JPH078230B2 - Cell culture device - Google Patents

Cell culture device

Info

Publication number
JPH078230B2
JPH078230B2 JP2071126A JP7112690A JPH078230B2 JP H078230 B2 JPH078230 B2 JP H078230B2 JP 2071126 A JP2071126 A JP 2071126A JP 7112690 A JP7112690 A JP 7112690A JP H078230 B2 JPH078230 B2 JP H078230B2
Authority
JP
Japan
Prior art keywords
medium
cylindrical
cell culture
tank
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2071126A
Other languages
Japanese (ja)
Other versions
JPH03272678A (en
Inventor
正文 緒方
秀樹 松倉
敬一 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP2071126A priority Critical patent/JPH078230B2/en
Publication of JPH03272678A publication Critical patent/JPH03272678A/en
Publication of JPH078230B2 publication Critical patent/JPH078230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は細胞培養装置に係り、特に細胞を剪断により損
傷することなく効率よく培養することのできる細胞培養
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a cell culture device, and more particularly to a cell culture device capable of efficiently culturing cells without damaging them by shearing.

〔従来の技術〕[Conventional technology]

動物細胞、植物細胞等を高密度で培養したり、この細胞
培養を利用して有用物質を高い効率で生産するには、酸
素の供給、養分の供給、老廃物の除去、培地のpH、溶存
炭酸ガス濃度等の調整が重要な因子であるとともに、培
養タンク内の撹拌は上記の各因子を制御し適切な状態と
するために重要である。
To cultivate animal cells, plant cells, etc. at high density and to produce useful substances with high efficiency using this cell culture, supply of oxygen, supply of nutrients, removal of waste products, pH of medium, dissolved The adjustment of the carbon dioxide concentration and the like is an important factor, and stirring in the culture tank is important for controlling each of the above factors to bring them into an appropriate state.

ここで、従来の細胞培養装置として、細胞あるいは細胞
が付着したマイクロキャリアが懸濁している培地を培養
タンクに貯留し、培養タンク内に酸素を供給して培地に
酸素を溶解させるとともに、プロペラ型スクリュー撹拌
羽根を有する撹拌部材で培地を撹拌する形式の細胞培養
装置があった。また、酸素の供給をより効率的に行うた
めに、培養タンクの下部に設けた酸素供給部から気泡状
態で酸素を供給して溶存酸素濃度(DO)を高めるように
した気泡筒型の細胞培養装置があった。しかし、動物細
胞は微生物のような細胞膜をもたないため一般に剪断力
に弱く、培地中での酸素の気泡形成あるいは培地中に存
在する酸素の気泡消滅の際に生じる乱流によっても剪断
されるおそれがある。
Here, as a conventional cell culture device, a medium in which cells or microcarriers to which cells are attached are suspended in a culture tank is stored, and oxygen is supplied to the culture tank to dissolve oxygen in the culture tank. There has been a cell culture device of a type in which a culture medium is stirred by a stirring member having a screw stirring blade. In addition, in order to supply oxygen more efficiently, a bubble cylinder type cell culture in which oxygen is supplied in a bubble state from the oxygen supply part provided at the bottom of the culture tank to increase the dissolved oxygen concentration (DO). There was a device. However, since animal cells do not have cell membranes like microorganisms, they are generally weak in shearing force, and are also sheared by turbulent flow generated when oxygen bubbles form in the medium or oxygen bubbles present in the medium disappear. There is a risk.

このため、酸素を発泡しない状態で培地中に供給するこ
とが好ましく、これを実現するものとして高分子多孔質
材料であるシリコンを用いたチューブを培養タンク内壁
に配設し、このチューブを介して培地に酸素を供給する
細胞培養装置が開発された。
For this reason, it is preferable to supply oxygen into the medium in a state where it does not foam, and a tube using silicon, which is a polymer porous material, is arranged on the inner wall of the culture tank to realize this, and this tube is used to A cell culture device for supplying oxygen to a medium has been developed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、従来の気泡筒型の細胞培養装置に比べて
上述のシリコンチューブを用いた酸素供給はその供給能
が小さく、培地内に酸素を十分供給するためにシリコン
チューブの面積を大きくするとともに培地を十分撹拌す
る必要が生じ、このため撹拌速度が高くなり、培養タン
ク内で培地の乱流が発生して培養細胞が剪断される可能
性が高いという問題があった。
However, compared with the conventional bubble-tube type cell culture device, the oxygen supply using the above-mentioned silicon tube has a small supply ability, and the area of the silicon tube is increased and the medium is supplied in order to sufficiently supply oxygen into the medium. There is a problem in that it is necessary to sufficiently stir, and thus the stirring speed becomes high, and a turbulent flow of the medium occurs in the culture tank and the cultured cells are likely to be sheared.

本発明は、上述した問題点を解決するためになされたも
のであり、酸素供給能が高く、かつ培養タンク内での培
地の乱流発生がきわめて少なく効率的な細胞培養が可能
な細胞培養装置を供給することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and has a high oxygen supply ability, and a turbulent flow of a medium in a culture tank is extremely small, which enables efficient cell culture. The purpose is to supply.

〔課題を解決するための手段〕[Means for Solving the Problems]

この目的を達成するため本発明は、細胞あるいは細胞が
付着したマイクロキャリアが懸濁している培地を貯留す
るための密閉可能なタンクと、該タンク内に配設され高
分子多孔質材料からなるチューブが円筒形状をなすよう
に支持部材に巻き回されて形成された円筒型酸素供給部
材と、該円筒型酸素供給部材の円筒内部領域に位置する
ように配設された撹拌部材とを備え、前記培地が前記タ
ンク内壁と前記円筒型酸素供給部材外壁との間の領域と
前記円筒内部領域とを循環するように構成した。
In order to achieve this object, the present invention provides a sealable tank for storing a medium in which cells or microcarriers to which cells are attached are suspended, and a tube made of a polymeric porous material disposed in the tank. A cylindrical oxygen supply member formed by being wound around a support member so as to form a cylindrical shape, and an agitating member arranged so as to be located in a cylindrical inner region of the cylindrical oxygen supply member, The medium was configured to circulate in the region between the inner wall of the tank and the outer wall of the cylindrical oxygen supply member and the inner region of the cylinder.

〔作用〕[Action]

密閉可能なタンクに貯留された細胞あるいは細胞が付着
したマイクロキャリアが懸濁している培地に、円筒型酸
素供給部材を構成する高分子多孔質材料からなるチュー
ブから気泡を形成しない状態で酸素が供給され、前記円
筒型酸素供給部材は前記チューブが円筒形状をなすよう
に支持部材に巻き回されて形成されているので、培地と
接触する面積が大きいとともに、この円筒型酸素供給部
材の円筒内部領域に位置するように配設された撹拌部材
により培地は前記タンク内壁と前記円筒型酸素供給部材
外壁との間の領域と前記円筒内部領域とを循環するよう
流れる。これにより、培地に十分な酸素が供給され、か
つ培地の乱流が抑えられて細胞への剪断力が最小限とど
められ高効率の細胞培養が可能となる。
Oxygen is supplied to the medium in which cells or microcarriers to which cells are attached are suspended in a tank that can be sealed from a tube made of a polymeric porous material that constitutes the cylindrical oxygen supply member without forming bubbles. Since the cylindrical oxygen supply member is formed by winding the tube around the support member so as to form a cylindrical shape, the area in contact with the culture medium is large and the cylindrical inner region of the cylindrical oxygen supply member is By the stirring member arranged so as to be located at, the culture medium flows so as to circulate in the region between the inner wall of the tank and the outer wall of the cylindrical oxygen supply member and the inner region of the cylinder. As a result, sufficient oxygen is supplied to the medium, turbulent flow of the medium is suppressed, the shearing force on the cells is minimized, and highly efficient cell culture becomes possible.

〔実施例〕〔Example〕

以下、本発明を具体化した一実施例を図面を参照して説
明する。
An embodiment embodying the present invention will be described below with reference to the drawings.

第1図は本発明に係る細胞培養装置を示す部分断面図で
ある。第1図において、細胞培養装置1は培地10を貯留
するためのタンク2と、培地10に酸素を供給するために
タンク2内に配設された円筒型酸素供給部材3と、円筒
型酸素供給部材3の円筒内部領域に位置し培地10を撹拌
するための撹拌部材4とを備えている。
FIG. 1 is a partial sectional view showing a cell culture device according to the present invention. In FIG. 1, a cell culture device 1 includes a tank 2 for storing a medium 10, a cylindrical oxygen supply member 3 arranged in the tank 2 for supplying oxygen to the medium 10, and a cylindrical oxygen supply. A stirring member 4 for stirring the culture medium 10 is provided in the cylindrical inner region of the member 3.

タンク2はタンク本体21と、このタンク本体21を密閉す
るための密閉部材22を有している。タンク本体21はガラ
ス、金属等の材料からなっており、その外壁部には開口
部24,25を備えたジャケット部23が設けられている。そ
して、開口部24,25を介してジャケット部23に温度調整
がなされた水を循環することによりタンク2に貯留され
る培地が所定の温度に保持される。また、タンク本体21
の外壁部の所定位置にはセンサ装着用開口部26が設けら
れており、このセンサ装着用開口部26からセンサがタン
ク本体21の内部に挿入されて培地のpH、DO、温度等が測
定される。さらに、本発明ではタンク本体21の内部に培
地フィルター5a、5bを配設し、タンク本体21内の培地を
潅流してもよい。すなわち、培地フィルター5aを介して
培地がタンク本体21内に供給され、培地フィルター5bを
介して培地が回収される。この場合、培地フィルター5
a、5bは培地を通し、細胞あるいは細胞が付着している
マイクロキャリアは通さない範囲で設定されたフィルタ
ーである。そして、回収用の培地フィルター5bがマイク
ロキャリア等により目づまりを生じた場合は、培地フィ
ルター5bを供給用とし培地フィルター5aを回収用とする
ことでフィルターの逆洗が可能となる。また、タンク本
体21の底部にはサンプリング用開口部28が設けられてい
る。さらに、本発明では、培地のpHを調整するための酸
性溶液あるいはアルカリ性溶液の投入口、タンク2内部
を観察するための窓部、細胞培養に先だって培地に所定
量の酸素を溶存させるために酸素を底部から小気泡状態
で供給する酸素供給部(スパージャー)等をタンク本体
21に配設してもよい。
The tank 2 has a tank main body 21 and a sealing member 22 for sealing the tank main body 21. The tank main body 21 is made of a material such as glass or metal, and a jacket portion 23 having openings 24 and 25 is provided on the outer wall portion thereof. Then, the temperature-controlled water is circulated through the jackets 23 through the openings 24 and 25, so that the culture medium stored in the tank 2 is maintained at a predetermined temperature. In addition, the tank body 21
A sensor mounting opening 26 is provided at a predetermined position on the outer wall of the sensor, and the sensor is inserted into the tank body 21 through the sensor mounting opening 26 to measure pH, DO, temperature, etc. of the medium. It Further, in the present invention, the medium filters 5a and 5b may be provided inside the tank body 21 to perfuse the medium in the tank body 21. That is, the medium is supplied into the tank main body 21 via the medium filter 5a, and the medium is recovered via the medium filter 5b. In this case, medium filter 5
Filters a and 5b are set in a range that allows the medium to pass but not the cells or microcarriers to which the cells adhere. When the collecting medium filter 5b is clogged with microcarriers or the like, the filter can be backwashed by using the medium filter 5b for supplying and the medium filter 5a for collecting. A sampling opening 28 is provided at the bottom of the tank body 21. Furthermore, in the present invention, an inlet for an acidic or alkaline solution for adjusting the pH of the medium, a window for observing the inside of the tank 2, oxygen for dissolving a predetermined amount of oxygen in the medium prior to cell culture. Oxygen supply part (sparger) etc. which supplies small bubbles from the bottom of the tank body
21 may be provided.

密閉部材22は金属等の材料からなっており、タンク本体
21の上部開口を密閉するためのものである。この密閉部
材22には、加圧用エアノズル7a、7bが設けられている。
そして、密閉部材22による密閉により形成された培地10
と密閉部材22との間の気相部に加圧用エアノズル7aから
酸素を供給して、上記の気相部を加圧状態とし、培地へ
の酸素の供給をより多くするとともに、タンク2内への
雑菌の混入を防止することができる。また、加圧用エア
ノズル7bにより加圧が過剰とならないように気相部から
過剰酸素を抜くことができる。
The sealing member 22 is made of a material such as metal, and the tank body
It is for sealing the upper openings of 21. The sealing member 22 is provided with pressurizing air nozzles 7a and 7b.
Then, the culture medium 10 formed by the sealing by the sealing member 22.
Oxygen is supplied to the gas phase portion between the sealing member 22 and the sealing member 22 from the pressurizing air nozzle 7a to bring the gas phase portion into a pressurized state to increase the supply of oxygen to the medium and to the inside of the tank 2. It is possible to prevent the contamination of various bacteria. In addition, excess oxygen can be extracted from the gas phase portion by the pressurizing air nozzle 7b so as to prevent excessive pressurization.

円筒型酸素供給部材3は、支持部材31にチューブ32が円
筒形状をなすように巻き回されて形成されている。支持
部材31は密閉部材22から吊設された複数の棒材31a、31
a,…で構成されており、各棒材31aは円筒形状を形成す
るように所定の間隔を設けて配列されている。チューブ
32としてはシリコンチューブ、テフロンチューブ等の高
分子多孔質材料からなるチューブを使用することができ
る。このようなチューブ32は、外径2.0〜10mm、内径1.0
〜9.0mm、肉厚0.2〜1.0mm程度が好ましい。そして、チ
ューブ32は、上述したように各棒材31aが円筒形状を形
成するように配列されている支持部材31に隣り合うチュ
ーブ32相互が接するように横方向に一重に巻き回され、
図面上下方向に開口を有する円筒巻回し部33を形成す
る。また、このチューブ32の端部はそれぞれ密閉部材22
に設けられている酸素供給用エアノズル35a、35bに接続
されている。この円筒巻回し部33の外径は上述したタン
ク本体21の内径と、後述する撹拌部材の撹拌羽根の直径
との関係から決定することができ、これについては後述
する。また、円筒巻回し部33は貯留される培地10内に没
することが好ましく、培地10の深さに対する円筒巻回し
部33の高さの比は2:1程度が好ましい。そして、例えば
酸素供給用エアノズル35aからチューブ32に供給された
酸素は、円筒巻回し部33を通過しながらチューブ32の壁
面を透過して気泡を生じることなく培地に供給され、余
剰の酸素は酸素供給用エアノズル35bから排出される。
なお、チューブ32による培地への酸素供給は空気を用い
て行ってもよい。
The cylindrical oxygen supply member 3 is formed by winding a tube 32 around a support member 31 so as to form a cylindrical shape. The support member 31 includes a plurality of rod members 31a, 31 suspended from the sealing member 22.
The rods 31a are arranged at predetermined intervals so as to form a cylindrical shape. tube
As 32, a tube made of a polymeric porous material such as a silicon tube or a Teflon tube can be used. Such a tube 32 has an outer diameter of 2.0 to 10 mm and an inner diameter of 1.0.
~ 9.0 mm, wall thickness 0.2 ~ 1.0 mm is preferable. Then, the tube 32 is wound in a single transverse direction so that the tubes 32 adjacent to the support member 31 arranged so that each rod 31a forms a cylindrical shape as described above are in contact with each other,
A cylindrical winding portion 33 having an opening in the vertical direction of the drawing is formed. Further, the ends of the tubes 32 are respectively sealed members 22.
Is connected to the oxygen supply air nozzles 35a and 35b provided in the. The outer diameter of the cylindrical winding portion 33 can be determined from the relationship between the inner diameter of the tank body 21 described above and the diameter of the stirring blade of the stirring member described later, which will be described later. Further, the cylindrical winding portion 33 is preferably submerged in the stored medium 10, and the ratio of the height of the cylindrical winding portion 33 to the depth of the medium 10 is preferably about 2: 1. Then, for example, oxygen supplied from the oxygen supply air nozzle 35a to the tube 32 is supplied to the medium without passing through the wall surface of the tube 32 and generating bubbles while passing through the cylindrical winding portion 33, and excess oxygen is oxygen. It is discharged from the supply air nozzle 35b.
The tube 32 may supply oxygen to the medium by using air.

撹拌部材4はシャフト41とこのシャフト41に螺旋状に形
成された螺旋型スクリュー撹拌羽根42とを備え、シャフ
ト41は密閉部材22に設けられている軸受部27に軸受45、
45を介して軸支されている駆動軸43の下端に装着されて
いる。螺旋型スクリュー撹拌羽根42の直径R3は、上述し
たようにタンク本体21の内径R1と円筒巻回し部33の外径
R2との関係から設定され、通常、R1:R2:R3=10:6:5〜1
0:8:7の範囲が好ましい。また、螺旋型スクリュー撹拌
羽根42の螺旋ピッチPは、螺旋型スクリュー撹拌羽根42
の直径R3との関係からP:R3=1:1〜1:2の範囲で設定する
ことが好ましい。さらに、円筒型酸素供給部材3の円筒
巻回し部33の高さHと螺旋型スクリュー撹拌羽根42の軸
方向の長さLは、H:L=1:1〜1〜1.5の範囲であること
が好ましい。そして、このような撹拌部材4は、螺旋型
スクリュー撹拌羽根42が培地10内に没するように円筒型
酸素供給部材3の円筒巻回し部33内に挿入されて保持さ
れる。また、駆動軸43の上端部には動力伝達プーリ44が
設けられ、タンク2内部は駆動軸43の下端部近傍に設け
られたシール部46により気密状態に保たれている。そし
て、駆動源により動力伝達プーリ44を介して駆動軸43が
矢印A方向に回転すると、円筒型酸素供給部材3の円筒
巻回し部33内部の培地10には螺旋型スクリュー撹拌羽根
42により上昇流(矢印B)が生じる。そして、この培地
の流れはタンク本体21と円筒型酸素供給部材3との間を
矢印Cで示されるように流れてタンク本体21の底部に至
り、再び螺旋型スクリュー撹拌羽根42による上昇流とな
って培地10の循環が行われる。
The stirring member 4 includes a shaft 41 and a spiral type screw stirring blade 42 spirally formed on the shaft 41. The shaft 41 has a bearing portion 27 provided on the sealing member 22 and a bearing 45,
It is attached to the lower end of a drive shaft 43 that is pivotally supported via 45. The diameter R 3 of the spiral screw stirring blade 42 is, as described above, the inner diameter R 1 of the tank body 21 and the outer diameter of the cylindrical winding portion 33.
It is set based on the relationship with R 2, and usually R 1 : R 2 : R 3 = 10: 6: 5-1
A range of 0: 8: 7 is preferred. Further, the spiral pitch P of the spiral screw stirring blade 42 is
P from the relationship between the diameter R 3: R 3 = 1: 1~1: it is preferable to set at 2 range. Further, the height H of the cylindrically wound portion 33 of the cylindrical oxygen supply member 3 and the axial length L of the spiral screw stirring blade 42 are in the range of H: L = 1: 1 to 1 to 1.5. Is preferred. Then, such a stirring member 4 is inserted and held in the cylindrical winding portion 33 of the cylindrical oxygen supply member 3 so that the spiral screw stirring blade 42 is submerged in the medium 10. A power transmission pulley 44 is provided on the upper end of the drive shaft 43, and the inside of the tank 2 is kept airtight by a seal portion 46 provided near the lower end of the drive shaft 43. Then, when the drive shaft 43 is rotated in the direction of arrow A by the drive source via the power transmission pulley 44, the spiral screw stirring blade is formed in the medium 10 inside the cylindrical winding portion 33 of the cylindrical oxygen supply member 3.
42 causes an upflow (arrow B). Then, the flow of the culture medium flows between the tank body 21 and the cylindrical oxygen supply member 3 as shown by an arrow C, reaches the bottom of the tank body 21, and becomes an upward flow again by the spiral screw stirring blade 42. The medium 10 is circulated.

第2図は本発明の細胞培養装置に用いられる他の円筒型
酸素供給部材を示す概略斜視図である。第2図におい
て、円筒型酸素供給部材3′は支持部材36とチューブ32
とを備えている。支持部材36は密閉部材(図示せず)か
ら吊設された複数の棒材36a、36a、…と、この棒材36
a、36a…の下端部および中間部に棒材36aの軸方向に直
交するように設けられた1組のリング部材36b、36bとか
ら構成されている。そして、チューブ32は、上下に所定
の間隔を設けて平行に配設されている1組のリング部材
36b、36b間を掛け渡すように縦方向に巻き回されて、図
面上下方向に開口を有する円筒巻回し部37が形成され
る。ここで、チューブ32は第1図に示される実施例にお
けるチューブ32と同じであり、チューブ32の端部はそれ
ぞれ密閉部材に設けられている酸素供給用エアノズル
(図示せず)に接続されている。このように、チューブ
32を縦方向に巻き回して形成された円筒型酸素供給部材
3′は、チューブ32の横方向に巻き回して形成された第
1図に示される円筒型酸素供給部材3に比べて、タンク
2内に生じる培地の流れ方向の凹凸が減少し、培地の乱
流をより少なくして撹拌による細胞の剪断破壊をより減
少することができる。
FIG. 2 is a schematic perspective view showing another cylindrical oxygen supply member used in the cell culture device of the present invention. In FIG. 2, the cylindrical oxygen supply member 3 ′ includes a support member 36 and a tube 32.
It has and. The support member 36 includes a plurality of bar members 36a, 36a, ... Suspended from a sealing member (not shown), and the bar members 36.
It is composed of a pair of ring members 36b, 36b provided at the lower end portion and the intermediate portion of a, 36a, ... so as to be orthogonal to the axial direction of the rod member 36a. The tube 32 is a set of ring members arranged in parallel at a predetermined interval above and below.
A cylindrical winding portion 37 is formed in such a manner that the cylindrical winding portion 37 is wound in the vertical direction so as to bridge over between 36b and 36b and has an opening in the vertical direction of the drawing. Here, the tube 32 is the same as the tube 32 in the embodiment shown in FIG. 1, and the ends of the tube 32 are connected to oxygen supply air nozzles (not shown) provided in the sealing member. . Tube like this
The cylindrical oxygen supply member 3 ′ formed by winding 32 in the vertical direction is different from the cylindrical oxygen supply member 3 shown in FIG. 1 formed by winding the tube 32 in the horizontal direction in the tank 2 The unevenness in the flow direction of the culture medium generated inside is reduced, and the turbulent flow of the culture medium can be reduced to further reduce the shear fracture of cells due to stirring.

なお、本発明の細胞培養装置に用いられる円筒型酸素供
給部材は、第1図および第2図に示されるように円筒巻
回し部33、37が1重構造の円筒型酸素供給部材に限定さ
れるものではなく、円筒巻回し部33、37が多重構造の円
筒型酸素供給部材であってもよい。ここで、円筒巻回し
部33の2重構造を例として多重構造を説明する。第3図
は2重構造の円筒型酸素供給部材3″の概略断面図であ
る。第3図において、密閉部材(図示せず)から吊設さ
れる支持部材31の複数の棒材31a、31a、…は2重の円筒
形状を形成するように所定の間隔を設けて配列され、チ
ューブ32は、まず外側の各棒材31aに横方向に一重に巻
き回されて外側の円筒巻回し部33aが形成され、その
後、内側の各棒材31aに同じように横方向に一重に巻き
回されて内側の円筒巻回し部33bが形成される。このよ
うに円筒巻回し部33を外側の円筒巻回し部33aと内側の
円筒巻回し部33bとの2重構造とすることにより、円筒
型酸素供給部材の酸素供給能が格段に向上することにな
る。
The cylindrical oxygen supply member used in the cell culture device of the present invention is not limited to the cylindrical oxygen supply member in which the cylindrical winding portions 33 and 37 have a single-layer structure as shown in FIGS. 1 and 2. Instead, the cylindrical winding parts 33, 37 may be a cylindrical oxygen supply member having a multiple structure. Here, the multiple structure will be described by taking the double structure of the cylindrical winding portion 33 as an example. Fig. 3 is a schematic sectional view of a double-layered cylindrical oxygen supply member 3 ". In Fig. 3, a plurality of rod members 31a, 31a of a supporting member 31 suspended from a sealing member (not shown). , Are arranged at a predetermined interval so as to form a double-cylindrical shape, and the tube 32 is first wound laterally around each of the outer rod members 31a in a single lateral direction to form an outer cylindrical winding portion 33a. Then, the inner cylindrical member 33a is similarly wound around the inner bar member 31a in the lateral direction in the same manner to form the inner cylindrical winding portion 33b. With the double structure of the turning portion 33a and the inner cylindrical winding portion 33b, the oxygen supplying ability of the cylindrical oxygen supplying member is remarkably improved.

第4図は本発明の細胞培養装置に用いられる他の撹拌部
材を示す概略斜視図である。第4図において、撹拌部材
4′はシャフト47と、このシャフト47に支持部材49を介
してシャフト47の軸方向に対して所定の角度を形成する
ように対向して設けられた2組のプロペラ型スクリュー
撹拌羽根48とを備えている。そして、シャフト47は第1
図に示されるシャフト41と同様に図示しない駆動軸の下
端に装着されている。プロペラ型スクリュー撹拌羽根48
の幅Wは、上述した螺旋型スクリュー撹拌羽根42と同様
にタンク本体21の内径R1と円筒巻回し部33の外径R2との
関係から設定され、通常、R1:R2:W=10:6:5〜10:7:6の
範囲が好ましい。また、シャフト47の軸方向に対するプ
ロペラ型スクリュー撹拌羽根48の取り付け角度は15〜45
゜程度が好ましい。そして、このような撹拌部材4′
は、プロペラ型スクリュー撹拌羽根48が培地10内に没す
るように円筒型酸素供給部材3の円筒巻回し部33内に挿
入されて保持される。なお、図示例では2つのプロペラ
型スクリュー撹拌羽根48が対向するようにシャフト47に
装着されているが、3つ以上のプロペラ型スクリュー撹
拌羽根48をシャフト47に装着してもよい。また、図示例
では2組のプロペラ型スクリュー撹拌羽根48がシャフト
47に装着されているが、3組以上のプロペラ型スクリュ
ー撹拌羽根48が設けられてもよい。
FIG. 4 is a schematic perspective view showing another stirring member used in the cell culture device of the present invention. In FIG. 4, a stirring member 4'is provided with a shaft 47 and two sets of propellers which are provided so as to face the shaft 47 via a support member 49 so as to form a predetermined angle with respect to the axial direction of the shaft 47. A mold screw stirring blade 48 is provided. And the shaft 47 is the first
Like the shaft 41 shown in the figure, it is attached to the lower end of a drive shaft (not shown). Propeller type screw stirring blade 48
The width W is set from the relationship between the inner diameter R 1 of the tank body 21 and the outer diameter R 2 of the cylindrical winding portion 33, similar to the spiral screw stirring blade 42 described above, and usually R 1 : R 2 : W The range of 10: 6: 5 to 10: 7: 6 is preferable. Further, the mounting angle of the propeller type screw stirring blade 48 with respect to the axial direction of the shaft 47 is 15 to 45.
A degree of about is preferable. And such a stirring member 4 '
Is inserted and held in the cylindrical winding portion 33 of the cylindrical oxygen supply member 3 so that the propeller type screw stirring blade 48 is submerged in the medium 10. In the illustrated example, the two propeller type screw stirring blades 48 are mounted on the shaft 47 so as to face each other, but three or more propeller type screw stirring blades 48 may be mounted on the shaft 47. In addition, in the illustrated example, two sets of propeller type screw stirring blades 48 are provided on the shaft.
Although mounted on 47, three or more sets of propeller type screw stirring blades 48 may be provided.

つぎに、本発明の細胞培養装置を用いた細胞培養システ
ムの一例を説明する。
Next, an example of a cell culture system using the cell culture device of the present invention will be described.

第5図は第1図に示されるような細胞培養装置を用いた
細胞培養システムである。第5図において、細胞培養装
置50のタンク51は培地10が貯留されたタンク本体52を密
閉部材53で密閉されている。そして、タンク本体52の外
壁部に設けられたジャケット部54には恒温槽60により温
度調整がなされた水がポンプ61により循環され、タンク
51に貯留される培地が所定の温度に保持される。また、
タンク本体52のセンサ装着用開口部55からセンサ65がタ
ンク本体52の内部に挿入されている。
FIG. 5 shows a cell culture system using the cell culture device as shown in FIG. In FIG. 5, the tank 51 of the cell culture device 50 has a tank body 52 in which the medium 10 is stored, which is sealed by a sealing member 53. Then, in the jacket portion 54 provided on the outer wall portion of the tank body 52, water whose temperature is adjusted by the constant temperature bath 60 is circulated by the pump 61,
The medium stored in 51 is maintained at a predetermined temperature. Also,
A sensor 65 is inserted into the tank body 52 through the sensor mounting opening 55 of the tank body 52.

タンク51内の培地への酸素の供給は、高分子多孔質材料
からなるチューブ57を介して行われる。すなわち、酸素
ボンベ70から酸素供給用エアノズル56aを介して高分子
多孔質材料からなるチューブ57に供給された酸素は、円
筒巻回し部58を通過しながらチューブ57の壁面を透過し
て気泡を生じることなく培地に供給され、余剰の酸素は
酸素供給用エアノズル56bから排出される。また、これ
と同時に、培地10と密閉部材53間の気相部に酸素ボンベ
70から加圧用エアノズル59aを介して酸素が供給され、
上記の気相部を加圧状態とし、培地への酸素の供給をよ
り多くするとともに、タンク51内への雑菌の混入を防止
することができる。また、過剰酸素は加圧用エアノズル
59bから抜かれる。
Oxygen is supplied to the medium in the tank 51 through a tube 57 made of a polymeric porous material. That is, the oxygen supplied from the oxygen cylinder 70 to the tube 57 made of the polymeric porous material through the oxygen supply air nozzle 56a passes through the wall surface of the tube 57 while passing through the cylindrical winding portion 58 to generate bubbles. Without being supplied to the medium, excess oxygen is discharged from the oxygen supply air nozzle 56b. At the same time, an oxygen cylinder is placed in the gas phase between the culture medium 10 and the sealing member 53.
Oxygen is supplied from 70 through the pressurizing air nozzle 59a,
It is possible to increase the supply of oxygen to the medium and prevent contamination of miscellaneous bacteria in the tank 51 by setting the gas phase portion in a pressurized state. Also, excess oxygen is compressed by an air nozzle.
Pulled out from 59b.

また、タンク51内の培地の潅流はタンク本体52の内部に
配設された培地フィルター75a、75bを介して行われる。
すなわち、新鮮な培地を無菌的に貯蔵した培地タンク76
からポンプ77により培地フィルター75aを介して培地が
タンク本体52内に供給される。また同時に、ポンプ78に
より培地フィルター75bを介して余剰培地が代謝物とと
もに回収タンク79に回収される。そして、この培地の潅
流は培地フィルター75a、75bを介して行われるため、細
胞あるいは細胞が付着しているマイクロキャリアはタン
ク51内に残り、マイクロキャリア等の無駄な排出が防止
される。さらに、回収用の培地フィルター75bがマイク
ロキャリア等により目づまりを生じた場合は、培地フィ
ルター75bを供給用とし培地フィルター75aを回収用とす
ることでフィルターの逆洗が可能となる。
Further, the perfusion of the medium in the tank 51 is performed through the medium filters 75a and 75b arranged inside the tank main body 52.
That is, a medium tank 76 that aseptically stores fresh medium.
The medium is supplied from the pump 77 into the tank main body 52 through the medium filter 75a. At the same time, the excess medium is collected by the pump 78 via the medium filter 75b in the collection tank 79 together with the metabolites. Since the perfusion of the medium is performed via the medium filters 75a and 75b, cells or microcarriers to which cells are attached remain in the tank 51, and wasteful discharge of microcarriers and the like is prevented. Further, when the collecting medium filter 75b is clogged by microcarriers or the like, the medium can be backwashed by using the medium filter 75b for supplying and the medium filter 75a for collecting.

上述のような細胞培養システムにおいて、予め所定のDO
とした培地に細胞が投入され、この細胞が付着性細胞の
場合は、まずマイクロキャリアに均一となるように細胞
播種を行う。その後、本培養が行なわれるが、通常、初
期培養過程では培地の潅流は行わず、バッチ処理により
細胞の増殖を行い細胞密度がある程度増大した後に培地
の潅流が行われる。本発明の細胞培養装置では、酸素の
供給が十分であるために培地のDOが高い状態に維持され
るとともに、培地の乱流が抑えられて細胞への剪断力が
最小限にとどめられるため高効率の細胞培養が可能とな
る。
In the cell culture system as described above, a predetermined DO
When the cells are added to the medium described above and the cells are adherent cells, the cells are seeded so that the microcarriers are evenly distributed. After that, main culture is performed, but usually, the medium is not perfused in the initial culture process, but the cells are grown by the batch treatment to increase the cell density to some extent, and then the medium is perfused. In the cell culture device of the present invention, the DO of the medium is maintained at a high level due to the sufficient supply of oxygen, and the turbulent flow of the medium is suppressed to minimize the shearing force on the cells. It enables efficient cell culture.

つぎに、実験例を示して本発明を更に詳細に説明する。Next, the present invention will be described in more detail with reference to experimental examples.

実験例−1 第1表に示されるC−1,C−2の2種のキャリアを準備
し、第2表に示される4種の細胞培養装置(D−1(実
施例),D−2(実施例),D−3(比較例),D−4(比較
例))においてキャリアの流動に必要な撹拌部材の最低
回転数を各キャリアについて調べた。ここで、D−1
(実施例)は第1図に示されるような円筒型酸素供給部
材と螺旋型スクリュー撹拌羽根を有する撹拌部材を備え
ている。また、D−2(実施例)はD−1(実施例)の
撹拌部材を第4図に示されるプロペラ型スクリュー撹拌
羽根を有する撹拌部材にしたものである。また、D−3
(比較例)は高分子多孔質材料であるシリコンチューブ
を培養タンク内壁に配設した従来の酸素供給部材を用
い、撹拌部材のみD−1(実施例)と同じ撹拌部材を用
いたものであり、D−4(比較例)はD−3(比較例)
の撹拌部材を第4図に示されるプロペラ型スクリュー撹
拌羽根を有する撹拌部材にしたものである。そして、各
細胞培養装置のタンクは、容量10、内径220mmの同一
形状のタンクを用いた。また、円筒型酸素供給部材の外
径は110mm、螺旋型スクリュー撹拌羽根の直径は80mm、
プロペラ型スクリュー撹拌羽根の幅は80mmであった。そ
して、タンクに培地を7貯留し、この培地内にキャリ
アを35g投入した。
Experimental Example-1 Two kinds of carriers C-1 and C-2 shown in Table 1 were prepared, and four kinds of cell culture devices shown in Table 2 (D-1 (Example), D-2 In Examples (Example), D-3 (Comparative Example), and D-4 (Comparative Example)), the minimum rotation speed of the stirring member required for carrier flow was examined for each carrier. Where D-1
(Example) is equipped with a cylindrical oxygen supply member and a stirring member having a spiral screw stirring blade as shown in FIG. D-2 (Example) is the stirring member of D-1 (Example), which has a propeller type screw stirring blade shown in FIG. Also, D-3
(Comparative Example) uses a conventional oxygen supply member in which a silicon tube, which is a polymer porous material, is arranged on the inner wall of the culture tank, and uses the same stirring member as D-1 (Example) only for the stirring member. , D-4 (comparative example) is D-3 (comparative example)
4 is a stirring member having a propeller type screw stirring blade shown in FIG. The tank of each cell culture device had the same shape and a volume of 10 and an inner diameter of 220 mm. The outer diameter of the cylindrical oxygen supply member is 110 mm, the diameter of the spiral screw stirring blade is 80 mm,
The width of the propeller type screw stirring blade was 80 mm. Then, 7 mediums were stored in the tank, and 35g of the carrier was put into this medium.

上述のような条件で行った試験の結果を第2表に示し
た。第2表に示されるように、本発明による細胞培養装
置(D−1(実施例),D−2(実施例))では、低回転
でキャリアC−1の流動が可能であり、また粒子径、比
重が大きいキャリアC−2でも約30r.p.m.の回転数で流
動が可能であった。このことから、本発明のよる細胞培
養装置(D−1(実施例),D−2(実施例))が剪断力
に弱い細胞の培養に適しており、また、流動され難いキ
ャリアでも撹拌部材の低速回転で安定した流動を生じさ
せることができ、汎用性の高い培養装置であるといえ
る。
The results of the tests conducted under the above conditions are shown in Table 2. As shown in Table 2, in the cell culture device (D-1 (Example), D-2 (Example)) according to the present invention, the flow of the carrier C-1 was possible at low rotation, and the particles were Even carrier C-2 having a large diameter and a large specific gravity was able to flow at a rotation speed of about 30 rpm. From this, the cell culture device (D-1 (Example), D-2 (Example)) according to the present invention is suitable for culturing cells that are weak in shearing force, and the stirring member can be used even for carriers that are difficult to flow. It can be said that the culture device has high versatility because it can generate stable flow at low speed rotation.

実験例−2 実験例−1で用いた4種の細胞培養装置(D−1(実施
例),D−2(実施例),D−3(比較例),D−4(比較
例))について、それぞれ第5図に示される細胞培養シ
ステムを構成し、下記の細胞、培地、マイクロキャリア
を用いて細胞培養を行った。
Experimental Example-2 Four types of cell culture devices used in Experimental Example-1 (D-1 (Example), D-2 (Example), D-3 (Comparative Example), D-4 (Comparative Example)) For each of the above, the cell culture system shown in FIG. 5 was constructed, and cell culture was performed using the following cells, medium and microcarriers.

・細 胞…CHOK1細胞(付着性細胞) ・培 地…DMEM/F−12混合培地に非必須アミノ酸を添加
した培地 ・培地pH…7.2 ・培地温度…37℃ ・マイクロキャリア…ファルマシア製Cytodex3/コラー
ゲンコート 架橋デキストラン 培養に先立ち細胞播種を行った。細胞播種は、細胞培養
装置のタンク内に貯留されている予め滅菌状態にあるマ
イクロキャリアと培地3に細胞を無菌的に投入し、20
分間隔で約3時間間欠撹拌(回転速度30r.p.m.)した。
なお、培地は予め酸素を供給(5%CO2+95%空気によ
り供給)して酸素溶存濃度度(DO)を平衡状態としたも
のを用いた。細胞播種を行った後、培地量を7として
本培養を行った。この時のマイクロキャリア濃度は5g/
、細胞播種密度は4×105cells/mlであった。本培養
は、初期培養過程(細胞増殖期)として6日目までは培
地に牛胎児血清(FBS)を5vol%となるように添加し、
培地の潅流を行わずに培養を行った。そして、7日目か
らは培地の潅流を第6図に示される希釈率にしたがって
行った。この間の酸素の供給は5%CO2+95%空気によ
り流量500ml/分、圧力0.8kg/cm2の条件で酸素供給部材
を介して行った。なお、培地の上部の気相部には、5%
CO2+95%空気により流量100ml/分の条件で通気を行っ
た。
・ Cells… CHOK1 cells (adherent cells) ・ Media… DMEM / F-12 mixed medium with non-essential amino acids added ・ Medium pH… 7.2 ・ Medium temperature… 37 ℃ ・ Microcarriers… Pharmacia Cytodex 3 / Collagen Coated cross-linked dextran Cells were seeded prior to culture. For cell seeding, 20 cells are aseptically put into the microcarriers and medium 3 which are stored in the tank of the cell culture device and are in a previously sterilized state.
The mixture was intermittently stirred at a minute interval for about 3 hours (rotation speed 30 rpm).
The medium used was one in which oxygen was previously supplied (supplied by 5% CO 2 + 95% air) to equilibrate the dissolved oxygen concentration (DO). After seeding the cells, the main culture was carried out with the amount of medium being 7. The microcarrier concentration at this time is 5 g /
The cell seeding density was 4 × 10 5 cells / ml. In the main culture, fetal bovine serum (FBS) was added to the medium at 5 vol% until the 6th day as the initial culture process (cell growth phase),
The culture was performed without perfusion of the medium. From the 7th day onward, the medium was perfused according to the dilution rate shown in FIG. During this period, oxygen was supplied by 5% CO 2 + 95% air at a flow rate of 500 ml / min and a pressure of 0.8 kg / cm 2 via an oxygen supply member. In addition, 5% in the gas phase part on the top of the medium
Aeration was performed with CO 2 + 95% air at a flow rate of 100 ml / min.

上述のような培養における細胞密度、および酸素溶存濃
度(DO)の変化を第7図、第8図に示した。
Changes in cell density and oxygen dissolved concentration (DO) in the above culture are shown in FIGS. 7 and 8.

第7図および第8図に示されるように本発明のよる細胞
培養装置D−1(実施例),D−2(実施例)を用いた培
養では、培養開始15日目以後、細胞密度は107cells/ml
以上を示し、酸素溶存濃度(DO)も3ppm以上の高い状態
が維持された。これに対して、細胞培養装置D−3(比
較例),D−4(比較例)を用いた細胞培養では、培養開
始15日目以後も細胞密度は2×106〜4×106cells/ml以
下であり、かつ、酸素溶存濃度(DO)は徐々に低下して
9日目以後は2ppm以下となり、これにともなって細胞密
度も徐々に低下を示した。
As shown in FIGS. 7 and 8, in the culture using the cell culture devices D-1 (Example) and D-2 (Example) according to the present invention, the cell density was 15 days after the start of the culture. 10 7 cells / ml
As shown above, the dissolved oxygen concentration (DO) was maintained at a high level of 3 ppm or more. On the other hand, in the cell culture using the cell culture devices D-3 (Comparative Example) and D-4 (Comparative Example), the cell density was 2 × 10 6 to 4 × 10 6 cells even after 15 days from the start of the culture. / ml or less, and the dissolved oxygen concentration (DO) gradually decreased to 2 ppm or less after the 9th day, and the cell density gradually decreased accordingly.

実験例−3 実験例−1で用いた4種の細胞培養装置(D−1(実施
例),D−2(実施例),D−3(比較例),D−4(比較
例))について、それぞれ第5図に示される細胞培養シ
ステムを構成し、下記の細胞、培地を用いて細胞培養を
行った。
Experimental Example-3 Four types of cell culture devices used in Experimental Example-1 (D-1 (Example), D-2 (Example), D-3 (Comparative Example), D-4 (Comparative Example)) For each of the above, the cell culture system shown in FIG. 5 was constructed, and cell culture was performed using the following cells and medium.

・細 胞…ナマルバ(Namalwa)細胞(非付着性細胞) ・培 地…RPMI−1640にFBSを5vol%となるように添加
した培地 ・培地pH…7.2 ・培地温度…37℃ 培養は、予め酸素を供給(5%CO2+95%空気により供
給)して酸素溶存濃度(DO)を平衡状態とした培地7
に細胞密度が5×105cells/mlとなるように細胞を投入
した。培養開始から6日目までは、培地の上部の気相部
に5%CO2+95%空気により流量500ml/分の条件で通気
を行い、またこの間、培地の潅流を行わずに培養を行っ
た。そして、7日目からは培地の潅流を第9図に示され
る希釈率にしたがって行った。そして、7日目からは酸
素の供給を酸素流量200ml/分、圧力0.5kg/cm2の条件で
酸素供給部材を介して行った。
・ Cells: Namalwa cells (non-adherent cells) ・ Media: RPMI-1640 medium containing FBS at 5 vol% ・ Medium pH: 7.2 ・ Medium temperature: 37 ° C Medium (supplied with 5% CO 2 + 95% air) to equilibrate the dissolved oxygen concentration (DO) 7
Cells were added to the cells at a cell density of 5 × 10 5 cells / ml. From the 6th day after the start of culture, the gas phase above the medium was aerated with 5% CO 2 + 95% air at a flow rate of 500 ml / min, and during this period, culture was performed without perfusion of the medium. . From the 7th day onward, the medium was perfused according to the dilution rate shown in FIG. From the 7th day, oxygen was supplied through the oxygen supply member under the conditions of an oxygen flow rate of 200 ml / min and a pressure of 0.5 kg / cm 2 .

上述のような培養における細胞密度、および酸素溶存濃
度(DO)の変化を第10図、第11図に示した。
Changes in cell density and oxygen dissolved concentration (DO) in the above culture are shown in FIGS. 10 and 11.

第10図および第11図に示されるように本発明のよる細胞
培養装置D−1(実施例),D−2(実施例)を用いた培
養では、培養開始10日目以後、細胞密度は5×106〜7
×106cells/ml以上を示し、酸素溶存濃度(DO)も3ppm
以上の高い状態が維持された。これに対して、細胞培養
装置D−3(比較例),D−4(比較例)を用いた培養で
は、培養開始10日目以後も細胞密度は1.5×106〜2×10
6cells/ml以下であり、かつ、酸素溶存濃度(DO)は徐
々に低下して10日目以後は2ppm以下となり、これにとも
なって細胞密度も徐々に低下を示した。
As shown in FIGS. 10 and 11, in the culture using the cell culture devices D-1 (Example) and D-2 (Example) according to the present invention, the cell density was 10 days after the start of culture. 5 x 10 6 ~ 7
X10 6 cells / ml or more, dissolved oxygen concentration (DO) of 3 ppm
The above high condition was maintained. On the other hand, in the culture using the cell culture devices D-3 (Comparative Example) and D-4 (Comparative Example), the cell density was 1.5 × 10 6 to 2 × 10 6 days after the start of the culture.
It was 6 cells / ml or less, and the dissolved oxygen concentration (DO) gradually decreased to 2 ppm or less after the 10th day, and the cell density gradually decreased accordingly.

〔発明の効果〕〔The invention's effect〕

以上詳述したことから明らかなように、本発明によれば
円筒型酸素供給部材の円筒内部領域に位置するように配
設された撹拌部材により培地はタンク内壁と円筒型酸素
供給部材外壁との間の領域と円筒内部領域とを循環する
よう流れることにより、培地の乱流が抑えられて細胞へ
の剪断力が最小限にとどめられ、かつ円筒型酸素供給部
材は高分子多孔質材料からなるチューブが円筒形状をな
すように支持部材に巻き回されて形成されているので、
培地と接触する面積が大きく培地に十分な酸素が供給さ
れるため高効率の細胞培養が可能になるという効果が奏
される。
As is apparent from what has been described in detail above, according to the present invention, the culture medium is divided between the tank inner wall and the cylindrical oxygen supply member outer wall by the stirring member arranged so as to be located in the cylindrical inner region of the cylindrical oxygen supply member. By circulating the flow between the region between and the inner region of the cylinder, the turbulent flow of the medium is suppressed and the shearing force to the cells is minimized, and the cylindrical oxygen supply member is made of a polymeric porous material. Since the tube is wound around the support member to form a cylindrical shape,
Since the area in contact with the medium is large and sufficient oxygen is supplied to the medium, the effect of enabling highly efficient cell culture is achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る細胞培養装置を示す部分断面図、
第2図は本発明の細胞培養装置に用いられる他の円筒型
酸素供給部材を示す概略斜視図、第3図は2重構造の円
筒型酸素供給部材の概略断面図、第4図は本発明の細胞
培養に用いられる他の撹拌部材を示す概略斜視図、第5
図は第1図に示されるような細胞培養装置を用いた細胞
培養システムを示す図、第6図および第9図は培地潅流
における希釈率を示す図、第7図および第10図は細胞培
養における細胞密度の変化を示す図、第8図および第11
図は細胞培養における酸素溶存濃度(DO)の変化を示す
図である。 1……細胞培養装置、2……タンク、3……円筒型酸素
供給部材、4……撹拌部材、5a、5b……培地フィルタ
ー、10……培地、21……タンク本体、22……密閉部材、
23……ジャケット部、31……支持部材、31a、31a……棒
材、32……チューブ、42……螺旋型スクリュー撹拌羽
根。
FIG. 1 is a partial sectional view showing a cell culture device according to the present invention,
FIG. 2 is a schematic perspective view showing another cylindrical oxygen supply member used in the cell culture device of the present invention, FIG. 3 is a schematic sectional view of a double-structured cylindrical oxygen supply member, and FIG. 4 is the present invention. 5 is a schematic perspective view showing another stirring member used in the cell culture of FIG.
The figure shows a cell culture system using the cell culture device as shown in FIG. 1, FIGS. 6 and 9 show dilution rates in medium perfusion, and FIGS. 7 and 10 show cell culture. Showing changes in cell density in Fig. 8, Fig. 11 and Fig. 11
The figure shows changes in dissolved oxygen concentration (DO) in cell culture. 1 ... Cell culture device, 2 ... Tank, 3 ... Cylindrical oxygen supply member, 4 ... Stirring member, 5a, 5b ... Medium filter, 10 ... Medium, 21 ... Tank body, 22 ... Sealed Element,
23 …… Jacket part, 31 …… Supporting member, 31a, 31a …… Bar, 32 …… Tube, 42 …… Spiral type screw stirring blade.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】細胞あるいは細胞が付着したマイクロキャ
リアが懸濁している培地を貯留するための密閉可能なタ
ンクと、該タンク内に配設され高分子多孔質材料からな
るチューブが円筒形状をなすように支持部材に巻き回さ
れて形成された円筒型酸素供給部材と、該円筒型酸素供
給部材の円筒内部領域に位置するように配設された撹拌
部材とを備え、前記培地が前記タンク内壁と前記円筒型
酸素供給部材外壁との間の領域と前記円筒内部領域とを
循環することを特徴とする細胞培養装置。
1. A closable tank for storing a medium in which cells or microcarriers to which cells are adhered are suspended, and a tube made of a polymeric porous material disposed in the tank has a cylindrical shape. The cylindrical oxygen supply member formed by being wound around the support member, and the stirring member arranged so as to be located in the cylindrical inner region of the cylindrical oxygen supply member, wherein the culture medium is the inner wall of the tank. A cell culture device, which circulates in a region between the outer wall of the cylindrical oxygen supply member and the inner region of the cylinder.
【請求項2】前記撹拌部材が螺旋型スクリュー撹拌羽根
を有することを特徴とする請求項1記載の細胞培養装
置。
2. The cell culture device according to claim 1, wherein the stirring member has a spiral screw stirring blade.
【請求項3】前記円筒型酸素供給部材が多重構造を有す
ることを特徴とする請求項1または2記載の細胞培養装
置。
3. The cell culture device according to claim 1, wherein the cylindrical oxygen supply member has a multiple structure.
JP2071126A 1990-03-20 1990-03-20 Cell culture device Expired - Fee Related JPH078230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071126A JPH078230B2 (en) 1990-03-20 1990-03-20 Cell culture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071126A JPH078230B2 (en) 1990-03-20 1990-03-20 Cell culture device

Publications (2)

Publication Number Publication Date
JPH03272678A JPH03272678A (en) 1991-12-04
JPH078230B2 true JPH078230B2 (en) 1995-02-01

Family

ID=13451566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071126A Expired - Fee Related JPH078230B2 (en) 1990-03-20 1990-03-20 Cell culture device

Country Status (1)

Country Link
JP (1) JPH078230B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550285B2 (en) * 1993-11-18 1996-11-06 麒麟麦酒株式会社 Air lift type reactor
JP5460241B2 (en) * 2009-10-30 2014-04-02 株式会社日立製作所 Biological cell culture method and culture apparatus
US10738272B2 (en) * 2016-06-27 2020-08-11 General Electric Company Heating assembly for a bioreactor and an associated method thereof
US20190136173A1 (en) * 2017-09-29 2019-05-09 Lonza Ltd. Perfusion apparatus for use in bioreactor systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2940446C2 (en) * 1979-10-05 1982-07-08 B. Braun Melsungen Ag, 3508 Melsungen Cultivation of animal cells in suspension and monolayer cultures in fermentation vessels
JPH01206989A (en) * 1988-02-16 1989-08-21 Snow Brand Milk Prod Co Ltd Cell culture tank

Also Published As

Publication number Publication date
JPH03272678A (en) 1991-12-04

Similar Documents

Publication Publication Date Title
US5270207A (en) Circulatory culture equipment
US4208483A (en) Tissue culture system
Feder et al. The large-scale cultivation of mammalian cells
US5654197A (en) Method and apparatus for growing biomass particles
JP2777385B2 (en) Biological cell culture method, culture system and culture device
JP2009500015A (en) Rotating perfusion time-varying electromagnetic force bioreactor and method of use thereof
JPS6023834B2 (en) fermentation vessel
JPH0213365A (en) Hollow fiber bioreactor culture system and method
JPS63501475A (en) Apparatus and method for delivering gas to liquids, especially tissue culture growth media, without creating bubbles
EP0095804A2 (en) Process and apparatus for cultivating tissue cells
US5260211A (en) Process for cultivating adhesive cells in a packed bed of solid cell matrix
JPH07203945A (en) Apparatus for culturing cell of living body
JPH078230B2 (en) Cell culture device
JPS62130683A (en) Method and apparatus for culturing cell
US20220033751A1 (en) Modular Bioreactor
US20100178680A1 (en) Rotatable perfused time varying electromagnetic force bioreactor and method of using the same
JPH0416153B2 (en)
JPS60199380A (en) Gas blow-in cell culture
JPH0659203B2 (en) Incubator
JPH05304943A (en) Device for culturing organism
JPS61108371A (en) Container for culturing cell on minute carrier or in capsule
JPH06105680A (en) Culture method for animal cell and device therefor
JPS626670A (en) Culture device
KR950007622B1 (en) Air injecting device of cell cultivator
JPH02200176A (en) Cell culture method and system therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees