JP5517034B2 - Electronic device substrate - Google Patents

Electronic device substrate Download PDF

Info

Publication number
JP5517034B2
JP5517034B2 JP2009163988A JP2009163988A JP5517034B2 JP 5517034 B2 JP5517034 B2 JP 5517034B2 JP 2009163988 A JP2009163988 A JP 2009163988A JP 2009163988 A JP2009163988 A JP 2009163988A JP 5517034 B2 JP5517034 B2 JP 5517034B2
Authority
JP
Japan
Prior art keywords
film
metal
interface
substrate
alumina film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009163988A
Other languages
Japanese (ja)
Other versions
JP2011016704A (en
Inventor
道子 吉武
スラボミール ネムシャク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009163988A priority Critical patent/JP5517034B2/en
Publication of JP2011016704A publication Critical patent/JP2011016704A/en
Application granted granted Critical
Publication of JP5517034B2 publication Critical patent/JP5517034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属基板表面に酸化膜を有する電子素子基板に関する。   The present invention relates to an electronic element substrate having an oxide film on a metal substrate surface.

薄い酸化膜は、そのバンドギャップの大きさに応じて、優れたトンネルバリア層や電界効果素子の材料として、またはメモリーなどの半導体素子の材料として有用である。
そのうち、金属−トンネルバリア層−金属(MIM構造)をもつ電子放出源、金属−トンネルバリア層−センサー層(MIS)という構造を持ち、センサー層での電子授受をトンネルバリア層を通して金属層へ伝えるタイプのセンサー、MIM・MIS構造で、スピンを持つ材料を含む場合の磁気デバイスなどへ応用できる、アルミナ膜とその作製法について特許を申請した(特許文献1参照)。
その方法では、界面が酸化膜を構成する金属原子で終端されており(図1(a))、基板が銅やニッケルの場合、価電子バンドオフセット(正孔に対するショットキーバリア高さ)が大きいという問題があった。
A thin oxide film is useful as a material for an excellent tunnel barrier layer or field effect element, or as a material for a semiconductor element such as a memory depending on the size of the band gap.
Among them, it has an electron emission source having a metal-tunnel barrier layer-metal (MIM structure) and a structure of metal-tunnel barrier layer-sensor layer (MIS), and transmits and receives electrons in the sensor layer to the metal layer through the tunnel barrier layer. We have applied for a patent for an alumina film and its manufacturing method that can be applied to a type of sensor, a magnetic device having a MIM / MIS structure and a material having a spin (see Patent Document 1).
In this method, the interface is terminated with metal atoms constituting the oxide film (FIG. 1A), and when the substrate is copper or nickel, the valence band offset (Schottky barrier height with respect to holes) is large. There was a problem.

界面を酸素原子終端にすると、この価電子バンドオフセットが下がると予想されている(第一原理計算による)が、それを具体的に達成するものがなかったので、本願発明は、それを課題として、実現することを目的とした。   When the interface is terminated with an oxygen atom, this valence band offset is expected to decrease (according to first-principles calculation), but there is nothing that specifically achieves it. , Aimed to realize.

本発明の電子素子基板は、酸化膜の金属基板との界面が酸素原子により終端されていることを特徴とする。   The electronic device substrate of the present invention is characterized in that the interface between the oxide film and the metal substrate is terminated by oxygen atoms.

本発明者らは、金属基板との界面が酸素原子により終端された(図1(b))アルミナ極薄膜の作製に成功した。
界面終端原子の種類を決定付けるルールを見出し、金属基板と界面が酸素原子により終端された酸化膜の作製法として用いることを可能にした結果として得られた新たな電子素子基板である。
The inventors have succeeded in producing an alumina ultrathin film in which the interface with the metal substrate is terminated by oxygen atoms (FIG. 1B).
This is a new electronic device substrate obtained as a result of finding a rule for determining the type of interface termination atom and enabling it to be used as a method for producing an oxide film in which a metal substrate and an interface are terminated by oxygen atoms.

金属基板とアルミナ膜界面の界面終端の模式図。(a)アルミニウム原子終端、(b)酸素原子終端。The schematic diagram of the interface termination | terminus of a metal substrate and an alumina film interface. (A) Aluminum atom termination, (b) Oxygen atom termination. 非特許文献1に示されたアルミニウム原子終端を持つ銅基板上のアルミナ膜極薄膜の光電子スペクトル。The photoelectron spectrum of the alumina film ultrathin film on the copper substrate which has an aluminum atom termination shown in nonpatent literature 1. 実験番号11の熱処理前のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film before the heat treatment of Experiment No. 11. 実験番号11の熱処理後のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film after the heat treatment of Experiment No. 11. 実験番号1のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of experiment number 1. 実験番号2のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of experiment number 2. 実験番号3のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of experiment number 3. 実験番号4のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of experiment number 4. 実験番号5のアルミナ膜の高速反射電子線回折パターン。A high-speed reflection electron diffraction pattern of the alumina film of Experiment No. 5. 実験番号5のアルミナ膜の走査型二次電子像。A scanning secondary electron image of the alumina film of Experiment No. 5. 実験番号6のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of Experiment No. 6. 実験番号7のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of Experiment No. 7. 実験番号8のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of Experiment No. 8. 実験番号9のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of experiment number 9. 実験番号10のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film of experiment number 10. 実験番号10のアルミナ膜の走査型二次電子像。A scanning secondary electron image of the alumina film of Experiment No. 10. 実験番号12の熱処理前のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film | membrane before the heat processing of the experiment number 12. 実験番号12の熱処理後のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film after the heat treatment of Experiment No. 12. 実験番号13の熱処理後のアルミナ膜の光電子スペクトル。The photoelectron spectrum of the alumina film after the heat treatment of Experiment No. 13.

本発明の基板の材質は、銅(111)、ニッケル(111)を実施例で示したが、当該実施例による知見に基づき以下の理由により、同様の結晶表面構造をもつ金属元素、特に、fcc金属の(111)およびhcp金属の(0001)の面へ適用可能である。
本発明は、金属基板(M)と酸化物(AxOy)の界面が、熱力学的に以下の関係式を満たすことにより酸素原子により終端されることに立脚している。
酸化物の界面が酸素原子により終端されるということは、酸化物の極性面が金属基板上に成長することを意味している。酸化物の酸素終端面は、酸素が最密充填した構造をとる場合が多く、その場合表面は二次元的に6回対称性をもつ。したがって、熱力学的に以下の関係式を満たすならば、実施例としてあげた銅(111)、ニッケル(111)のほかに、6回対称性を持つfcc金属の(111)およびhcp金属の(0001)面上で成長すると考えられる。
The materials of the substrate of the present invention are copper (111) and nickel (111) in the examples. Based on the knowledge of the examples, metal elements having the same crystal surface structure, particularly fcc, for the following reasons. It can be applied to the (111) face of metal and the (0001) face of hcp metal.
The present invention is based on the fact that the interface between the metal substrate (M) and the oxide (AxOy) is terminated by oxygen atoms by thermodynamically satisfying the following relational expression.
The fact that the oxide interface is terminated by oxygen atoms means that the polar surface of the oxide grows on the metal substrate. In many cases, the oxygen termination surface of the oxide has a structure in which oxygen is closely packed, and in this case, the surface has two-dimensional symmetry in two dimensions. Therefore, if the following relational expression is satisfied thermodynamically, in addition to the copper (111) and nickel (111) mentioned as examples, the fcc metal (111) and the hcp metal ( 0001) plane.

本発明を製造するのに用いる製法では、酸化される金属元素の基板への蒸着中の雰囲気に酸素を存在させることが重要であり、その酸素分圧の適切な範囲は、以下のようにして定めることができる。
酸素分圧:上記の化学平衡式(2)で、以下の化2の条件を満たし、かつ、酸化物の金属元素が十分に酸化された状態で膜成長する酸素分圧範囲
アルミナ膜では5x10−8mbar〜6.6x10−7mbar。実施例では2x10−7mbarおよび5x10−7mbarであるが、公知文献のBに挙げた文献により、5x10−8mbar〜6.6x10−7mbarの酸素分圧範囲では、上記化学平衡式において酸素終端側で安定であることが示されている。
In the production method used to produce the present invention, it is important that oxygen is present in the atmosphere during the deposition of the metal element to be oxidized on the substrate, and the appropriate range of the oxygen partial pressure is as follows. Can be determined.
Oxygen partial pressure: In the above chemical equilibrium (2), satisfies the following formula 2 conditions, and the oxygen partial pressure range alumina film to film growth in a state in which the metal element of the oxide is fully oxidized 5x10 - 8 mbar to 6.6 × 10 −7 mbar. Although the embodiment is 2x10 -7 mbar and 5x10 -7 mbar, the documents cited in the known document B, and the oxygen partial pressure range of 5x10 -8 mbar~6.6x10 -7 mbar the oxygen in the chemical equilibrium It is shown to be stable at the end side.

酸素分圧は、それぞれの酸化膜ごとに異なる、上記の化学平衡式で、前記化2の条件を満たし、かつ、酸化物の金属元素が十分に酸化された状態で膜成長する酸素分圧の範囲となる。 前記化学平衡式(2)の条件を満たし、かつ、酸化物の金属元素が十分に酸化された状態で膜成長する酸素分圧範囲とすることで、アルミ以外の蒸着可能な金属元素(例えば、マグネシウム、すず、亜鉛、ハフニウム、ジルコニウム、セリウム、クロミウム、ニッケルなど)を利用することができる。
アルミナ膜では、実施例に挙げた2x10−7mbarおよび5x10−7mbarのみでなく、5x10−8mbar〜6.6x10−7mbarの範囲で可能であると考えられる。
The oxygen partial pressure is different for each oxide film, and is the above-described chemical equilibrium equation. The oxygen partial pressure is such that the film grows in a state where the condition of the chemical formula 2 is satisfied and the metal element of the oxide is sufficiently oxidized. It becomes a range. By satisfying the condition of the chemical equilibrium formula (2) and in an oxygen partial pressure range in which the film grows in a state where the metal element of the oxide is sufficiently oxidized, a metal element that can be deposited other than aluminum (for example, Magnesium, tin, zinc, hafnium, zirconium, cerium, chromium, nickel, etc.) can be used.
The alumina film, not only 2x10 -7 mbar and 5x10 -7 mbar listed in Example believed to be in the range of 5x10 -8 mbar~6.6x10 -7 mbar.

成長温度
界面が熱力学的平衡に必要な原子移動が可能な温度以上で、酸化膜が昇華しない温度範囲であれば、基板へ酸化膜として蒸着することができる。
アルミナ膜では500℃以上、830℃以下。界面が熱力学的平衡に必要な原子移動が可能な温度以上であることが必要である。実施例から400℃では熱力学的平衡に達していないが500℃では熱力学的に平衡な界面が形成されていることがわかる。温度の上限はアルミナ膜が昇華しない温度範囲で制限され、文献に基づきその温度は830℃以下。
成長温度は、それぞれの酸化膜ごとに異なる、原子移動が可能な温度以上で酸化膜が昇華しない温度以下の範囲となる。
例えば、アルミナ膜では500℃以上、830℃以下。
If the growth temperature interface is above the temperature at which atomic migration necessary for thermodynamic equilibrium is possible and the oxide film does not sublime, it can be deposited as an oxide film on the substrate.
For an alumina film, the temperature is 500 ° C. or more and 830 ° C. or less. It is necessary that the interface be at or above the temperature at which atom transfer necessary for thermodynamic equilibrium is possible. From the examples, it can be seen that a thermodynamic equilibrium is not reached at 400 ° C., but a thermodynamic equilibrium interface is formed at 500 ° C. The upper limit of the temperature is limited by the temperature range in which the alumina film does not sublime, and the temperature is 830 ° C. or less based on the literature.
The growth temperature is different for each oxide film and is in a range not less than the temperature at which atom transfer is possible and not more than the temperature at which the oxide film does not sublime.
For example, it is 500 ° C. or higher and 830 ° C. or lower for an alumina film.

膜厚:0.4 nmから8 nm
極性面を界面とする酸化物薄膜は、(金属面−酸素面)を1ユニットとして、最低3ユニット分以上の厚さを持ってはじめて酸化物膜としての性質を持つ。3ユニット分の厚さはほぼ0.4nmであり、これが最小膜厚である。最大膜厚は、酸化物薄膜中に生じるひずみの大きさに依存するが、実施例において5nm以上の膜がエピタキシャル作製できることが示されており、文献から、エピタキシャル膜中のひずみが大きくなると多結晶体になるが膜厚はさらに厚くできることがわかっている。MISやMIM構造の機能を発揮する観点から10nm未満の膜を使用すると考えられるため、最大膜厚として8nmとする。
Film thickness: 0.4 nm to 8 nm
An oxide thin film having a polar surface as an interface has properties as an oxide film only when the (metal surface-oxygen surface) is one unit and has a thickness of at least 3 units. The thickness for 3 units is approximately 0.4 nm, which is the minimum film thickness. Although the maximum film thickness depends on the magnitude of the strain generated in the oxide thin film, it has been shown in the Examples that a film having a thickness of 5 nm or more can be produced epitaxially. It turns out that the film thickness can be increased even though it becomes a body. Since it is considered that a film having a thickness of less than 10 nm is used from the viewpoint of exhibiting the function of the MIS or MIM structure, the maximum film thickness is set to 8 nm.

本実施例は、Alを各種金属基板の(111)面に酸素雰囲気化で蒸着した例を示す。
基板の表面、蒸着条件、及び得られた酸化アルミ薄膜については、表1に詳しく示す通りである。
前記アルミナ薄膜の厚さは光電子スペクトルから推定した。
また、エピタキシャルであるかアモルファスであるかは低速電子線回折が明瞭か否かで判断した。
なお、実験番号13は、低速電子線回折が得られたが、スポット状ではなくリング状のパターンであることから多結晶体であることが判明した。
段差間隔とは、基板表面の研磨精度により現れる原子ステップ間に存在するテラスの幅をいい、この間隔が長いほど、研磨精度が高いことを意味する。
実験番号5では、アルミナ膜の走査型二次電子像には、図10に示すように、200nm程度の広さの原子レベルで平坦なテラスと原子ステップが観察され、原子レベルで平坦なアルミナ膜が得られていることがわかる。
また、実験番号10では、図16に示すように、研磨精度の高い清浄なニッケル単結晶(111)上では、1000nmの段差間隔の平坦面が得られた。
図2に見られるように、界面がアルミニウム原子になっている場合は、Al 2p光電子スペクトルに、酸化膜中のAlと金属Alのピークの間に界面のAlの成分によるピーク(強度が弱くコブ状に見えることが多い)が観測される。
図3に見られるように、酸化されていないAl成分は鋭い2つのピークからなるスペクトルを与え、アルミナ膜中のAl成分は幅の広いピークを与えるので、ピークの幅から、酸化物によるピークか金属Alによるピークかの判別が付く。
図3を酸素中熱処理すると金属Alの大部分が酸化されて、図4に見られるように、図3で見られた鋭い2つのピークの強度が減少し、アルミナ膜中のAlによるピークの強度が増加した。図3、図4ともに、界面のAl成分がコブとして観測された。しかしこのコブは、図2、図18、図19と比べて強度が弱く、界面元素はアルミニウム原子と酸素原子の両方になっていると考えられる。
図17に見られるように、酸素分圧1x10−7mbar、200℃において、高い蒸着速度でアルミニウムを蒸着した場合には、蒸着したAlと酸素との反応が十分に進まず、酸化されていない金属Alが多量に残り、強度の高い鋭い2つのピークからなるスペクトルが観測された。また、界面Al成分も観測された。この試料を酸素分圧1x10−6mbar、200℃でアニールすることにより酸化反応が進み、残っていた金属Alの大部分が酸化されて、図18に見られるように、金属Al成分のピーク強度は激減して、アルミナ膜中のAl成分の強度が大きく増加した。また、界面Al成分は図2と同程度の強度で観測され、界面元素はアルミニウム原子であることがわかる。
なお、実験番号11,12,13は、本実施例の限界を示す為の参考例である。
これより、本実施例では、3/4hr以上で50×10℃以上に加熱するのが、酸素終端とするのに適切な範囲であると考えられる。

In this example, Al is deposited on the (111) surface of various metal substrates in an oxygen atmosphere.
The surface of the substrate, the deposition conditions, and the obtained aluminum oxide thin film are as detailed in Table 1.
The thickness of the alumina thin film was estimated from the photoelectron spectrum.
Whether it is epitaxial or amorphous was judged by whether low-energy electron diffraction was clear.
In Experiment No. 13, low-energy electron diffraction was obtained, but it was found to be a polycrystal because it was not a spot pattern but a ring pattern.
The step interval refers to the width of a terrace existing between atomic steps appearing due to the polishing accuracy of the substrate surface, and the longer this interval, the higher the polishing accuracy.
In Experiment No. 5, in the scanning secondary electron image of the alumina film, as shown in FIG. 10 , a flat terrace and atomic steps are observed at an atomic level as wide as about 200 nm, and the flat alumina film at the atomic level is observed. It can be seen that is obtained.
Further, in Experiment No. 10, as shown in FIG. 16, on the polishing accurate clean nickel single crystal (111), the flat surface of 1000nm of the step interval was obtained.
As shown in FIG. 2, when the interface is an aluminum atom, the Al 2p photoelectron spectrum shows a peak due to the Al component at the interface between the Al and metal Al peaks in the oxide film (the intensity is weak and Is often observed).
As can be seen in FIG. 3, the unoxidized Al component gives a spectrum consisting of two sharp peaks, and the Al component in the alumina film gives a broad peak. It is discriminated whether it is a peak due to metal Al.
When the heat treatment in FIG. 3 is performed in oxygen, most of the metal Al is oxidized, and as shown in FIG. 4, the intensity of the two sharp peaks seen in FIG. 3 decreases, and the intensity of the peak due to Al in the alumina film. increased. In both FIG. 3 and FIG. 4, the Al component at the interface was observed as a bump. However, this bump is weaker than that in FIGS. 2, 18 and 19, and the interface elements are considered to be both aluminum atoms and oxygen atoms.
As shown in FIG. 17, when aluminum is deposited at a high deposition rate at an oxygen partial pressure of 1 × 10 −7 mbar and 200 ° C., the reaction between the deposited Al and oxygen does not proceed sufficiently, and the metal is not oxidized. A spectrum consisting of two sharp peaks with high intensity remained and a high intensity was observed. An interface Al component was also observed. By annealing this sample at an oxygen partial pressure of 1 × 10 −6 mbar and 200 ° C., the oxidation reaction progressed, and most of the remaining metal Al was oxidized. As shown in FIG. 18, the peak intensity of the metal Al component was It drastically decreased and the strength of the Al component in the alumina film greatly increased. Further, the interface Al component is observed with the same strength as in FIG. 2, and it can be seen that the interface element is an aluminum atom.
Note that the experiment numbers 11, 12, and 13 are reference examples for showing the limits of the present embodiment.
Thus, in this example, it is considered that heating to 50 × 10 ° C. or more at 3/4 hr or more is an appropriate range for the oxygen termination.

WO2007/029754WO2007 / 029754

J. Applied Physics, 103, 033707 (2008)J. et al. Applied Physics, 103, 033707 (2008)

Claims (3)

金属基板表面に原子レベルで平坦なエピタキシャル酸化膜を有する電子素子基板であって、前記酸化膜の金属基板との界面が酸素原子により終端されており、前記金属基板は銅またはニッケルからなり、前記エピタキシャル酸化膜はアルミナからなることを特徴とする電子素子基板。 An electronic device substrate having a flat epitaxial oxide film at an atomic level on the surface of the metal substrate, wherein an interface between the oxide film and the metal substrate is terminated by oxygen atoms , the metal substrate is made of copper or nickel, An electronic element substrate, wherein the epitaxial oxide film is made of alumina . 前記原子レベルで平坦なエピタキシャル酸化膜の膜厚は0.4〜8nmの範囲である、請求項1に記載の電子素子基板。   2. The electronic device substrate according to claim 1, wherein a film thickness of the flat epitaxial oxide film at the atomic level is in a range of 0.4 to 8 nm. 前記原子レベルで平坦なエピタキシャル酸化膜はアルミナ膜である、請求項1または2に記載の電子素子基板。
The electronic element substrate according to claim 1, wherein the epitaxial oxide film flat at the atomic level is an alumina film.
JP2009163988A 2009-07-10 2009-07-10 Electronic device substrate Active JP5517034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163988A JP5517034B2 (en) 2009-07-10 2009-07-10 Electronic device substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163988A JP5517034B2 (en) 2009-07-10 2009-07-10 Electronic device substrate

Publications (2)

Publication Number Publication Date
JP2011016704A JP2011016704A (en) 2011-01-27
JP5517034B2 true JP5517034B2 (en) 2014-06-11

Family

ID=43594802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163988A Active JP5517034B2 (en) 2009-07-10 2009-07-10 Electronic device substrate

Country Status (1)

Country Link
JP (1) JP5517034B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2152969A1 (en) * 1994-07-26 1996-01-27 Ping Chang Method for vacuum plasma protective treatment of metal substrates
KR100297719B1 (en) * 1998-10-16 2001-08-07 윤종용 Method for manufacturing thin film

Also Published As

Publication number Publication date
JP2011016704A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
TWI731074B (en) Processes and methods for selective deposition on first surface of substrate relative to second surface of substrate
KR102266610B1 (en) CVD Mo Deposition by Use of MoOCl4
TWI713607B (en) Photonic device and vapor deposition process for depositing layer in the same, and photoactive material
CN109071231B (en) Preparation method of SiC substrate with graphene precursor and surface treatment method of SiC substrate
JP2018203613A (en) Crystalline oxide thin film and semiconductor device
JP6311384B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5406279B2 (en) Substrate processing method and method of manufacturing crystalline silicon carbide (SiC) substrate
CN105745173B (en) Method for forming graphene layer on sic
JP6379369B2 (en) Crystalline laminated structure, semiconductor device
CN107002288B (en) Surface treatment method for silicon carbide substrate
WO2015151413A1 (en) SURFACE TREATMENT METHOD FOR SiC SUBSTRATES, SiC SUBSTRATE, AND SEMICONDUCTOR PRODUCTION METHOD
WO2010071364A3 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
JP2012204652A (en) Manufacturing method of semiconductor device
JPWO2013069471A1 (en) Solid state electronic equipment
JP6381229B2 (en) Method for manufacturing silicon carbide epitaxial wafer
JP6241398B2 (en) Method for producing graphene laminate
JP5517034B2 (en) Electronic device substrate
JP2018520510A5 (en) Method of manufacturing multilayer structure
WO2015151411A1 (en) METHOD FOR ESTIMATING DEPTH OF LATENT SCRATCHES IN SiC SUBSTRATES
CN107978659A (en) The method for manufacturing gallium nitride substrate
JP6151581B2 (en) Surface treatment method for single crystal SiC substrate and method for manufacturing single crystal SiC substrate
Wang et al. Effect of sulfur hexafluoride gas and post-annealing treatment for inductively coupled plasma etched barium titanate thin films
TW200844276A (en) Monocrystal zinc oxide substrate
CN105390541A (en) HEMT epitaxial structure and preparation method thereof
JP6131701B2 (en) Manufacturing method of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5517034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250