JP5519994B2 - Cell culture device and cell culture method - Google Patents

Cell culture device and cell culture method Download PDF

Info

Publication number
JP5519994B2
JP5519994B2 JP2009240725A JP2009240725A JP5519994B2 JP 5519994 B2 JP5519994 B2 JP 5519994B2 JP 2009240725 A JP2009240725 A JP 2009240725A JP 2009240725 A JP2009240725 A JP 2009240725A JP 5519994 B2 JP5519994 B2 JP 5519994B2
Authority
JP
Japan
Prior art keywords
culture
medium
tank
preparation
preparation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009240725A
Other languages
Japanese (ja)
Other versions
JP2011083263A (en
Inventor
智宏 水迫
直樹 田原
昌弘 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2009240725A priority Critical patent/JP5519994B2/en
Publication of JP2011083263A publication Critical patent/JP2011083263A/en
Application granted granted Critical
Publication of JP5519994B2 publication Critical patent/JP5519994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、培養槽内において細胞の培養を行う培養装置及び培養方法に関する。   The present invention relates to a culture apparatus and a culture method for culturing cells in a culture tank.

バイオ医薬品例えばワクチンや抗体を製造するにあたって、例えば動物細胞を培養して、増殖した細胞やこの細胞から生成した生成物からタンパク質などの有効成分を抽出・精製し、上記のバイオ医薬品などの原料として用いる方法が知られている。この培養は、例えばバッチ式あるいは連続式の培養槽に貯留した細胞に対して、細胞の栄養分(糖やビタミン、無機塩などの培地成分)を含む培地及び酸素ガスを供給して培養液中において行われる。   In the production of biopharmaceuticals such as vaccines and antibodies, for example, animal cells are cultured, and active ingredients such as proteins are extracted and purified from the proliferated cells and products generated from these cells. The method used is known. In this culture, for example, cells stored in a batch or continuous culture tank are supplied with a medium containing cell nutrients (medium components such as sugar, vitamins and inorganic salts) and oxygen gas in the culture solution. Done.

培地(培養液)に上記の酸素ガスを供給する方法としては、例えば先端側に多数のガス吐出口が形成された管状のスパージャーを培地中に浸漬し、このスパージャーを介して培地中に酸素ガスを含む気泡をバブリングする方法が知られている。しかしながらこの方法では、細胞を包む細胞膜の強度が小さく、気泡の破泡などによって生じる物理的な衝撃により、細胞がダメージを受けてしまう場合がある。特に、動物細胞は、このような物理的な衝撃に弱いという特性がある。   As a method for supplying the above-mentioned oxygen gas to the culture medium (culture solution), for example, a tubular sparger with a large number of gas discharge ports formed on the tip side is immersed in the culture medium, and the medium is passed through the sparger into the culture medium. A method of bubbling bubbles containing oxygen gas is known. However, in this method, the strength of the cell membrane that wraps the cells is small, and the cells may be damaged by physical impact caused by bubble breakage or the like. In particular, animal cells have the property of being vulnerable to such physical impacts.

そこで、培地中に気泡を発生させないで酸素ガスを溶解させる方法として、例えば培地中に酸素ガスを透過する透過膜例えばシリコンチューブやシリコン膜などを浸漬しておき、この酸素透過膜を介して酸素ガスを培地に溶解させる方法が知られている。しかしこの方法では、酸素ガスの溶解量を多くするためには、できるだけ膜表面積を大きくする必要があり、結果として、多くの酸素透過膜を培地に浸漬することが必要となる。一方、培地(培養槽)の体積は有限であるため浸漬できる量が限られており、溶存酸素濃度を十分高い値に維持するのは極めて困難となる。また、培地に酸素透過膜を浸漬すると、培養槽の洗浄性や無菌環境の維持が困難になるおそれがあり、酸素透過膜を介してコンタミネーションが発生するおそれもある。また、酸素透過膜の取り扱いも煩雑になってしまう欠点がある。   Therefore, as a method of dissolving oxygen gas without generating bubbles in the culture medium, for example, a permeable film that transmits oxygen gas, such as a silicon tube or a silicon film, is immersed in the culture medium, and oxygen is passed through the oxygen permeable film. A method for dissolving gas in a culture medium is known. However, in this method, in order to increase the amount of dissolved oxygen gas, it is necessary to increase the membrane surface area as much as possible. As a result, it is necessary to immerse many oxygen permeable membranes in the culture medium. On the other hand, since the volume of the culture medium (culture tank) is limited, the amount that can be immersed is limited, and it is extremely difficult to maintain the dissolved oxygen concentration at a sufficiently high value. Further, when the oxygen permeable membrane is immersed in the culture medium, it may be difficult to maintain the cleanability of the culture tank and the sterile environment, and contamination may occur through the oxygen permeable membrane. In addition, there is a drawback that handling of the oxygen permeable membrane becomes complicated.

以上のことから、大量の通気による酸素ガスの溶解方法を採用した場合、気泡の破泡によって生じる物理的な衝撃により細胞がダメージを受けてしまうこと、酸素透過膜を介して酸素ガスを溶解する方法では培地への十分な量の酸素ガスの供給が難しいことから、実験レベルでは培養できることが知られている動物細胞であっても、工業的に培養する場合、上記の理由によって収率が低くなり、現実的に事業として成立しない。   From the above, when the method of dissolving oxygen gas by a large amount of ventilation is adopted, cells are damaged by physical impact caused by bubble breakage, and oxygen gas is dissolved through the oxygen permeable membrane. Since it is difficult to supply a sufficient amount of oxygen gas to the medium in the method, even if it is an animal cell known to be able to be cultured at the experimental level, the yield is low due to the above reasons when it is industrially cultured. Therefore, it is not practically established as a business.

特許文献1には、ウイルスを細胞と共に培養する方法において、培養槽の外部で酸素透過膜を用いて培地に酸素ガスを供給する技術が記載されているが、上記の課題を解決することはできない。また、特許文献2には、スクリーン3aを介して培養槽1と液中通気槽2とを区画して、この液中通気槽2において培地に酸素ガスを溶解させる技術が記載されているが、酸素ガスによる培地への影響については検討されていない。   Patent Document 1 describes a technique for supplying oxygen gas to a culture medium using an oxygen permeable membrane outside a culture tank in a method for culturing viruses with cells, but the above-mentioned problem cannot be solved. . Patent Document 2 describes a technique in which the culture tank 1 and the submerged aeration tank 2 are partitioned through the screen 3a, and oxygen gas is dissolved in the medium in the submerged aeration tank 2. The effect of oxygen gas on the medium has not been studied.

特開平11−187868JP-A-11-187868 特開平7−203945JP-A-7-203945

本発明はこのような事情の下になされたものであり、その目的は、培養槽内の細胞に対して酸素を供給する時の気泡によるダメージを低減できる培養装置及び培養方法を提供することにある。   The present invention has been made under such circumstances, and an object thereof is to provide a culture apparatus and a culture method capable of reducing damage caused by bubbles when oxygen is supplied to cells in a culture tank. is there.

本発明の細胞培養装置は、
培養槽内にて培養液を用いて細胞の培養を行う培養装置において、
細胞を培養するための培養槽と、
前記培養液のうち酸化しにくい成分である、無機塩及び糖の少なくとも一方を含む溶液からなる第1の培地を貯留した第1の調製槽と、
前記培養液のうち酸化しやすい成分である、アミノ酸及びビタミンの少なくとも一方を含む第2の培地を貯留した第2の調製槽と、
前記第1の調製槽内に酸素ガスを供給する手段と、
前記第1の調製槽内における酸素ガスが溶解した第1の培地と、前記第2の調製槽内における第2の培地と、を前記培養槽に供給する手段とを備えたことを特徴とする。
前記第1の調製槽中の第1の培地および前記第2の調製槽中の第2の培地の少なくとも一方に対して不活性ガスを供給する手段を備えていても良い。
The cell culture device of the present invention comprises:
In a culture apparatus for culturing cells using a culture solution in a culture tank,
A culture vessel for culturing cells;
A first preparation tank storing a first culture medium made of a solution containing at least one of an inorganic salt and sugar, which is a component that is difficult to oxidize in the culture solution ;
A second preparation tank storing a second medium containing at least one of an amino acid and a vitamin, which is an easily oxidizable component of the culture solution ;
Means for supplying oxygen gas into the first preparation tank;
And a means for supplying the first culture medium in which the oxygen gas in the first preparation tank is dissolved and the second culture medium in the second preparation tank to the culture tank. .
It may be provided with a means for supplying inert gas to at least one of the second medium in the first medium and the second preparation vessel of the first preparation vessel.

本発明の細胞培養方法は、
培養槽内にて培養液を用いて細胞の培養を行う培養方法において、
前記培養液のうち酸化しにくい成分である、無機塩及び糖の少なくとも一方を含む溶液からなる第1の培地を貯留した第1の調製槽内に酸素ガスを供給する工程と、
次いで、前記前記第1の調製槽内における酸素が溶解した第1の培地と、前記培養液のうち酸化しやすい成分である、アミノ酸及びビタミンの少なくとも一方を含む第2の培地を前記培養槽に各々供給し、この培養槽において細胞の培養を行うことを特徴とする。
前記第1の調製槽中の第1の培地および前記第2の調製槽中の第2の培地の少なくとも一方は、不活性ガスが供給された培地であっても良い。

The cell culture method of the present invention comprises:
In a culture method of culturing cells using a culture solution in a culture tank,
Supplying oxygen gas into the first preparation tank in which the first culture medium made of a solution containing at least one of an inorganic salt and sugar, which is a component that is difficult to oxidize in the culture solution,
Next, a first medium in which oxygen is dissolved in the first preparation tank and a second medium containing at least one of an amino acid and a vitamin which is an easily oxidizable component of the culture solution are added to the culture tank. Each is supplied, and the cells are cultured in this culture tank.
Wherein at least one of the first of the first medium and the second medium in the second preparation vessel in preparation vessel, the inert gas may be a medium which is supplied.

本発明は、培養槽内において細胞の培養を行うにあたり、酸化しにくい成分を含有する培地と酸化しやすい成分を含有する培地とを別々の調製槽に貯留し、酸化しにくい成分を含有する培地を貯留した調製槽内に酸素ガスを溶解させ、当該培地を介して培養槽に酸素を供給して細胞の培養を行う。そのため、培養槽内において気泡の発生が起こらないか、あるいは抑えられるので、細胞へのダメージを低減しつつ細胞に対して要求酸素量を供給することができる。また、酸化しやすい成分を含有する培地については、酸素を供給する調製槽とは別個の調製槽から培養槽中に供給するので、当該培地については酸化を抑えることができる。また、培養槽には基本的には酸素透過膜などを設ける必要がないので、培養槽の洗浄を容易に行うことができ、かつ無菌環境を容易に維持できることにより、さらに培養槽の取り扱いが容易になり、コンタミネーションの発生確率を抑えることができる。   The present invention stores a medium containing a component that is difficult to oxidize and a medium containing a component that easily oxidizes in separate preparation tanks when culturing cells in a culture tank, and a medium containing a component that is difficult to oxidize Oxygen gas is dissolved in the preparation tank in which the gas is stored, and oxygen is supplied to the culture tank through the medium to culture the cells. Therefore, the generation of bubbles in the culture tank does not occur or is suppressed, so that the required oxygen amount can be supplied to the cells while reducing damage to the cells. Moreover, about the culture medium containing the component which is easy to oxidize, since it supplies in a culture tank from the preparation tank different from the preparation tank which supplies oxygen, oxidation can be suppressed about the said culture medium. In addition, since it is not necessary to provide an oxygen permeable membrane or the like in the culture tank, the culture tank can be easily washed and the aseptic environment can be easily maintained. Thus, the occurrence probability of contamination can be suppressed.

本発明の細胞培養装置の一例を示す概略図である。It is the schematic which shows an example of the cell culture apparatus of this invention. 上記の培養装置において細胞の培養に用いられる培地の成分の一例を示す構成図である。It is a block diagram which shows an example of the component of the culture medium used for culture | cultivation of a cell in said culture apparatus. 上記の培養装置を用いて行われる細胞の培養の様子を示す模式図である。It is a schematic diagram which shows the mode of the culture | cultivation of the cell performed using said culture apparatus. 上記の培養装置における培地の添加量の一例を示す模式図である。It is a schematic diagram which shows an example of the addition amount of the culture medium in said culture apparatus. 上記の培養装置における酸素ガスの添加量の一例を示す模式図である。It is a schematic diagram which shows an example of the addition amount of oxygen gas in said culture | cultivation apparatus. 上記の培養装置における作用を示す模式図である。It is a schematic diagram which shows the effect | action in said culture apparatus. 上記の培養装置における培地の添加量の一例を示す模式図である。It is a schematic diagram which shows an example of the addition amount of the culture medium in said culture apparatus. 上記の培養装置における酸素ガスの添加量の一例を示す模式図である。It is a schematic diagram which shows an example of the addition amount of oxygen gas in said culture | cultivation apparatus. 上記の培養装置の他の例を示す概略図である。It is the schematic which shows the other example of said culture apparatus.

本発明の細胞、例えば動物細胞を培養するための細胞培養装置の実施の形態の一例について、図1を参照して説明する。この培養装置は、細胞を培養するための培養槽1と、この培養槽1に培地を各々供給するための第1の調製槽10及び第2の調製槽20と、を備えており、後述するように、第1の調製槽10から供給される培地及びこの培地と共に供給される酸素ガス、第2の調製槽20から供給される培地によって、培養槽1内において細胞が培養されるように構成されている。培養槽1において調製(混合)される培地の各培地成分の一例について図2に示すと、上記の第1の調製槽10にはこれらの各成分のうち、酸化しにくい成分が溶解した培地が貯留され、第2の調製槽20には第1の調製槽10中の成分よりも酸化しやすい成分が溶解した培地が貯留されている。具体的には、酸化しにくい成分とは、例えば無機塩・糖類などであり、酸化しやすい成分とは、例えばアミノ酸やビタミン類等である。そして、これら各培地成分は、培養槽1内において所定の濃度や添加量となるよう調整される。   An example of an embodiment of a cell culture device for culturing cells of the present invention, for example, animal cells, will be described with reference to FIG. The culture apparatus includes a culture tank 1 for culturing cells, and a first preparation tank 10 and a second preparation tank 20 for supplying a culture medium to the culture tank 1, respectively, which will be described later. Thus, the cells are cultured in the culture tank 1 by the medium supplied from the first preparation tank 10, the oxygen gas supplied together with the medium, and the medium supplied from the second preparation tank 20. Has been. An example of each medium component of the medium prepared (mixed) in the culture tank 1 is shown in FIG. 2. In the first preparation tank 10, a medium in which a component that is difficult to oxidize among these components is dissolved. A medium in which a component that is more easily oxidized than the component in the first preparation tank 10 is dissolved is stored in the second preparation tank 20. Specifically, the components that are difficult to oxidize are, for example, inorganic salts and saccharides, and the components that are easily oxidized are, for example, amino acids and vitamins. These medium components are adjusted to have a predetermined concentration and addition amount in the culture tank 1.

次に、培養装置の具体的な構成について説明する。第1の調製槽10内には、例えば多数のガス吐出口が形成されたスパージャーなどの気体吐出部11aが培地中に浸漬されており、この気体吐出部11aから伸びる気体供給路11を介して、酸素供給源12及び不活性ガス供給源13から、酸素ガスまたは空気と不活性ガス例えば窒素(N2)ガスとが夫々培地中に供給(バブリング)できるように構成されている。図1中14、15は夫々バルブ及び流量調整部であり、後述の制御部50によって、第1の調製槽10内に供給する酸素ガス及び窒素ガスの給断や流量調整が行われる。また、この図1中16は培地中の溶存酸素濃度を測定するためのDO(溶存酸素)計などの溶存酸素測定手段であり、17は第1の調製槽10内の培地を撹拌するための攪拌機である。   Next, a specific configuration of the culture apparatus will be described. In the first preparation tank 10, for example, a gas discharge portion 11 a such as a sparger in which a large number of gas discharge ports are formed is immersed in the culture medium, and the gas supply path 11 extends from the gas discharge portion 11 a. Thus, oxygen gas or air and an inert gas such as nitrogen (N2) gas can be supplied (bubbled) into the culture medium from the oxygen supply source 12 and the inert gas supply source 13, respectively. Reference numerals 14 and 15 in FIG. 1 denote valves and a flow rate adjusting unit, respectively, and oxygen gas and nitrogen gas supplied to the first preparation tank 10 and flow rate adjustment are performed by a control unit 50 described later. Further, 16 in FIG. 1 is a dissolved oxygen measuring means such as a DO (dissolved oxygen) meter for measuring the dissolved oxygen concentration in the culture medium, and 17 is for stirring the culture medium in the first preparation tank 10. A stirrer.

この第1の調製槽10には、培地を培養に適した温度に加熱・冷却するためのジャケットなどの加熱・冷却手段18が設けられている。また、第1の調製槽10には、図示を省略するが、外部から培地を補充するための供給口と、当該第1の調製槽10内における培地の上方領域を例えば加圧状態に保ちながら酸素ガスや窒素ガスを外部に排出するための排出口が形成されており、また後述の分岐管63が接続されている。第1の調製槽10と培養槽1との間には、バルブ31及び流量調整部32が介設された供給路33が設けられており、この供給路33を介して培養槽1に酸素ガスの溶解した培地が供給されるように構成されている。この例では、上記のバルブ31、流量調整部32及び第1の供給路33により、培地を第1の調製槽10から培養槽1に供給する手段が構成されている。   The first preparation tank 10 is provided with heating / cooling means 18 such as a jacket for heating / cooling the medium to a temperature suitable for culture. Although not shown in the first preparation tank 10, a supply port for replenishing the medium from the outside and an upper region of the medium in the first preparation tank 10 are maintained in a pressurized state, for example. A discharge port for discharging oxygen gas or nitrogen gas to the outside is formed, and a branch pipe 63 described later is connected. Between the first preparation tank 10 and the culture tank 1, a supply path 33 having a valve 31 and a flow rate adjusting unit 32 is provided, and oxygen gas is supplied to the culture tank 1 through the supply path 33. It is comprised so that the melt | dissolved culture medium may be supplied. In this example, means for supplying the culture medium from the first preparation tank 10 to the culture tank 1 is constituted by the valve 31, the flow rate adjusting unit 32, and the first supply path 33.

第2の調製槽20には、内部に貯留された培地の酸化を抑えるために、不活性ガス例えば窒素ガスを供給するための不活性ガス供給路21の一端側が接続されており、不活性ガス供給路21の他端側は、流量調整部22及びバルブ23を介して既述の不活性ガス供給源13に接続されている。また、第2の調製槽20と培養槽1との間には、バルブ24及び流量調整部25が介設された供給路26が配置されており、この供給路26を介して培養槽1に培地が供給される。この例では、上記のバルブ24、流量調整部25及び第2の供給路26により、培地を調製槽20から培養槽1に供給する手段が構成されている。尚、この第2の調製槽20には、上記の第1の調製槽10と同様に加熱・冷却手段を設けても良い。   One end side of an inert gas supply path 21 for supplying an inert gas, for example, nitrogen gas, is connected to the second preparation tank 20 in order to suppress oxidation of the medium stored therein, and the inert gas The other end side of the supply path 21 is connected to the above-described inert gas supply source 13 via the flow rate adjusting unit 22 and the valve 23. In addition, a supply path 26 provided with a valve 24 and a flow rate adjusting unit 25 is disposed between the second preparation tank 20 and the culture tank 1, and the culture tank 1 is connected via the supply path 26. Medium is supplied. In this example, the valve 24, the flow rate adjusting unit 25, and the second supply path 26 constitute means for supplying the culture medium from the preparation tank 20 to the culture tank 1. Note that the second preparation tank 20 may be provided with heating / cooling means in the same manner as the first preparation tank 10 described above.

培養槽1の内部には、例えば粒径が数百μm程度のポリマー(樹脂)からなるマイクロキャリア40が多数収納されており、このマイクロキャリア40は、当該マイクロキャリア40の表面に細胞を付着させて培養を進行させるための担体(足場)をなすものである。また、この培養槽1には、既述の第1の調製槽10と同様に、内部に貯留された培地に含まれる溶存酸素の濃度を測定するためのDO計などの溶存酸素測定手段45と、培地を撹拌するための攪拌機46と、当該培養槽1内の培地を培養に適した温度に加熱・冷却するための加熱・冷却手段47と、が設けられている。なお、培養槽1内にマイクロキャリア40を収納し、このマイクロキャリア40に細胞を付着させて培養を行ったが、培養液に浮遊して増殖する細胞の場合には、このマイクロキャリア40を配置しなくとも良い。   A large number of microcarriers 40 made of, for example, a polymer (resin) having a particle size of about several hundred μm are accommodated inside the culture tank 1. The microcarriers 40 allow cells to adhere to the surface of the microcarriers 40. It forms a carrier (scaffold) for proceeding culture. The culture tank 1 has dissolved oxygen measuring means 45 such as a DO meter for measuring the concentration of dissolved oxygen contained in the medium stored in the medium, as in the first preparation tank 10 described above. A stirrer 46 for stirring the culture medium and a heating / cooling means 47 for heating / cooling the culture medium in the culture tank 1 to a temperature suitable for culture are provided. Note that the microcarrier 40 is housed in the culture tank 1 and the cells are attached to the microcarrier 40 and cultured. However, in the case of cells that float and proliferate in the culture solution, the microcarrier 40 is disposed. You don't have to.

また、培養槽1の内部には、一端側が下側に向かって開口する培養液抜き出し管(沈降管)41が設けられており、この培養液抜き出し管41の他端側は、培養槽1の外部に伸び出して例えばチューブポンプなどの送液装置42、バルブ43及び流量調整部44を介して図示しない回収部に接続されている。培養槽1から培養液抜き出し管41を介して取り出された培養液は、この回収部においてバイオ医薬品などを製造するための有効成分例えば細胞の生成物などが抽出されたり、不要な成分が廃棄されたりすることになる。上記の送液装置42と流量調整部44との間における培養液抜き出し管41には、バルブ61及び流量調整部62が介設された分岐管63が接続されており、培養液抜き出し管41を介して回収される培養液の一部が既述の第1の調製槽10に戻されるように構成されている。
なお、培養液に浮遊して増殖する細胞の場合には、遠心分離や濾過分離により培養液と細胞などの分離を行うことができる。
In addition, a culture medium extraction pipe (sedimentation pipe) 41 whose one end opens downward is provided inside the culture tank 1, and the other end side of the culture liquid extraction pipe 41 is connected to the culture tank 1. It extends to the outside and is connected to a collection unit (not shown) via a liquid feeding device 42 such as a tube pump, a valve 43 and a flow rate adjustment unit 44. In the culture solution taken out from the culture tank 1 through the culture solution extraction tube 41, effective components for producing biopharmaceuticals and the like, for example, cell products, are extracted or unnecessary components are discarded. Will be. A branch pipe 63 provided with a valve 61 and a flow rate adjustment unit 62 is connected to the culture solution extraction tube 41 between the liquid feeding device 42 and the flow rate adjustment unit 44, and the culture solution extraction tube 41 is connected to the culture solution extraction tube 41. A part of the culture solution collected through the medium is returned to the first preparation tank 10 described above.
In the case of cells proliferating by floating in a culture solution, the culture solution and cells can be separated by centrifugation or filtration separation.

また、この培養装置には、例えば各バルブ14、23、24、31、43、61や流量調整部15、22、25、32、44、62に制御信号を出力して酸素ガス、窒素ガス、培地及び培養液の給断と流量調整とを行うための制御部50が設けられている。この制御部50は、培養槽1において細胞の培養が適切に行われるように、後述のように、例えば予め設定された供給シーケンスに応じて、あるいは細胞の代謝速度(培養槽1内における溶存酸素濃度の減少速度)に応じて、各調製槽10、20からの培地、酸素ガス及び培養液の給断や供給量を調整するようにプログラムが組まれている。このプログラムは、例えば予め細胞培養の実験を行うことにより上記の供給量が設定されている。   In addition, the culture apparatus outputs control signals to, for example, the valves 14, 23, 24, 31, 43, 61 and the flow rate adjusters 15, 22, 25, 32, 44, 62 to generate oxygen gas, nitrogen gas, A control unit 50 is provided for performing supply and disconnection of the medium and the culture solution and adjusting the flow rate. As will be described later, for example, according to a preset supply sequence or the cell metabolic rate (dissolved oxygen in the culture tank 1), the control unit 50 is configured so that cells are appropriately cultured in the culture tank 1. A program is set up to adjust the supply / amount of the culture medium, oxygen gas and culture solution from each of the preparation tanks 10 and 20 according to the concentration reduction rate. In this program, for example, the above-mentioned supply amount is set by conducting an experiment of cell culture in advance.

次に、本発明の細胞の培養方法について図3〜図6を参照して説明する。先ず、培養槽1に細胞(マイクロキャリア40)を含む水溶液、各調製槽10、20に培地を貯留して、図1の加熱・冷却手段18、47により第1の調製槽10内及び培養槽1内を夫々細胞の培養に適した温度に保持すると共に、第2の調製槽20内に窒素ガスを供給してバブリングし、培地の溶存酸素を除去する。次いで、図3(a)に示すように、第1の調製槽10の培地を撹拌しながら当該第1の調製槽10に酸素ガスを供給し(バブリングし)、酸素ガスを溶解させる。そして、培地中の溶存酸素濃度が次第に高くなり、同図(b)に示すように、例えば第1の調製槽10には酸素濃度が飽和した飽和水溶液が得られる。次いで、同図(c)に示すように、第1の調製槽10から酸素濃度の飽和した培地を培養槽1に供給すると共に、第2の調製槽20から窒素ガスにより酸化が抑えられた培地を培養槽1に供給する。   Next, the cell culture method of the present invention will be described with reference to FIGS. First, an aqueous solution containing cells (microcarriers 40) is stored in the culture tank 1, and the culture medium is stored in each of the preparation tanks 10 and 20, and the heating tank 18 and 47 in FIG. 1 is maintained at a temperature suitable for cell culture, and nitrogen gas is supplied into the second preparation tank 20 for bubbling to remove dissolved oxygen from the medium. Next, as shown in FIG. 3A, oxygen gas is supplied to the first preparation tank 10 while being stirred in the first preparation tank 10, and the oxygen gas is dissolved. And the dissolved oxygen concentration in a culture medium becomes high gradually, and as shown to the same figure (b), the saturated aqueous solution with which oxygen concentration was saturated is obtained in the 1st preparation tank 10, for example. Next, as shown in FIG. 3C, a medium in which the oxygen concentration is saturated is supplied from the first preparation tank 10 to the culture tank 1, and the oxidation is suppressed from the second preparation tank 20 by nitrogen gas. Is supplied to the culture tank 1.

培養槽1内に、第1の調製槽10内の酸素ガスが溶解した培地と、第2の調製槽20内の培地が供給されると、細胞によりこれらの培地及び酸素ガスが速やかに消費されていく。そして、細胞が培地及び酸素ガスを消費していくにつれて、生成物や老廃物などが生成すると共に、細胞の個体数が増えていく。この時、培養槽1内において、これらの培地、生成物及び老廃物などを含む培養液の液量が所定の量よりも多くなると、送液装置42によって培養液抜き出し管41を介して培養液が外部に排出されていく。この送液装置42における培養液の送液(排出)速度は、培養槽1内の細胞(マイクロキャリア40)が培養液と共に外部に排出されないように、細胞の付着したマイクロキャリア40の終末沈降速度よりも遅い速度に設定されることになる。即ち、培養槽1内の培養液が培養液抜き出し管41から吸引されると、培養液と共にマイクロキャリア40も吸引されて培養槽1内において上昇しようとするが、培養液の排出速度がマイクロキャリア40の沈降速度よりも遅く設定されているので、マイクロキャリア40は培養槽1内の下方に留まり、培養液だけが培養槽1から排出されることになる。また、培養液中に残った未反応の酸素ガスの有効利用を図るため、培養槽1から抜き出される培養液のうち、一部が分岐管63を介して第1の調製槽10に戻される場合もある。   When the culture medium in which the oxygen gas in the first preparation tank 10 is dissolved and the culture medium in the second preparation tank 20 are supplied into the culture tank 1, the medium and oxygen gas are quickly consumed by the cells. To go. And as a cell consumes a culture medium and oxygen gas, while producing a product, a waste product, etc., the number of individuals of a cell increases. At this time, when the amount of the culture solution containing these medium, products, wastes, and the like in the culture tank 1 exceeds a predetermined amount, the culture solution is passed through the culture solution extraction tube 41 by the liquid feeding device 42. Will be discharged to the outside. The liquid feeding (discharge) speed of the culture solution in the liquid feeding device 42 is such that the cells (microcarriers 40) in the culture tank 1 are not discharged to the outside together with the culture liquid, and the terminal sedimentation speed of the microcarriers 40 to which the cells are attached. Will be set to a slower speed. That is, when the culture medium in the culture tank 1 is aspirated from the culture liquid extraction tube 41, the microcarrier 40 is also aspirated together with the culture liquid and tries to rise in the culture tank 1. Since it is set slower than the sedimentation speed of 40, the microcarrier 40 stays in the lower part in the culture tank 1, and only the culture solution is discharged from the culture tank 1. Further, in order to effectively use unreacted oxygen gas remaining in the culture solution, a part of the culture solution extracted from the culture vessel 1 is returned to the first preparation vessel 10 via the branch pipe 63. In some cases.

そして、時間の経過と共に細胞の個体数が増えていくと、培地及び酸素ガスの消費量も増えていくので、培養槽1内の培地及び酸素ガスが不足しないように、既述のように予め培養実験などにより設定されていた各調製槽10、20内の培地や酸素ガスの供給シーケンスに応じて、これらの供給量が調整されることになる。このような供給シーケンスについて一例を示すと、例えば図4に示すように、第1の調製槽10内の培地の供給と停止とが間隔をおいて複数回行われると共に、第1の調製槽10内の培地の供給量が段階的に増えていく。第2の調製槽20内の培地については、例えば第1の調製槽10内の培地の供給量に対して数分の1の供給量に設定され、酸素ガスについては、図5に示すように、例えば第1の調製槽10内の培地の供給量に応じた供給量に設定される。そして、第1の調製槽10及び第2の調製槽20内の培地の貯留量が不足してくると、例えば図6に示すように、図示しない外部の貯留槽から調製槽10、20に培地が夫々補充される。尚、培養槽1内の培地における酸素濃度については、図5中点線で示している。また、培養槽1には、培地及び酸素ガスと共に、細胞についても図示しない供給路から供給される場合もある。   And as the number of cells increases with the passage of time, the consumption of the culture medium and oxygen gas also increases, so that the culture medium and oxygen gas in the culture tank 1 are not deficient in advance as described above. These supply amounts are adjusted according to the supply sequence of the culture medium and oxygen gas in each of the preparation tanks 10 and 20 set by a culture experiment or the like. As an example of such a supply sequence, as shown in FIG. 4, for example, the supply and stop of the medium in the first preparation tank 10 are performed a plurality of times at intervals, and the first preparation tank 10 The supply amount of the medium inside increases step by step. About the culture medium in the 2nd preparation tank 20, it sets to the supply amount of a fraction with respect to the supply amount of the culture medium in the 1st preparation tank 10, for example, as shown in FIG. For example, the supply amount according to the supply amount of the medium in the first preparation tank 10 is set. And when the storage amount of the culture medium in the 1st preparation tank 10 and the 2nd preparation tank 20 runs short, as shown in FIG. 6, for example, it is a culture medium from the external storage tank which is not illustrated to the preparation tanks 10 and 20. Are replenished respectively. In addition, about the oxygen concentration in the culture medium in the culture tank 1, it has shown with the dotted line in FIG. In addition, the culture tank 1 may be supplied with a medium and oxygen gas from a supply path (not shown) with respect to the cells.

こうして所定の期間例えば数日から数週間程度の培養が終了すると、培養槽1から外部に取り出された培養液あるいは培養槽1内において増殖した細胞から、内部に含まれる有効成分などが精製され、バイオ医薬品例えば抗体の原料として用いられることになる。尚、図3(b)、(c)において、酸素ガスの溶解している培地について、ハッチングを付して示している。   Thus, after culturing for a predetermined period, for example, several days to several weeks, the active ingredient contained in the inside is purified from the culture solution taken out from the culture tank 1 or the cells grown in the culture tank 1, It will be used as a raw material for biopharmaceuticals such as antibodies. In FIGS. 3B and 3C, the medium in which the oxygen gas is dissolved is hatched.

上述の実施の形態によれば、培養槽1内において細胞の培養を行うにあたり、酸化しにくい培地と酸化しやすい培地とを夫々第1の調製槽10及び第2の調製槽20に貯留し、第1の調製槽10内の培地に酸素ガスを溶解させ、これらの第1の調製槽10及び第2の調製槽20から培地を各々培養槽1内に供給して、培養槽1内において細胞の培養を行っている。そのため、培養槽1内において気泡の発生が起こらないか、あるいは培養槽1内において直接バブリングする場合よりも気泡の発生が抑えられるので、細胞へのダメージを低減しつつ細胞に対して要求酸素量を供給することができる。また、酸化しやすい培地については酸素が供給される第1の調製槽10とは別の第2の調製槽20から培養槽1内に供給しているので、酸化の抑えられた環境(第2の調製槽20内)に貯留されることになり、当該培地は培養槽1内に供給されると細胞により速やかに消費されていく。従って、培地を分けることなく、一度に培地全量を培養槽1内に供給し、この培養槽1内に酸素ガスを供給する場合に比べて、培地の酸化が抑えられることになる。そのため、培養槽1内の培地の組成を予め設定していた設定値に極めて近い値に保つことができるので、細胞を速やかに培養することができる。このことから、細胞へのダメージを抑えながら十分な量の酸素ガス及び培地を供給できるので、従来では収率が低く現実的に事業として培養できないと考えられている細胞であっても、高い収率で培養できる。   According to the above-described embodiment, when culturing cells in the culture tank 1, a medium that is not easily oxidized and a medium that is easily oxidized are stored in the first preparation tank 10 and the second preparation tank 20, respectively. Oxygen gas is dissolved in the medium in the first preparation tank 10, and the medium is supplied from the first preparation tank 10 and the second preparation tank 20 into the culture tank 1. Is being cultured. For this reason, bubbles are not generated in the culture tank 1 or the generation of bubbles is suppressed as compared with direct bubbling in the culture tank 1, so that the required oxygen amount for the cells while reducing damage to the cells. Can be supplied. Moreover, since the culture medium which is easily oxidized is supplied into the culture tank 1 from the second preparation tank 20 different from the first preparation tank 10 to which oxygen is supplied, the environment in which oxidation is suppressed (second In the preparation tank 20), when the medium is supplied into the culture tank 1, it is quickly consumed by the cells. Therefore, compared with the case where the whole amount of the medium is supplied into the culture tank 1 at one time and oxygen gas is supplied into the culture tank 1 without dividing the medium, the oxidation of the medium is suppressed. Therefore, since the composition of the medium in the culture tank 1 can be kept at a value very close to a preset value, the cells can be rapidly cultured. From this, it is possible to supply a sufficient amount of oxygen gas and medium while suppressing damage to the cells, so even if the cells are conventionally considered to be low in yield and cannot be cultivated as a business, the yield is high. Can be cultured at a high rate.

更に、細胞に酸素ガスを供給するにあたって、培養槽1内には酸素透過膜などを浸漬しておく必要がないので、培養槽1の取り扱いや洗浄あるいは培養槽1内の無菌環境の維持が容易となるし、また酸素透過膜を介したコンタミネーションの発生を抑制することができる。
また、第1の調製槽10内の培地に酸素ガスを飽和させているので、培養槽1内に酸素ガスを速やかに供給することができるし、また培養槽1内の酸素ガス濃度の調整が容易になる。
Furthermore, since it is not necessary to immerse an oxygen permeable membrane or the like in the culture tank 1 when supplying oxygen gas to the cells, it is easy to handle and wash the culture tank 1 or maintain an aseptic environment in the culture tank 1. In addition, the generation of contamination through the oxygen permeable membrane can be suppressed.
Moreover, since oxygen gas is saturated in the culture medium in the first preparation tank 10, oxygen gas can be quickly supplied into the culture tank 1, and the oxygen gas concentration in the culture tank 1 can be adjusted. It becomes easy.

上記の例では、既述の図4及び図5に記載したように、第1の調製槽10から供給される培地及びこの培地と共に供給される酸素ガス、第2の調製槽20から供給される培地をいわば間欠的に供給したが、例えば図7に示すように、連続的に第1の調製槽10内の培地の供給量が増えていくようにしても良いし、また第2の調製槽20内の培地については第1の調製槽10内の培地の供給量とは無関係に供給量を調整しても良い。酸素ガスの供給量についても、図8に示すように、第1の調製槽10内の培地の供給量に対応させなくとも良い。この場合において、例えば第1の調製槽10内の培地の供給量に対して酸素ガスの供給量を減少させたい場合には、例えば第1の調製槽10において培地に窒素ガスを供給し、当該培地に溶解している酸素ガスを追い出すようにしても良いし、あるいは所定の時間培地を静置して、酸素ガスが培地から自然に抜け出ていくようにしても良い。このように培地及び酸素ガスの供給量を互いに独立して個別に調整することによって、培養槽1内において不足した成分を個別に補充することができるので、例えば培養槽1内の環境の変化(細胞の個体数の増加速度、溶存酸素量の変化)に柔軟に対応できる。   In the above example, as described in FIGS. 4 and 5, the medium supplied from the first preparation tank 10 and the oxygen gas supplied together with the medium are supplied from the second preparation tank 20. Although the medium was intermittently supplied, for example, as shown in FIG. 7, the supply amount of the medium in the first preparation tank 10 may be increased continuously, or the second preparation tank may be used. For the medium in 20, the supply amount may be adjusted regardless of the supply amount of the medium in the first preparation tank 10. The supply amount of oxygen gas does not need to correspond to the supply amount of the culture medium in the first preparation tank 10 as shown in FIG. In this case, for example, when it is desired to reduce the supply amount of oxygen gas with respect to the supply amount of the medium in the first preparation tank 10, for example, nitrogen gas is supplied to the medium in the first preparation tank 10, The oxygen gas dissolved in the culture medium may be expelled, or the culture medium may be allowed to stand for a predetermined time so that the oxygen gas naturally escapes from the culture medium. In this way, by adjusting the supply amounts of the culture medium and oxygen gas independently of each other, it is possible to individually replenish the components that are deficient in the culture tank 1, so that, for example, changes in the environment in the culture tank 1 ( It is possible to respond flexibly to the rate of increase in cell population and changes in dissolved oxygen amount.

また、培地及び酸素ガスの供給方法としては、例えば培養槽1内の培地中の酸素濃度が一定となるように酸素ガスや第1の調製槽10内の培地の供給量を調整しても良い。更に、培養槽1内の細胞や生成物の濃度あるいは培養槽1から排出される二酸化炭素の濃度を測定し、この測定結果に基づいて第1の調製槽10から供給される培地及びこの培地と共に供給される酸素ガス、第2の調製槽20から供給される培地の供給量を調整しても良い。更にまた、制御部50により培地及び酸素ガスの供給量を調整したが、例えば作業者がマニュアルでこれらの供給量を調整しても良い。   Moreover, as a supply method of a culture medium and oxygen gas, you may adjust the supply amount of oxygen gas and the culture medium in the 1st preparation tank 10, for example so that the oxygen concentration in the culture medium in the culture tank 1 may become fixed. . Furthermore, the concentration of cells and products in the culture tank 1 or the concentration of carbon dioxide discharged from the culture tank 1 is measured, and together with the medium supplied from the first preparation tank 10 and this medium based on the measurement result The supply amount of the oxygen gas supplied and the medium supplied from the second preparation tank 20 may be adjusted. Furthermore, although the supply amount of the culture medium and the oxygen gas is adjusted by the control unit 50, for example, an operator may adjust these supply amounts manually.

また、上記の例では第1の調製槽10及び第2の調製槽20を各々1つずつ設けたが、各々複数配置しても良い。このような例について具体的に説明すると、例えば図9では第2の調製槽20を2つ設けており、これらの第2の調製槽20、20には夫々上記の酸化しやすい培地成分のうち互いに異なる種類の成分が貯留されている。そして、この培養装置では、第1の調製槽10から酸素ガスの溶解した培地が培養槽1内に供給され、第2の調製槽20、20からは酸化しやすい培地が培養槽1内に各々供給されて細胞の培養が行われることになる。このように第2の調製槽20を2つ設けることによって、細胞の培養中に培養槽1内において不足する成分だけを当該培養槽1内に供給できるので、培養槽1内の環境変化や様々な細胞の培養により一層柔軟に対応できるし、コスト的にも有利である。   In the above example, one each of the first preparation tank 10 and the second preparation tank 20 is provided, but a plurality of each may be arranged. Specifically, for example, in FIG. 9, two second preparation tanks 20 are provided, and each of these second preparation tanks 20 and 20 includes the above-described oxidizable medium components. Different types of components are stored. In this culture apparatus, a medium in which oxygen gas is dissolved is supplied from the first preparation tank 10 into the culture tank 1, and mediums that are easily oxidized from the second preparation tanks 20 and 20 are respectively stored in the culture tank 1. The supplied cells will be cultured. By providing two second preparation tanks 20 in this way, only the components that are deficient in the culture tank 1 can be supplied into the culture tank 1 during cell culture. It is possible to respond more flexibly by cultivating the cell, and it is advantageous in terms of cost.

更に、第1の調製槽10と第2の調製槽20とに夫々酸化しにくい培地と酸化しやすい培地とを貯留したが、酸化しやすい培地と共に、酸化しにくい培地の成分の一部を第2の調製槽20に貯留しても良い。つまり、第1の調製槽10に酸化しやすい成分が含まれていなければ、第2の調製槽20に酸化しにくい成分が含まれていても良い。この場合において、第2の調製槽20内の培地の供給量が第1の調製槽10内の培地の供給量に比べて少ない場合には、例えば第1の調製槽10内の培地成分のうち希少で高価な成分については第2の調製槽20内の培地と共に供給するようにしても良い。また、第1および第2の調製槽10、20内の培地の各々において、例えば水への溶解度が互いに大きく異なる成分が含まれている場合には、例えば調製槽10(20)とは別の大型の調製槽10(20)を設置して、この大型の調製槽10(20)において水への溶解度の低い成分を溶解させ、当該成分を他の培地とは別系統で培養槽1内に供給するようにしても良い。   In addition, although the first preparation tank 10 and the second preparation tank 20 each store a medium that is not easily oxidized and a medium that is easily oxidized, a part of the components of the medium that is not easily oxidized together with the medium that is easily oxidized is stored in the first preparation tank 10 and the second preparation tank 20. It may be stored in two preparation tanks 20. That is, as long as the first preparation tank 10 does not contain a component that easily oxidizes, the second preparation tank 20 may contain a component that hardly oxidizes. In this case, when the supply amount of the medium in the second preparation tank 20 is smaller than the supply amount of the medium in the first preparation tank 10, for example, among the medium components in the first preparation tank 10 Rare and expensive components may be supplied together with the medium in the second preparation tank 20. In addition, in each of the culture media in the first and second preparation tanks 10 and 20, for example, when components having greatly different solubility in water are included, for example, different from the preparation tank 10 (20). A large preparation tank 10 (20) is installed, a component having low solubility in water is dissolved in the large preparation tank 10 (20), and the component is separated from the other culture medium in the culture tank 1. You may make it supply.

上記の例では、溶存酸素測定手段16、45を用いて第1の調製槽10及び培養槽1内の溶存酸素濃度を測定したが、これらの溶存酸素測定手段16、45を設けずに、例えば第1の調製槽10においては、酸素ガスが培地に十分に溶解するまで酸素ガスの供給時間を長く設定しても良い。また、第1の調製槽10において培地に酸素ガスを溶解させるにあたり、培地内への酸素ガスのバブリングに代えて、あるいはバブリングと共に、培地の上方気相領域に酸素ガスを供給して当該培地の液面に対して酸素ガスを加圧状態に保つことによって、培地に酸素ガスを溶解させるようにしても良い。   In the above example, the dissolved oxygen concentration in the first preparation tank 10 and the culture tank 1 was measured using the dissolved oxygen measuring means 16 and 45, but without the dissolved oxygen measuring means 16 and 45, for example, In the 1st preparation tank 10, you may set long supply time of oxygen gas until oxygen gas fully melt | dissolves in a culture medium. Further, when oxygen gas is dissolved in the culture medium in the first preparation tank 10, oxygen gas is supplied to the upper gas phase region of the culture medium instead of or in combination with bubbling of oxygen gas into the culture medium. The oxygen gas may be dissolved in the culture medium by keeping the oxygen gas in a pressurized state with respect to the liquid surface.

更に、培養槽1から培地を抜き出さずに、この培養槽1内において培地の液量が増えていくようにしても良い。また、第2の調製槽20内の培地の酸化を抑えるために窒素ガスを供給したが、大気雰囲気において酸化がそれ程進行しない場合などには、第2の調製槽20内を大気雰囲気としても良い。また、培養槽1内にマイクロキャリア40を収納し、このマイクロキャリア40に細胞を付着させて培養を行ったが、培養液に浮遊して増殖する細胞の場合には、このマイクロキャリア40を配置しなくとも良い。その場合において培養槽1から培地を抜き出す時には、細胞の流出を抑えるために、例えば膜分離や遠心分離などが行われることになる。   Furthermore, the amount of medium in the culture tank 1 may be increased without extracting the culture medium from the culture tank 1. In addition, nitrogen gas is supplied in order to suppress the oxidation of the medium in the second preparation tank 20, but when the oxidation does not progress so much in the air atmosphere, the inside of the second preparation tank 20 may be an air atmosphere. . In addition, the microcarrier 40 is housed in the culture tank 1 and the cells are attached to the microcarrier 40 for culturing. However, in the case of cells that float and proliferate in the culture solution, the microcarrier 40 is disposed. You don't have to. In this case, when the medium is extracted from the culture tank 1, for example, membrane separation or centrifugation is performed in order to suppress the outflow of cells.

また、培養槽1から分岐管63を介して培養液の一部を第1の調製槽10に循環させるにあたり、例えば膜などを備えた分離装置を分岐管63に介設し、この分離装置において培養液から二酸化炭素を分離しても良いし、培養液を循環させなくても良い。更に、第1の調製槽10内の培地は、酸素ガスの濃度が飽和状態となった培地を培養槽1内に供給したが、酸素濃度の低い(飽和していない)培地を培養槽1内に供給しても良い。なお、第1の調製槽10から培地と共に供給する酸素ガスの量だけでは培養槽1内において酸素ガスの量が不足する場合には、培養槽1内において培地(培養液)に酸素ガスを直接バブリングしても良い。この場合であっても、培養槽1内に供給する酸素ガスの全量を当該培養槽1内においてバブリングする場合に比べて、細胞へのダメージを少なくすることができる。
また、細胞の培養以外にも、例えば微生物を培養する場合においても本発明を適用しても良い。
In order to circulate a part of the culture solution from the culture tank 1 to the first preparation tank 10 via the branch pipe 63, for example, a separation device provided with a membrane or the like is provided in the branch pipe 63. Carbon dioxide may be separated from the culture solution, or the culture solution may not be circulated. Furthermore, the culture medium in the first preparation tank 10 supplied the culture medium in which the oxygen gas concentration was saturated into the culture tank 1, but the culture medium in which the oxygen concentration was low (not saturated) was stored in the culture tank 1. May be supplied. If the amount of oxygen gas supplied from the first preparation tank 10 together with the medium is insufficient in the culture tank 1, oxygen gas is directly supplied to the medium (culture medium) in the culture tank 1. You may bubble. Even in this case, damage to the cells can be reduced as compared with the case where the entire amount of oxygen gas supplied into the culture tank 1 is bubbled in the culture tank 1.
In addition to culturing cells, the present invention may be applied to culturing microorganisms, for example.

1 培養槽
10 第1の調製槽
12 酸素ガス供給源
20 第2の調製槽
21 不活性ガス供給路
26 供給路
24、31 バルブ
25、32 流量調整手段
33 供給路
40 マイクロキャリア
41 培養液抜き出し管
42 送液装置
DESCRIPTION OF SYMBOLS 1 Culture tank 10 1st preparation tank 12 Oxygen gas supply source 20 2nd preparation tank 21 Inert gas supply path 26 Supply path 24, 31 Valve 25, 32 Flow rate adjustment means 33 Supply path 40 Microcarrier 41 Culture solution extraction pipe 42 Liquid feeding device

Claims (4)

培養槽内にて培養液を用いて細胞の培養を行う培養装置において、
細胞を培養するための培養槽と、
前記培養液のうち酸化しにくい成分である、無機塩及び糖の少なくとも一方を含む溶液からなる第1の培地を貯留した第1の調製槽と、
前記培養液のうち酸化しやすい成分である、アミノ酸及びビタミンの少なくとも一方を含む第2の培地を貯留した第2の調製槽と、
前記第1の調製槽内に酸素ガスを供給する手段と、
前記第1の調製槽内における酸素ガスが溶解した第1の培地と、前記第2の調製槽内における第2の培地と、を前記培養槽に供給する手段とを備えたことを特徴とする細胞培養装置。
In a culture apparatus for culturing cells using a culture solution in a culture tank,
A culture vessel for culturing cells;
A first preparation tank storing a first culture medium made of a solution containing at least one of an inorganic salt and sugar, which is a component that is difficult to oxidize in the culture solution ;
A second preparation tank storing a second medium containing at least one of an amino acid and a vitamin, which is an easily oxidizable component of the culture solution ;
Means for supplying oxygen gas into the first preparation tank;
And a means for supplying the first culture medium in which the oxygen gas in the first preparation tank is dissolved and the second culture medium in the second preparation tank to the culture tank. Cell culture device.
前記第1の調製槽中の第1の培地および前記第2の調製槽中の第2の培地の少なくとも一方に対して不活性ガスを供給する手段を備えていることを特徴とする請求項1に記載の細胞培養装置。 Claim 1, characterized in that it comprises a means for supplying inert gas to at least one of the first medium and the second second medium preparation tank in the first preparation vessel The cell culture device described in 1. 培養槽内にて培養液を用いて細胞の培養を行う培養方法において、
前記培養液のうち酸化しにくい成分である、無機塩及び糖の少なくとも一方を含む溶液からなる第1の培地を貯留した第1の調製槽内に酸素ガスを供給する工程と、
次いで、前記前記第1の調製槽内における酸素が溶解した第1の培地と、前記培養液のうち酸化しやすい成分である、アミノ酸及びビタミンの少なくとも一方を含む第2の培地を前記培養槽に各々供給し、この培養槽において細胞の培養を行うことを特徴とする細胞培養方法。
In a culture method of culturing cells using a culture solution in a culture tank,
Supplying oxygen gas into the first preparation tank in which the first culture medium made of a solution containing at least one of an inorganic salt and sugar, which is a component that is difficult to oxidize in the culture solution,
Next, a first medium in which oxygen is dissolved in the first preparation tank and a second medium containing at least one of an amino acid and a vitamin which is an easily oxidizable component of the culture solution are added to the culture tank. A cell culturing method comprising supplying each of the cells and culturing the cells in the culture tank.
前記第1の調製槽中の第1の培地および前記第2の調製槽中の第2の培地の少なくとも一方は、不活性ガスが供給された培地であることを特徴とする請求項3に記載の細胞培養方法。 Wherein at least one of the first of the first medium and the second medium in the second preparation vessel in preparation vessel, according to claim 3 in which the inert gas is characterized in that it is a medium that has been supplied Cell culture method.
JP2009240725A 2009-10-19 2009-10-19 Cell culture device and cell culture method Active JP5519994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240725A JP5519994B2 (en) 2009-10-19 2009-10-19 Cell culture device and cell culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240725A JP5519994B2 (en) 2009-10-19 2009-10-19 Cell culture device and cell culture method

Publications (2)

Publication Number Publication Date
JP2011083263A JP2011083263A (en) 2011-04-28
JP5519994B2 true JP5519994B2 (en) 2014-06-11

Family

ID=44076719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240725A Active JP5519994B2 (en) 2009-10-19 2009-10-19 Cell culture device and cell culture method

Country Status (1)

Country Link
JP (1) JP5519994B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231425B2 (en) * 2019-02-06 2023-03-01 株式会社日立製作所 Culture system, culture method and method for producing cultured product
US20240002765A1 (en) 2020-11-05 2024-01-04 Junkosha Inc. Gas-permeable container, and culture apparatus and culture system each using same
WO2024056037A1 (en) * 2022-09-14 2024-03-21 北京华龛生物科技有限公司 Liquid drawing device, bioreactor, and liquid drawing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506117A (en) * 1989-10-18 1996-04-09 Cytokinetics, Inc. Biochemical process for growing living cells by measuring the amount of nutrient added to the reaction medium
JPH07203945A (en) * 1994-01-12 1995-08-08 Hitachi Ltd Apparatus for culturing cell of living body
JP2001114339A (en) * 1999-10-20 2001-04-24 Morinaga Milk Ind Co Ltd Sterilized culture medium packaging product
AU783125B2 (en) * 2000-10-31 2005-09-29 Dsm Ip Assets B.V. Optimisation of fermentation processes
CA2439471A1 (en) * 2001-12-28 2003-07-17 Daiichi Suntory Pharma Co., Ltd. Promoters of the growth and/or differentiation of hematopoietic stem cells and/or hematopoietic progenitors
US20050176140A1 (en) * 2004-02-10 2005-08-11 Benedict Daniel J. Method and apparatus for cell culture using a two liquid phase bioreactor
JP4894219B2 (en) * 2004-10-15 2012-03-14 ニプロ株式会社 Peripheral parenteral nutrition infusion containing vitamin B group
JP5018104B2 (en) * 2007-01-24 2012-09-05 株式会社日立プラントテクノロジー Cell culture method and cell culture apparatus
JP2009089698A (en) * 2007-10-12 2009-04-30 Hitachi Plant Technologies Ltd Cell culture method and cell culture device
JP2008195737A (en) * 2008-04-21 2008-08-28 Otsuka Pharmaceut Factory Inc Infusion preparation containing trace of metal

Also Published As

Publication number Publication date
JP2011083263A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
CA2733152C (en) System and method for controlling a mammalian cell culture process using upward directed culture medium flow
US20230099216A1 (en) Method of using bioreactor
JP6454314B2 (en) Collection medium and cell collection bag for collecting mesenchymal stem cells grown in a hollow fiber bioreactor
US12116559B2 (en) Method of manufacturing a recombinant polypeptide
EP3184623A1 (en) Cell culture bag, cell culture device, and cell culture container
US9181521B2 (en) Bioreactor with upward flowing impeller system for use in a mammalian cell culture process
JP4649224B2 (en) Method and apparatus for culturing adherent cells
JP6326827B2 (en) Cell culture device and cell culture method
EP3722435A1 (en) Fixed-bed bioreactor with constant-flow pump/tubing system
JP5519994B2 (en) Cell culture device and cell culture method
JP4561192B2 (en) Cell culture device and cell culture method
JPH07203945A (en) Apparatus for culturing cell of living body
CN105116936B (en) PH (potential of hydrogen) running water control system and method
KR20140101886A (en) Method for culturing cells or microorganisms
JP2011177046A (en) Method and apparatus for culturing cell
Bleckwenn et al. Large‐scale cell culture
KR20210098948A (en) Modular Bioreactor
JP6063162B2 (en) Cell culture method and cell culture apparatus
JP2016002040A (en) Cell culture method and cell culture apparatus
JP7231425B2 (en) Culture system, culture method and method for producing cultured product
NO850534L (en) PROCEDURE FOR CULTING CELLS
JPH078230B2 (en) Cell culture device
JP2005087114A (en) Method and apparatus for culturing/collecting cell
JPH04258285A (en) Culture device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5519994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250