold 3. % (Examples 7 to 11) were moved in the same direction as the movement of the metal tube 1 during bending under the condition of a constant speed, and the plate thickness reduction rate at the plate thickness reduction maximum position outside the bend was evaluated. The results are shown in Table 2.

Figure 2016182615
Figure 2016182615

芯金2を固定した比較例2の場合、曲げ外側の最大板厚減少率は約40%であり、割れの前段階であるネッキングが発生した。芯金2の移動速度を増していくと、板厚減少率は徐々に低下していき、金属管1の中立軸Mの移動速度に対し芯金の移動速度を30%とした場合に板厚減少率は約17%で、芯金2を固定した条件の1/2以下に改善された。更に芯金2の移動速度を増すと板厚減少率は増大した。本実施例では、芯金2の移動速度が、曲げ金型3の回転による金属管1の中立軸Mの移動速度に対し20%〜40%の場合に、割れや座屈が起こらず、しかも局所的な板厚減少が特に抑制された。芯金2の移動速度を上記範囲に規定することにより、金属管1と芯金2との接触位置が逐次移動して、金属管1の板厚減少が局所的に集中せず、板厚減少が特に好適に抑制されたと考えられる。尚、本実施例では、上述の[板厚減少率の測定1]と比較して金属管1の初期板厚が薄く相対的な曲げ半径Rも小さいため板厚減少が大きく、芯金2の位置の移動速度の適正範囲は狭くなった。   In the case of Comparative Example 2 in which the core metal 2 was fixed, the maximum thickness reduction rate on the outside of the bend was about 40%, and necking, which was the stage before cracking, occurred. As the moving speed of the cored bar 2 is increased, the sheet thickness reduction rate gradually decreases. When the moving speed of the cored bar is set to 30% with respect to the moving speed of the neutral axis M of the metal tube 1, the sheet thickness is reduced. The reduction rate was about 17%, which was improved to ½ or less of the condition in which the core metal 2 was fixed. Furthermore, when the moving speed of the core metal 2 was increased, the plate thickness reduction rate increased. In this embodiment, when the moving speed of the metal core 2 is 20% to 40% with respect to the moving speed of the neutral axis M of the metal tube 1 due to the rotation of the bending mold 3, no cracking or buckling occurs. Local thickness reduction was particularly suppressed. By defining the moving speed of the cored bar 2 within the above range, the contact position between the metal tube 1 and the cored bar 2 sequentially moves, so that the thickness reduction of the metal tube 1 does not concentrate locally and the thickness decreases. Is considered to be particularly suitably suppressed. In this embodiment, the metal plate 1 has a small initial plate thickness and a small relative bending radius R compared to the above [Measurement of plate thickness reduction rate 1]. The appropriate range of position movement speed has become narrower.

[板厚減少率の測定3]
外径D40mm、板厚T1.2mmのフェライト系ステンレス鋼管を金属管1として、曲げ中立軸Mの曲率半径(曲げ半径)Rが48mm(曲げ半径R=1.2D)となるように、回転引き曲げ法による曲げ加工を実施した。芯金2には、3ボール式の自在芯金を使用し、金属管1の内径と芯金2とのクリアランスは片側0.5mmとした。曲げ角度は90度とした。曲げ金型3の回転による金属管1の中立軸Mの移動速度に対し、芯金2の移動速度を20%で一定として曲げに伴う金属管1の移動と同じ方向に移動させ、曲げ角度が15度増す毎に芯金2を初期位置に戻すことを繰り返しながら、曲げ角度90度まで加工し、曲げ外側の板厚減少最大位置の板厚減少率を評価した。結果を表3に示す。
[Measurement of plate thickness reduction rate 3]
Using a ferritic stainless steel pipe having an outer diameter D of 40 mm and a plate thickness T of 1.2 mm as a metal pipe 1, rotation pulling is performed so that the radius of curvature (bending radius) R of the bending neutral axis M is 48 mm (bending radius R = 1.2 D). Bending by the bending method was performed. As the core metal 2, a three-ball free core metal was used, and the clearance between the inner diameter of the metal tube 1 and the core metal 2 was 0.5 mm on one side. The bending angle was 90 degrees. With respect to the moving speed of the neutral axis M of the metal tube 1 due to the rotation of the bending mold 3, the moving speed of the metal core 2 is kept constant at 20% and moved in the same direction as the movement of the metal pipe 1 accompanying bending, and the bending angle is While repeatedly returning the cored bar 2 to the initial position every time it increased by 15 degrees, it was processed to a bending angle of 90 degrees, and the thickness reduction rate at the maximum thickness reduction position outside the bending was evaluated. The results are shown in Table 3.

Figure 2016182615
Figure 2016182615

芯金2を固定した比較例3の場合、曲げ外側の最大板厚減少率は約32%であった。芯金2を曲げ角度15度毎に初期位置に戻すように移動させた実施例12の場合には、板厚減少率は約12%で、芯金2を固定した条件の1/2以下に改善された。本実施例では、芯金2の移動速度を曲げ金型3の回転による金属管1の中立軸Mの移動速度に対し20%にすると共に、曲げの進行に伴って芯金2の位置を制御することにより、割れや座屈が起こらず、しかも局所的な板厚減少が抑制された。芯金2の移動速度と位置を上記の様に規定することにより、金属管1と芯金2との接触位置が逐次移動して、金属管1の板厚減少が局所的に集中せず、板厚減少が抑制されたと考えられる。   In the case of Comparative Example 3 in which the core metal 2 was fixed, the maximum thickness reduction rate on the outside of the bend was about 32%. In the case of Example 12 in which the core metal 2 is moved so as to return to the initial position every 15 degrees of bending angle, the plate thickness reduction rate is about 12%, which is less than 1/2 of the condition in which the core metal 2 is fixed. Improved. In this embodiment, the moving speed of the metal core 2 is set to 20% of the moving speed of the neutral axis M of the metal tube 1 due to the rotation of the bending mold 3, and the position of the metal core 2 is controlled as the bending proceeds. By doing so, cracking and buckling did not occur, and local thickness reduction was suppressed. By defining the moving speed and position of the metal core 2 as described above, the contact position between the metal tube 1 and the metal core 2 moves sequentially, and the reduction in the thickness of the metal tube 1 does not concentrate locally, It is thought that the plate thickness reduction was suppressed.

1・・・金属管
2・・・芯金
2a・・芯金のボール
2b・・芯金のボール連結部
2c・・芯金の支持駆動軸
3・・・曲げ金型
4・・・クランプ
5・・・サイドブースター
6・・・バックブースター
7・・・ワイパー
100・・・回転引き曲げ加工装置
C・・曲げ金型回転軸
M・・・金属管の中立軸
R・・・曲げ半径
DESCRIPTION OF SYMBOLS 1 ... Metal pipe 2 ... Core metal 2a ... Core metal ball 2b ... Core metal ball connection part 2c ... Metal core support drive shaft 3 ... Bending die 4 ... Clamp 5・ ・ ・ Side booster 6 ・ ・ ・ Back booster 7 ・ ・ ・ Wiper 100 ・ ・ ・ Rotary bending bending machine C ・ ・ Bending mold rotation axis M ・ ・ ・ Neutral axis of metal tube R ・ ・ ・ Bending radius

Claims (4)

曲げ金型、ワイパー、サイドブースター、バックブースター及び芯金を用いて金属管を曲げ加工する回転引き曲げ加工方法において、前記芯金の移動速度を前記金属管の中立軸の移動速度と同期させずに移動させる金属管の回転引き曲げ加工方法。   In a rotary pull bending method for bending a metal tube using a bending die, wiper, side booster, back booster and core metal, the moving speed of the core metal is not synchronized with the moving speed of the neutral axis of the metal pipe Rotating drawing bending method for metal pipes to be moved to. 前記芯金の移動速度を、前記曲げ金型の回転による前記金属管の中立軸の移動速度に対し10%以上50%以下の範囲に設定する請求項1に記載の金属管の回転引き曲げ加工方法。   2. The metal pipe rotation drawing process according to claim 1, wherein the moving speed of the metal core is set in a range of 10% or more and 50% or less with respect to the moving speed of the neutral axis of the metal pipe due to the rotation of the bending mold. Method. 前記芯金を、前記曲げ金型を所定角度回転させる毎に初期位置に復帰させる請求項1又は2に記載の金属管の回転引き曲げ加工方法。   The method of rotating and bending a metal tube according to claim 1 or 2, wherein the core metal is returned to an initial position every time the bending die is rotated by a predetermined angle. 曲げ金型、ワイパー、サイドブースター、バックブースター及び芯金を用いて金属管を曲げ加工する回転引き曲げ加工装置であって、
前記芯金を移動させる芯金移動機構と、
曲げ加工中に、前記芯金の移動速度が前記金属管の中立軸の移動速度と同期しないように前記芯金移動機構を制御する制御部と、更に備える金属管の回転引き曲げ加工装置。
A rotary drawing bending apparatus that bends a metal tube using a bending die, a wiper, a side booster, a back booster and a core metal,
A metal core moving mechanism for moving the metal core;
A controller for controlling the cored bar moving mechanism so that the moving speed of the cored bar does not synchronize with the moving speed of the neutral axis of the metal pipe during the bending process, and a rotational pulling bending apparatus for the metal pipe further provided.
JP2015063334A 2015-03-25 2015-03-25 Rotational bending method and rotational bending device Pending JP2016182615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063334A JP2016182615A (en) 2015-03-25 2015-03-25 Rotational bending method and rotational bending device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063334A JP2016182615A (en) 2015-03-25 2015-03-25 Rotational bending method and rotational bending device

Publications (1)

Publication Number Publication Date
JP2016182615A true JP2016182615A (en) 2016-10-20

Family

ID=57241346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063334A Pending JP2016182615A (en) 2015-03-25 2015-03-25 Rotational bending method and rotational bending device

Country Status (1)

Country Link
JP (1) JP2016182615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127233A (en) * 2017-06-28 2017-09-05 东北大学 The rotoflector equipment of metal superfine pipe
CN113102579A (en) * 2021-04-09 2021-07-13 岳阳龙威管道有限公司 Small-radius bent pipe manufacturing device and using method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481803A (en) * 1983-03-18 1984-11-13 Teledyne Industries, Inc. Method for eliminating distortion at the end of a tube bend
JPH03238123A (en) * 1990-02-16 1991-10-23 Showa Alum Corp Fastening die for pull-bending work
JP2000326013A (en) * 1999-05-20 2000-11-28 Toyota Motor Corp Method and device for bending pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481803A (en) * 1983-03-18 1984-11-13 Teledyne Industries, Inc. Method for eliminating distortion at the end of a tube bend
JPH03238123A (en) * 1990-02-16 1991-10-23 Showa Alum Corp Fastening die for pull-bending work
JP2000326013A (en) * 1999-05-20 2000-11-28 Toyota Motor Corp Method and device for bending pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127233A (en) * 2017-06-28 2017-09-05 东北大学 The rotoflector equipment of metal superfine pipe
CN113102579A (en) * 2021-04-09 2021-07-13 岳阳龙威管道有限公司 Small-radius bent pipe manufacturing device and using method thereof
CN113102579B (en) * 2021-04-09 2022-11-22 岳阳龙威管道有限公司 Small-radius bent pipe manufacturing device and using method thereof

Similar Documents

Publication Publication Date Title
TW200948507A (en) Method for bending pipes, rods, profiled sections and similar blanks, and corresponding device
JP2016182615A (en) Rotational bending method and rotational bending device
JP6607102B2 (en) Method and apparatus for forming welded steel pipe, method and apparatus for manufacturing welded steel pipe
JP4828160B2 (en) Pipe bending apparatus and pipe bending method
JP5071476B2 (en) Drilling machine
JP2010005697A (en) Pipe bending method and pipe bending device
US7739892B2 (en) Method of manufacturing seamless pipes
JP2013027880A (en) Apparatus and method for bending hollow shape
WO2018155414A1 (en) Mandrel, curved pipe, and method and device for manufacturing same
JP2019177395A (en) Bending method and device of end of steel plate, manufacturing method of steel pipe, and equipment
JP2007275929A (en) Tubular article bending device and tubular article bending method
JP4837308B2 (en) Pipe bending method and apparatus
JP5098477B2 (en) Pusher apparatus for piercing and rolling and method for producing seamless pipe using the same
JP2016112621A5 (en)
JP2005161324A (en) Pipe bending machine and pipe bending method
JP6950858B1 (en) Inclined rolling equipment, seamless pipe manufacturing method and seamless steel pipe manufacturing method
JP4737347B2 (en) Retract mandrel mill and tube rolling method
JP4920502B2 (en) Method and apparatus for bending metal pipe
JP4383835B2 (en) Pipe bending apparatus and pipe bending method
JP7222152B2 (en) Control device for rolling mill, rolling equipment, and method for operating rolling mill
RU2236919C1 (en) Mill for continuous cold drawing-rolling of tubes
JP6795131B1 (en) A rolling straightening machine and a method for manufacturing a pipe or a rod using the rolling straightening machine.
JPH0587340B2 (en)
JPH0234690B2 (en) OSHIMAGESHIKIREIKANKANMAGESOCHI
JP2000015380A (en) Thickening method of metallic pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001