JP5517086B2 - MAS probe device for solid-state NMR - Google Patents

MAS probe device for solid-state NMR Download PDF

Info

Publication number
JP5517086B2
JP5517086B2 JP2012207744A JP2012207744A JP5517086B2 JP 5517086 B2 JP5517086 B2 JP 5517086B2 JP 2012207744 A JP2012207744 A JP 2012207744A JP 2012207744 A JP2012207744 A JP 2012207744A JP 5517086 B2 JP5517086 B2 JP 5517086B2
Authority
JP
Japan
Prior art keywords
sample
temperature
solid
sample tube
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012207744A
Other languages
Japanese (ja)
Other versions
JP2012247442A (en
Inventor
秀行 品川
禎 清水
輝昭 藤戸
雄介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012207744A priority Critical patent/JP5517086B2/en
Publication of JP2012247442A publication Critical patent/JP2012247442A/en
Application granted granted Critical
Publication of JP5517086B2 publication Critical patent/JP5517086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、固体核磁気共鳴装置(Solid State Nuclear Magnetic Resonance;固体NMR)に関する。
詳しくは、本発明は、固体NMR装置において、磁場中におかれた固体試料を磁場に対して所定の角度に傾けた軸のまわりで高速回転(Magic Angle Spinning;MAS)させつつ核磁気共鳴(NMR)信号を測定するためのMASプローブ装置に関する。
そして、さらに詳しくは、本発明は、固体NMR用MASプローブ装置において、筒状試料管内の試料を高温に且つ均一に加熱することを可能とする加熱機構を備えてなる固体NMR用MASプローブ装置に関する。
さらにまた詳しくは、本発明は、前記加熱機構が赤外線による加熱機構であることを特徴とする固体NMR用MASプローブ装置に関する。
The present invention relates to a solid state nuclear magnetic resonance (solid state NMR).
More specifically, the present invention relates to nuclear magnetic resonance (MAS) while rotating a solid sample placed in a magnetic field at a high speed around an axis inclined at a predetermined angle (Magic Angle Spinning; MAS) in a solid-state NMR apparatus. NMR) relates to a MAS probe device for measuring signals.
In more detail, the present invention relates to a solid-state NMR MAS probe apparatus comprising a heating mechanism capable of uniformly heating a sample in a cylindrical sample tube to a high temperature. .
More specifically, the present invention relates to a solid-state NMR MAS probe apparatus, wherein the heating mechanism is an infrared heating mechanism.

一般に、固体NMR用MASプローブ装置では、試料はセラミック等で出来た円筒状の試料管に入れられNMRスペクトルが測定される。固体NMRにおいては、鋭いNMRスペクトルを得るために、試料は試料管に収容され、試料管を磁場に対して所定の角度(マジックアングル;54.7°)に傾け、この状態のまま、試料管の中心軸線のまわりを高速で回転(スピニング)させつつNMR信号を得る。試料管は気体軸受のロータを兼ね、MASプローブ装置には2系統の高圧空気が供給され、一つは試料管を支える気体軸受を構成するのに用いられ、もう一つはタービンを介して試料管を回転させる駆動源として用いられる。これらの高圧空気はその流路に取り付けられたヒータによって熱せられ、試料を加熱するための熱媒体としても使用される。   In general, in a solid-state NMR MAS probe apparatus, a sample is placed in a cylindrical sample tube made of ceramic or the like, and an NMR spectrum is measured. In solid-state NMR, in order to obtain a sharp NMR spectrum, a sample is accommodated in a sample tube, and the sample tube is inclined at a predetermined angle (magic angle; 54.7 °) with respect to a magnetic field, and the sample tube is maintained in this state. An NMR signal is obtained while rotating (spinning) around the central axis of the plate at high speed. The sample tube also serves as the rotor of the gas bearing, the MAS probe device is supplied with two lines of high-pressure air, one is used to construct the gas bearing that supports the sample tube, and the other is the sample through the turbine. Used as a drive source for rotating the tube. These high-pressure air is heated by a heater attached to the flow path, and is also used as a heat medium for heating the sample.

NMR装置は、測定に際して試料温度を変えられるよう設定されている。そのため、従来用いられている温度可変MASプローブ装置は、試料温度を高温にするために高温の空気(または目的に応じて窒素等の気体)を試料管に吹き付けることによって温度が調整される。図1は、従来における固体NMR用MASプローブ装置において、最も広く使用されている高温の空気により試料を加熱する方式を示すものである。   The NMR apparatus is set so that the sample temperature can be changed during measurement. For this reason, in the temperature variable MAS probe device conventionally used, the temperature is adjusted by blowing high-temperature air (or a gas such as nitrogen depending on the purpose) onto the sample tube in order to increase the sample temperature. FIG. 1 shows a method of heating a sample with high-temperature air that is most widely used in a conventional solid-state NMR MAS probe apparatus.

試料(1)はセラミクスからなる円筒状の試料管(2)に収められている。MASプローブ装置に供給される空気の流路(7)にはヒータ(9)が取り付けられる構造になっている。ヒータ(9)としては電熱線ヒータやセラミックヒータが用いられる。ヒータ(9)の周囲およびヒータからMASプローブ装置に至る経路(7)は断熱真空や多孔質材料等の断熱材(41)によって適宜周囲から断熱されている。試料温度を上昇させる場合は、ヒータ(9)に通電し、気体軸受(4)に供給される空気の温度を上昇させ、それにより
試料管(2)を加熱する。加熱された気体の流路(7)には、熱電対等の電気式温度計(8)を設置し、その出力を温度制御装置(50)の参照信号として用いて負帰還を施し、温度の制御を行う。
The sample (1) is stored in a cylindrical sample tube (2) made of ceramics. A heater (9) is attached to the air flow path (7) supplied to the MAS probe device. A heating wire heater or a ceramic heater is used as the heater (9). The periphery of the heater (9) and the path (7) from the heater to the MAS probe apparatus are appropriately insulated from the surroundings by a heat insulating material (41) such as a heat insulating vacuum or a porous material. When increasing the sample temperature, the heater (9) is energized to increase the temperature of the air supplied to the gas bearing (4), thereby heating the sample tube (2). An electric thermometer (8) such as a thermocouple is installed in the heated gas flow path (7), and its output is used as a reference signal for the temperature control device (50) to provide a negative feedback to control the temperature. I do.

このような態様の加熱によって装置内の温度分布は、T9(ヒータ)>T7(流路、ハウジング)>T2(試料管)>〜T1(試料)の順となり、加熱されるべき試料よりも、その周辺の部材の方がより高温に曝される。このため周辺部材は熱的に様々な影響を受け、装置設計にとってはこれを考慮して設計しなければならず、このような態様の加熱方法は、試料温度を高温に加熱するシステムとしては好ましい態様とはいえない。また、NMR測定は目的に応じて10MHzから1GHzの範囲に及ぶ高周波信号を扱い、非常に高精度の測定が行なわれる。得られるNMR信号は、ハウジング(20)の構造自体をはじめ試料管(2)近傍に存在している材料、物体によって強く影響される。したがって、高周波信号を乱す金属に代表される導電性の材料やまた絶縁体といえども誘電損失の大きい材料は使用することが出来ない。   Due to the heating in this manner, the temperature distribution in the apparatus is in the order of T9 (heater)> T7 (flow path, housing)> T2 (sample tube)> ˜T1 (sample). The surrounding members are exposed to higher temperatures. For this reason, the peripheral member is affected by various thermal factors and must be designed in consideration of the device design. The heating method of this aspect is preferable as a system for heating the sample temperature to a high temperature. This is not an aspect. In addition, NMR measurement handles a high-frequency signal ranging from 10 MHz to 1 GHz according to the purpose, and very high-precision measurement is performed. The obtained NMR signal is strongly influenced by the material and object existing in the vicinity of the sample tube (2) as well as the structure of the housing (20). Therefore, a conductive material typified by a metal that disturbs a high-frequency signal or a material having a large dielectric loss cannot be used even for an insulator.

また、装置を構成する各部部材、各部機器類は、形状が複雑でかつ高度な寸法精度が必要なことから、そのために使用される構成材料は加工性の良さ等も要求される。MASプローブ装置のハウジングの構造材として、高周波特性の良いフッ素樹脂や、温度特性や機械的強度に優れるエンジニアリングプラスチック類の樹脂が主に用いられる。   Moreover, since each part member and each equipment constituting the apparatus are complicated in shape and require high dimensional accuracy, the constituent materials used for this purpose are required to have good workability. As a structural material for the housing of the MAS probe apparatus, fluororesins having good high frequency characteristics and engineering plastic resins having excellent temperature characteristics and mechanical strength are mainly used.

この様な制限から、従来、固体NMR用温度可変MASプローブ装置での最高温度は、高温の空気の流路となるそれらの樹脂部品の温度特性で制限され、150℃程度が限界であった。また、流路にあたる構造部品は熱源により曝されて加熱されるため、各部部品は熱によって影響され、熱膨張も考慮に入れて設計しなければならない。これを無視して、構造材料の選定をするだけでは技術的な限界に突き当たることが予測される。   Due to such limitations, the maximum temperature in the solid-state NMR variable temperature MAS probe device is conventionally limited by the temperature characteristics of those resin parts that form a flow path of high-temperature air, and is limited to about 150 ° C. Further, since the structural parts corresponding to the flow path are exposed to heat from the heat source and heated, each part is affected by heat and must be designed taking into account thermal expansion. By ignoring this, simply selecting the structural material is expected to hit the technical limits.

水素や炭素といった核種においては得られるNMR信号の強度が比較的大であり、そのNMR観測は比較的容易であるため、主にそれらの元素で構成されている有機物については、これまでにも多くの測定がなされてきた。これらの有機物は一般に高温度では分解してしまうため、さらなる高温度での測定に対する要望はあまり強くは無かった。ところが、近年、21.6T以上の強磁場を高い均一度で発生できるNMR用超伝導磁石が開発され、実用に供されるようになり、従来の低い磁場では測定困難であった磁気四極子核のNMR測定も可能となってきた。NMR測定の結果得られるNMR信号は、磁場の強さに依存し、磁場が強いほど信号強度は大きくなる。これによって、従来は感度不足で測定困難とされてきた多くの無機物も測定可能となってきた。しかし、これまでのMASプローブ装置は、加熱温度は最大でも150℃程度までしか加熱することが出来なかったため、無機物固体粉末を測定するにおいて限界があった。これを打破するためには、さらに高温度に加熱する必要があり、これに応えうる固体NMR用MAS装置の開発が求められている。   In the nuclide such as hydrogen and carbon, the intensity of the obtained NMR signal is relatively large and the NMR observation is relatively easy, so there are many organic substances mainly composed of these elements so far. Measurements have been made. Since these organic substances are generally decomposed at high temperatures, there has been little demand for measurement at higher temperatures. However, in recent years, an NMR superconducting magnet capable of generating a strong magnetic field of 21.6 T or higher with high uniformity has been developed and put into practical use, and a magnetic quadrupole nucleus that has been difficult to measure with a conventional low magnetic field. NMR measurement has also become possible. The NMR signal obtained as a result of NMR measurement depends on the strength of the magnetic field, and the stronger the magnetic field, the greater the signal strength. As a result, it has become possible to measure many inorganic substances that have been considered difficult to measure due to insufficient sensitivity. However, since the conventional MAS probe apparatus can only heat the heating temperature up to about 150 ° C., there is a limit in measuring the inorganic solid powder. In order to overcome this, it is necessary to heat to a higher temperature, and the development of a solid-state NMR MAS apparatus capable of responding to this is demanded.

しかしながら、NMR信号は磁気的雑音の影響を受けやすく、温度調節のために加熱ヒータに投入する電力を調整したり、電流を上げたりすると、設定された測定磁界に影響を与え高精度の測定が困難になる等、試料温度を高温に加熱することは様々なところに影響をおよぼす結果となり簡単ではない。こういった中で、立設したガラス製二重試料管を使用し、そのNMR測定部の上方と下方とにそれぞれ独立して駆動される加熱手段を設け、しかも加熱空気の流路設計を排気出口に至るまで特定の順番に配して設定し、且つその伝熱パイプの材質も金製、または金と同等の熱伝導性、耐熱性、非磁性の金属により選定する等によって高温加熱を実現することが提案されている(特許文献1)。   However, the NMR signal is easily affected by magnetic noise, and adjusting the power input to the heater or adjusting the current to adjust the temperature will affect the set measurement magnetic field, resulting in high-precision measurements. It is difficult to heat the sample temperature to a high temperature, for example, because it becomes difficult, which affects various places. Under these circumstances, a standing glass double sample tube is used, and heating means that are independently driven are provided above and below the NMR measurement section, and the flow path design of the heated air is exhausted. High temperature heating is realized by arranging it in a specific order until it reaches the outlet and selecting the material of the heat transfer pipe from gold or the same heat conductivity, heat resistance and non-magnetic metal as gold. It has been proposed (Patent Document 1).

しかしながら、この提案によるNMR装置は、超臨界流体を測定対象とするものであり、固体試料を測定対象とするものではなく、試料管を高速にて回転させるタイプでなく、その加熱方法も基本的には電力投入によって加熱するものであるので、磁界に対して影響をあたえやすく、これを固体NMR用温度可変MASプローブ装置に適用することは出来ない。   However, the NMR apparatus according to this proposal is intended to measure a supercritical fluid, not a solid sample, is not a type that rotates a sample tube at a high speed, and the heating method is also basic. Since it is heated when power is turned on, it easily affects the magnetic field, and cannot be applied to a temperature variable MAS probe apparatus for solid-state NMR.

特開2005−257528号公報JP 2005-257528 A

本発明は、基本的には上述した既存のNMR測定に用いられているMASプローブ装置の設計をそのまま生かしながら、その試料の温度を従来の限界を超えて高温に設定可能としうる固体NMR用温度可変MASプローブ装置を提供しようというものである。   The present invention basically uses the design of the MAS probe apparatus used in the above-described existing NMR measurement as it is, and allows the temperature of the sample to be set to a high temperature exceeding the conventional limit. It is intended to provide a variable MAS probe device.

そのため、本発者等においては鋭意研究の結果、固体NMR用温度可変MASプローブ装置において、固体試料を収容する筒状試料管に対して、その中心軸線上の一端側から前記試料管内の試料に向けて赤外線を照射せしめる赤外線加熱機構を設けた結果、磁界に対しても影響を与えずに、試料温度をこれまで以上の高温に加熱しうること、しかも、鋭いNMRスペクトルが得られことから、固体NMR測定をする上においては極めて有効な加熱方式であることを知見した。
本発明は、この知見に基づいてなされたものであり、その構成は、以下の特徴を備えてなるものである。
Therefore, as a result of earnest research in the present inventors, etc., in the temperature variable MAS probe apparatus for solid NMR, the sample in the sample tube is transferred from one end on the central axis to the cylindrical sample tube containing the solid sample. As a result of providing an infrared heating mechanism that irradiates infrared rays toward the sample, the sample temperature can be heated to a higher temperature than before without affecting the magnetic field, and a sharp NMR spectrum can be obtained. It was found that this is a very effective heating method for solid-state NMR measurement.
The present invention has been made on the basis of this finding, and its configuration has the following features.

本発明1の固体NMR用MASプローブ装置は、筒状の試料管をその筒状中心軸周りに高速回転するようハウジング内に回動自在に保持されてなる固体NMR用MASプローブ装置において、前記試料管の前記筒状中心軸の一端側に赤外線に対し透明な石英あるいは石英ガラスからなる蓋を設け、前記筒状中心軸の一端側から赤外線を前記蓋を通して前記試料管内の試料に収束するように照射する加熱機構を設けたことを特徴とする。   The solid-state NMR MAS probe apparatus according to the first aspect of the present invention is the solid-state NMR MAS probe apparatus in which a cylindrical sample tube is rotatably held in a housing so as to rotate at high speed around the cylindrical central axis. A lid made of quartz or quartz glass transparent to infrared rays is provided on one end side of the cylindrical central axis of the tube, and infrared rays are converged from one end side of the cylindrical central axis to the sample in the sample tube through the lid. A heating mechanism for irradiation is provided.

また、本発明2の固体NMR用MASプローブ装置は、前記発明1において、前記試料管の前記筒状中心軸の延長線上であって、前記加熱機構とは反対側に放射温度計を用いた試料温度観測機構を設けてあることを特徴とする。   The solid-state NMR MAS probe apparatus according to the second aspect of the present invention is the sample according to the first aspect of the present invention, wherein the sample tube is an extension of the cylindrical central axis of the sample tube and uses a radiation thermometer on the side opposite to the heating mechanism. A temperature observation mechanism is provided.

本発明1では、空気経路やハウジングを加熱することなく、試料を直接加熱することができるので、これらの温度上昇が押さえられることになる。
その結果、試料管の周辺構造による加熱温度の制約を受けることなく、試料を加熱することができた。赤外線を試料に収束することで、試料管の加熱をも軽減することができるようになり、試料をさらに高温に加熱することができた。
以上の結果、従来は測定できなかった広い温度領域において、固定NMRにて測定することができるようになった。
In the first aspect of the present invention, the sample can be directly heated without heating the air path or the housing, so that these temperature rises are suppressed.
As a result, the sample could be heated without being restricted by the heating temperature due to the surrounding structure of the sample tube. By converging the infrared rays on the sample, the heating of the sample tube can be reduced, and the sample can be heated to a higher temperature.
As a result, measurement by fixed NMR has become possible in a wide temperature range that could not be measured conventionally.

従来技術によるプローブ装置Conventional probe device 実施例1のMASプローブ装置を示す概略正面図Schematic front view showing the MAS probe device of Example 1 実施例1の試料容器を示す一部切り欠き拡大正面図Partially cut away enlarged front view showing the sample container of Example 1 実施例2のMASプローブ装置を示す概略正面図The schematic front view which shows the MAS probe apparatus of Example 2. 実施例3のMASプローブ装置を示す概略正面図Schematic front view showing the MAS probe apparatus of Example 3 実施例2における試料の温度と赤外線ランプの発光強度との関係を示すグラフThe graph which shows the relationship between the temperature of the sample in Example 2, and the emitted light intensity of an infrared lamp.

以下、本発明を実施例、図面に基づいて説明する。   Hereinafter, the present invention will be described based on examples and drawings.

本発明によるNMRプローブ装置の概略は図2に示す通りである。
本実施例においては、試料管(2)の回転軸の延長線上に熱源として赤外線ランプ(31)を配置し、回転放物面状の反射鏡(32)をその焦点に赤外線ランプ(31)を配置して加熱機構を構成している。
この赤外線ランプ(31)に通電を行う事により、赤外線が放射される。放射された赤外線は反射鏡で反射され平行光線となって試料管(2)の底部を照らすことになる。
そして、この試料管(2)の底部近傍には、光線が試料管(2)の中央部に置かれた試料(1)の中央付近に収束するように調整された集光レンズ(33)をハウジング(20)に配置して収束構造を構成しているものである。
試料(1)は、前記試料管(2)の中央に設置した円筒状の試料容器(35)に収められる。
The outline of the NMR probe apparatus according to the present invention is as shown in FIG.
In this embodiment, an infrared lamp (31) is arranged as a heat source on the extension line of the rotation axis of the sample tube (2), and the infrared parabolic reflector (32) is placed at the focal point of the infrared lamp (31). It arranges and constitutes a heating mechanism.
Infrared light is emitted by energizing the infrared lamp (31). The emitted infrared rays are reflected by the reflecting mirror and become parallel rays, and illuminate the bottom of the sample tube (2).
In the vicinity of the bottom of the sample tube (2), a condenser lens (33) adjusted so that the light beam converges near the center of the sample (1) placed at the center of the sample tube (2). The converging structure is configured by being arranged in the housing (20).
The sample (1) is stored in a cylindrical sample container (35) installed at the center of the sample tube (2).

試料容器(35)は、全体を熱伝導度の小さい多孔質セラミクスで作られているが、図3に示すように、前記赤外線ランプ(31)に向く一端面は、開放され、石英または石英ガラス等の赤外線に対して透明な材料を用いた蓋(34)により塞ぐようにしてある。
また、試料容器(35)の外周には、小さな幅のリブ(36)(37)が設けてあり、これにより試料管(2)との接触面積を最小限にして、試料管(2)内に保持し得るようにしてある。
The entire sample container (35) is made of porous ceramics having a low thermal conductivity. However, as shown in FIG. 3, one end surface facing the infrared lamp (31) is opened and quartz or quartz glass is opened. A lid (34) using a material transparent to infrared rays, such as, is closed.
In addition, ribs (36) and (37) having small widths are provided on the outer periphery of the sample container (35), thereby minimizing the contact area with the sample tube (2), and thereby in the sample tube (2) It can be held in.

このようにして、試料(1)の赤外線加熱によって生じた熱が、試料管(2)およびその周辺の構造に伝播しないように、試料容器(35)から試料管(2)への熱伝導を最小限にするようにしてある。   In this way, heat conduction from the sample container (35) to the sample tube (2) is prevented so that heat generated by infrared heating of the sample (1) does not propagate to the sample tube (2) and the surrounding structure. I try to minimize it.

なお、試料(1)が、赤外線を透過しやすい場合には、試料中に測定に影響を与えず、赤外線により加熱されやすいセラミックス等の物質の小片を混入し、間接的に試料(1)を加熱することが出来る。   In addition, when the sample (1) easily transmits infrared rays, a small piece of a substance such as ceramics that is easily heated by infrared rays is not mixed in the sample, and the sample (1) is indirectly added. Can be heated.

試料(1)の温度の検出は、試料が温度に応じて放射する光線を、試料管(2)の軸の延長線上に設置した放射温度計(38)にて観測することによって行われる。また、放射温度計(38)の出力は、温度に対応した電気信号として取り出され、赤外線ランプの出力を制御する参照信号としてプログラマブル温度制御器(50)に入力される。これにより、試料の温度は所定の設定値に容易に保持することができる。放射温度計の指示する温度は、試料近傍の試料を収納した試料容器(35)のものなので、必ずしも真の試料温度とは一致しない。
このため、硝酸鉛等の温度校正用の適当な標準試料を用いて、事前に各温度でNMR測定を行い、NMR信号の化学シフトの値から試料温度を読み取ることにより、試料温度と温度計の指示温度との校正曲線を求めることが望ましい。この場合、温度制御は求めた校正曲線に従って行うこととなる。
The temperature of the sample (1) is detected by observing a light beam emitted from the sample according to the temperature with a radiation thermometer (38) installed on an extension of the axis of the sample tube (2). The output of the radiation thermometer (38) is taken out as an electrical signal corresponding to the temperature, and is input to the programmable temperature controller (50) as a reference signal for controlling the output of the infrared lamp. Thereby, the temperature of the sample can be easily maintained at a predetermined set value. Since the temperature indicated by the radiation thermometer is that of the sample container (35) containing the sample near the sample, it does not necessarily match the true sample temperature.
Therefore, using an appropriate standard sample for temperature calibration such as lead nitrate, perform NMR measurement at each temperature in advance, and read the sample temperature from the chemical shift value of the NMR signal, so that the sample temperature and the thermometer It is desirable to obtain a calibration curve with the indicated temperature. In this case, temperature control is performed according to the obtained calibration curve.

本実施例は、加熱機構の内、赤外線ランプと集光レンズなどを一つのボックス(70)に収納し、これより発した赤外線を光ファイバー(61)により、ハウジング(20)内に導き、試料管(2)に照射するようにした例である。
図4及び図6を参照して以下に説明する。
In this embodiment, an infrared lamp, a condenser lens, and the like in the heating mechanism are housed in a single box (70), and infrared rays emitted therefrom are guided into a housing (20) by an optical fiber (61), and a sample tube This is an example in which (2) is irradiated.
This will be described below with reference to FIGS.

ボックス(70)内に、反射鏡(32)と、その焦点に赤外線ランプ(31)を配置して平行光線を一定方向に照射する加熱機構を構成する。この平行光線の照射経路の途中に集光レンズ(33)を配置して収束構造をボックス(70)内に構成した。そして、前記集光レンズ(33)による焦点位置に、光ファイバー(61)に一端を配置し、この光ファイバー(61)の他端は、ハウジング(20)の前記試料管(2)の軸の延長線上の位置で、前記試料管(2)内に赤外線を照射するように配置した。   In the box (70), a reflecting mirror (32) and an infrared lamp (31) are arranged at the focal point to constitute a heating mechanism for irradiating parallel light rays in a fixed direction. A focusing lens (33) was arranged in the middle of the parallel light irradiation path to form a converging structure in the box (70). Then, one end of the optical fiber (61) is disposed at the focal position by the condenser lens (33), and the other end of the optical fiber (61) is on an extension line of the axis of the sample tube (2) of the housing (20). At the position, the sample tube (2) was arranged to irradiate infrared rays.

なお、温度制御のための前記試料管(2)から発せられる熱線はレンズ(64)で集めて光ファイバー(62)を使用して、放射温度計(38)に送るようにして、放射温度計(38)及び温度制御装置(50)の配置を自由に行えるようにした。
その他の点は、前記実施例1と同様なので詳しい説明は省略する。
The heat rays emitted from the sample tube (2) for temperature control are collected by a lens (64) and sent to a radiation thermometer (38) using an optical fiber (62). 38) and the temperature control device (50) can be freely arranged.
Since the other points are the same as those of the first embodiment, detailed description thereof is omitted.

このようにすることで、ハウジング(20)と加熱機構及び収束構造との位置関係を自由に設定できるようになり、既存のNMR装置への本発明の追加が行いやすくなる。
このように構成した本実施例により、試料(1)がどのように加熱されるかは、図6に示す通りである。図6のグラフは、周囲温度が120℃の場合の、赤外線ランプ(31)の発光強度と試料(1)の温度との関係を示したグラフである。
By doing so, the positional relationship between the housing (20), the heating mechanism, and the converging structure can be freely set, and the present invention can be easily added to the existing NMR apparatus.
FIG. 6 shows how the sample (1) is heated according to this embodiment configured as described above. The graph of FIG. 6 is a graph showing the relationship between the emission intensity of the infrared lamp (31) and the temperature of the sample (1) when the ambient temperature is 120 ° C.

本実施例では、鏡面を使用して、赤外線を所望位置に導くようにした例であって、図5を参照して以下に説明する。
反射鏡(32)と、その焦点に赤外線ランプ(31)をハウジング(20)近くの所望位置に配置して平行光線を一定方向に照射する加熱機構を構成する。
この平行光線の照射経路をハウジング(20)に設けた集光レンズ(33)に導くように、反射鏡(71)(72)を前記加熱機構とハウジング(20)との間に配置する。
前記集光レンズ(33)は、入射した赤外線を試料管(2)の中央部に置かれた試料(1)の中央付近に収束するように調整してある。
その他の点は実施例2と同様なので詳しい説明は省略する。
In this embodiment, a mirror surface is used to guide infrared rays to a desired position, which will be described below with reference to FIG.
The reflecting mirror (32) and an infrared lamp (31) at the focal point thereof are arranged at a desired position near the housing (20) to constitute a heating mechanism that irradiates parallel rays in a certain direction.
Reflecting mirrors (71) and (72) are arranged between the heating mechanism and the housing (20) so as to guide the irradiation path of the parallel rays to a condenser lens (33) provided in the housing (20).
The condensing lens (33) is adjusted so that the incident infrared rays converge near the center of the sample (1) placed in the center of the sample tube (2).
Since other points are the same as those of the second embodiment, detailed description thereof is omitted.

本発明の固体NMR用MAS装置は、その試料加熱機構として赤外線による加熱機構を採用したことから、装置内に配置された部材や部品に対してはさほどの熱的負荷をかけることなく、試料温度だけを高温にすることを可能とした。
従来、測定温度が壁となり、一つの隘路とされ、そこに限界があったが、この限界を超えることが出来たことは、それ自体評価に値し、その意義は極めて大である。今後、測定機器、分析機器の分野において、本発明は、大いに利用されうるものと期待される。これらの機器として利用されてきたNMRは、これまで有機化合物の分野において構造決定や同定に用いられ、その発展に大いに寄与してきた経緯があるが、本発明によって、ノイズを発生させることなくより高温レベルでの測定が可能となったことから、結晶やアモルファス等の各種固体材料の研究開発にかかわる分野において、大いに利用されるものと期待される。また、本発明によって各種物性データの拡充を得ることが可能となり、固体物理化学の基礎研究の進展に大いに寄与し、新知見が続々と得られことが期待される。
Since the solid-state NMR MAS apparatus of the present invention employs an infrared heating mechanism as its sample heating mechanism, the sample temperature is not significantly applied to the members and components arranged in the apparatus. Only made it possible to raise the temperature.
Conventionally, the measurement temperature has become a wall, and it has been a bottleneck, and there was a limit, but the fact that this limit could be exceeded is worthy of evaluation itself, and its significance is extremely large. In the future, the present invention is expected to be used greatly in the fields of measuring instruments and analytical instruments. NMR, which has been used as these instruments, has been used for structure determination and identification in the field of organic compounds and has greatly contributed to its development. However, according to the present invention, higher temperatures can be obtained without generating noise. Since measurement at the level has become possible, it is expected to be used greatly in fields related to research and development of various solid materials such as crystals and amorphous materials. In addition, the present invention makes it possible to obtain various physical property data, greatly contributing to the progress of basic research on solid-state physical chemistry, and new knowledge is expected to be obtained one after another.

1:試料
2:試料管
3:高周波コイル
4:気体軸受ステータ
5:タービン回転翼
6:タービンステータ
7:気体流路
8:温度センサー
9:ヒータ
10:気体流路
11:気体流量調節弁
20:ハウジング
31:赤外線ランプ
32:反射鏡
33:集光レンズ
34:透明蓋
35:試料容器
36、37:リブ
38:放射温度計
50:温度制御装置
61、62:光ファイバー
63、64:レンズ
70:ボックス
71、72:反射鏡
A:試料管の回転軸
B:外部磁場の方向

1: Sample 2: Sample tube 3: High frequency coil 4: Gas bearing stator 5: Turbine rotor blade 6: Turbine stator 7: Gas flow path 8: Temperature sensor 9: Heater 10: Gas flow path 11: Gas flow control valve 20: Housing 31: Infrared lamp 32: Reflector 33: Condensing lens 34: Transparent lid 35: Sample container 36, 37: Rib 38: Radiation thermometer 50: Temperature controller 61, 62: Optical fiber 63, 64: Lens 70: Box 71, 72: Reflector A: Sample tube rotation axis B: Direction of external magnetic field

Claims (2)

筒状の試料管をその筒状中心軸周りに高速回転するようハウジング内に回動自在に保持されてなる固体NMR用MASプローブ装置において、前記試料管の前記筒状中心軸の一端側に赤外線に対し透明な石英あるいは石英ガラスからなる蓋を設け、前記筒状中心軸の一端側から赤外線を前記蓋を通して前記試料管内の試料に収束するように照射する加熱機構を設けたことを特徴とする、固体NMR用MASプローブ装置。   In a solid NMR MAS probe device in which a cylindrical sample tube is rotatably held in a housing so as to rotate at high speed around the cylindrical central axis, an infrared ray is applied to one end of the cylindrical central axis of the sample tube. In contrast, a lid made of transparent quartz or quartz glass is provided, and a heating mechanism for irradiating infrared rays from one end of the cylindrical central axis so as to converge on the sample in the sample tube through the lid is provided. , MAS probe device for solid-state NMR. 請求項1に記載の固体NMR用MASプローブ装置において、前記試料管の前記筒状中心軸の延長線上であって、前記加熱機構とは反対側に放射温度計を用いた試料温度観測機構を設けてなることを特徴とする、固体NMR用MASプローブ装置。   2. The solid-state NMR MAS probe apparatus according to claim 1, wherein a sample temperature observation mechanism using a radiation thermometer is provided on an extension line of the cylindrical central axis of the sample tube and opposite to the heating mechanism. A MAS probe apparatus for solid-state NMR, characterized in that
JP2012207744A 2012-09-21 2012-09-21 MAS probe device for solid-state NMR Active JP5517086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207744A JP5517086B2 (en) 2012-09-21 2012-09-21 MAS probe device for solid-state NMR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207744A JP5517086B2 (en) 2012-09-21 2012-09-21 MAS probe device for solid-state NMR

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006183159A Division JP5233040B2 (en) 2006-07-03 2006-07-03 MAS probe device for solid-state NMR

Publications (2)

Publication Number Publication Date
JP2012247442A JP2012247442A (en) 2012-12-13
JP5517086B2 true JP5517086B2 (en) 2014-06-11

Family

ID=47467959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207744A Active JP5517086B2 (en) 2012-09-21 2012-09-21 MAS probe device for solid-state NMR

Country Status (1)

Country Link
JP (1) JP5517086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202943B3 (en) * 2016-02-25 2017-05-18 Bruker Biospin Ag Measuring head of an NMR MAS apparatus with device for determining the angle between MAS rotor and static magnetic field

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167947A (en) * 1982-03-29 1983-10-04 Hitachi Ltd Spinner of nuclear magnetic resonance device
JPS59178347A (en) * 1983-03-30 1984-10-09 Hitachi Ltd Thermally-variable probe for solid high-resolution nuclear magnetic resonance apparatus
JPH0324487A (en) * 1989-06-21 1991-02-01 Jeol Ltd Nuclear magnetic resonance probe
JP3439286B2 (en) * 1995-07-05 2003-08-25 日機装株式会社 Method and apparatus for heating sample for electron spin resonance
JPH11281598A (en) * 1998-03-26 1999-10-15 Shin Etsu Chem Co Ltd Method for analyzing silica surface
JP3683716B2 (en) * 1998-09-07 2005-08-17 日本電子株式会社 Thermal insulation structure of NMR probe
JP2001183436A (en) * 1999-12-27 2001-07-06 Jeol Ltd Sample temperature control device
US6812706B2 (en) * 2003-03-12 2004-11-02 Varian, Inc. Axially-sealed NMR sample tube assemblies
JP2005257528A (en) * 2004-03-12 2005-09-22 Jeol Ltd Flow through type nmr probe for measuring high temperature

Also Published As

Publication number Publication date
JP2012247442A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5666687B2 (en) Optical pumping magnetometer, magnetoencephalograph and MRI apparatus
JP5414058B2 (en) Thermal diffusivity measuring device
TWI515416B (en) Apparatus and method of detecting temperature and apparatus for processing substrate
JP5788153B2 (en) X-ray diffraction method and portable X-ray diffractometer using the same
CN103499603A (en) Non-contact high-temperature thermophysical property parameter measurement device and non-contact high-temperature thermophysical property parameter measurement method
Chen et al. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy
JP5517086B2 (en) MAS probe device for solid-state NMR
JP5233040B2 (en) MAS probe device for solid-state NMR
WO2022113717A1 (en) Slow atomic beam generator, physical package, physical package for optical grid clock, physical package for atomic clock, physical package for atomic interferometer, physical package for quantum information processing device, and physical package system
CN110631955B (en) Integrated alkali metal gas density detection device based on Faraday effect
JPH09257374A (en) Infrared heating furnace and thermodilatometer
JP2011099776A (en) Electromagnetic horn type electron spin resonance apparatus (1)
JP5894757B2 (en) Thermal constant measuring device
CN207163574U (en) Fiber spectrometer
JP3439286B2 (en) Method and apparatus for heating sample for electron spin resonance
JP2009085796A (en) Measuring device of reflectivity or transmittance of electromagnetic wave at high temperature
Zhang et al. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment
JP2009085795A (en) Measuring method of reflectivity or transmittance of electromagnetic wave at high temperature
JP6084993B2 (en) X-ray diffraction method and portable X-ray diffractometer using the same
JP2016161384A (en) Thermal analyzer
WO2023219032A1 (en) Atom beam generation device, physics package, physics package for optical lattice clock, physics package for atomic clock, physics package for atomic interfererometer, physics package for quantum information processing device, and physics package system
RU2327146C1 (en) High temperature adapter for electron diffractograph
Zhang et al. New Emissivity Measuring System with High Accuracy Under Controlled Environment Conditions
JP6213986B2 (en) Absolute light intensity measuring device and measuring method
Morozova et al. Facility for measuring the spatial uniformity of the radiation power of the surface of the large-area blackbody

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5517086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250