JP7231425B2 - Culture system, culture method and method for producing cultured product - Google Patents

Culture system, culture method and method for producing cultured product Download PDF

Info

Publication number
JP7231425B2
JP7231425B2 JP2019019292A JP2019019292A JP7231425B2 JP 7231425 B2 JP7231425 B2 JP 7231425B2 JP 2019019292 A JP2019019292 A JP 2019019292A JP 2019019292 A JP2019019292 A JP 2019019292A JP 7231425 B2 JP7231425 B2 JP 7231425B2
Authority
JP
Japan
Prior art keywords
culture
medium
oxygen concentration
dissolved oxygen
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019292A
Other languages
Japanese (ja)
Other versions
JP2020124172A (en
Inventor
啓介 渋谷
健之 近藤
憲一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019019292A priority Critical patent/JP7231425B2/en
Publication of JP2020124172A publication Critical patent/JP2020124172A/en
Application granted granted Critical
Publication of JP7231425B2 publication Critical patent/JP7231425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、培養システム、培養方法及び培養生産物の生産方法 The present invention provides a culture system, a culture method, and a method for producing a culture product.

抗体医薬等のバイオ医薬品は、有効成分となるタンパク質を生産する細胞を培養することで、製造することができる。この場合、細胞から分泌されたタンパク質を精製することで、バイオ医薬品を製造できる。 Biopharmaceuticals such as antibody drugs can be produced by culturing cells that produce proteins that serve as active ingredients. In this case, biopharmaceuticals can be produced by purifying proteins secreted from cells.

細胞の培養方法として、例えば、回分培養、流加培養、連続培養に分類される。これらのうち、回分培養は、一回毎に新たな培地を用意し、用意した培地に細胞株を植えて収穫まで培地を加えない方法である。回分培養によると、培養毎に品質はバラつき易いが、コンタミネーションのリスクを分散したり低減したりできる。流加培養は、半回分培養ともいわれ、培養中に、培地自体又は培地中の特定成分を添加し、培養終了時までその生産物を抜き取らない培養方法である。流加培養は、通常は大型の生産設備を使用して行われる。 Cell culture methods are classified into, for example, batch culture, fed-batch culture, and continuous culture. Among these, batch culture is a method in which a new medium is prepared each time, a cell line is planted in the prepared medium, and no medium is added until harvest. With batch culture, the quality tends to vary from culture to culture, but the risk of contamination can be dispersed or reduced. Fed-batch culture, also called semi-batch culture, is a culture method in which the medium itself or specific components in the medium are added during the culture and the product is not withdrawn until the end of the culture. Fed-batch culture is usually performed using large production facilities.

連続培養は、灌流培養ともいわれ、連続的に培養系に培地を供給すると同時に同量の培養液を抜き取る培養方法である。連続培養では、培養液抜き出しの際、目的物質だけでなく細胞増殖の障害となるアンモニア、乳酸等の老廃物も抜き出される。このため、細胞を高密度で培養できる。また、連続培養では、培養環境を一定に保ち易く、生産性を安定させることができる。 Continuous culture, also called perfusion culture, is a culture method in which a culture medium is continuously supplied to a culture system and the same amount of culture solution is withdrawn at the same time. In continuous culture, when extracting the culture medium, not only the target substance but also waste products such as ammonia and lactic acid that hinder cell growth are extracted. Therefore, cells can be cultured at high density. Further, in continuous culture, it is easy to keep the culture environment constant, and productivity can be stabilized.

近年、生産設備を小型化可能な連続培養が着目されている。連続培養に関する技術として、特許文献1に記載の技術が知られている。特許文献1には、細胞を増殖させるための装置であって、細胞培養のための少なくとも一つのバイオリアクタ、培養培地のための少なくとも一つの容器、該バイオリアクタ及び該容器を液体連絡させる培養培地及び/又は細胞培養物を循環させるための手段、及び酸素を供給するための少なくとも一つの手段を有することを特徴とする装置が記載されている。 In recent years, attention has been focused on continuous culture, which allows downsizing of production equipment. As a technique related to continuous culture, the technique described in Patent Document 1 is known. US Pat. No. 5,400,003 discloses an apparatus for growing cells, comprising at least one bioreactor for cell culture, at least one vessel for culture medium, and a culture medium in fluid communication between the bioreactor and the vessel. and/or comprising means for circulating the cell culture and at least one means for supplying oxygen.

特表2003-521877号公報(特に図1参照)Japanese Patent Application Publication No. 2003-521877 (especially see FIG. 1)

ところで、細胞等の培養対象物の密度(濃度)により、単位培養液当たりの酸素消費量が異なる。具体的には例えば、培養対象物が低密度であれば、単位培養液あたりの酸素消費量は少なく、培養対象物が高密度であれば、単位培養液あたりの酸素消費量は多い。そこで、培養対象物密度に適した溶存酸素濃度になるように溶存酸素濃度を制御することが好ましい。 By the way, the oxygen consumption per unit culture solution varies depending on the density (concentration) of culture objects such as cells. Specifically, for example, if the culture target has a low density, the oxygen consumption per unit culture solution is small, and if the culture target has a high density, the oxygen consumption per unit culture solution is high. Therefore, it is preferable to control the dissolved oxygen concentration so that the dissolved oxygen concentration is suitable for the culture object density.

しかし、特に培養対象物が高密度の場合、培養対象物を含む培養液と溶存酸素濃度測定装置(通常は溶存酸素濃度測定装置に備えられる電極部)とを接触させると、上記電極部に培養対象物が付着し易くなる。この結果、付着した培養対象物によって培養液の溶存酸素と上記電極部とが接触し難くなり、溶存酸素濃度の測定精度が低下する。これにより、培養対象物を含む培養液の溶存酸素濃度を適切に評価できず、不適切な溶存酸素濃度制御に起因して培養対象物の培養に影響が生じる可能性がある。 However, especially when the object to be cultured has a high density, when the culture solution containing the object to be cultured is brought into contact with a dissolved oxygen concentration measuring device (usually an electrode unit provided in the dissolved oxygen concentration measuring device), the electrode portion may cause the culture It becomes easier for objects to adhere. As a result, it becomes difficult for the dissolved oxygen in the culture solution to come into contact with the electrode portion due to the adhering culture target, and the measurement accuracy of the dissolved oxygen concentration decreases. As a result, the dissolved oxygen concentration of the culture solution containing the culture target cannot be properly evaluated, and the culture of the culture target may be affected due to inappropriate dissolved oxygen concentration control.

本発明は、培養対象物を適切に培養可能な培養システム、培養方法及び培養生産物の生産方法を提供することを目的とする。 An object of the present invention is to provide a culture system, a culture method, and a method for producing a culture product that can appropriately culture an object to be cultured.

本発明は、培養生産物を生産する培養対象物を培地で培養する培養容器と、前記培養容器において培養された前記培養対象物を含む培養液から前記培養対象物を分離する分離装置と、前記分離装置での前記培養対象物分離後の培地の溶存酸素濃度を測定する溶存酸素濃度測定装置と、前記培養容器と前記溶存酸素濃度測定装置との間に形成され、前記培養液又は前記培地の一方の媒体が流れるとともにガス透過性材料によって形成される媒体系統と、前記溶存酸素濃度測定装置により測定された溶存酸素濃度と、前記媒体系統を流れる媒体の流れ条件とに基づいて、前記培養容器に供給される培地による酸素供給量を決定する酸素供給量決定部を備える演算装置と、を備えることを特徴とする、培養システムに関する。その他の解決手段は発明を実施するための形態において後記する。 The present invention provides a culture vessel for culturing a culture object that produces a culture product in a medium, a separation device for separating the culture object from a culture solution containing the culture object cultured in the culture container, and A dissolved oxygen concentration measuring device that measures the dissolved oxygen concentration of the culture medium after the separation of the culture object in the separation device, and a dissolved oxygen concentration measuring device formed between the culture vessel and the dissolved oxygen concentration measuring device, Based on a medium system formed of a gas-permeable material while one medium flows, the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring device, and the flow conditions of the medium flowing through the medium system, the culture vessel and an arithmetic device having an oxygen supply amount determination unit that determines the oxygen supply amount by the culture medium supplied to the culture system. Other solutions will be described later in the detailed description.

本発明によれば、培養対象物を適切に培養可能な培養システム、培養方法及び培養生産物の生産方法を提供することができる。 According to the present invention, it is possible to provide a culture system, a culture method, and a method for producing a culture product that can appropriately culture an object to be cultured.

第1実施形態の培養システムの系統図である。1 is a system diagram of a culture system according to a first embodiment; FIG. 酸素含有ガス中の酸素含有割合に対する飽和溶存酸素濃度を示すグラフである。It is a graph which shows the saturated dissolved oxygen concentration with respect to the oxygen content rate in oxygen-containing gas. 図1に示す培養システムに備えられる演算装置のブロック図である。FIG. 2 is a block diagram of an arithmetic unit provided in the culture system shown in FIG. 1; 流れ条件データベースの内容を示す図である。It is a figure which shows the content of a flow condition database. 第1実施形態の培養方法を示すフローチャートである。4 is a flow chart showing the culture method of the first embodiment. 模擬培養試験に使用した培養システムの系統図である。1 is a system diagram of a culture system used in a simulated culture test; FIG. 窒素供給量に対する空気供給量を示すグラフである。It is a graph which shows the amount of air supply with respect to the amount of nitrogen supply. 試験時間に対する溶存酸素濃度変化を示すグラフであり、培養容器への窒素通気量が30mL/分のときのグラフである。It is a graph showing changes in dissolved oxygen concentration with respect to test time, and is a graph when the nitrogen gas flow rate to the culture vessel is 30 mL/min. 試験時間に対する溶存酸素濃度変化を示すグラフであり、培養容器への窒素通気量が50mL/分のときのグラフである。It is a graph showing changes in dissolved oxygen concentration with respect to test time, and is a graph when the nitrogen gas flow rate to the culture vessel is 50 mL/min. 培養日数に対する溶存酸素濃度(培養対象物分離後の培地、及び、培養液)及び生物細胞密度の変化を示すグラフである。4 is a graph showing changes in dissolved oxygen concentration (medium and culture solution after separation of culture objects) and biological cell density with respect to the number of culture days. 第2実施形態の培養システムの系統図である。FIG. 4 is a system diagram of a culture system according to a second embodiment; FIG. 第3実施形態の培養システムの系統図である。FIG. 10 is a system diagram of a culture system according to a third embodiment; FIG. 第4実施形態の培養システムの系統図である。FIG. 10 is a system diagram of a culture system according to a fourth embodiment; FIG. 第5実施形態の培養システムの系統図である。FIG. 11 is a system diagram of a culture system according to a fifth embodiment;

以下、本発明を実施するための形態を、図面を参照しながら説明する。ただし、本発明は以下の例に何ら制限されず、本発明の要旨を損なわない範囲で任意に変形して実施できる。また、各実施形態は任意に組み合わせて実施できる。また、同じ装置及び系統については同じ符号を付すものとし、重複する説明は省略する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated, referring drawings. However, the present invention is not limited to the following examples, and can be arbitrarily modified within the scope of the present invention. Moreover, each embodiment can be combined arbitrarily and implemented. Also, the same devices and systems are denoted by the same reference numerals, and overlapping descriptions are omitted.

図1は、第1実施形態の培養システム100の系統図である。培養システム100は、例えば、ヒト細胞及び動物細胞のうちの少なくとも一種の細胞を含む培養対象物を培養するためのシステムである。ヒト細胞及び動物細胞のうちの少なくとも一種の細胞は、例えばチャイニーズハムスターの卵巣細胞(CHO細胞)を含む。ただし、培養対象物は、これらの細胞に限定されるものではなく、例えば微生物(細菌、酵母等)を含んでもよい。 FIG. 1 is a system diagram of the culture system 100 of the first embodiment. The culture system 100 is, for example, a system for culturing a culture object containing at least one type of cells selected from human cells and animal cells. At least one of human cells and animal cells includes, for example, Chinese hamster ovary cells (CHO cells). However, the culture object is not limited to these cells, and may include, for example, microorganisms (bacteria, yeast, etc.).

培養システム100では、培養対象物は培地で培養される。そして、培養対象物の培養により、培養対象物は培養生産物を生産する。培地は、培養対象物を培養可能なものであれば任意であるが、培養対象物が例えばCHO細胞の場合、培地は例えばダルベッコ改変イーグル培地(DMEM培地)を含む。また、培養生産物は、培養対象物により生産される例えば目的タンパク質を含む。目的タンパク質の生成により、例えばバイオ医薬品(抗体医薬)を生産できる。 In the culture system 100, a culture target is cultured in a medium. By culturing the culture object, the culture object produces a culture product. Any medium can be used as long as the object to be cultured can be cultured. When the object to be cultured is, for example, CHO cells, the medium includes, for example, Dulbecco's Modified Eagle Medium (DMEM medium). Culture products also include, for example, proteins of interest produced by culture subjects. For example, biopharmaceuticals (antibody drugs) can be produced by producing the target protein.

なお、本明細書においては、培養対象物を含む培地(培養された培養対象物を含む培地)のことを「培養液」という。そして、培養液から培養対象物を除去した液体は、培養対象物による栄養消費によって厳密には培養使用前の培地とは成分が異なるが、便宜的に「培地」というものとする。 In this specification, a medium containing a culture object (a medium containing a cultured object) is referred to as a “culture solution”. Strictly speaking, the liquid obtained by removing the object to be cultured from the culture solution will be called a "medium" for the sake of convenience, though strictly speaking, the composition is different from that of the medium before use for culture due to the nutritional consumption by the object to be cultured.

培養システム100は、培養容器1と、分離装置2と、溶存酸素濃度測定装置3とを備える。また、培養システム100は、培養液系統31と、培地系統32,34,35と、培養対象物系統33と、媒体系統36とを備える。さらに、培養システム100は、灌流培養を行うためのシステムであり、分離装置2での培養対象物分離後の培地を培養容器1に供給する培地系統34(第1培地供給系統)を備える。培地系統34により、培地の栄養を無駄なく使用できるとともに、外部への培地の排出量を減らし、排液処理コストを削減できる。 A culture system 100 includes a culture container 1 , a separator 2 , and a dissolved oxygen concentration measuring device 3 . The culture system 100 also includes a culture fluid system 31 , medium systems 32 , 34 , 35 , a culture target system 33 , and a medium system 36 . Furthermore, the culture system 100 is a system for performing perfusion culture, and includes a culture medium system 34 (first culture medium supply system) that supplies culture medium after separation of the culture target in the separation device 2 to the culture container 1 . The culture medium system 34 can use the nutrients of the culture medium without waste, reduce the amount of culture medium discharged to the outside, and reduce the waste liquid treatment cost.

培養容器1は、培養対象物を培地で培養するためのものである。培養容器1は、連続的に培養可能なものである。培養容器1には、培地系統35を通じて、培地貯留容器4から培地が供給される。また、培養容器1で培養された培養対象物を含む培養液は、培養液系統31を通じて、分離装置2に供給される。 The culture vessel 1 is for culturing an object to be cultured in a medium. The culture vessel 1 is capable of continuous culture. The culture vessel 1 is supplied with the medium from the medium storage container 4 through the medium system 35 . In addition, the culture solution containing the object to be cultured in the culture container 1 is supplied to the separator 2 through the culture solution system 31 .

培養容器1は、図示の例では、攪拌翼7を備えた攪拌槽型の培養容器(例えばステンレス容器)を含む。ただし、培養容器1は、攪拌槽型の培養容器に限定されず、例えば、振とう、揺動等の動作により攪拌可能な振揺攪拌型の培養容器(例えば樹脂製の培養バッグ)等であってもよい。 In the illustrated example, the culture vessel 1 includes a stirring tank type culture vessel (for example, a stainless steel vessel) provided with a stirring blade 7 . However, the culture vessel 1 is not limited to a stirring tank type culture vessel, and may be, for example, a shaking agitation type culture vessel (for example, a resin culture bag) that can be agitated by shaking, rocking, or the like. may

培養容器1は、培養容器1内の培養液に酸素含有ガスを供給するためのガス供給装置5と、培養液を攪拌するための攪拌翼7とを備える。培養中、ガス供給装置5による酸素含有ガスが供給されながら、攪拌翼7の駆動により培養液が攪拌される The culture container 1 includes a gas supply device 5 for supplying an oxygen-containing gas to the culture solution in the culture container 1, and a stirring blade 7 for stirring the culture solution. During culturing, the culture solution is stirred by driving the stirring blade 7 while oxygen-containing gas is supplied by the gas supply device 5.

ガス供給装置5は、例えば液中通気装置を含み、より具体的には例えばスパージャを含む。スパージャにより、ガスの溶液中への溶け込み効率を高くすることができる。スパージャとしては、例えばリングスパージャ、焼結スパージャ等の任意の一種以上が使用可能である。ただし、ガス供給装置5はスパージャに限定されず、例えば散気管等でもよい。また、ガス供給装置5が液中通気装置に限定されず、液面通気装置でもよい。液面通気装置は、例えば、培地液面への酸素供給が可能な装置、ガス交換膜を備える膜面通気装置等の任意の一種以上が使用可能である。 The gas supply device 5 includes, for example, a submerged aeration device, and more specifically includes, for example, a sparger. The sparger can increase the efficiency of gas dissolution into the solution. As the sparger, for example, any one or more of a ring sparger, a sintered sparger, and the like can be used. However, the gas supply device 5 is not limited to a sparger, and may be, for example, an air diffuser. Further, the gas supply device 5 is not limited to the submerged aeration device, and may be a liquid surface aeration device. As the liquid surface aeration device, for example, any one or more of a device capable of supplying oxygen to the liquid surface of the medium, a membrane surface aeration device equipped with a gas exchange membrane, and the like can be used.

なお、ガス供給装置5での酸素含有ガスの供給量(単位時間あたりの通気量)は、例えば、後記する培地貯留容器4でのガス供給装置6による酸素含有ガスの供給量(単位時間当たりの通気量)よりも少なくできる。即ち、主にガス供給装置6(第2ガス供給装置)によって培地への供給を行いつつ、補助的にガス供給装置5によって培養液への供給を行うことができる。このようにすることで、培養液に接触する気泡を減らし、培養対象物への影響を小さくできる。また、培地貯留容器4において培養対象物を含まない培地へのガス供給により、十分量の酸素を培地に供給できる。 The amount of oxygen-containing gas supplied by the gas supply device 5 (aeration amount per unit time) is, for example, the amount of oxygen-containing gas supplied by the gas supply device 6 in the culture medium storage container 4 described later (per unit time airflow). In other words, the medium can be supplied mainly by the gas supply device 6 (the second gas supply device), and the culture solution can be supplementarily supplied by the gas supply device 5 . By doing so, it is possible to reduce the number of air bubbles that come into contact with the culture solution, and to reduce the influence on the culture object. In addition, a sufficient amount of oxygen can be supplied to the culture medium by supplying gas to the culture medium containing no culture target in the culture medium storage container 4 .

ガス供給装置5,6により供給される酸素含有ガスは、例えば空気のような、酸素を一部に含むガスのほか、酸素のみからなるガス(純酸素)等であってもよい。酸素含有ガスとしては、培養生産物の生産コストの観点からは空気が好ましいが、高い分圧によって溶存酸素濃度を高められる観点からは純酸素が好ましい。 The oxygen-containing gas supplied by the gas supply devices 5 and 6 may be, for example, a gas partially containing oxygen, such as air, or a gas consisting only of oxygen (pure oxygen). As the oxygen-containing gas, air is preferable from the viewpoint of the production cost of the culture product, but pure oxygen is preferable from the viewpoint that the dissolved oxygen concentration can be increased by a high partial pressure.

図2は、酸素含有ガス中の酸素含有割合に対する飽和溶存酸素濃度を示すグラフである。このグラフは、例えばヒト、動物細胞の培養に好適な37℃での結果を示したものである。図2における破線は、空気を水に溶解させたときの飽和溶存酸素濃度(6.86mg/L)である。横軸において酸素含有割合が100%のガスが純酸素である。 FIG. 2 is a graph showing the saturated dissolved oxygen concentration with respect to the oxygen content ratio in the oxygen-containing gas. This graph shows the results at 37° C., which is suitable for culturing human and animal cells, for example. The dashed line in FIG. 2 is the saturated dissolved oxygen concentration (6.86 mg/L) when air is dissolved in water. A gas with an oxygen content of 100% on the horizontal axis is pure oxygen.

黒丸プロットで示すように、酸素含有ガスにおける酸素含有割合に比例して、飽和溶存酸素濃度が大きくなる。従って、酸素含有割合が高い酸素含有ガス(例えば純酸素)を供給する(溶解させる)ことで、効果的に溶存酸素濃度を上げることができる。特に、培養対象物による培養液での呼吸のため、培養液での溶存酸素は消費され、溶存酸素濃度が低下する。そして、特に培養対象物密度が高まるほど、溶存酸素の消費速度が速まる。そのため、酸素含有割合が高い酸素含有ガスを用いることで、消費速度が速い場合でも速やかに溶存酸素濃度を回復でき、効果的な制御が可能になる。 As indicated by the black dot plot, the saturated dissolved oxygen concentration increases in proportion to the oxygen content in the oxygen-containing gas. Therefore, by supplying (dissolving) an oxygen-containing gas having a high oxygen content (for example, pure oxygen), the dissolved oxygen concentration can be effectively increased. In particular, the dissolved oxygen in the culture solution is consumed due to respiration in the culture solution by the culture object, and the dissolved oxygen concentration decreases. In particular, as the culture target density increases, the dissolved oxygen consumption rate increases. Therefore, by using an oxygen-containing gas with a high oxygen content rate, the dissolved oxygen concentration can be recovered quickly even when the consumption rate is high, and effective control becomes possible.

図1に戻り、培養システム100では、ガス供給装置5,6による酸素含有ガスの供給量は、培養対象物の密度、培養時間等に基づいて制御されていない。しかし、ガス供給装置5,6による供給量(いずれか一方のみでもよい)は、例えば後記する図12及び図14に示すように、培養対象物の密度、培養時間等に基づいて制御されるようにしてもよい。 Returning to FIG. 1, in the culture system 100, the amount of oxygen-containing gas supplied by the gas supply devices 5 and 6 is not controlled based on the density of the culture object, culture time, and the like. However, the amount supplied by the gas supply devices 5 and 6 (only one of them may be sufficient) is controlled based on the density of the object to be cultured, the culture time, etc., as shown in FIGS. can be

培養容器1には、培地系統35を通じて、培地貯留容器4に貯留された培地が供給される。従って、培地貯留容器4は、培養システム100に備えられ、培養容器1に供給される培地を貯留するためのものである。また、培養システム100は、培地貯留容器4に貯留された培地に酸素含有ガスを供給するガス供給装置6(第2ガス供給装置)を備える。培地貯留容器4は攪拌翼8を備えており、培地中での攪拌翼8の駆動により、ガス供給装置6から供給された酸素含有ガス中の酸素が培地全体に速やかに溶解する。そして、酸素溶解により酸素富化状態の培地が得られ、酸素富化状態の培地が培養容器1に供給される。 The culture vessel 1 is supplied with the medium stored in the medium storage container 4 through the medium system 35 . Therefore, the medium storage container 4 is provided in the culture system 100 and serves to store the medium supplied to the culture container 1 . The culture system 100 also includes a gas supply device 6 (second gas supply device) that supplies an oxygen-containing gas to the culture medium stored in the culture medium storage container 4 . The culture medium storage container 4 is equipped with a stirring blade 8, and by driving the stirring blade 8 in the culture medium, oxygen in the oxygen-containing gas supplied from the gas supply device 6 quickly dissolves in the entire culture medium. Then, an oxygen-enriched medium is obtained by oxygen dissolution, and the oxygen-enriched medium is supplied to the culture vessel 1 .

培地貯留容器4に貯留される培地には培養対象物が含まれないことから、培地貯留容器4でのガス供給により、培養対象物への気泡の影響を抑制できる。また、培養対象物を含まない培地への酸素含有ガスの供給のため、培養対象物への影響を考慮することなく、培地への酸素含有ガスの供給が可能になる。これにより、培地の溶存酸素濃度を設定値に制御し易くできる。 Since the medium stored in the medium storage container 4 does not contain the object to be cultured, the gas supply in the medium storage container 4 can suppress the influence of air bubbles on the object to be cultured. In addition, since the oxygen-containing gas is supplied to the medium containing no culture target, the oxygen-containing gas can be supplied to the medium without considering the influence on the culture target. This makes it easier to control the dissolved oxygen concentration of the medium to the set value.

培養容器1への培地供給量は、インバータ制御されるポンプ13の回転速度制御により調整される。また、例えば、通常は媒体系統36(後記する)を通じた媒体の循環を主として行い、培養容器1での培養時間が長くなり、培養容器1での培養液中の栄養が不足した場合にのみ、培養容器1への培地供給を行うことができる。 The amount of medium supplied to the culture container 1 is adjusted by controlling the rotational speed of the inverter-controlled pump 13 . In addition, for example, usually, the medium is mainly circulated through the medium system 36 (described later), and only when the culture time in the culture container 1 becomes long and the nutrients in the culture solution in the culture container 1 become insufficient, A culture medium can be supplied to the culture container 1 .

分離装置2は、培養容器1において培養された培養対象物を含む培養液から培養対象物を分離するためのものである。即ち、培養対象物と培養対象物により生産された培養生産物とを含む培養液から、分離装置2により、培養対象物と、培養生産物を含む培地とが分離される。培養容器1から分離装置2への培養液の供給は、培養液系統31に備えられたポンプ11の駆動により行われる。培養生産物は通常は培地に可溶である一方で、培養対象物は通常はスラリー状である。従って、分離装置2において、培養対象物と、培養生産物を含む培地とを分離できる。分離された培養対象物は、培養対象物系統33を通じて、培養容器1に戻される。一方で、分離された培地は液体であり、液体の培地は、培地系統32を通じて溶存酸素濃度測定装置3(後記する)に供給される。 The separation device 2 is for separating the culture object from the culture medium containing the culture object cultured in the culture vessel 1 . That is, the separation device 2 separates the culture object and the medium containing the culture product from the culture medium containing the culture object and the culture product produced by the culture object. The culture solution is supplied from the culture container 1 to the separator 2 by driving the pump 11 provided in the culture solution system 31 . The cultured product is usually soluble in the medium, while the cultured object is usually in slurry form. Therefore, in the separation device 2, the object to be cultured and the medium containing the cultured product can be separated. The separated culture object is returned to the culture container 1 through the culture object system 33 . On the other hand, the separated medium is liquid, and the liquid medium is supplied to the dissolved oxygen concentration measuring device 3 (described later) through the medium system 32 .

分離装置2は、図示の例では分離膜を含む。分離膜による分離は、例えばタンジェンシャルフローフィルトレーション方式(TFF方式)、アルタネィティブタンジェンシャルフローフィルトレーション方式(ATF方式)等の一種以上を使用した装置を用いて行ってもよい。ただし、分離装置2は、分離膜に限定されず、例えば、重力により培養対象物を沈降させる重力沈降装置、遠心力によって培養対象物を培地から分離させる遠心分離装置、スピンフィルタ等の一種以上であってもよい。 The separation device 2 comprises a separation membrane in the example shown. Separation by a separation membrane may be performed using an apparatus using one or more of the tangential flow filtration method (TFF method), the alternative tangential flow filtration method (ATF method), and the like. However, the separation device 2 is not limited to a separation membrane, and may be one or more of, for example, a gravity sedimentation device that sediments the culture object by gravity, a centrifugal separator that separates the culture object from the medium by centrifugal force, a spin filter, and the like. There may be.

溶存酸素濃度測定装置3は、分離装置2での培養対象物分離後の培地の溶存酸素濃度を測定するためのものである。溶存酸素濃度測定装置3は培地系統32に備えられる。即ち、培地系統32は溶存酸素濃度測定装置3を備える。培養液ではなく培地の溶存酸素濃度を測定することで、培養対象物の影響を受けずに培養液の溶存酸素濃度を測定できる。特に、培養対象物の高密度での長時間培養により、培養対象物からの分泌物、死んだ培養対象物等により、溶存酸素濃度測定装置3(具体的には、溶存酸素濃度測定装置3に通常備えられる電極部)への汚れが付着し易くなる。この結果、溶存酸素濃度の測定精度が低下する。しかし、培養対象物を含む培養液ではなく、培養対象物を含まない培地の溶存酸素濃度を測定することで、培養対象物、老廃物等に起因する汚れの影響を受けることなく、培地の溶存酸素濃度を精度よく測定できる。 The dissolved oxygen concentration measuring device 3 is for measuring the dissolved oxygen concentration of the culture medium after the culture object is separated by the separation device 2 . The dissolved oxygen concentration measuring device 3 is provided in the culture medium system 32 . That is, the culture medium system 32 is equipped with the dissolved oxygen concentration measuring device 3 . By measuring the dissolved oxygen concentration in the culture medium instead of the culture medium, the dissolved oxygen concentration in the culture medium can be measured without being affected by the culture target. In particular, the dissolved oxygen concentration measuring device 3 (specifically, the dissolved oxygen concentration measuring device 3 Dirt easily adheres to the electrode part that is normally provided. As a result, the measurement accuracy of the dissolved oxygen concentration is lowered. However, by measuring the dissolved oxygen concentration in the medium that does not contain the culture target, instead of the culture solution containing the culture target, the dissolved oxygen concentration of the medium can be measured without being affected by the contamination caused by the culture target, waste products, etc. Oxygen concentration can be measured with high accuracy.

溶存酸素濃度測定後の培地は、培地系統32を通じて、培養生産物とともに系外に取り出される。培養生産物を含む培地の取り出しは、培地系統32に備えられたポンプ12の駆動により、連続的に行われる。 After measuring the dissolved oxygen concentration, the medium is taken out of the system together with the cultured product through the medium system 32 . The medium containing the cultured product is continuously taken out by driving the pump 12 provided in the medium system 32 .

溶存酸素濃度測定装置3は、例えばポーラログラフ方式、ガルバニ電池方式等の任意の方式の溶存酸素濃度測定装置を適用できる。溶存酸素濃度測定装置3により測定された溶存酸素濃度は、後記する演算装置21に入力される。 As the dissolved oxygen concentration measuring device 3, any type of dissolved oxygen concentration measuring device such as a polarographic method or a galvanic cell method can be applied. The dissolved oxygen concentration measured by the dissolved oxygen concentration measuring device 3 is input to the computing device 21 described later.

上記の分離装置2で分離された培地の一部は、分離装置2での培養対象物分離後の培地を培養容器1に供給する培地系統34(第1供給系統)を通じて、培養容器1に供給される。培地系統34は、培地系統32の分岐部Aから分岐して形成される。培地系統34は、培養対象物分離後の培地に酸素含有ガスを供給するガス供給装置15(第1ガス供給装置)を備える。具体的には、ガス供給装置15で酸素含有ガスが供給されることにより流れる培地に酸素が溶解し、酸素を溶解した培地は、培地系統34を流れて培養容器1に供給される。 Part of the medium separated by the separation device 2 is supplied to the culture vessel 1 through a medium system 34 (first supply system) that supplies the culture medium after the separation of the object to be cultured by the separation device 2 to the culture vessel 1. be done. The culture medium system 34 is formed by branching from the branch A of the culture medium system 32 . The culture medium system 34 includes a gas supply device 15 (first gas supply device) that supplies an oxygen-containing gas to the culture medium after separation of the culture object. Specifically, oxygen is dissolved in the flowing medium by supplying oxygen-containing gas from the gas supply device 15 , and the oxygen-dissolved medium flows through the medium system 34 and is supplied to the culture vessel 1 .

ガス供給装置15は、例えば上記のガス供給装置5,6と同じ方式を適用できる。ガス供給装置15による酸素含有ガスの供給量は、例えば、培地系統34を流れる培地における溶存酸素濃度が飽和になるようにすることができる。従って、培養容器1での培地の溶存酸素濃度は、例えば、培地系統34に備えられるとともに、インバータ制御されるポンプ14(溶存酸素濃度調整装置)の回転速度制御により調整することができる。即ち、培地系統34(第1供給系統)は、培養容器1での培地の溶存酸素濃度を調整するポンプ14(溶存酸素濃度調整装置)を備える。ポンプ14により、培養容器1での培養液の溶存酸素濃度を調整できる。具体的な調整方法は、図2を参照しながら後記する。 For the gas supply device 15, for example, the same system as the gas supply devices 5 and 6 can be applied. The amount of oxygen-containing gas supplied by the gas supply device 15 can be adjusted, for example, so that the concentration of dissolved oxygen in the medium flowing through the medium system 34 becomes saturated. Therefore, the dissolved oxygen concentration of the culture medium in the culture container 1 can be adjusted, for example, by controlling the rotational speed of the pump 14 (dissolved oxygen concentration adjusting device) provided in the culture medium system 34 and controlled by an inverter. That is, the culture medium system 34 (first supply system) includes a pump 14 (dissolved oxygen concentration adjusting device) that adjusts the dissolved oxygen concentration of the culture medium in the culture vessel 1 . The dissolved oxygen concentration of the culture medium in the culture container 1 can be adjusted by the pump 14 . A specific adjustment method will be described later with reference to FIG.

培養システム100は、培養容器1と溶存酸素濃度測定装置3との間に形成され、培養液又は培地の一方の媒体が流れる媒体系統36を備える。ここで、培養システム100において媒体系統36は媒体が循環するように形成されている。そのため、媒体系統36は、培養容器1から溶存酸素濃度測定装置3に向かって流れる系統と、溶存酸素濃度測定装置3から培養容器1に向かって流れる系統とを含む。 The culture system 100 includes a medium system 36 formed between the culture container 1 and the dissolved oxygen concentration measuring device 3 and through which either a culture solution or a culture medium flows. Here, in the culture system 100, the medium system 36 is formed so that the medium circulates. Therefore, the medium system 36 includes a system that flows from the culture container 1 toward the dissolved oxygen concentration measuring device 3 and a system that flows from the dissolved oxygen concentration measuring device 3 toward the culture container 1 .

媒体系統36は、培養容器1と分離装置2との間に形成される培養液系統31と、分離装置2と溶存酸素濃度測定装置3との間に形成される培地系統32と、培地系統32のうち溶存酸素濃度測定装置3と分岐部Aとの間に形成される培地系統32と、分岐部Aと培養容器1との間に形成される培地系統34とを含む。そして、媒体系統36は、例えばガス透過性材料の配管(チューブでもよい)により形成される。 The medium system 36 includes a culture solution system 31 formed between the culture container 1 and the separation device 2, a medium system 32 formed between the separation device 2 and the dissolved oxygen concentration measuring device 3, and a medium system 32. Among them, the culture medium system 32 formed between the dissolved oxygen concentration measuring device 3 and the branch A, and the culture medium system 34 formed between the branch A and the culture vessel 1 are included. The medium system 36 is formed, for example, by piping (a tube may be used) made of a gas-permeable material.

ガス透過性材料は例えば樹脂を含む。樹脂は、例えばポリスチレン、ポリサルフォン、ポリトリメチレンテレフタレート、ポリエーテルエーテルケトン、ポリプロピレン等の一種以上を含む。樹脂は焼却が容易であるため、培養システム100において培養対象物の種類を変更する場合に使用済みの媒体系統36をそのまま焼却処理し、新たなガス透過性材料を使用することで、変更前の残渣によるコンタミネーションのリスクを低減できる。 Gas permeable materials include, for example, resins. Resins include, for example, one or more of polystyrene, polysulfone, polytrimethylene terephthalate, polyetheretherketone, polypropylene, and the like. Since resin is easy to incinerate, when changing the type of culture object in the culture system 100, the used medium system 36 can be incinerated as it is, and a new gas-permeable material can be used to restore the The risk of contamination due to residue can be reduced.

ところで、培養容器1での培養液の溶存酸素濃度は、上記のようにポンプ14によって調整できる。具体的には、上記のように、ポンプ14の回転速度制御により、培養液の溶存酸素濃度が調整できる。そして、ポンプ14の回転速度制御は、図1中破線矢印で示す電気信号線を通じて制御装置22から入力される信号に基づき行われる。制御装置22は、演算装置21での演算結果に基づいて、ポンプ14の駆動信号を生成するものである。また、制御装置22でのポンプ14の駆動信号の生成は、図1中破線矢印で示す電気信号線を通じて演算装置21から入力される信号に基づいて行われる。ここで、図3を参照しながら演算装置21について説明する。 By the way, the dissolved oxygen concentration of the culture solution in the culture container 1 can be adjusted by the pump 14 as described above. Specifically, as described above, the dissolved oxygen concentration of the culture solution can be adjusted by controlling the rotational speed of the pump 14 . Rotational speed control of the pump 14 is performed based on a signal input from the control device 22 through an electric signal line indicated by a dashed arrow in FIG. The control device 22 generates a drive signal for the pump 14 based on the calculation result of the calculation device 21 . The drive signal for the pump 14 is generated by the control device 22 based on the signal input from the arithmetic device 21 through the electric signal line indicated by the dashed arrow in FIG. Here, the arithmetic device 21 will be described with reference to FIG.

図3は、図1に示す培養システム100に備えられる演算装置21のブロック図である。演算装置21は、測定部21aと、酸素供給量決定部21bと、信号送信部21cと、流れ条件データベース21dとを備える。測定部21aは、溶存酸素濃度測定装置3(図1参照)によって培地の溶存酸素濃度を測定するためのものである。測定された溶存酸素は、酸素供給量決定部21bに入力される。 FIG. 3 is a block diagram of the computing device 21 provided in the culture system 100 shown in FIG. The computing device 21 includes a measurement unit 21a, an oxygen supply amount determination unit 21b, a signal transmission unit 21c, and a flow condition database 21d. The measurement unit 21a is for measuring the dissolved oxygen concentration of the culture medium using the dissolved oxygen concentration measuring device 3 (see FIG. 1). The measured dissolved oxygen is input to the oxygen supply amount determination unit 21b.

酸素供給量決定部21bは、溶存酸素濃度測定装置3により測定された溶存酸素濃度と、媒体系統36を流れる媒体の流れ条件とに基づいて、培養容器1に供給される培地による酸素供給量を決定するためのものである。上記のように媒体系統36は、コンタミネーション抑制の観点から例えばガス透過性材料により形成される。そのため、培養容器1と溶存酸素濃度測定装置3との間で外気中の酸素が培地に吸収され、培地の溶存酸素濃度が変動する可能性がある。 The oxygen supply amount determination unit 21b determines the oxygen supply amount from the medium supplied to the culture vessel 1 based on the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring device 3 and the flow conditions of the medium flowing through the medium system 36. It is for decision making. As described above, the medium system 36 is made of, for example, a gas permeable material from the viewpoint of contamination suppression. Therefore, oxygen in the outside air may be absorbed by the medium between the culture vessel 1 and the dissolved oxygen concentration measuring device 3, and the dissolved oxygen concentration of the medium may fluctuate.

そこで、培養システム100では、このような変動を考慮して、培養容器1での培地への酸素供給量(飽和溶存酸素濃度の培地の供給量)が調整される。例えば、媒体系統36を流れる培地が外気の影響を受け易い(ガスを吸収し易い)場合には、培養液についての溶存酸素濃度の設定値よりも低溶存酸素濃度の培地が供給される。一方で、外気の影響を受け難い(ガスを吸収し難い)場合には、培養液についての溶存酸素濃度の設定値に近い(設定値通りでもよい)の溶存酸素濃度の培地が供給される。そして、外気の影響を受け易いか否かは、以下に示す流れ条件に基づいて判断される。流れ条件に基づいて酸素供給量を決定することで、外気の影響を考慮した溶存酸素濃度制御が可能になり、精度の高い溶存酸素濃度制御が可能になる。 Therefore, in the culture system 100, the amount of oxygen supplied to the medium in the culture vessel 1 (the amount of medium with saturated dissolved oxygen concentration supplied) is adjusted in consideration of such fluctuations. For example, if the medium flowing through the medium system 36 is susceptible to the outside air (easily absorbs gas), a medium having a dissolved oxygen concentration lower than the set value of the dissolved oxygen concentration for the culture solution is supplied. On the other hand, when it is difficult to be affected by the outside air (difficult to absorb gas), a medium having a dissolved oxygen concentration close to the set value of the dissolved oxygen concentration for the culture solution (may be exactly the set value) is supplied. Then, whether or not it is likely to be affected by outside air is determined based on the following flow conditions. By determining the amount of oxygen to be supplied based on the flow conditions, the dissolved oxygen concentration can be controlled in consideration of the influence of the outside air, and the dissolved oxygen concentration can be controlled with high accuracy.

流れ条件は、媒体系統36を構成する配管の構成材料(厚さを含んでもよい)、内寸、媒体系統36を構成する配管の系統長(配管長)、及び、媒体系統36を流れる媒体の流量、のうちの少なくとも1つの条件を含む。ここでいう内寸は、媒体系統36での媒体流れ方向に垂直な方向への断面での内寸である。内寸は、例えば配管が円管である場合には配管の内径に相当し、例えば配管が角管である場合には配管の各辺の長さに相当する。また、配管の内寸により、媒体流れ方向に垂直な方向への断面における配管内の断面積(流路断面積)が決定される。 The flow conditions include the material (which may include the thickness) of the piping that constitutes the medium system 36, the internal dimensions, the system length (pipe length) of the piping that constitutes the medium system 36, and the medium flowing through the medium system 36. flow rate. The inner dimension referred to here is the inner dimension of the cross section in the direction perpendicular to the medium flow direction in the medium system 36 . The inner dimension corresponds to the inner diameter of the pipe, for example, when the pipe is a circular pipe, and corresponds to the length of each side of the pipe, for example, when the pipe is a square pipe. In addition, the inner dimension of the pipe determines the cross-sectional area (passage cross-sectional area) in the pipe in the cross section in the direction perpendicular to the medium flow direction.

上記条件に関して、例えば、ガス透過性材料の中でも、ガスを比較的透過させ易い構成材料もあれば、比較的透過し難い構成材料もある。さらに、ガス透過量は、媒体系統36を構成する配管の内寸によっても異なる。即ち、内寸から算出される流路断面積によっても、媒体中のガス濃度が変化する。そこで、媒体系統36の構成材料、内寸を考慮して、酸素供給量の調整が行われる。 Regarding the above conditions, for example, among gas-permeable materials, there are constituent materials that allow gas to permeate relatively easily, and constituent materials that allow gas to permeate relatively poorly. Furthermore, the amount of gas permeation also varies depending on the inner dimensions of the piping that constitutes the medium system 36 . That is, the gas concentration in the medium also changes depending on the cross-sectional area of the flow path calculated from the inner dimensions. Therefore, the amount of oxygen supply is adjusted in consideration of the material and inner dimensions of the medium system 36 .

また、媒体系統36の系統長が比較的長ければ酸素の吸収量が増え、媒体系統36の系統長が比較的短ければ酸素の吸収量が減る。そこで、媒体系統36の系統長を考慮して、酸素供給量の調整が行われる。なお、媒体中のガス濃度は、上記内寸と系統長とに基づいて決定される媒体系統36の内部体積により変化する。さらに、媒体系統36を流れる媒体の流量が多ければ酸素の吸収量が増え、媒体系統36を流れる媒体の流量が少なければ酸素の吸収量が減る。そこで、媒体系統36を流れる媒体の流量を考慮して、酸素供給量の調整が行われる。 Further, if the system length of the medium system 36 is relatively long, the oxygen absorption amount increases, and if the system length of the medium system 36 is relatively short, the oxygen absorption amount decreases. Therefore, the oxygen supply amount is adjusted in consideration of the system length of the medium system 36 . The gas concentration in the medium varies depending on the internal volume of the medium system 36 determined based on the internal dimensions and system length. Furthermore, if the flow rate of the medium flowing through the medium system 36 is high, the amount of oxygen absorbed increases, and if the flow rate of the medium flowing through the medium system 36 is low, the amount of oxygen absorbed decreases. Therefore, the oxygen supply amount is adjusted in consideration of the flow rate of the medium flowing through the medium system 36 .

流れ条件は、試運転、実験等により予め決定され、例えば流れ条件データベース21dとして記憶される。流れ条件データベース21dについて、図4を参照しながら説明する。 The flow conditions are determined in advance through test runs, experiments, etc., and stored as, for example, the flow condition database 21d. The flow condition database 21d will be described with reference to FIG.

図4は、流れ条件データベース21dの内容を示す図である。流れ条件データベース21dには、媒体系統36を構成する配管の構成材料、媒体系統36を構成する配管の内寸、媒体系統36の系統長、及び媒体系統36を流れる媒体の流量ごとに、培養容器1での培地の溶存酸素濃度設定値との差分が記憶されている。例えば、一例として、媒体系統36の構成材料がX1であり、媒体系統36の内寸がY1であり、媒体系統36の系統長がZ1であり、媒体系統36を流れる媒体の流量がP1であるときには、酸素供給量は、培養容器1での培養液についての溶存酸素濃度設定値からQ1だけ減らした量の溶存酸素濃度になるように、ポンプ14の回転速度制御が行われる。同様に、流量がP2のときには、溶存酸素濃度目標値からQ2だけ減らした量の溶存酸素濃度になるように、ポンプ14の回転速度制御が行われる。さらには、流量がP3のときには、溶存酸素濃度目標値からQ3だけ減らした量の溶存酸素濃度になるように、ポンプ14の回転速度制御が行われる。 FIG. 4 is a diagram showing the contents of the flow condition database 21d. In the flow condition database 21d, the materials of the pipes forming the medium system 36, the inner dimensions of the pipes forming the medium system 36, the system length of the medium system 36, and the flow rate of the medium flowing through the medium system 36 are stored. The difference from the set value of the dissolved oxygen concentration of the culture medium in 1 is stored. For example, as an example, the constituent material of the medium system 36 is X1, the inner dimension of the medium system 36 is Y1, the system length of the medium system 36 is Z1, and the flow rate of the medium flowing through the medium system 36 is P1. Occasionally, the rotation speed of the pump 14 is controlled so that the amount of oxygen supplied is the dissolved oxygen concentration set value for the culture solution in the culture container 1 reduced by Q1. Similarly, when the flow rate is P2, the rotational speed of the pump 14 is controlled so that the dissolved oxygen concentration is reduced by Q2 from the dissolved oxygen concentration target value. Furthermore, when the flow rate is P3, the rotation speed of the pump 14 is controlled so that the dissolved oxygen concentration is reduced by Q3 from the dissolved oxygen concentration target value.

また、もし、該当する条件が存在しない場合には、流れ条件データベース21dのうちの最も近い流れ条件に対応する差分が使用される。なお、流れ条件データベース21dに代えて、例えば流れ条件に関する実験等データの統計処理(多変量解析等)基づく数式を算出し、算出された式に基づくポンプ14の回転速度制御が行われてもよい。 Also, if there is no applicable condition, the difference corresponding to the closest flow condition in the flow condition database 21d is used. Instead of using the flow condition database 21d, for example, a numerical formula based on statistical processing (multivariate analysis, etc.) of experimental data relating to flow conditions may be calculated, and the rotation speed of the pump 14 may be controlled based on the calculated formula. .

図3に戻って、信号送信部21cは、酸素供給量決定部21bにより決定された酸素供給量になるようなポンプ14の回転速度信号を生成し、ポンプ14に送信するためのものである。ポンプ14への回転速度信号の送信により、ポンプ14が所望の回転速度で駆動する。 Returning to FIG. 3, the signal transmission unit 21c is for generating a rotational speed signal of the pump 14 that will provide the oxygen supply amount determined by the oxygen supply amount determination unit 21b, and transmitting the signal to the pump 14. FIG. Sending the rotational speed signal to the pump 14 drives the pump 14 at the desired rotational speed.

なお、演算装置21は、いずれも図示しないが、CPUと、ROMと、RAMと、I/Fとを備える。そして、ROMに記録されたプログラムがCPUによって実行されることで、演算装置21が具現化される。 The computing device 21 includes a CPU, a ROM, a RAM, and an I/F, although none of them are shown. Then, the arithmetic device 21 is embodied by executing the program recorded in the ROM by the CPU.

図5は、第1実施形態の培養方法を示すフローチャートである。図5に示すフローチャートは、上記の図1に示す培養システム100において行われる。そこで、図5の説明は、図1を適宜参照しながら行う。 FIG. 5 is a flow chart showing the culture method of the first embodiment. The flowchart shown in FIG. 5 is performed in the culture system 100 shown in FIG. 1 above. Therefore, FIG. 5 will be described with appropriate reference to FIG.

第1実施形態の培養方法は、培養ステップS1と、分離ステップS2と、溶存酸素濃度測定ステップS3と、制御ステップS4とを含む。培養ステップS1は、培養生産物を生産する培養対象物を培地で培養するものである。培養生産物及び培養対象物は、図1を参照しながら説明した培養生産物及び培養対象物と同義であるため、説明は省略する。培養ステップS1での培養は、培養容器1において行われる。 The culture method of the first embodiment includes a culture step S1, a separation step S2, a dissolved oxygen concentration measurement step S3, and a control step S4. The culturing step S1 is to culture an object to be cultured to produce a culture product in a medium. The culture product and the culture object are synonymous with the culture product and the culture object explained with reference to FIG. 1, so the explanation is omitted. Culturing in the culturing step S1 is performed in the culture container 1 .

分離ステップS2は、培養ステップS1において培養された培養対象物を含む培養液から培養対象物を分離するものである。分離ステップS2は、分離装置2において行われる。分離された培養対象物は培養容器1に戻される。また、培養対象物分離後の培養液、即ち残った培地は、上記のように溶存酸素濃度測定装置3に供給される。 The separation step S2 separates the culture object from the culture solution containing the culture object cultured in the culture step S1. The separation step S2 is performed in the separation device 2 . The separated culture object is returned to the culture container 1 . In addition, the culture solution after the separation of the culture object, that is, the remaining culture medium is supplied to the dissolved oxygen concentration measuring device 3 as described above.

溶存酸素濃度測定ステップS3は、分離ステップS2での培養対象物分離後の培地の溶存酸素濃度を測定するものである。溶存酸素濃度測定ステップS3は、溶存酸素濃度測定装置3により行われる。 The dissolved oxygen concentration measurement step S3 measures the dissolved oxygen concentration of the culture medium after the culture object is separated in the separation step S2. The dissolved oxygen concentration measurement step S<b>3 is performed by the dissolved oxygen concentration measurement device 3 .

制御ステップS4は、溶存酸素濃度測定装置3により測定された溶存酸素濃度に基づき、培養容器1への酸素供給量(即ち、培養容器1における培養液の溶存酸素濃度)を制御するものである。培養容器1への酸素供給量調整は、ポンプ14の回転速度制御により行われる。また、酸素供給量調整は、溶存酸素濃度測定装置3により測定された溶存酸素濃度と、媒体系統36を流れる媒体の流れ条件とに基づいて行われる。流れ条件は、上記の図4を参照しながら説明した内容と同様であるため、説明は省略する。 The control step S4 controls the amount of oxygen supplied to the culture vessel 1 (that is, the dissolved oxygen concentration of the culture solution in the culture vessel 1) based on the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring device 3. The amount of oxygen supplied to the culture vessel 1 is adjusted by controlling the rotational speed of the pump 14 . The oxygen supply amount adjustment is performed based on the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring device 3 and the flow conditions of the medium flowing through the medium system 36 . Since the flow conditions are the same as those described with reference to FIG. 4 above, description thereof is omitted.

また、上記の培養方法によって培養対象物を培養することで、培養対象物を用いた培養生産物の生産ができる。即ち、第1実施形態の培養生産物の生産方法は、上記の培養ステップS1と、上記の分離ステップS2と、上記の溶存酸素濃度測定ステップS3とを少なくとも含むものである。そして、培養生産物は、培地とともに培地系統32を通じて培養システム100から取り出すことができる。 In addition, by culturing the object to be cultured by the above culture method, a culture product can be produced using the object to be cultured. That is, the method for producing the cultured product of the first embodiment includes at least the culture step S1, the separation step S2, and the dissolved oxygen concentration measurement step S3. The culture product can then be removed from culture system 100 through medium system 32 along with the medium.

ここで、培養容器1での溶存酸素濃度を一定にするために、培養容器1に供給される培地への酸素供給量がどのように変化するのかを評価するために、上記培養システム100を用いた培養システム50を用いて模擬培養試験を行った。 Here, in order to make the dissolved oxygen concentration in the culture vessel 1 constant, the culture system 100 is used to evaluate how the amount of oxygen supplied to the medium supplied to the culture vessel 1 changes. A simulated culture test was performed using the culture system 50 that was used.

図6は、模擬培養試験に使用した培養システム50の系統図である。実験例1に係る模擬培養試験では、培養対象物による酸素消費に代えて、培地に窒素を供給して酸素を培地から追い出すことで、培養対象物の培養を模した。そのため、培養容器1には、酸素含有ガスを供給するガス供給装置5に加え、窒素を供給するガス供給装置9(ガス供給装置5と同様の構成のもの)が備えられる。 FIG. 6 is a system diagram of the culture system 50 used in the simulated culture test. In the simulated culture test according to Experimental Example 1, instead of oxygen consumption by the culture target, nitrogen was supplied to the medium to expel oxygen from the medium, thereby simulating the culture of the culture target. Therefore, the culture vessel 1 is provided with a gas supply device 5 for supplying an oxygen-containing gas and a gas supply device 9 for supplying nitrogen (having the same configuration as the gas supply device 5).

また、培地に代えて、リン酸塩緩衝液(PBS)を用いた。さらに、培養対象物が含まれないため分離装置2を備えず、培養容器1から抜き出した培養液(PBS)は溶存酸素濃度測定装置測後、そのまま培地貯留容器4に戻した。実験の簡略化のために、培地系統35及び媒体系統36はガス不透過性の材料(ステンレス)により形成した。 Phosphate buffer solution (PBS) was used instead of the medium. Furthermore, since the culture target was not included, the separation device 2 was not provided, and the culture solution (PBS) extracted from the culture container 1 was returned to the medium storage container 4 as it was after measuring the dissolved oxygen concentration with the dissolved oxygen concentration measuring device. For simplification of the experiment, the medium system 35 and the medium system 36 were made of gas-impermeable material (stainless steel).

まず、培養容器1に700mLのPBSを入れ、培地系統35により、培養容器1を十分量のPBSが貯留された培地貯留容器4に接続した。培地貯留容器4にはガス供給装置6が備えられ、ガス供給装置6による空気の供給により、培地貯留容器4でのPBSを酸素富化状態(飽和溶存酸素濃度)にした。そして、ポンプ11,13の回転速度を同じにして、等流量でPBSを循環させた。そして、培養容器1内のガス供給装置9からの窒素供給は一定流量で行い、溶存酸素濃度測定装置3により測定される溶存酸素濃度が一定(設定値として3.2mg/L)になるように、ガス供給装置6からPBSに空気を供給した。 First, 700 mL of PBS was placed in the culture vessel 1, and the culture vessel 1 was connected by the medium system 35 to the medium storage vessel 4 in which a sufficient amount of PBS was stored. The culture medium storage container 4 was provided with a gas supply device 6, and air was supplied by the gas supply device 6 to make the PBS in the culture medium storage container 4 into an oxygen-enriched state (saturated dissolved oxygen concentration). The rotational speeds of the pumps 11 and 13 were set to be the same, and the PBS was circulated at a constant flow rate. Then, the nitrogen supply from the gas supply device 9 in the culture vessel 1 is performed at a constant flow rate, and the dissolved oxygen concentration measured by the dissolved oxygen concentration measurement device 3 is kept constant (3.2 mg / L as a set value). , air was supplied to the PBS from the gas supply device 6 .

また、実験例2として、培地系統35、媒体系統36及び培地貯留容器4を備えない、即ち、媒体の循環は行わないこと以外は実験例1と同様にして、模擬培養試験を行った。 As Experimental Example 2, a simulated culture test was conducted in the same manner as in Experimental Example 1 except that the medium system 35, the medium system 36 and the medium storage container 4 were not provided, that is, the medium was not circulated.

図7は、窒素供給量に対する空気供給量を示すグラフである。黒丸は実験例1、黒三角は実験例2を示す。縦軸の空気供給量は、実験例2における窒素供給量を1としたときの相対値として示している。また、空気供給量は、一定量で窒素を供給したときの空気供給量の総和である。実験例1及び2のいずれにおいても、窒素供給量が増える、即ち培養対象物密度が増えると、溶存酸素濃度を一定にするための空気供給量も増加した。しかし、実施例1では、実験例2と比べて、窒素供給量が同じ場合における空気供給量が少なかった。 FIG. 7 is a graph showing the amount of air supplied versus the amount of nitrogen supplied. A black circle indicates Experimental Example 1, and a black triangle indicates Experimental Example 2. The air supply amount on the vertical axis is shown as a relative value when the nitrogen supply amount in Experimental Example 2 is set to 1. Also, the air supply amount is the total amount of air supply when a constant amount of nitrogen is supplied. In both Experimental Examples 1 and 2, when the amount of nitrogen supply increased, that is, the density of the culture object increased, the amount of air supplied to keep the dissolved oxygen concentration constant also increased. However, in Example 1, compared to Experimental Example 2, the amount of air supplied was smaller when the amount of nitrogen supplied was the same.

特に、窒素供給量が30mL/分のときには、空気供給量に優位な差がみられた。具体的には、媒体系統36により酸素富化状態の培地を循環させた実験例1では空気供給量は0.5であったのに対し、酸素富化状態の培地を循環させない実験例2では空気供給量は0.84であった。そのため、酸素富化状態の培地を循環させることで、空気供給量を0.6倍程度に減らせることがわかった。従って、培地の循環により少ない空気量で溶存酸素濃度を設定値にできることから、溶存酸素濃度制御が容易なことがわかった。 In particular, when the nitrogen supply rate was 30 mL/min, a significant difference was observed in the air supply rate. Specifically, in Experimental Example 1 in which the oxygen-enriched culture medium was circulated by the medium system 36, the air supply amount was 0.5, whereas in Experimental Example 2 in which the oxygen-enriched culture medium was not circulated, The air supply rate was 0.84. Therefore, it was found that by circulating the oxygen-enriched culture medium, the amount of air supply can be reduced by about 0.6 times. Therefore, it was found that the dissolved oxygen concentration can be easily controlled because the dissolved oxygen concentration can be adjusted to the set value with a small amount of air by circulating the culture medium.

図8は、試験時間に対する溶存酸素濃度変化を示すグラフであり、培養容器1への窒素通気量が30mL/分のときのグラフである。実験例1及び2のいずれにおいて、溶存酸素濃度は設定値である3.2mg/L付近で推移した。従って、窒素通気量が30mL/分のときには、培地の循環の有無に関わらず、培地の溶存酸素濃度を設定値に近づけることができることがわかった。 FIG. 8 is a graph showing changes in dissolved oxygen concentration with respect to test time, and is a graph when the nitrogen gas flow rate to the culture vessel 1 is 30 mL/min. In both Experimental Examples 1 and 2, the dissolved oxygen concentration remained around the set value of 3.2 mg/L. Therefore, it was found that when the nitrogen gas flow rate was 30 mL/min, the dissolved oxygen concentration in the medium could be brought close to the set value regardless of whether the medium was circulated or not.

図9は、試験時間に対する溶存酸素濃度変化を示すグラフであり、培養容器1への窒素通気量が50mL/分のときのグラフである。実験例1及び2のいずれにおいて、溶存酸素濃度は設定値である3.2mg/Lよりもやや小さな値で推移した。ただし、培地の循環を行った実験例1では、培地の循環を行わない実験例2とは異なり、溶存酸素濃度が設定値にまで上昇できることがあった(例えば、図9のB,C,D,Eの部分)。通常は、設定値に対して10%~20%程度の変動は許容できるため、設定値よりも20%小さな2.5mg/L以上となる実験例2でも、十分許容できる。しかし、培地の循環によって、培地の溶存酸素濃度を設定値に対して十分に近付けることができることがわかった。 FIG. 9 is a graph showing changes in dissolved oxygen concentration with respect to test time, and is a graph when the nitrogen gas flow rate to the culture vessel 1 is 50 mL/min. In both Experimental Examples 1 and 2, the dissolved oxygen concentration remained slightly lower than the set value of 3.2 mg/L. However, in Experimental Example 1 in which the medium was circulated, unlike Experimental Example 2 in which the medium was not circulated, the dissolved oxygen concentration could sometimes rise to the set value (for example, B, C, and D in FIG. 9 , E). Normally, a variation of about 10% to 20% with respect to the set value is permissible, so Experimental Example 2, which is 2.5 mg/L or more, which is 20% smaller than the set value, is sufficiently permissible. However, it was found that circulation of the medium allowed the dissolved oxygen concentration of the medium to approach sufficiently close to the set point.

図8及び図9に示すように、培地の溶存酸素濃度には変動がある。そして、培養対象物を実際に培養する際、培養液の溶存酸素濃度を直接測ろうとすれば、培養対象物に起因する溶存酸素濃度測定装置3への影響により、溶存酸素濃度の測定値は大きく変動すると考えられる。この結果、溶存酸素濃度が設定値から大きくずれ易くなる(図10を参照しながら後記する)。しかし、培養対象物分離後の培養液、即ち培地について溶存酸素濃度を測定することで、培養対象物の影響を抑制できる。この結果、培地の溶存酸素濃度を測定した図8及び図9に示すように、培養液の溶存酸素濃度を長時間安定して測定できる。これにより、培地の溶存酸素濃度を精度よく制御でき、培養対象物の適切な培養、及び培養生産物の効率的な生産が可能になる。 As shown in Figures 8 and 9, there is variation in the dissolved oxygen concentration of the medium. When the culture object is actually cultured, if the dissolved oxygen concentration of the culture solution is to be directly measured, the measured value of the dissolved oxygen concentration will be large due to the influence of the culture object on the dissolved oxygen concentration measuring device 3. expected to fluctuate. As a result, the dissolved oxygen concentration tends to deviate greatly from the set value (described later with reference to FIG. 10). However, by measuring the dissolved oxygen concentration of the culture solution after the separation of the culture object, that is, the medium, the influence of the culture object can be suppressed. As a result, as shown in FIGS. 8 and 9, which measure the dissolved oxygen concentration of the culture medium, the dissolved oxygen concentration of the culture solution can be stably measured for a long period of time. As a result, the dissolved oxygen concentration in the medium can be controlled with high accuracy, and appropriate culture of the culture target and efficient production of culture products are possible.

次に、実際に培養対象物の培養を行い、培養対象物による溶存酸素濃度測定装置3への影響を評価した。 Next, the culture object was actually cultured, and the influence of the culture object on the dissolved oxygen concentration measuring device 3 was evaluated.

培養対象物の培養は、上記の図1に示す培養システム100を用いて行った。ただし、評価の簡略化のため、媒体系統36を含む全系統はガス不透過性の材料(ステンレス)により形成した。培養対象物はCHO細胞、培地はDMEM培地(10%血清入り。pH7.2)を使用した。培養容器1には700mLの培地を入れ、培養容器1への培養対象物の播種密度は0.2cells/mLにした。 Culture of the culture target was performed using the culture system 100 shown in FIG. However, for simplification of evaluation, all systems including the medium system 36 were made of a gas-impermeable material (stainless steel). CHO cells were used as culture objects, and DMEM medium (containing 10% serum, pH 7.2) was used as the medium. A culture medium of 700 mL was placed in the culture vessel 1, and the seeding density of the object to be cultured in the culture vessel 1 was set to 0.2 cells/mL.

媒体系統36に備えられるポンプ14の回転速度制御により、媒体系統36を流れる培地の流量(培地の循環量)は10mL/分にした。分離装置2は、膜を用いたTFF方式の分離装置を使用した。培養対象物の培養は37℃で行い、培養容器1での溶存酸素濃度の設定は2.7mg/L、灌流率を1vvdで培養を行った。「vvd」は1日当たりに入れ替わる培養容器1内部の培養液量を表し、1vvdは、培養容器1内部の培養液全体が新たな培地に1回入れ替わることを意味する。 By controlling the rotational speed of the pump 14 provided in the medium system 36, the flow rate of the medium flowing through the medium system 36 (circulation amount of medium) was set to 10 mL/min. As the separation device 2, a TFF separation device using a membrane was used. Cultivation of the object to be cultured was performed at 37° C., and the dissolved oxygen concentration in the culture container 1 was set to 2.7 mg/L, and the perfusion rate was set to 1 vvd. "vvd" represents the amount of culture fluid inside the culture vessel 1 that is replaced per day, and 1 vvd means that the entire culture fluid inside the culture vessel 1 is replaced with new medium once.

培養は培地を循環させながら連続的に30日間行った。培養中、一定時間ごとに、培養対象物分離後の培地についての溶存酸素濃度(溶存酸素濃度測定装置3により測定)を測定した。また、比較のために、溶存酸素濃度測定装置3による測定時、培養容器1内部の培養液についての溶存酸素濃度(図示しない溶存酸素濃度測定装置により測定)も測定した。さらに、溶存酸素濃度測定時の生培養対象物数密度(生きた培養対象物(生細胞)数密度)も測定した。この結果を図10に示す。 Cultivation was carried out continuously for 30 days while circulating the medium. During the culture, the dissolved oxygen concentration (measured by the dissolved oxygen concentration measuring device 3) of the culture medium after the culture target was separated was measured at regular intervals. For comparison, the dissolved oxygen concentration of the culture solution inside the culture vessel 1 (measured by a dissolved oxygen concentration measuring device (not shown)) was also measured during the measurement by the dissolved oxygen concentration measuring device 3 . Furthermore, the live culture object number density (live culture object (living cell) number density) at the time of dissolved oxygen concentration measurement was also measured. The results are shown in FIG.

図10は、培養日数に対する溶存酸素濃度(培養対象物分離後の培地、及び、培養液)及び生培養対象物数密度の変化を示すグラフである。グラフ中、横軸は培養日数、左側の縦軸は溶存酸素濃度、右側の縦軸は生培養対象物数密度(精細胞数密度)を示す。太実線で示すグラフは培養対象物分離後の培地についての溶存酸素濃度(実施例)、細実線で示すグラフは培養液についての溶存酸素濃度(比較例)を示す。また、プロットは、生培養対象物数密度を示す。図10では、培養日数が25日を超えると生培養対象物数密度の低下傾向がみられたので、25日以降の溶存酸素濃度及び生培養対象物数密度のそれぞれ一部の図示を省略している。 FIG. 10 is a graph showing changes in dissolved oxygen concentration (medium and culture solution after separation of culture objects) and live culture object number density with respect to culture days. In the graph, the horizontal axis indicates the number of culture days, the left vertical axis indicates the dissolved oxygen concentration, and the right vertical axis indicates the number density of living cultured objects (sperm cell number density). The graph indicated by the thick solid line indicates the dissolved oxygen concentration in the culture medium after the culture object was separated (Example), and the graph indicated by the thin solid line indicates the dissolved oxygen concentration in the culture solution (Comparative Example). The plot also shows the live culture object number density. In FIG. 10, when the number of days of culture exceeds 25 days, the number density of living cultured objects tends to decrease, so the dissolved oxygen concentration and the number density of living cultured objects after 25 days are partially omitted. ing.

培養日数の経過により生培養対象物数密度は増加し、およそ25日までには高密度の状態になった。しかし、生培養対象物数密度はおよそ25日で上限に達した後、減少に転じた。また、培養対象物分離後の培地についての溶存酸素濃度(太実線で示す実施例)は、培養の全期間において、設定値である2.7mg/L近傍の値として測定された。しかし、培養液についての溶存酸素濃度(細実線で示す比較例)は、培養日数が短い時期(例えば0日~15日程度)では設定値である2.7mg/Lに近い値として測定されたが、例えば15日で低下に転じ、15日以降では溶存酸素濃度は設定値から大幅にずれた値として測定された。特に、生培養対象物数密度が最も高い25日目には、培養液についての溶存酸素濃度の測定値は1.3mg/Lであり、設定値の半分以下の値であった。従って、特に生培養対象物数密度が高密度になることで、培養液の溶存酸素濃度は影響を受け、測定値の精度が低下することがわかる。 The number density of living cultured objects increased with the passage of culture days, reaching a high density state by about 25 days. However, the number density of live culture objects reached an upper limit at approximately 25 days and then decreased. In addition, the dissolved oxygen concentration in the medium after the separation of the culture object (example indicated by the thick solid line) was measured as a value near the set value of 2.7 mg/L during the entire culture period. However, the dissolved oxygen concentration of the culture solution (comparative example indicated by a thin solid line) was measured as a value close to the set value of 2.7 mg/L when the number of culture days was short (for example, about 0 to 15 days). However, for example, it turned to decrease after 15 days, and after 15 days, the dissolved oxygen concentration was measured as a value greatly deviated from the set value. In particular, on the 25th day when the number density of living cultured objects was the highest, the measured dissolved oxygen concentration in the culture medium was 1.3 mg/L, which was less than half of the set value. Therefore, it can be seen that the concentration of dissolved oxygen in the culture solution is affected particularly when the number density of the living cultured objects becomes high, and the accuracy of the measured value decreases.

特に、この評価では、上記のように全系統がガス不透過性の材料により形成されており、外気中の酸素は培地に吸収されない。そして、培地の溶存酸素濃度は、全期間を通じて設定値付近であったことから、ガス供給装置15による酸素は、培養対象物の呼吸により消費された酸素量と同等程度が供給されたといえる。そのため、過剰の空気供給に起因する培養対象物への影響を抑制できる。また、過不足の少ない空気供給により、運転コストを抑制できる。そして、これらの効果は特に培養日数が経過するほど大きくなり、長期間に亘って安定した培養行うことができる。 In particular, in this evaluation, the entire system is made of a gas-impermeable material as described above, and oxygen in the outside air is not absorbed by the culture medium. Since the dissolved oxygen concentration in the culture medium remained near the set value throughout the entire period, it can be said that the oxygen supplied by the gas supply device 15 was approximately the same as the amount of oxygen consumed by respiration of the culture object. Therefore, it is possible to suppress the influence of excessive air supply on the object to be cultured. In addition, it is possible to suppress the operating cost by supplying the air with little excess or deficiency. Moreover, these effects become greater as the number of culture days elapses, and stable culture can be carried out over a long period of time.

以上の培養システム100、及び、例えば上記の培養システム100を用いた培養方法及び培養生産物の生産方法によれば、培養対象物分離後の培地について溶存酸素濃度を測定できる。これにより、培養液中の培養対象物密度によらず、安定して溶存酸素濃度を測定できる。この結果、溶存酸素濃度を精度よく測定でき、培養液に対して適切な酸素供給量制御が可能になる。そして、培養対象物を適切に培養でき、培養生産物を効率よく生産できる。 According to the culture system 100 described above and, for example, the culture method and culture product production method using the culture system 100 described above, the dissolved oxygen concentration can be measured in the culture medium after the culture target is separated. As a result, the dissolved oxygen concentration can be stably measured regardless of the density of culture objects in the culture solution. As a result, the dissolved oxygen concentration can be measured with high accuracy, and the appropriate amount of oxygen supply to the culture solution can be controlled. In addition, the object to be cultured can be appropriately cultured, and the culture product can be efficiently produced.

図11は、第2実施形態の培養システム200の系統図である。上記の培養システム100(図1参照)では、演算装置21は、制御装置22を介して、ポンプ14の回転速度を制御していた。しかし、図11に示す培養システム200では、演算装置21は、制御装置22を介して、ガス供給装置15による酸素含有ガスの供給量を制御する。従って、培地系統34(第1培地供給系統)は、培養容器1での培地の溶存酸素濃度を調整するガス供給装置15(溶存酸素濃度調整装置)を備える。そして、培養システム200でのポンプ14は、一定の回転速度(即ち一定の流量)で駆動する。従って、培養システム200では、溶存酸素濃度測定装置3により測定される培地の溶存酸素濃度に基づいて、媒体系統36を通じて培養容器1に供給される培地への酸素供給量が制御される。 FIG. 11 is a system diagram of the culture system 200 of the second embodiment. In the culture system 100 (see FIG. 1) described above, the computing device 21 controls the rotation speed of the pump 14 via the control device 22 . However, in the culture system 200 shown in FIG. 11 , the computing device 21 controls the amount of oxygen-containing gas supplied by the gas supply device 15 via the control device 22 . Therefore, the culture medium system 34 (first culture medium supply system) includes a gas supply device 15 (dissolved oxygen concentration adjusting device) that adjusts the dissolved oxygen concentration of the culture medium in the culture vessel 1 . The pump 14 in the culture system 200 is driven at a constant rotational speed (that is, constant flow rate). Therefore, in the culture system 200 , the amount of oxygen supplied to the medium supplied to the culture vessel 1 through the medium system 36 is controlled based on the dissolved oxygen concentration of the medium measured by the dissolved oxygen concentration measuring device 3 .

培養システム200では、培養容器1での培養液の溶存酸素濃度を高くしたい場合には、ガス供給装置15による酸素含有ガスの供給量を増加させる制御が行われる。一方で、培養容器1での培養液の溶存酸素濃度を低くしたい場合には、ガス供給装置15による酸素含有ガスの供給量を減少させる制御が行われる。 In the culture system 200, when the dissolved oxygen concentration of the culture solution in the culture vessel 1 is desired to be increased, control is performed to increase the amount of oxygen-containing gas supplied by the gas supply device 15. FIG. On the other hand, when it is desired to lower the dissolved oxygen concentration of the culture solution in the culture container 1, control is performed to reduce the amount of oxygen-containing gas supplied by the gas supply device 15. FIG.

このようにしても、培養容器1内の培養液についての溶存酸素濃度を制御できる。 Also in this way, the dissolved oxygen concentration of the culture medium in the culture vessel 1 can be controlled.

図12は、第3実施形態の培養システム300の系統図である。上記の培養システム100は、培養容器1の内外で培地を循環させる媒体系統36を備えていた。従って、分離装置2での分離後の培地は、媒体系統36を通じて培養容器1に供給されていた。しかし、図12に示す培養システム300は、媒体系統36に代えて、分離装置2での培養対象物分離後の培地を培地貯留容器4に供給する媒体系統37(第2培地供給系統)を備える。従って、分離装置2での分離後の培地は、媒体系統37、培地貯留容器4、及び培地系統35を通じて、培養容器1に供給される。 FIG. 12 is a system diagram of the culture system 300 of the third embodiment. The culture system 100 described above includes a medium system 36 that circulates the culture medium inside and outside the culture vessel 1 . Therefore, the culture medium separated by the separator 2 was supplied to the culture container 1 through the medium system 36 . However, the culture system 300 shown in FIG. 12 includes a medium system 37 (second medium supply system) that supplies the culture medium after the separation of the object to be cultured in the separation device 2 to the culture medium storage container 4 instead of the medium system 36. . Therefore, the culture medium after separation by the separation device 2 is supplied to the culture vessel 1 through the medium system 37, the medium storage container 4, and the culture medium system 35.

また、培養容器1での培養液の溶存酸素濃度制御に関して、培養システム300では、培地貯留容器4での培地に対して直接的に酸素含有ガスの供給が行われる。即ち、培養システム300では、培地貯留容器4に備えられたガス供給装置6により、培養容器1での培養液の溶存酸素濃度制御が行われる。培養容器1へは、培地貯留容器4の培地が供給されることから、培地貯留容器4での培地に対して直接的に酸素含有ガスを供給することでも、培養容器1内の培養液についての溶存酸素濃度を制御できる。 Regarding the dissolved oxygen concentration control of the culture solution in the culture vessel 1 , in the culture system 300 , oxygen-containing gas is directly supplied to the culture medium in the culture medium storage vessel 4 . That is, in the culture system 300 , the dissolved oxygen concentration of the culture solution in the culture vessel 1 is controlled by the gas supply device 6 provided in the culture medium storage vessel 4 . Since the culture medium in the medium storage container 4 is supplied to the culture container 1, the culture solution in the culture container 1 can be improved by directly supplying the oxygen-containing gas to the culture medium in the culture container 4. Dissolved oxygen concentration can be controlled.

図13は、第4実施形態の培養システム400の系統図である。上記の培養システム100~300では、媒体系統36又は培地貯留容器4での培地に酸素含有ガスが供給されていた。しかし、培養システム400では、培地に酸素含有ガスを供給するためのガス供給容器41が備えられる。また、培養システム400では、培地貯留容器4の培地流れ後段、かつ、培養容器1の培地流れ前段に、培養容器1に供給される培地に酸素含有ガスを供給するガス供給装置42(第3ガス供給装置)とを備える。ガス供給装置42は、培養システム400では、ガス供給容器41の内部に備えられる。ただし、ガス供給装置42は、培地系統45(後記する)及び培地系統46(後記する)のいずれか少なくとも一方に備えられてもよい。 FIG. 13 is a system diagram of the culture system 400 of the fourth embodiment. In the culture systems 100 to 300 described above, oxygen-containing gas is supplied to the medium in the medium system 36 or the medium storage container 4 . However, the culture system 400 is provided with a gas supply container 41 for supplying an oxygen-containing gas to the culture medium. In the culture system 400, the gas supply device 42 (third gas supply device). The gas supply device 42 is provided inside the gas supply container 41 in the culture system 400 . However, the gas supply device 42 may be provided in at least one of the medium system 45 (described later) and the medium system 46 (described later).

ガス供給容器41と培地貯留容器4とは、培地系統45により接続される。また、ガス供給容器41と培養容器1とは、培地系統46により接続される。従って、培地系統45を通じ、培地貯留容器4からガス供給容器41に培地が供給される。そして、ガス供給容器41において、供給された培地に酸素含有ガスが供給される。酸素含有ガスが供給され、酸素を溶解した培地は、培地系統46を通じて、培養容器1に供給される。なお、培地系統46を通じた培養容器1への培地の供給は、培地系統46に備えられるポンプ47により行われる。 The gas supply container 41 and the medium storage container 4 are connected by a medium system 45 . Also, the gas supply container 41 and the culture container 1 are connected by a culture medium system 46 . Therefore, the medium is supplied from the medium storage container 4 to the gas supply container 41 through the medium system 45 . Then, in the gas supply container 41, an oxygen-containing gas is supplied to the supplied culture medium. An oxygen-containing gas is supplied, and an oxygen-dissolved medium is supplied to the culture vessel 1 through a medium system 46 . The medium is supplied to the culture vessel 1 through the medium system 46 by a pump 47 provided in the medium system 46 .

ガス供給容器41は攪拌翼43を備え、酸素含有ガス供給中、攪拌翼43の駆動により培地が攪拌される。これにより、ガス供給容器41内部の培地全体に満遍なく酸素を溶解できる。また、ガス供給容器41の内容積は、培地貯留容器4の内容積よりも小さい。内容積が比較的小さなガス供給容器41での酸素含有ガスの供給により、内容積が比較的大きな培地貯留容器4での酸素含有ガスの供給と比べて、培地への溶存酸素濃度を速やかに上昇させることができる。これにより、溶存酸素濃度測定装置3に基づく溶存酸素濃度変化への追従性を高めることができる。 The gas supply container 41 is provided with a stirring blade 43, and the culture medium is stirred by driving the stirring blade 43 while the oxygen-containing gas is being supplied. As a result, oxygen can be evenly dissolved in the entire culture medium inside the gas supply container 41 . In addition, the internal volume of the gas supply container 41 is smaller than the internal volume of the culture medium storage container 4 . By supplying the oxygen-containing gas from the gas supply container 41 having a relatively small internal volume, the concentration of dissolved oxygen in the culture medium is rapidly increased compared to supplying the oxygen-containing gas from the medium storage container 4 having a relatively large internal volume. can be made As a result, it is possible to improve the ability to follow changes in the dissolved oxygen concentration based on the dissolved oxygen concentration measuring device 3 .

図14は、第5実施形態の培養システム500の系統図である。上記培養システム100~400では、培養容器1に備えられたガス供給装置5を介した酸素供給は特に制御されていなかった。具体的には、ガス供給装置5では、溶存酸素濃度測定装置3による測定値に関わらず、培養対象物へのダメージを抑制可能な程度の流量で酸素含有ガスが供給されているに過ぎなかった。しかし、図14に示す培養システム500では、培地貯留容器4でのガス供給装置6を介した酸素供給量制御に加え、培養容器1でのガス供給装置5を介した酸素供給量制御も行われる。ただし、上記のように、培養容器1でのガス供給装置5を介した単位時間当たりの酸素含有ガス量は、培地貯留容器4でのガス供給装置6を介した単位時間当たりの酸素含有ガス量よりも少なくなっている。 FIG. 14 is a system diagram of the culture system 500 of the fifth embodiment. In the culture systems 100 to 400 described above, oxygen supply via the gas supply device 5 provided in the culture vessel 1 was not particularly controlled. Specifically, the gas supply device 5 only supplies the oxygen-containing gas at a flow rate that can suppress damage to the culture object regardless of the measured value by the dissolved oxygen concentration measurement device 3. . However, in the culture system 500 shown in FIG. 14, in addition to controlling the amount of oxygen supplied to the culture vessel 4 via the gas supply device 6, the amount of oxygen supplied to the culture vessel 1 via the gas supply device 5 is also controlled. . However, as described above, the amount of oxygen-containing gas per unit time via the gas supply device 5 in the culture vessel 1 is the same as the amount of oxygen-containing gas per unit time via the gas supply device 6 in the culture vessel 4. less than

このようにすることで、ガス供給装置6により培地貯留容器4での培地を酸素富化状態にできる一方で、培養容器1でのガス供給装置5により培養液に対しても直接的に酸素含有ガスを供給できる。ガス供給装置5による培養液への直接的な酸素供給により、溶存酸素濃度測定装置3に基づき溶存酸素の濃度変化への追従性を高めることができる。さらには、培養液への酸素含有ガスの供給量は、培地への酸素含有ガスの供給量よりも少ないため、培養液中の培養対象物へのダメージを抑制できる。 In this way, the medium in the medium storage container 4 can be enriched with oxygen by the gas supply device 6, while the culture solution can be directly oxygenated by the gas supply device 5 in the culture vessel 1. Gas can be supplied. By directly supplying oxygen to the culture solution by the gas supply device 5, it is possible to improve the ability to follow changes in dissolved oxygen concentration based on the dissolved oxygen concentration measuring device 3. FIG. Furthermore, since the amount of oxygen-containing gas supplied to the culture solution is smaller than the amount of oxygen-containing gas supplied to the culture medium, damage to the object to be cultured in the culture solution can be suppressed.

1 培養容器
100 培養システム
11 ポンプ
12 ポンプ
13 ポンプ
14 ポンプ(溶存酸素濃度調整装置)
15 ガス供給装置(第1ガス供給装置、溶存酸素濃度調整装置)
2 分離装置
200 培養システム
21 演算装置
21a 測定部
21b 酸素供給量決定部
21c 信号送信部
21d 流れ条件データベース
22 制御装置
3 溶存酸素濃度測定装置
300 培養システム
31 培養液系統
32 培地系統
34 培地系統(第1培地供給系統)
35 培地系統
36 媒体系統
37 媒体系統(第2培地供給系統)
4 培地貯留容器
400 培養システム
41 ガス供給容器
42 ガス供給装置(第3ガス供給装置)
43 攪拌翼
45 培地系統
46 培地系統
47 ポンプ
5 ガス供給装置
500 培養システム
6 ガス供給装置(第2ガス供給装置)
7 攪拌翼
8 攪拌翼
9 ガス供給装置
A 分岐部
S1 培養ステップ
S2 分離ステップ
S3 溶存酸素濃度測定ステップ
S4 制御ステップ
1 culture vessel 100 culture system 11 pump 12 pump 13 pump 14 pump (dissolved oxygen concentration adjusting device)
15 gas supply device (first gas supply device, dissolved oxygen concentration adjustment device)
2 Separation device 200 Culture system 21 Arithmetic device 21a Measurement unit 21b Oxygen supply amount determination unit 21c Signal transmission unit 21d Flow condition database 22 Control device 3 Dissolved oxygen concentration measurement device 300 Culture system 31 Culture solution system 32 Medium system 34 Medium system (No. 1 medium supply system)
35 medium system 36 medium system 37 medium system (second medium supply system)
4 culture medium storage container 400 culture system 41 gas supply container 42 gas supply device (third gas supply device)
43 stirring blade 45 culture medium system 46 culture medium system 47 pump 5 gas supply device 500 culture system 6 gas supply device (second gas supply device)
7 Stirring blade 8 Stirring blade 9 Gas supply device A Branch part S1 Culture step S2 Separation step S3 Dissolved oxygen concentration measurement step S4 Control step

Claims (13)

培養生産物を生産する培養対象物を培地で培養する培養容器と、
前記培養容器において培養された前記培養対象物を含む培養液から前記培養対象物を分離する分離装置と、
前記分離装置での前記培養対象物分離後の培地の溶存酸素濃度を測定する溶存酸素濃度測定装置と
前記培養容器と前記溶存酸素濃度測定装置との間に形成され、前記培養液又は前記培地の一方の媒体が流れるとともにガス透過性材料によって形成される媒体系統と、
前記溶存酸素濃度測定装置により測定された溶存酸素濃度と、前記媒体系統を流れる媒体の流れ条件とに基づいて、前記培養容器に供給される培地による酸素供給量を決定する酸素供給量決定部を備える演算装置と、を備える
ことを特徴とする、培養システム。
a culture vessel for culturing a culture object producing a culture product in a medium;
a separation device for separating the culture object from a culture solution containing the culture object cultured in the culture container;
a dissolved oxygen concentration measuring device for measuring the dissolved oxygen concentration of the culture medium after the separation of the culture object in the separation device ;
a medium system formed between the culture container and the dissolved oxygen concentration measuring device, through which one of the medium of the culture solution or the medium flows and formed of a gas permeable material;
an oxygen supply amount determination unit that determines the amount of oxygen supplied by the culture medium supplied to the culture vessel based on the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring device and the flow conditions of the medium flowing through the medium system; A culture system, comprising : a computing device .
前記分離装置での前記培養対象物分離後の前記培地を前記培養容器に供給する第1培地供給系統を備える
ことを特徴とする、請求項1に記載の培養システム。
The culture system according to claim 1, further comprising a first culture medium supply system that supplies the culture medium after the separation of the culture object by the separation device to the culture vessel.
前記第1培地供給系統は、前記培養対象物分離後の前記培地に酸素含有ガスを供給する第1ガス供給装置を備える
ことを特徴とする、請求項2に記載の培養システム。
The culture system according to claim 2, wherein the first medium supply system includes a first gas supply device that supplies an oxygen-containing gas to the medium after the separation of the culture object.
前記第1培地供給系統は、前記培養容器での前記培地の溶存酸素濃度を調整する溶存酸素濃度調整装置を備える
ことを特徴とする、請求項2又は3に記載の培養システム。
The culture system according to claim 2 or 3, wherein the first medium supply system includes a dissolved oxygen concentration adjusting device that adjusts the dissolved oxygen concentration of the medium in the culture vessel.
前記流れ条件は、
前記媒体系統を構成する配管の構成材料、
前記媒体系統を構成する配管の内寸、
前記媒体系統の系統長、及び、
前記媒体系統を流れる媒体の流量、
のうちの少なくとも1つの条件を含む
ことを特徴とする、請求項1~4の何れか1項に記載の培養システム。
The flow conditions are
Constituent materials for piping that constitutes the medium system,
inner dimensions of the piping that constitutes the medium system;
System length of the medium system, and
a flow rate of the medium flowing through the medium system;
The culture system according to any one of claims 1 to 4 , comprising at least one condition of
前記ガス透過性材料は樹脂を含む
ことを特徴とする、請求項1~5の何れか1項に記載の培養システム。
The culture system according to any one of claims 1 to 5 , wherein the gas permeable material contains resin.
前記培養容器に供給される培地を貯留する培地貯留容器と、
前記培地貯留容器に貯留された培地に酸素含有ガスを供給する第2ガス供給装置とを備える
ことを特徴とする、請求項1~の何れか1項に記載の培養システム。
a medium storage container for storing the medium supplied to the culture container;
The culture system according to any one of claims 1 to 6 , further comprising a second gas supply device that supplies an oxygen-containing gas to the culture medium stored in the culture medium storage container.
培養生産物を生産する培養対象物を培地で培養する培養容器と、
前記培養容器において培養された前記培養対象物を含む培養液から前記培養対象物を分離する分離装置と、
前記分離装置での前記培養対象物分離後の培地の溶存酸素濃度を測定する溶存酸素濃度測定装置と、
前記培養容器に供給される培地を貯留する培地貯留容器と、
前記培地貯留容器の培地流れ後段、かつ、前記培養容器の培地流れ前段に、前記培養容器に供給される培地に酸素含有ガスを供給する第3ガス供給装置とを備える
ことを特徴とする、培養システム。
a culture vessel for culturing a culture object producing a culture product in a medium;
a separation device for separating the culture object from a culture solution containing the culture object cultured in the culture container;
a dissolved oxygen concentration measuring device for measuring the dissolved oxygen concentration of the culture medium after the separation of the culture object in the separation device;
a medium storage container for storing the medium supplied to the culture container;
A third gas supply device for supplying an oxygen-containing gas to the medium supplied to the culture vessel is provided after the medium flow of the medium storage container and before the medium flow of the culture vessel. nourishment system.
前記分離装置での前記培養対象物分離後の前記培地を前記培地貯留容器に供給する第2培地供給系統を備える
ことを特徴とする、請求項7又は8に記載の培養システム。
9. The culture system according to claim 7 or 8 , further comprising a second medium supply system for supplying the medium after the separation of the object to be cultured by the separation device to the medium storage container.
前記培養対象物はヒト細胞及び動物細胞のうちの少なくとも一種の細胞を含む
ことを特徴とする、請求項1~の何れか1項に記載の培養システム。
The culture system according to any one of claims 1 to 9 , wherein the culture object contains at least one kind of human cells and animal cells.
培養生産物を生産する培養対象物を培地で培養する培養ステップと、
前記培養ステップにおいて培養された前記培養対象物を含む培養液から前記培養対象物を分離する分離ステップと、
前記分離ステップでの前記培養対象物分離後の培地の溶存酸素濃度を測定する溶存酸素濃度測定ステップと
前記溶存酸素濃度測定ステップで測定された溶存酸素濃度と、前記培養対象物を培養する培養容器と前記溶存酸素濃度を測定する溶存酸素濃度測定装置との間に形成され、前記培養液又は前記培地の一方の媒体が流れるとともにガス透過性材料によって形成される媒体系統を流れる媒体の流れ条件とに基づいて、前記培養容器に供給される培地による酸素供給量を決定する酸素供給量決定ステップと、を含む
ことを特徴とする、培養方法。
a culturing step of culturing a culture object producing a culture product in a medium;
a separation step of separating the culture object from a culture solution containing the culture object cultured in the culturing step;
a dissolved oxygen concentration measuring step of measuring the dissolved oxygen concentration of the culture medium after the culture object is separated in the separating step ;
The dissolved oxygen concentration measured in the dissolved oxygen concentration measuring step, the culture solution or the culture medium formed between a culture vessel for culturing the culture object and a dissolved oxygen concentration measuring device for measuring the dissolved oxygen concentration an oxygen supply amount determination step of determining the oxygen supply amount by the medium supplied to the culture vessel based on the flow conditions of the medium flowing through the medium system formed by the gas-permeable material while one medium flows; including
A culture method characterized by:
培養生産物を生産する培養対象物を培地で培養する培養ステップと、
前記培養ステップにおいて培養された前記培養対象物を含む培養液から前記培養対象物を分離する分離ステップと、
前記分離ステップでの前記培養対象物分離後の培地の溶存酸素濃度を測定する溶存酸素濃度測定ステップと
前記溶存酸素濃度測定ステップで測定された溶存酸素濃度と、前記培養対象物を培養する培養容器と前記溶存酸素濃度を測定する溶存酸素濃度測定装置との間に形成され、前記培養液又は前記培地の一方の媒体が流れるとともにガス透過性材料によって形成される媒体系統を流れる媒体の流れ条件とに基づいて、前記培養容器に供給される培地による酸素供給量を決定する酸素供給量決定ステップと、を含む
ことを特徴とする、培養生産物の生産方法。
a culturing step of culturing a culture object producing a culture product in a medium;
a separation step of separating the culture object from a culture solution containing the culture object cultured in the culturing step;
a dissolved oxygen concentration measuring step of measuring the dissolved oxygen concentration of the culture medium after the culture object is separated in the separating step ;
The dissolved oxygen concentration measured in the dissolved oxygen concentration measuring step, the culture solution or the culture medium formed between a culture vessel for culturing the culture object and a dissolved oxygen concentration measuring device for measuring the dissolved oxygen concentration an oxygen supply amount determination step of determining the oxygen supply amount by the medium supplied to the culture vessel based on the flow conditions of the medium flowing through the medium system formed by the gas-permeable material while one medium flows; including
A method for producing a cultured product, characterized by:
培養生産物を生産する培養対象物を培地で培養する培養ステップと、 a culturing step of culturing a culture object producing a culture product in a medium;
前記培養ステップにおいて培養された前記培養対象物を含む培養液から前記培養対象物を分離する分離ステップと、 a separation step of separating the culture object from a culture solution containing the culture object cultured in the culturing step;
前記分離ステップでの前記培養対象物分離後の培地の溶存酸素濃度を測定する溶存酸素濃度測定ステップと、 a dissolved oxygen concentration measuring step of measuring the dissolved oxygen concentration of the culture medium after the culture object is separated in the separating step;
前記培養対象物を培養する培養容器に供給される培地を貯留する培地貯留容器の培地流れ後段、かつ、前記培養容器の培地流れ前段に、前記培養容器に供給される培地に酸素含有ガスを供給する第3ガス供給ステップとを含む An oxygen-containing gas is supplied to the culture medium supplied to the culture vessel after the medium flow of the medium storage container for storing the medium to be supplied to the culture vessel for culturing the culture object and before the medium flow of the culture vessel. and a third gas supply step of
ことを特徴とする、培養生産物の生産方法。 A method for producing a cultured product, characterized by:
JP2019019292A 2019-02-06 2019-02-06 Culture system, culture method and method for producing cultured product Active JP7231425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019019292A JP7231425B2 (en) 2019-02-06 2019-02-06 Culture system, culture method and method for producing cultured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019292A JP7231425B2 (en) 2019-02-06 2019-02-06 Culture system, culture method and method for producing cultured product

Publications (2)

Publication Number Publication Date
JP2020124172A JP2020124172A (en) 2020-08-20
JP7231425B2 true JP7231425B2 (en) 2023-03-01

Family

ID=72083168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019292A Active JP7231425B2 (en) 2019-02-06 2019-02-06 Culture system, culture method and method for producing cultured product

Country Status (1)

Country Link
JP (1) JP7231425B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521877A (en) 1999-02-05 2003-07-22 プロテイン サイエンシーズ コーポレイション Apparatus and methods for producing and using high density cells and products therefrom
JP2011083263A (en) 2009-10-19 2011-04-28 Jgc Corp System and method for culturing cell
JP2018038337A (en) 2016-09-08 2018-03-15 東京エレクトロン株式会社 Buffer tank and culture system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232088A (en) * 1984-05-04 1985-11-18 Japan Synthetic Rubber Co Ltd Method for cultivating cell and apparatus therefor
JPH0383575A (en) * 1989-08-29 1991-04-09 Snow Brand Milk Prod Co Ltd Cultivation of cell and apparatus therefor
JPH07203945A (en) * 1994-01-12 1995-08-08 Hitachi Ltd Apparatus for culturing cell of living body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521877A (en) 1999-02-05 2003-07-22 プロテイン サイエンシーズ コーポレイション Apparatus and methods for producing and using high density cells and products therefrom
JP2011083263A (en) 2009-10-19 2011-04-28 Jgc Corp System and method for culturing cell
JP2018038337A (en) 2016-09-08 2018-03-15 東京エレクトロン株式会社 Buffer tank and culture system

Also Published As

Publication number Publication date
JP2020124172A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
KR102621101B1 (en) Disposable bioprocessing systems supporting biological activity
Carvalho et al. Microalgal reactors: a review of enclosed system designs and performances
US7919534B2 (en) Mixing device
US8043848B2 (en) Biological reaction method and bioreactor
JP2023156504A (en) Perfusion bioreactor and related methods of use
CN103865792B (en) A kind of circulating fermentable reaction and feed liquid isolation integral equipment
JP2019512270A (en) Bioreactor system and method thereof
JPH0213365A (en) Hollow fiber bioreactor culture system and method
KR20110043642A (en) System and method for controlling a mammalian cell culture process
JP7070416B2 (en) Manufacturing method and equipment for chemical products by continuous fermentation
JP7459244B2 (en) Bioreactors or fermentors for the cultivation of cells or microorganisms in suspension on an industrial scale
JP2017038589A (en) Organism reaction apparatus and organism reaction method using the same
CN1185583A (en) Method for continuously and quickly measuring biochemical oxygen demand and apparatus thereof
US20190390150A1 (en) Biological reaction device in which micro-nano bubbles are used, and biological reaction method in which said biological reaction device is used
JP6744161B2 (en) Separation device, culture device and separation method
JP7231425B2 (en) Culture system, culture method and method for producing cultured product
US20210222114A1 (en) Device and method for controlling a bioreactor
Nyiri et al. Studies on automatically aerated biosynthetic processes. I. The effect of agitation and CO2 on penicillin formation in automatically aerated liquid cultures
CN220450209U (en) Bioreactor for supporting high density cell cultures
JPS62130683A (en) Method and apparatus for culturing cell
JP2011177046A (en) Method and apparatus for culturing cell
TWM648899U (en) Exosome manufacturing system
JP6758194B2 (en) High cell density fill and draw fermentation process
JP5519994B2 (en) Cell culture device and cell culture method
JP6063162B2 (en) Cell culture method and cell culture apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7231425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150