JP5516544B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP5516544B2
JP5516544B2 JP2011225061A JP2011225061A JP5516544B2 JP 5516544 B2 JP5516544 B2 JP 5516544B2 JP 2011225061 A JP2011225061 A JP 2011225061A JP 2011225061 A JP2011225061 A JP 2011225061A JP 5516544 B2 JP5516544 B2 JP 5516544B2
Authority
JP
Japan
Prior art keywords
air
temperature
vehicle
request signal
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011225061A
Other languages
Japanese (ja)
Other versions
JP2013082398A (en
Inventor
好則 一志
柳町  佳宣
泰司 近藤
喜久 島田
秀一 平林
啓生 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2011225061A priority Critical patent/JP5516544B2/en
Priority to PCT/JP2012/066975 priority patent/WO2013054574A1/en
Publication of JP2013082398A publication Critical patent/JP2013082398A/en
Application granted granted Critical
Publication of JP5516544B2 publication Critical patent/JP5516544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00285HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for vehicle seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Description

本発明は、車室内へ送風する送風空気と熱媒体とを熱交換する車両用空調装置に関する。   The present invention relates to a vehicle air conditioner that exchanges heat between blown air blown into a vehicle compartment and a heat medium.

従来、走行用電動モータおよびエンジン(内燃機関)から走行用の駆動力を得るハイブリッド車両に適用される車両用空調装置として、車室内の暖房を行う際に、エンジンの冷却水を熱源として車室内へ送風する送風空気を加熱するものが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, as a vehicle air conditioner applied to a hybrid vehicle that obtains a driving force for traveling from a traveling electric motor and an engine (internal combustion engine), when the vehicle interior is heated, the vehicle interior is used with engine cooling water as a heat source. What heats the ventilation air ventilated to is known (for example, refer patent document 1).

この種のハイブリッド車両では、車両燃費向上のために、車両の停車時、或いは、走行時であってもエンジンの作動を停止させることがあり、車両用空調装置にて車室内の暖房を行う際に、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していない場合がある。   In this type of hybrid vehicle, in order to improve vehicle fuel efficiency, the engine operation may be stopped even when the vehicle is stopped or running, and the vehicle air conditioner is used to heat the vehicle interior. In addition, the temperature of the cooling water may not rise to a temperature sufficient as a heat source for heating.

そこで、特許文献1の車両用空調装置では、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していない場合は、走行用の駆動力を出力させるためにエンジンを作動させる必要がない走行条件であっても、エンジンの駆動力を制御する駆動力制御装置に対してエンジンの作動を要求する信号(作動要求信号)を出力して、冷却水の温度を暖房用の熱源として充分な温度となるまで上昇させるようにしている。   Therefore, in the vehicle air conditioner of Patent Document 1, when the temperature of the cooling water does not rise to a temperature sufficient as a heat source for heating, it is necessary to operate the engine to output the driving force for traveling. Even under non-running conditions, a signal (operation request signal) that requests engine operation is output to the driving force control device that controls the driving force of the engine, and the temperature of the cooling water is sufficient as a heat source for heating. The temperature is raised until it reaches a certain temperature.

しかしながら、車室内の空調のためにエンジンを作動させることは、車両燃費の低下を招く。そこで、特許文献1の車両用空調装置では、車両燃費を向上させるため、車両のシートを加熱するシートヒータが作動している場合、車室内の空調のためのエンジンの作動を抑制してエンジン停止時間を長くしている。   However, operating the engine for air conditioning in the passenger compartment causes a reduction in vehicle fuel consumption. Therefore, in the vehicle air conditioner disclosed in Patent Document 1, in order to improve vehicle fuel efficiency, when a seat heater that heats a vehicle seat is operating, the operation of the engine for air conditioning in the passenger compartment is suppressed and the engine is stopped. The time is long.

すなわち、シートヒータが作動している場合、乗員の温感は実際の車室内温度よりも高くなるので、冷却水の温度が暖房用の熱源として充分な温度となるまで上昇していなくても、結果として暖房能力を維持することができる。   That is, when the seat heater is operating, the passenger's sense of warmth is higher than the actual passenger compartment temperature, so even if the temperature of the cooling water does not rise to a sufficient temperature as a heat source for heating, As a result, the heating capacity can be maintained.

特開2007−308133号公報JP 2007-308133 A

しかしながら、車室内の暖房時においてシートヒータが作動していても、冷却水の温度が下がりすぎると車室内へ低い温度の空気が吹き出されることで、乗員の快適性が悪化してしまう虞がある。そのため、エンジンの作動の抑制に限界があり、十分な省エネルギー効果が得られない可能性がある。   However, even if the seat heater is operating during the heating of the passenger compartment, if the temperature of the cooling water is too low, low-temperature air is blown into the passenger compartment, which may deteriorate passenger comfort. is there. Therefore, there is a limit to suppression of engine operation, and there is a possibility that a sufficient energy saving effect cannot be obtained.

上記点に鑑みて、本発明は、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることを目的とする。   In view of the above points, an object of the present invention is to save energy in air conditioning without losing passenger comfort as much as possible.

上記目的を達成するため、請求項1に記載の発明では、車室内へ空気を送風する送風手段(32)と、
送風手段(32)にて送風される送風空気と熱媒体とを熱交換する熱交換手段(36、15)と、
乗員の暖房感を補う補助空調手段(90)と、
送風手段(32)の送風能力を制御する送風能力制御手段(50a)と
送風空気を車室内に吹き出す複数の吹出口(25、26)から吹き出される風量の割合を変化させて吹出口モードを切り替える吹出口モード切替手段(25a、26a、50b)とを備え、
複数の吹出口(25、26)は、送風空気を窓に向けて吹き出すデフロスタ吹出口(26)を含み、
送風能力制御手段(50a)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べて、送風手段(32)の送風能力を小さくし、
吹出口モード切替手段(25a、26a、50b)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べてデフロスタ吹出口(26)から吹き出される風量の割合を増加させることを特徴とする。
In order to achieve the above object, in the first aspect of the present invention, air blowing means (32) for blowing air into the vehicle compartment,
Heat exchange means (36, 15) for exchanging heat between the blown air blown by the blower means (32) and the heat medium;
Auxiliary air-conditioning means (90 ) to supplement the passenger's feeling of heating ,
A blowing capacity control means (50a) for controlling the blowing capacity of the blowing means (32) ;
Outlet mode switching means (25a, 26a, 50b) for switching the outlet mode by changing the ratio of the amount of air blown out from the plurality of outlets (25, 26) for blowing the blown air into the vehicle interior ,
The plurality of air outlets (25, 26) include a defroster air outlet (26) that blows out blown air toward the window,
Blowing capacity control means (50a), when the auxiliary air conditioning unit (9 0) is in operation, the auxiliary air conditioning unit (9 0) as compared with the case at rest, to reduce the blowing capacity of the blower unit (32),
The air outlet mode switching means (25a, 26a, 50b) is blown out from the defroster air outlet (26) when the auxiliary air conditioning means (90) is in operation compared to when the auxiliary air conditioning means (90) is stopped. It is characterized by increasing the rate of air flow .

これによると、補助空調手段(90)が作動中の場合、送風手段(32)の送風能力を小さくするので、送風手段(32)の消費エネルギーを低減できる。また、送風手段(32)の送風能力を小さくすることで送風空気と熱媒体との熱交換量が低減されるので、熱交換のための消費エネルギーを低減することができる。 According to this, when the auxiliary air-conditioning means (90 ) is in operation, the blowing capacity of the blowing means (32) is reduced, so that the energy consumption of the blowing means (32) can be reduced. Moreover, since the amount of heat exchange between the blown air and the heat medium is reduced by reducing the blowing capacity of the blowing means (32), the energy consumption for heat exchange can be reduced.

さらに、補助空調手段(90)が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適感を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。 Furthermore, if the auxiliary air-conditioning means (90 ) is operating, it is possible to give the passengers a feeling of comfort even if the volume of the blown air blown into the passenger compartment is small. Therefore, energy saving of air conditioning can be achieved without losing passenger comfort as much as possible.

なお、本発明における熱交換手段とは、例えば送風空気とエンジン冷却水とを熱交換するヒータコア(36)や、送風空気と冷凍サイクルの冷媒とを熱交換する蒸発器(15)等である。   The heat exchanging means in the present invention is, for example, a heater core (36) for exchanging heat between blown air and engine cooling water, an evaporator (15) for exchanging heat between blown air and refrigerant in the refrigeration cycle, and the like.

また、本発明における補助空調手段とは、例えば座席を加熱して乗員の暖房感を補うシートヒータ(90)等である。 The auxiliary air-conditioning means in the present invention is, for example, a seat heater (90 ) that heats the seat and supplements the passenger's feeling of heating.

好ましくは、請求項2に記載の発明のように、請求項1に記載の発明において、補助空調手段(90)は、その作動能力を調節可能になっており、
送風能力制御手段(50a)は、補助空調手段(90)の作動能力が高い程、送風手段(32)の送風能力を小さくするのがよい。
Preferably, as in the invention described in claim 2, in the invention described in claim 1, the auxiliary air-conditioning means (90 ) is capable of adjusting its operating capability,
The blower capacity control means (50a) is preferably configured to reduce the blower capacity of the blower means (32) as the operating capacity of the auxiliary air conditioning means (90 ) is higher.

請求項3に記載の発明では、車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
内燃機関(EG)の冷却水を熱源として、車室内へ送風される送風空気を加熱する加熱手段(36)と、
乗員の暖房感を補う補助空調手段(90)と、
車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
要求信号出力手段(50f)は、冷却水の温度に基づき内燃機関(EG)を作動させる要求信号を出力する条件が満たされている場合であっても、補助空調手段(90)が作動を開始してから所定時間が経過するまでの間、駆動力制御手段(70)に対して内燃機関(EG)を停止させる要求信号を出力することを特徴とする。
According to a third aspect of the present invention, there is provided a vehicle air conditioner including a traveling electric motor and an internal combustion engine (EG) as a driving source for outputting a driving force for traveling the vehicle,
A heating means (36) for heating the blown air blown into the passenger compartment using the cooling water of the internal combustion engine (EG) as a heat source;
Auxiliary air-conditioning means (90) for supplementing the passenger's feeling of heating;
The internal combustion engine (EG) when the temperature of the cooling water reaches the lower limit temperature (Twon) relative to the driving force control means (70) that controls the operation of the internal combustion engine (EG) when heating the passenger compartment. And a request signal output means (50f) for outputting a request signal for stopping the internal combustion engine (EG) when the temperature of the cooling water reaches the upper limit temperature (Twoff),
The request signal output means (50f) starts the operation of the auxiliary air conditioning means (90) even when the condition for outputting the request signal for operating the internal combustion engine (EG) based on the temperature of the cooling water is satisfied. After that, a request signal for stopping the internal combustion engine (EG) is output to the driving force control means (70) until a predetermined time elapses.

これによると、補助空調手段(90)が作動を開始してから所定時間が経過するまでの間、内燃機関(EG)を停止させることができるので、空調のための内燃機関(EG)の作動頻度を低減することができ、ひいては空調の省エネルギー化を図ることができる。   According to this, since the internal combustion engine (EG) can be stopped until the predetermined time elapses after the auxiliary air conditioning means (90) starts operating, the operation of the internal combustion engine (EG) for air conditioning The frequency can be reduced, and as a result, energy saving of the air conditioning can be achieved.

さらに、補助空調手段(90)が作動していれば、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していなくても、乗員に快適な温感を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。   Furthermore, if the auxiliary air-conditioning means (90) is operating, a comfortable sensation can be given to the occupant even if the temperature of the cooling water does not rise to a temperature sufficient as a heat source for heating. Therefore, energy saving of air conditioning can be achieved without losing passenger comfort as much as possible.

請求項4に記載の発明では、請求項3に記載の発明において、乗員の操作により、車室内目標温度(Tset)を設定するための目標温度設定手段(60a)と、
乗員の操作により、作動モードを省動力優先モードに設定するための省動力優先モード設定手段(60b)とを備え、
要求信号出力手段(50f)は、
省動力優先モードが設定されていない場合、車室内目標温度(Tset)とは無関係に、駆動力制御手段(70)に対して要求信号を出力し、
省動力優先モードが設定されている場合、車室内目標温度(Tset)に基づいて、駆動力制御手段(70)に対して要求信号を出力することを特徴とする。
In the invention of claim 4, in the invention of claim 3, target temperature setting means (60a) for setting the passenger compartment target temperature (Tset) by the operation of the occupant,
Power saving priority mode setting means (60b) for setting the operation mode to the power saving priority mode by the operation of the passenger,
The request signal output means (50f)
When the power saving priority mode is not set, a request signal is output to the driving force control means (70) regardless of the vehicle interior target temperature (Tset).
When the power saving priority mode is set, a request signal is output to the driving force control means (70) based on the vehicle interior target temperature (Tset).

これによると、省動力優先モードが設定されている場合、乗員の操作により設定された車室内目標温度(Tset)に基づいて駆動力制御手段(70)に対して要求信号を出力するので、乗員の意思を反映して空調の省エネルギー化を図ることができる。   According to this, when the power saving priority mode is set, the request signal is output to the driving force control means (70) based on the vehicle interior target temperature (Tset) set by the passenger's operation. The energy saving of air conditioning can be achieved reflecting the intention of

請求項5に記載の発明では、車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
車室内へ空気を送風する送風手段(32)と、
内燃機関(EG)の冷却水を熱源として、送風手段(32)にて送風される送風空気を加熱する加熱手段(36)と、
加熱手段(36)で加熱された送風空気を車室内に吹き出す複数の吹出口(25、26)と、
複数の吹出口(25、26)から吹き出される風量の割合を変化させて吹出口モードを切り替える吹出口モード切替手段(25a、26a、50b)と、
乗員が着座する座席に設けられ、乗員の暖房感を補う補助空調手段(90)と、
車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
複数の吹出口(25、26)は、加熱手段(36)で加熱された送風空気を窓に向けて吹き出すデフロスタ吹出口(26)を含み、
要求信号出力手段(50f)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べて加熱手段(36)に導入される冷却水の温度が低下するように駆動力制御手段(70)に対して要求信号を出力し、
吹出口モード切替手段(25a、26a、50b)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べてデフロスタ吹出口(26)から吹き出される風量の割合を増加させることを特徴とする。
According to a fifth aspect of the present invention, there is provided a vehicle air conditioner including a traveling electric motor and an internal combustion engine (EG) as a driving source for outputting a driving force for traveling the vehicle,
Air blowing means (32) for blowing air into the passenger compartment;
A heating means (36) for heating the blown air blown by the blowing means (32) using the cooling water of the internal combustion engine (EG) as a heat source;
A plurality of outlets (25, 26) for blowing out the air blown by the heating means (36) into the vehicle interior;
Outlet mode switching means (25a, 26a, 50b) for switching the outlet mode by changing the ratio of the amount of air blown from the plurality of outlets (25, 26);
Auxiliary air-conditioning means (90) provided in a seat on which the occupant is seated to supplement the occupant's feeling of heating;
The internal combustion engine (EG) when the temperature of the cooling water reaches the lower limit temperature (Twon) relative to the driving force control means (70) that controls the operation of the internal combustion engine (EG) when heating the passenger compartment. And a request signal output means (50f) for outputting a request signal for stopping the internal combustion engine (EG) when the temperature of the cooling water reaches the upper limit temperature (Twoff),
The plurality of outlets (25, 26) include a defroster outlet (26) that blows out the air blown by the heating means (36) toward the window,
The request signal output means (50f) has a lower temperature of the cooling water introduced into the heating means (36) when the auxiliary air conditioning means (90) is in operation than when the auxiliary air conditioning means (90) is stopped. So as to output a request signal to the driving force control means (70),
The air outlet mode switching means (25a, 26a, 50b) is blown out from the defroster air outlet (26) when the auxiliary air conditioning means (90) is operating compared to when the auxiliary air conditioning means (90) is stopped. It is characterized by increasing the rate of air flow.

これによると、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べて加熱手段(36)に導入される冷却水の温度が低下するように内燃機関(EG)の作動が制御されるので、空調のための内燃機関(EG)の作動頻度を低減することができ、ひいては空調の省エネルギー化を図ることができる。   According to this, when the auxiliary air conditioning means (90) is in operation, the internal combustion engine is such that the temperature of the cooling water introduced into the heating means (36) is lower than when the auxiliary air conditioning means (90) is stopped. Since the operation of (EG) is controlled, the operation frequency of the internal combustion engine (EG) for air conditioning can be reduced, and as a result, energy saving of the air conditioning can be achieved.

また、補助空調手段(90)が作動中の場合、デフロスタ吹出口(26)から吹き出される風量の割合が増加するので、窓曇りの発生を抑制することができる。従って、乗員の快適性が損なわれることを抑制しつつ、空調の省エネルギー化を図ることができる。   Further, when the auxiliary air-conditioning means (90) is in operation, the ratio of the air volume blown from the defroster outlet (26) increases, so that the occurrence of window fogging can be suppressed. Therefore, energy saving of the air conditioning can be achieved while suppressing the loss of passenger comfort.

具体的には、請求項6に記載の発明のように、請求項5に記載の発明において、
下限温度(Twon)および上限温度(Twoff)を決定する温度決定手段(S1122)を備え、
温度決定手段(S1122)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べて下限温度(Twon)および上限温度(Twoff)を低くすればよい。
Specifically, in the invention according to claim 5, like the invention according to claim 6,
Temperature determining means (S1122 ) for determining a lower limit temperature (Twon) and an upper limit temperature (Twoff);
By temperature determination means (S1122), when the auxiliary air conditioning unit (9 0) is in operation, the auxiliary air conditioning unit (9 0) is lower the lower limit temperature (Twon) and the upper limit temperature (Twoff) as compared with the case of stopping That's fine.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態の車両用空調装置の全体構成図である。It is a whole block diagram of the vehicle air conditioner of 1st Embodiment. 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner of 1st Embodiment. 第1実施形態のPTCヒータの回路図である。It is a circuit diagram of the PTC heater of a 1st embodiment. 第1実施形態の車両用空調装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the vehicle air conditioner of 1st Embodiment. 第1実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。It is a flowchart which shows the principal part of the control processing of the vehicle air conditioner of 1st Embodiment. 第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。It is a flowchart which shows another principal part of the control processing of the vehicle air conditioner of 1st Embodiment. 第1実施形態の吹出口モードの決定状態を示す図である。It is a figure which shows the determination state of the blower outlet mode of 1st Embodiment. 第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。It is a flowchart which shows another principal part of the control processing of the vehicle air conditioner of 1st Embodiment. 第1実施形態の運転モードの決定状態を示す図表である。It is a graph which shows the determination state of the operation mode of 1st Embodiment. 第2実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。It is a flowchart which shows the principal part of the control processing of the vehicle air conditioner of 2nd Embodiment. 第3実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。It is a flowchart which shows the principal part of the control processing of the vehicle air conditioner of 3rd Embodiment. 第3実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。It is a flowchart which shows another principal part of the control processing of the vehicle air conditioner of 3rd Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
以下、図面を用いて本発明の第1実施形態を説明する。図1は、本実施形態の車両用空調装置1の全体構成図であり、図2は、車両用空調装置1の電気制御部の構成を示すブロック図である。本実施形態では、この車両用空調装置1を、内燃機関(エンジン)EGおよび走行用電動モータから車両走行用の駆動力を得るハイブリッド車両に適用している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a vehicle air conditioner 1 according to the present embodiment, and FIG. 2 is a block diagram illustrating a configuration of an electric control unit of the vehicle air conditioner 1. In the present embodiment, the vehicle air conditioner 1 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an internal combustion engine (engine) EG and a travel electric motor.

本実施形態のハイブリッド車両は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載されたバッテリ(車載バッテリ)81に充電可能なプラグインハイブリッド車両として構成されている。   The hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle capable of charging power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) 81 mounted on the vehicle.

このプラグインハイブリッド車両は、車両走行開始前の車両停車時に外部電源から供給された電力をバッテリ81に充電しておくことによって、走行開始時のようにバッテリ81の蓄電残量SOCが予め定めた走行用基準残量以上になっているときには、主に走行用電動モータの駆動力によって走行する運転モードとなる。以下、この運転モードをEV運転モードという。   This plug-in hybrid vehicle charges the battery 81 with electric power supplied from an external power source when the vehicle stops before the vehicle starts running, so that the remaining power SOC of the battery 81 is predetermined as when the vehicle starts running. When it is equal to or more than the reference remaining amount for traveling, an operation mode is set in which the vehicle travels mainly by the driving force of the traveling electric motor. Hereinafter, this operation mode is referred to as an EV operation mode.

一方、車両走行中にバッテリ81の蓄電残量SOCが走行用基準残量よりも低くなっているときには、主にエンジンEGの駆動力によって走行する運転モードとなる。以下、この運転モードをHV運転モードという。   On the other hand, when the remaining amount SOC of the battery 81 is lower than the reference remaining amount for traveling while the vehicle is traveling, the operation mode is set to travel mainly by the driving force of the engine EG. Hereinafter, this operation mode is referred to as an HV operation mode.

より詳細には、EV運転モードは、主に走行用電動モータが出力する駆動力によって車両を走行させる運転モードであるが、車両走行負荷が高負荷となった際にはエンジンEGを作動させて走行用電動モータを補助する。つまり、走行用電動モータから出力される走行用の駆動力(モータ側駆動力)がエンジンEGから出力される走行用の駆動力(内燃機関側駆動力)よりも大きくなる運転モードである。   More specifically, the EV operation mode is an operation mode in which the vehicle is driven mainly by the driving force output from the traveling electric motor. When the vehicle driving load becomes high, the engine EG is operated. Assist the electric motor for traveling. That is, this is an operation mode in which the driving force for driving (motor side driving force) output from the electric motor for driving is larger than the driving force for driving (internal combustion engine side driving force) output from the engine EG.

換言すると、内燃機関側駆動力に対するモータ側駆動力の駆動力比(モータ側駆動力/内燃機関側駆動力)が、少なくとも0.5より大きくなっている運転モードであると表現することもできる。   In other words, it can also be expressed as an operation mode in which the driving force ratio of the motor side driving force to the internal combustion engine side driving force (motor side driving force / internal combustion engine side driving force) is at least greater than 0.5. .

一方、HV運転モードは、主にエンジンEGが出力する駆動力によって車両を走行させる運転モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジンEGを補助する。つまり、内燃機関側駆動力がモータ側駆動力よりも大きくなる運転モードである。換言すると、駆動力比(モータ側駆動力/内燃機関側駆動力)が、少なくとも0.5より小さくなっている運転モードであると表現することもできる。   On the other hand, the HV operation mode is an operation mode in which the vehicle is driven mainly by the driving force output from the engine EG. When the vehicle driving load becomes high, the driving electric motor is operated to operate the engine EG. Assist. That is, this is an operation mode in which the internal combustion engine side driving force is larger than the motor side driving force. In other words, it can also be expressed as an operation mode in which the drive force ratio (motor side drive force / internal combustion engine side drive force) is at least smaller than 0.5.

本実施形態のプラグインハイブリッド車両では、このようにEV運転モードとHV運転モードとを切り替えることによって、車両走行用の駆動力をエンジンEGのみから得る通常の車両に対してエンジンEGの燃料消費量を抑制して、車両燃費を向上させている。また、このようなEV運転モードとHV運転モードとの切り替え、および、駆動力比の制御は、後述する駆動力制御装置70によって制御される。   In the plug-in hybrid vehicle of the present embodiment, the fuel consumption amount of the engine EG with respect to a normal vehicle that obtains driving force for vehicle travel only from the engine EG by switching between the EV operation mode and the HV operation mode in this way. This suppresses vehicle fuel efficiency. The switching between the EV operation mode and the HV operation mode and the control of the driving force ratio are controlled by a driving force control device 70 described later.

さらに、エンジンEGから出力される駆動力は、車両走行用として用いられるのみならず、発電機80を作動させるためにも用いられる。そして、発電機80にて発電された電力および外部電源から供給された電力は、バッテリ81に蓄えることができ、バッテリ81に蓄えられた電力は、走行用電動モータのみならず、車両用空調装置1を構成する電動式構成機器をはじめとする各種車載機器に供給できる。   Further, the driving force output from the engine EG is used not only for driving the vehicle but also for operating the generator 80. And the electric power generated with the generator 80 and the electric power supplied from the external power supply can be stored in the battery 81, and the electric power stored in the battery 81 is not only a traveling electric motor but also a vehicle air conditioner. 1 can be supplied to various in-vehicle devices including an electric component device that constitutes 1.

次に、本実施形態の車両用空調装置1の詳細構成を説明する。この車両用空調装置1は、バッテリ81から供給される電力による車室内の空調に加えて、車両走行前の車両停車時に外部電源から供給される電力によって車室内の空調(例えば、プレ空調)を実行可能に構成されている。   Next, the detailed structure of the vehicle air conditioner 1 of this embodiment is demonstrated. The vehicle air conditioner 1 performs air conditioning (for example, pre-air conditioning) in the vehicle interior using electric power supplied from an external power source when the vehicle is stopped before traveling, in addition to air conditioning in the vehicle interior using electric power supplied from the battery 81. Configured to be executable.

本実施形態の車両用空調装置1は、図1に示す冷凍サイクル10、室内空調ユニット30、図2に示す空調制御装置50等を備えている。   The vehicle air conditioner 1 of the present embodiment includes the refrigeration cycle 10 shown in FIG. 1, the indoor air conditioning unit 30, the air conditioning control device 50 shown in FIG.

まず、室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、蒸発器15、ヒータコア36、PTCヒータ37等を収容したものである。   First, the indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and the blower 32, the evaporator 15, the heater core 36, and the PTC heater 37 are disposed in a casing 31 that forms an outer shell thereof. Etc. are accommodated.

ケーシング31は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の送風空気流れ最上流側には、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替箱20が配置されている。   The casing 31 forms an air passage for blown air that is blown into the vehicle interior, and is formed of a resin (for example, polypropylene) that has a certain degree of elasticity and is excellent in strength. An inside / outside air switching box 20 as an inside / outside air switching means for switching between the inside air (vehicle compartment air) and the outside air (vehicle compartment outside air) is arranged on the most upstream side of the blown air flow in the casing 31.

より具体的には、内外気切替箱20には、ケーシング31内に内気を導入させる内気導入口21および外気を導入させる外気導入口22が形成されている。さらに、内外気切替箱20の内部には、内気導入口21および外気導入口22の開口面積を連続的に調整して、ケーシング31内へ導入させる内気の風量と外気の風量との風量割合を変化させる内外気切替ドア23が配置されている。   More specifically, the inside / outside air switching box 20 is formed with an inside air introduction port 21 for introducing inside air into the casing 31 and an outside air introduction port 22 for introducing outside air. Further, inside the inside / outside air switching box 20, the opening area of the inside air introduction port 21 and the outside air introduction port 22 is continuously adjusted, and the air volume ratio between the air volume of the inside air introduced into the casing 31 and the air volume of the outside air is set. An inside / outside air switching door 23 to be changed is arranged.

従って、内外気切替ドア23は、ケーシング31内に導入される内気の風量と外気の風量との風量割合を変化させる吸込口モードを切り替える風量割合変更手段を構成する。より具体的には、内外気切替ドア23は、内外気切替ドア23用の電動アクチュエータ62によって駆動され、この電動アクチュエータ62は、後述する空調制御装置50から出力される制御信号によって、その作動が制御される。   Therefore, the inside / outside air switching door 23 constitutes an air volume ratio changing means for switching the suction port mode for changing the air volume ratio between the air volume of the inside air introduced into the casing 31 and the air volume of the outside air. More specifically, the inside / outside air switching door 23 is driven by an electric actuator 62 for the inside / outside air switching door 23, and the operation of the electric actuator 62 is controlled by a control signal output from an air conditioning control device 50 described later. Be controlled.

また、吸込口モードとしては、内気導入口21を全開とするとともに外気導入口22を全閉としてケーシング31内へ内気を導入する内気モード、内気導入口21を全閉とするとともに外気導入口22を全開としてケーシング31内へ外気を導入する外気モード、さらに、内気モードと外気モードとの間で、内気導入口21および外気導入口22の開口面積を連続的に調整することにより、内気と外気の導入比率を連続的に変化させる内外気混入モードがある。   Further, as the suction port mode, the inside air introduction port 21 is fully opened and the outside air introduction port 22 is fully closed to introduce the inside air into the casing 31, and the inside air introduction port 21 is fully closed and the outside air introduction port 22. The outside air mode in which the outside air is introduced into the casing 31 with the valve fully open, and the opening areas of the inside air introduction port 21 and the outside air introduction port 22 are continuously adjusted between the inside air mode and the outside air mode. There is an internal / external air mixing mode that continuously changes the introduction ratio.

内外気切替箱20の空気流れ下流側には、内外気切替箱20を介して吸入した空気を車室内へ向けて送風する送風手段である送風機32(ブロア)が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置50から出力される制御電圧によって回転数(送風能力)が制御される。従って、この電動モータは、送風機32の送風能力変更手段を構成している。   A blower 32 (blower), which is a blowing means for blowing the air sucked through the inside / outside air switching box 20 toward the vehicle interior, is disposed on the downstream side of the inside / outside air switching box 20. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air blowing capacity) is controlled by a control voltage output from the air conditioning controller 50. Therefore, this electric motor constitutes a blowing capacity changing means of the blower 32.

送風機32の空気流れ下流側には、蒸発器15が配置されている。蒸発器15は、その内部を流通する冷媒(熱媒体)と送風機32から送風された送風空気とを熱交換させて、送風空気を冷却する冷却手段(熱交換手段)として機能する。具体的には、蒸発器15は、圧縮機11、凝縮器12、気液分離器13および膨張弁14等とともに、蒸気圧縮式の冷凍サイクル10を構成している。   An evaporator 15 is disposed on the downstream side of the air flow of the blower 32. The evaporator 15 functions as a cooling means (heat exchange means) that cools the blown air by exchanging heat between the refrigerant (heat medium) flowing through the evaporator 15 and the blown air blown from the blower 32. Specifically, the evaporator 15 constitutes a vapor compression refrigeration cycle 10 together with the compressor 11, the condenser 12, the gas-liquid separator 13, the expansion valve 14, and the like.

ここで、本実施形態に係る冷凍サイクル10の主要な構成について説明すると、圧縮機11は、エンジンルーム内に配置され、冷凍サイクル10において冷媒を吸入し、圧縮して吐出するものであり、吐出容量が固定された固定容量型圧縮機構11aを電動モータ11bにて駆動する電動圧縮機として構成されている。電動モータ11bは、インバータ61から出力される交流電圧によって、その作動(回転数)が制御される交流モータである。   Here, the main configuration of the refrigeration cycle 10 according to the present embodiment will be described. The compressor 11 is arranged in the engine room, sucks refrigerant in the refrigeration cycle 10, compresses and discharges the refrigerant, The fixed capacity type compression mechanism 11a having a fixed capacity is configured as an electric compressor that is driven by an electric motor 11b. The electric motor 11b is an AC motor whose operation (number of rotations) is controlled by the AC voltage output from the inverter 61.

また、インバータ61は、後述する空調制御装置50から出力される制御信号に応じた周波数の交流電圧を出力する。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、電動モータ11bは、圧縮機11の吐出能力変更手段を構成している。   Further, the inverter 61 outputs an AC voltage having a frequency corresponding to a control signal output from the air conditioning control device 50 described later. And the refrigerant | coolant discharge capability of the compressor 11 is changed by this rotation speed control. Therefore, the electric motor 11b constitutes a discharge capacity changing unit of the compressor 11.

凝縮器12は、エンジンルーム内に配置されて、内部を流通する冷媒と、室外送風機としての送風ファン12aから送風された車室外空気(外気)とを熱交換させることにより、圧縮機11吐出冷媒を凝縮させる室外熱交換器である。送風ファン12aは、空調制御装置50から出力される制御電圧によって稼働率、すなわち、回転数(送風空気量)が制御される電動式送風機である。   The condenser 12 is disposed in the engine room, and exchanges heat between the refrigerant circulating in the interior and the air outside the vehicle (outside air) blown from the blower fan 12a as the outdoor blower, thereby discharging the refrigerant discharged from the compressor 11. It is an outdoor heat exchanger that condenses water. The blower fan 12a is an electric blower in which the operation rate, that is, the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device 50.

気液分離器13は、凝縮器12にて凝縮された冷媒を気液分離して余剰冷媒を蓄えるとともに、液相冷媒のみを下流側に流すレシーバである。膨張弁14は、気液分離器13から流出した液相冷媒を減圧膨張させる減圧手段である。蒸発器15は、膨張弁14にて減圧膨張された冷媒を蒸発させて、冷媒に吸熱作用を発揮させる室内熱交換器である。これにより、蒸発器15は、送風空気を冷却する冷却用熱交換器として機能する。   The gas-liquid separator 13 is a receiver that gas-liquid separates the refrigerant condensed in the condenser 12 and stores excess refrigerant, and flows only the liquid-phase refrigerant downstream. The expansion valve 14 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the gas-liquid separator 13. The evaporator 15 is an indoor heat exchanger that evaporates the refrigerant decompressed and expanded by the expansion valve 14 and exerts an endothermic effect on the refrigerant. Thereby, the evaporator 15 functions as a heat exchanger for cooling which cools blowing air.

以上が本実施形態に係る冷凍サイクル10の主要構成の説明であり、以下、室内空調ユニット30の説明に戻る。ケーシング31内において、蒸発器15の空気流れ下流側には、蒸発器15通過後の空気を流す加熱用冷風通路33、冷風バイパス通路34といった空気通路、並びに、加熱用冷風通路33および冷風バイパス通路34から流出した空気を混合させる混合空間35が形成されている。   The above is the description of the main configuration of the refrigeration cycle 10 according to the present embodiment, and the description returns to the indoor air conditioning unit 30 below. In the casing 31, on the downstream side of the air flow of the evaporator 15, there are an air passage such as a cooling cold air passage 33 and a cold air bypass passage 34 for flowing air after passing through the evaporator 15, and a heating cold air passage 33 and a cold air bypass passage. A mixing space 35 for mixing the air flowing out from 34 is formed.

加熱用冷風通路33には、蒸発器15通過後の空気を加熱するためのヒータコア36およびPTCヒータ37が、送風空気流れ方向に向かってこの順に配置されている。ヒータコア36は、エンジンEGを冷却するエンジン冷却水(以下、単に冷却水という。)を熱媒体として蒸発器15通過後の送風空気を加熱する加熱手段(熱交換手段)として機能する。換言すると、ヒータコア36は、冷却水と蒸発器15通過後の送風空気とを熱交換させる加熱用熱交換器として機能する。   A heater core 36 and a PTC heater 37 for heating the air after passing through the evaporator 15 are arranged in this order in the cooling air passage 33 for heating in the direction of air flow. The heater core 36 functions as a heating means (heat exchange means) for heating the blown air that has passed through the evaporator 15 by using engine cooling water (hereinafter simply referred to as cooling water) for cooling the engine EG as a heat medium. In other words, the heater core 36 functions as a heat exchanger for heating that exchanges heat between the cooling water and the blown air after passing through the evaporator 15.

具体的には、ヒータコア36とエンジンEGは、冷却水配管によって接続されて、ヒータコア36とエンジンEGとの間を冷却水が循環する冷却水回路40が構成されている。そして、この冷却水回路40には、冷却水を循環させるための冷却水ポンプ40aが配置されている。この冷却水ポンプ40aは、空調制御装置50から出力される制御電圧によって回転数(冷却水循環流量)が制御される電動式の水ポンプである。   Specifically, the heater core 36 and the engine EG are connected by a cooling water pipe, and the cooling water circuit 40 in which the cooling water circulates between the heater core 36 and the engine EG is configured. The cooling water circuit 40 is provided with a cooling water pump 40a for circulating the cooling water. The cooling water pump 40 a is an electric water pump whose rotational speed (cooling water circulation flow rate) is controlled by a control voltage output from the air conditioning control device 50.

PTCヒータ37は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱して、ヒータコア36通過後の空気を加熱する補助加熱手段としての電気ヒータである。なお、本実施形態のPTCヒータ37を作動させるために必要な消費電力は、冷凍サイクル10の圧縮機11を作動させるために必要な消費電力よりも少ない。   The PTC heater 37 has an PTC element (positive characteristic thermistor), and is an electric heater as auxiliary heating means that generates heat when electric power is supplied to the PTC element and heats the air after passing through the heater core 36. Note that the power consumption required to operate the PTC heater 37 of the present embodiment is less than the power consumption required to operate the compressor 11 of the refrigeration cycle 10.

より具体的には、このPTCヒータ37は、図3に示すように、複数(本実施形態では、3本)のPTCヒータ37a、37b、37cから構成されている。なお、図3は、本実施形態のPTCヒータ37の電気的接続態様を示す回路図である。   More specifically, as shown in FIG. 3, the PTC heater 37 is composed of a plurality (three in this embodiment) of PTC heaters 37a, 37b, and 37c. FIG. 3 is a circuit diagram showing an electrical connection mode of the PTC heater 37 of the present embodiment.

図3に示すように、各PTCヒータ37a、37b、37cの正極側はバッテリ81側に接続され、負極側は各PTCヒータ37a、37b、37cが有する各スイッチ素子SW1、SW2、SW3を介して、グランド側へ接続されている。各スイッチ素子SW1、SW2、SW3は、各PTCヒータ37a、37b、37cが有する各PTC素子h1、h2、h3の通電状態(ON状態)と非通電状態(OFF状態)とを切り替えるものである。   As shown in FIG. 3, the positive side of each PTC heater 37a, 37b, 37c is connected to the battery 81 side, and the negative side is connected to each PTC heater 37a, 37b, 37c via each switch element SW1, SW2, SW3. Connected to the ground side. Each switch element SW1, SW2, SW3 switches between the energized state (ON state) and the non-energized state (OFF state) of each PTC element h1, h2, h3 included in each PTC heater 37a, 37b, 37c.

さらに、各スイッチ素子SW1、SW2、SW3の作動は、空調制御装置50から出力される制御信号によって、独立して制御される。従って、空調制御装置50は、各スイッチ素子SW1、SW2、SW3の通電状態と非通電状態とを独立に切り替えることによって、各PTCヒータ37a、37b、37cのうち、通電状態となり加熱能力を発揮するものを切り替えて、PTCヒータ37全体としての加熱能力を変化させることができる。   Further, the operation of each switch element SW1, SW2, SW3 is independently controlled by a control signal output from the air conditioning control device 50. Therefore, the air-conditioning control device 50 switches the energized state and the non-energized state of each switch element SW1, SW2, and SW3 independently, and becomes an energized state among the PTC heaters 37a, 37b, and 37c, and exhibits heating capability. It is possible to change the heating capacity of the PTC heater 37 as a whole by switching the ones.

一方、冷風バイパス通路34は、蒸発器15通過後の空気を、ヒータコア36およびPTCヒータ37を通過させることなく、混合空間35に導くための空気通路である。従って、混合空間35にて混合された送風空気の温度は、加熱用冷風通路33を通過する空気および冷風バイパス通路34を通過する空気の風量割合によって変化する。   On the other hand, the cold air bypass passage 34 is an air passage for guiding the air after passing through the evaporator 15 to the mixing space 35 without passing through the heater core 36 and the PTC heater 37. Accordingly, the temperature of the blown air mixed in the mixing space 35 varies depending on the air volume ratio of the air passing through the heating cool air passage 33 and the air passing through the cold air bypass passage 34.

そこで、本実施形態では、蒸発器15の空気流れ下流側であって、加熱用冷風通路33および冷風バイパス通路34の入口側に、加熱用冷風通路33および冷風バイパス通路34へ流入させる冷風の風量割合を連続的に変化させるエアミックスドア39を配置している。従って、エアミックスドア39は、混合空間35内の空気温度(車室内へ送風される送風空気の温度)を調整する温度調整手段を構成する。   Therefore, in the present embodiment, the amount of cold air that flows into the heating cold air passage 33 and the cold air bypass passage 34 on the downstream side of the air flow of the evaporator 15 and on the inlet side of the heating cold air passage 33 and the cold air bypass passage 34. An air mix door 39 that continuously changes the ratio is disposed. Accordingly, the air mix door 39 constitutes a temperature adjusting means for adjusting the air temperature in the mixing space 35 (the temperature of the blown air blown into the vehicle interior).

より具体的には、エアミックスドア39は、エアミックスドア用の電動アクチュエータ63によって駆動される回転軸と、その一端側に回転軸が連結された板状のドア本体部を有して構成される、いわゆる片持ちドアで構成されている。また、エアミックスドア用の電動アクチュエータ63は、空調制御装置50から出力される制御信号によって、その作動が制御される。   More specifically, the air mix door 39 includes a rotary shaft driven by the electric actuator 63 for the air mix door, and a plate-like door main body having a rotary shaft connected to one end thereof. The so-called cantilever door. The operation of the electric actuator 63 for the air mix door is controlled by a control signal output from the air conditioning controller 50.

さらに、ケーシング31の送風空気流れ最下流部には、混合空間35から空調対象空間である車室内へ温度調整された送風空気を吹き出す吹出口24〜26が配置されている。この吹出口24〜26としては、具体的に、車室内の乗員の上半身に向けて空調風を吹き出すフェイス吹出口24、乗員の足元に向けて空調風を吹き出すフット吹出口25、および、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ吹出口26が設けられている。   Furthermore, blower outlets 24 to 26 that blow out the blown air whose temperature is adjusted from the mixing space 35 to the vehicle interior that is the air-conditioning target space are arranged at the most downstream portion of the blown air flow of the casing 31. Specifically, the air outlets 24 to 26 include a face air outlet 24 that blows air-conditioned air toward the upper body of an occupant in the vehicle interior, a foot air outlet 25 that blows air-conditioned air toward the feet of the occupant, and the front of the vehicle. A defroster outlet 26 that blows air-conditioned air toward the inner side surface of the window glass is provided.

また、フェイス吹出口24、フット吹出口25、およびデフロスタ吹出口26の空気流れ上流側には、それぞれ、フェイス吹出口24の開口面積を調整するフェイスドア24a、フット吹出口25の開口面積を調整するフットドア25a、デフロスタ吹出口26の開口面積を調整するデフロスタドア26aが配置されている。   Further, on the upstream side of the air flow of the face air outlet 24, the foot air outlet 25, and the defroster air outlet 26, the face door 24a for adjusting the opening area of the face air outlet 24 and the opening area of the foot air outlet 25 are adjusted. The defroster door 26a which adjusts the opening area of the foot door 25a to perform and the defroster blower outlet 26 is arrange | positioned.

これらのフェイスドア24a、フットドア25a、デフロスタドア26aは、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、図示しないリンク機構を介して、吹出口モードドア駆動用の電動アクチュエータ64に連結されて連動して回転操作される。なお、この電動アクチュエータ64も、空調制御装置50から出力される制御信号によってその作動が制御される。   The face door 24a, the foot door 25a, and the defroster door 26a constitute an outlet mode switching means for switching the outlet mode, and an electric actuator 64 for driving the outlet mode door via a link mechanism (not shown). It is linked to and rotated in conjunction with it. The operation of the electric actuator 64 is also controlled by a control signal output from the air conditioning controller 50.

また、吹出口モードとしては、フェイス吹出口24を全開してフェイス吹出口24から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口24とフット吹出口25の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口25を全開するとともにデフロスタ吹出口26を小開度だけ開口して、フット吹出口25から主に空気を吹き出すフットモード、およびフット吹出口25およびデフロスタ吹出口26を同程度開口して、フット吹出口25およびデフロスタ吹出口26の双方から空気を吹き出すフットデフロスタモードがある。   Further, as the air outlet mode, the face air outlet 24 is fully opened and air is blown out from the face air outlet 24 toward the upper body of the passenger in the vehicle. Both the face air outlet 24 and the foot air outlet 25 are opened. A bi-level mode that blows air toward the upper body and feet of passengers in the passenger compartment, a foot mode in which the foot outlet 25 is fully opened and the defroster outlet 26 is opened by a small opening, and air is mainly blown out from the foot outlet 25. In addition, there is a foot defroster mode in which the foot outlet 25 and the defroster outlet 26 are opened to the same extent and air is blown out from both the foot outlet 25 and the defroster outlet 26.

さらに、乗員が後述する操作パネル60のスイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。   Furthermore, it can also be set as the defroster mode which fully opens a defroster blower outlet and blows air from a defroster blower outlet to the vehicle front window glass inner surface by operating a switch of the operation panel 60 mentioned later by a passenger | crew manually.

また、本実施形態の車両用空調装置1では、図示しない電熱デフォッガを備えている。電熱デフォッガは、車室内窓ガラスの内部あるいは表面に配置された電熱線であって、窓ガラスを加熱することで防曇あるいは窓曇り解消を行う窓ガラス加熱手段である。この電熱デフォッガについても空調制御装置50から出力される制御信号によって、その作動を制御できるようになっている。   Further, the vehicle air conditioner 1 according to the present embodiment includes an electric heat defogger (not shown). The electric heat defogger is a heating wire arranged inside or on the surface of the vehicle interior window glass, and is a window glass heating means for preventing fogging or eliminating window fogging by heating the window glass. The operation of the electric heat defogger can be controlled by a control signal output from the air conditioning controller 50.

さらに、本実施形態の車両用空調装置1は、乗員が着座する座席に設けられた補助空調装置90、91(補助空調手段)を備えている。補助空調装置90、91は、乗員が着座する座席の表面温度を上昇させる補助加熱手段としてのシートヒータ90、および座席の内部から乗員へ向けて空気を送風する補助送風手段としてのシートファン91で構成されている。   Furthermore, the vehicle air conditioner 1 of the present embodiment includes auxiliary air conditioners 90 and 91 (auxiliary air conditioning means) provided in a seat on which a passenger is seated. The auxiliary air conditioners 90 and 91 are a seat heater 90 as auxiliary heating means for increasing the surface temperature of the seat on which the occupant is seated, and a seat fan 91 as auxiliary air blowing means for blowing air from the inside of the seat toward the occupant. It is configured.

具体的には、シートヒータ90は、座席表面に埋め込まれた電熱線で構成され、電力を供給されることによって発熱する座席加熱手段である。   Specifically, the seat heater 90 is a seat heating unit that is configured by a heating wire embedded in the seat surface and generates heat when supplied with electric power.

そして、室内空調ユニット10の各吹出口24〜26から吹き出される空調風によって車室内の暖房が不十分となり得る際に作動させて乗員の暖房感(空調感)を補う機能を果たす。なお、このシートヒータ90は、空調制御装置50から出力される制御信号によって作動が制御される。   And when the heating of a vehicle interior may become inadequate with the air-conditioning wind which blows off from each blower outlet 24-26 of the indoor air conditioning unit 10, the function which supplements a passenger | crew's heating feeling (air-conditioning feeling) is fulfill | performed. The operation of the seat heater 90 is controlled by a control signal output from the air conditioning controller 50.

また、シートファン91は、座席近傍に設けられた電動送風機で構成され、電力を供給されることによって送風するシート送風手段である。シートファン91の送風空気は、座席内部に形成された空気通路を流れたのち、座席表面に形成された吹出穴から乗員へ向けて吹き出される。   The seat fan 91 is an electric blower provided near the seat, and is a seat blower that blows air when supplied with electric power. The air blown from the seat fan 91 flows through an air passage formed inside the seat, and is then blown out toward the occupant from a blowout hole formed in the seat surface.

そして、室内空調ユニット10の各吹出口24〜26から吹き出される空調風によって車室内の冷房が不十分となり得る際に作動させて乗員の冷房感(空調感)を補う機能を果たす。なお、このシートファン91は、空調制御装置50から出力される制御信号によって作動が制御される。   The air-conditioning air blown out from each of the air outlets 24 to 26 of the indoor air-conditioning unit 10 is activated when air-conditioning in the passenger compartment can be insufficient. The operation of the seat fan 91 is controlled by a control signal output from the air conditioning control device 50.

シートファン91は、内気をそのまま乗員へ向けて送風するようになっていてもよいし、冷却用熱交換器やペルチェ素子等の冷却手段によって冷却された冷風を乗員へ向けて送風するようになっていてもよい。   The seat fan 91 may be configured to blow the inside air toward the occupant as it is, or to blow the cold air cooled by the cooling means such as a cooling heat exchanger or a Peltier element toward the occupant. It may be.

なお、補助空調装置は、必ずしもシートヒータ90およびシートファン91の両方を備えている必要はなく、シートヒータ90およびシートファン91のいずれか一方を備える構成であってもよい。また、補助空調装置は、乗員の空調感を補うことができるものであればよく、例えば、補助空調装置は、座席近傍に設けられた輻射式ヒータや、座席近傍に設けられたスポットファン等であってもよい。   The auxiliary air conditioner does not necessarily include both the seat heater 90 and the seat fan 91, and may be configured to include either the seat heater 90 or the seat fan 91. The auxiliary air conditioner may be anything that can compensate for the air conditioning feeling of the passenger. For example, the auxiliary air conditioner may be a radiant heater provided near the seat, a spot fan provided near the seat, or the like. There may be.

次に、図2により、本実施形態の電気制御部について説明する。空調制御装置50(空調制御手段)および駆動力制御装置70(駆動力制御手段)は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器の作動を制御する。   Next, the electric control unit of the present embodiment will be described with reference to FIG. The air-conditioning control device 50 (air-conditioning control means) and the driving force control device 70 (driving force control means) are composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and are stored in the ROM. Various operations and processes are performed based on the control program to control the operation of various devices connected to the output side.

駆動力制御装置70の出力側には、エンジンEGを構成する各種エンジン構成機器および走行用電動モータへ交流電流を供給する走行用インバータ等が接続されている。各種エンジン構成機器としては、具体的に、エンジンEGを始動させるスタータ、エンジンEGに燃料を供給する燃料噴射弁(インジェクタ)の駆動回路(いずれも図示せず)等が接続されている。   Connected to the output side of the driving force control device 70 are various engine components constituting the engine EG, a traveling inverter for supplying an alternating current to the traveling electric motor, and the like. Specifically, as various engine components, a starter for starting the engine EG, a fuel injection valve (injector) drive circuit (not shown) for supplying fuel to the engine EG, and the like are connected.

また、駆動力制御装置70の入力側には、バッテリ81の端子間電圧VBを検出する電圧計、バッテリ81へ流れ込む電流ABinあるいはバッテリ81から流れる電流ABioutを検出する電流計、アクセル開度Accを検出するアクセル開度センサ、エンジン回転数Neを検出するエンジン回転数センサ、車速Vvを検出する車速センサ(いずれも図示せず)等の種々のエンジン制御用のセンサ群が接続されている。   Further, on the input side of the driving force control device 70, a voltmeter for detecting the voltage VB between the terminals of the battery 81, an ammeter for detecting the current ABin flowing into the battery 81 or the current ABiout flowing from the battery 81, and the accelerator opening Acc Various engine control sensors such as an accelerator opening sensor for detecting, an engine speed sensor for detecting the engine speed Ne, and a vehicle speed sensor (none of which is shown) for detecting the vehicle speed Vv are connected.

空調制御装置50の出力側には、送風機32、圧縮機11の電動モータ11b用のインバータ61、送風ファン12a、各種電動アクチュエータ62、63、64、第1〜第3PTCヒータ37a、37b、37c、冷却水ポンプ40a、シートヒータ90等が接続されている。   On the output side of the air conditioning control device 50, the blower 32, the inverter 61 for the electric motor 11b of the compressor 11, the blower fan 12a, various electric actuators 62, 63, 64, the first to third PTC heaters 37a, 37b, 37c, A cooling water pump 40a, a seat heater 90, and the like are connected.

また、空調制御装置50の入力側には、車室内温度Trを検出する内気センサ51、外気温Tamを検出する外気センサ52(外気温検出手段)、車室内の日射量Tsを検出する日射センサ53、圧縮機11吐出冷媒温度Tdを検出する吐出温度センサ54(吐出温度検出手段)、圧縮機11吐出冷媒圧力Pdを検出する吐出圧力センサ55(吐出圧力検出手段)、蒸発器15からの吹出空気温度(蒸発器温度)TEを検出する蒸発器温度センサ56(蒸発器温度検出手段)、エンジンEGから流出した冷却水の冷却水温度Twを検出する冷却水温度センサ58、車室内の窓ガラス近傍の車室内空気の相対湿度を検出する湿度検出手段としての湿度センサ、窓ガラス近傍の車室内空気の温度を検出する窓ガラス近傍温度センサ、および窓ガラス表面温度を検出する窓ガラス表面温度センサ等の種々の空調制御用のセンサ群が接続されている。   Further, on the input side of the air-conditioning control device 50, an inside air sensor 51 that detects the vehicle interior temperature Tr, an outside air sensor 52 (outside air temperature detection means) that detects the outside air temperature Tam, and a solar radiation sensor that detects the amount of solar radiation Ts in the vehicle interior. 53, a discharge temperature sensor 54 (discharge temperature detection means) for detecting the compressor 11 discharge refrigerant temperature Td, a discharge pressure sensor 55 (discharge pressure detection means) for detecting the compressor 11 discharge refrigerant pressure Pd, and an outlet from the evaporator 15 An evaporator temperature sensor 56 (evaporator temperature detecting means) that detects an air temperature (evaporator temperature) TE, a cooling water temperature sensor 58 that detects a cooling water temperature Tw of cooling water that has flowed out of the engine EG, and a window glass in the vehicle interior Humidity sensor as humidity detection means for detecting the relative humidity of air in the vicinity of the vehicle interior, temperature sensor in the vicinity of the window glass for detecting the temperature of air in the vehicle interior in the vicinity of the window glass, and window glass Sensors of various air-conditioning control, such as a window glass surface temperature sensor for detecting the surface temperature is connected.

なお、本実施形態の蒸発器温度センサ56は、具体的に蒸発器15の熱交換フィン温度を検出している。もちろん、蒸発器温度センサ56として、蒸発器15のその他の部位の温度を検出する温度検出手段を採用してもよいし、蒸発器15を流通する冷媒自体の温度を直接検出する温度検出手段を採用してもよい。また、湿度センサ、窓ガラス近傍温度センサ、および窓ガラス表面温度センサの検出値は、窓ガラス表面の相対湿度RHWを算出するために用いられる。   Note that the evaporator temperature sensor 56 of the present embodiment specifically detects the heat exchange fin temperature of the evaporator 15. Of course, as the evaporator temperature sensor 56, temperature detection means for detecting the temperature of other parts of the evaporator 15 may be adopted, or temperature detection means for directly detecting the temperature of the refrigerant itself flowing through the evaporator 15 may be used. It may be adopted. Moreover, the detected value of a humidity sensor, a window glass vicinity temperature sensor, and a window glass surface temperature sensor is used in order to calculate the relative humidity RHW of the window glass surface.

さらに、空調制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル60に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル60に設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、オートスイッチ、運転モードの切替スイッチ、吹出口モードの切替スイッチ、送風機32の風量設定スイッチ、車室内温度設定スイッチ60a、現在の車両用空調装置1の作動状態等を表示する表示部等が設けられている。   Further, operation signals from various air conditioning operation switches provided on the operation panel 60 disposed near the instrument panel in the front part of the vehicle interior are input to the input side of the air conditioning control device 50. Specifically, various air conditioning operation switches provided on the operation panel 60 include an operation switch of the vehicle air conditioner 1, an auto switch, an operation mode changeover switch, an outlet mode changeover switch, an air volume setting switch of the blower 32, A vehicle interior temperature setting switch 60a, a display unit for displaying the current operating state of the vehicle air conditioner 1, and the like are provided.

オートスイッチは、乗員の操作によって車両用空調装置1の自動制御を設定あるいは解除する自動制御設定手段である。車室内温度設定スイッチ60aは、乗員の操作によって車室内目標温度Tsetを設定する目標温度設定手段である。   The auto switch is automatic control setting means for setting or canceling automatic control of the vehicle air conditioner 1 by the operation of the passenger. The vehicle interior temperature setting switch 60a is target temperature setting means for setting the vehicle interior target temperature Tset by the operation of the passenger.

さらに、操作パネル60に設けられた各種空調操作スイッチとしては、エコノミースイッチ60b、シートヒータスイッチ60c、およびシートファンスイッチ60dが設けられている。   Further, as various air conditioning operation switches provided on the operation panel 60, an economy switch 60b, a seat heater switch 60c, and a seat fan switch 60d are provided.

エコノミースイッチ60bは、環境への負荷の低減を優先させるスイッチである。エコノミースイッチ60bを投入することにより、車両用空調装置1の作動モードが、空調の省動力化を優先させるエコノミーモード(略してエコモード)に設定される。したがって、エコノミースイッチ60bを省動力優先モード設定手段と表現することもできる。   The economy switch 60b is a switch that prioritizes reduction of the load on the environment. By turning on the economy switch 60b, the operation mode of the vehicle air conditioner 1 is set to an economy mode (economic mode for short) that prioritizes power saving of air conditioning. Therefore, the economy switch 60b can also be expressed as a power saving priority mode setting means.

また、エコノミースイッチ60bを投入することにより、EV運転モード時に、走行用電動モータを補助するために作動させるエンジンEGの作動頻度を低下させる信号がエンジン制御装置に出力される。   In addition, when the economy switch 60b is turned on, a signal for reducing the operating frequency of the engine EG that is operated to assist the electric motor for traveling is output to the engine control device in the EV operation mode.

シートヒータスイッチ60cは、シートヒータ90の作動、停止および作動時の加熱能力(作動能力)を設定するスイッチであり、本例では、シートヒータスイッチ60cによって、シートヒータ90の加熱能力をロー(Lo)、ハイ(Hi)の2段階に調節可能になっている。   The seat heater switch 60c is a switch for setting the heating capability (operating capability) during operation, stoppage, and operation of the seat heater 90. In this example, the seat heater switch 60c sets the heating capability of the seat heater 90 to low (Lo). ) And Hi (Hi) in two stages.

シートファンスイッチ60dは、シートファン91の作動、停止および作動時の送風能力(作動能力)を設定するスイッチであり、本例では、シートファンスイッチ60dによって、シートファン91の送風能力をロー(Lo)、ハイ(Hi)の2段階に調節可能になっている。   The seat fan switch 60d is a switch for setting the air blowing capacity (operating capacity) during operation, stop and operation of the seat fan 91. In this example, the seat fan switch 60d reduces the air blowing capacity of the seat fan 91 to low (Lo ) And Hi (Hi) in two stages.

また、空調制御装置50および駆動力制御装置70は、電気的に接続されて通信可能に構成されている。これにより、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置が出力側に接続された各種機器の作動を制御することもできる。例えば、空調制御装置50が駆動力制御装置70へエンジンEGの要求信号を出力することによって、エンジンEGの作動を要求することが可能となっている。なお、駆動力制御装置70では、空調制御装置50からのエンジンEGの作動を要求する要求信号(作動要求信号)を受信すると、エンジンEGの作動の要否を判定し、その判定結果に応じてエンジンEGの作動を制御する。   In addition, the air conditioning control device 50 and the driving force control device 70 are configured to be electrically connected to communicate with each other. Thereby, based on the detection signal or operation signal input into one control apparatus, the other control apparatus can also control the operation | movement of the various apparatuses connected to the output side. For example, the operation of the engine EG can be requested by the air conditioning control device 50 outputting a request signal for the engine EG to the driving force control device 70. When driving force control device 70 receives a request signal (operation request signal) for requesting operation of engine EG from air conditioning control device 50, it determines whether or not it is necessary to operate engine EG, and according to the determination result. Controls the operation of the engine EG.

ここで、空調制御装置50および駆動力制御装置70は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。   Here, the air-conditioning control device 50 and the driving force control device 70 are configured such that control means for controlling various control target devices connected to the output side are integrally configured. The structure to control (hardware and software) comprises the control means which controls the action | operation of each control object apparatus.

例えば、空調制御装置50のうち、送風手段である送風機32の作動を制御して、送風機32の送風能力を制御する構成が送風能力制御手段50aを構成し、圧縮機11の電動モータ11bに接続されたインバータ61から出力される交流電圧の周波数を制御して、圧縮機11の冷媒吐出能力を制御する構成が圧縮機制御手段を構成し、吹出口モードの切り替えを制御する構成が吹出口モード切替手段50bを構成している。   For example, in the air-conditioning control device 50, the configuration that controls the operation of the blower 32 that is the blower unit and controls the blower capability of the blower 32 constitutes the blower capability control unit 50 a and is connected to the electric motor 11 b of the compressor 11. The configuration for controlling the frequency of the AC voltage output from the inverter 61 and controlling the refrigerant discharge capacity of the compressor 11 constitutes the compressor control means, and the configuration for controlling the switching of the outlet mode is the outlet mode. The switching means 50b is comprised.

また、冷却手段である蒸発器15の冷却能力を制御する構成が冷却能力制御手段50cを構成し、加熱手段であるヒータコア36の加熱能力を制御する構成が加熱能力制御手段を構成している。   Further, the configuration for controlling the cooling capacity of the evaporator 15 as the cooling means constitutes the cooling capacity control means 50c, and the configuration for controlling the heating capacity of the heater core 36 as the heating means constitutes the heating capacity control means.

また、補助加熱手段であるPTCヒータ37の加熱能力を制御する構成が補助加熱制御手段を構成し、さらに、シートヒータ90の加熱能力やシートファン91の送風能力を制御する構成が補助空調制御手段50dを構成している。   Further, the configuration for controlling the heating capacity of the PTC heater 37 as auxiliary heating means constitutes the auxiliary heating control means, and the configuration for controlling the heating capacity of the seat heater 90 and the blowing capacity of the seat fan 91 is auxiliary air conditioning control means. 50d is configured.

また、空調制御装置50における駆動力制御装置70と制御信号の送受信を行う構成が、要求信号出力手段50fを構成している。また、駆動力制御装置70における空調制御装置50と制御信号の送受信を行うと共に、要求信号出力手段50f等からの出力信号に応じてエンジンEGの作動の要否を決定する構成(作動要否決定手段)が、信号通信手段70aを構成している。   Moreover, the structure which transmits / receives a control signal with the driving force control apparatus 70 in the air-conditioning control apparatus 50 comprises the request signal output means 50f. Further, the drive force control device 70 transmits / receives control signals to / from the air conditioning control device 50, and determines whether or not the engine EG needs to be operated in accordance with an output signal from the request signal output means 50f or the like (determining whether or not to operate) Means) constitutes the signal communication means 70a.

なお、本実施形態における空調制御装置50の要求信号出力手段50f、および駆動力制御装置70の信号通信手段70aは、加熱手段であるヒータコア36の加熱能力を調整するためにエンジンEGの作動を制御する作動制御手段を構成している。   Note that the request signal output means 50f of the air conditioning control device 50 and the signal communication means 70a of the driving force control device 70 in this embodiment control the operation of the engine EG in order to adjust the heating capability of the heater core 36 that is a heating means. The operation control means is configured.

次に、図4〜図9により、上記構成における本実施形態の車両用空調装置1の作動を説明する。図4は、本実施形態の車両用空調装置1のメインルーチンとしての制御処理を示すフローチャートである。この制御処理は、車両用空調装置1を構成する電動式構成機器をはじめとする各種車載機器にバッテリ81や外部電源等から電力が供給された状態で、車両用空調装置1の作動スイッチが投入されるとスタートする。なお、図4〜図9中の各制御ステップは、空調制御装置50が有する各種の機能実現手段を構成している。   Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described with reference to FIGS. FIG. 4 is a flowchart showing a control process as a main routine of the vehicle air conditioner 1 of the present embodiment. In this control process, the operation switch of the vehicle air conditioner 1 is turned on while power is supplied from the battery 81 or an external power source to various in-vehicle devices including the electric components constituting the vehicle air conditioner 1. Will start. Each of the control steps in FIGS. 4 to 9 constitutes various function realizing means of the air conditioning control device 50.

まず、ステップS1では、フラグ、タイマ等の初期化、および上述した電動アクチュエータを構成するステッピングモータの初期位置合わせ等のイニシャライズが行われる。なお、このイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置1の作動終了時に記憶された値が維持されるものもある。   First, in step S1, initialization such as initialization of flags, timers, etc., and initial alignment of the stepping motor constituting the electric actuator described above is performed. In this initialization, some of the flags and calculation values that are stored at the end of the previous operation of the vehicle air conditioner 1 are maintained.

次に、ステップS2では、操作パネル60の操作信号等を読み込んでステップS3へ進む。具体的な操作信号としては、車室内温度設定スイッチによって設定される車室内目標温度Tset、吸込口モードスイッチの設定信号等がある。   Next, in step S2, an operation signal of the operation panel 60 is read and the process proceeds to step S3. Specific operation signals include a vehicle interior target temperature Tset set by a vehicle interior temperature setting switch, a suction port mode switch setting signal, and the like.

次に、ステップS3では、空調制御に用いられる車両環境状態の信号、すなわち上述のセンサ群51〜58の検出信号や、外部電源からの電力の供給状態を示す電力状態信号等を読み込む。なお、電力状態信号が、外部電源から車両に電力を供給可能な状態(プラグイン状態)を示す場合には、外部電源フラグがONされ、外部電源から車両に電力を供給できない状態(プラグアウト状態)を示す場合には、外部電源フラグがOFFされる。   Next, in step S3, a vehicle environmental state signal used for air conditioning control, that is, a detection signal of the above-described sensor groups 51 to 58, a power state signal indicating a power supply state from an external power source, and the like are read. When the power status signal indicates a state in which power can be supplied from the external power source to the vehicle (plug-in state), the external power source flag is turned on and power cannot be supplied from the external power source to the vehicle (plug-out state) ), The external power flag is turned off.

また、このステップS3では、駆動力制御装置70の入力側に接続されたセンサ群の検出信号、および駆動力制御装置70から出力される制御信号等の一部も、駆動力制御装置70から読み込んでいる。   In step S3, a part of the detection signal of the sensor group connected to the input side of the driving force control device 70 and the control signal output from the driving force control device 70 are also read from the driving force control device 70. It is out.

次に、ステップS4では、車室内吹出空気の目標吹出温度TAOを算出する。目標吹出温度TAOは、以下の数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
ここで、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気センサ51によって検出された車室内温度(内気温)、Tamは外気センサ52によって検出された外気温、Tsは日射センサ53によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Next, in step S4, the target blowing temperature TAO of the vehicle compartment blowing air is calculated. The target blowing temperature TAO is calculated by the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Here, Tset is the vehicle interior set temperature set by the vehicle interior temperature setting switch, Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor 51, Tam is the outside air temperature detected by the outside air sensor 52, and Ts is This is the amount of solar radiation detected by the solar radiation sensor 53. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.

なお、目標吹出温度TAOは、車室内を所望の温度に保つために車両用空調装置1が生じさせる必要のある熱量に相当するもので、車両用空調装置1に要求される空調熱負荷として捉えることができる。   The target blowing temperature TAO corresponds to the amount of heat that the vehicle air conditioner 1 needs to generate in order to keep the passenger compartment at a desired temperature, and is regarded as the air conditioning heat load required for the vehicle air conditioner 1. be able to.

続くステップS5〜S13では、空調制御装置50に接続された各種機器の制御状態が決定される。まず、ステップS5では、エアミックスドア39の目標開度SWを目標吹出温度TAO、蒸発器温度センサ56によって検出された吹出空気温度TE、冷却水温度Twに基づいて算出する。   In subsequent steps S5 to S13, control states of various devices connected to the air conditioning control device 50 are determined. First, in step S5, the target opening degree SW of the air mix door 39 is calculated based on the target blowing temperature TAO, the blowing air temperature TE detected by the evaporator temperature sensor 56, and the cooling water temperature Tw.

ステップS5の詳細については、図5のフローチャートを用いて説明する。まず、ステップS51では、以下数式F2により仮のエアミックス開度SWddを算出して、ステップS52へ進む。
SWdd=[{TAO−(TE+2)}/{MAX(10、Tw−(TE+2))}]×100(%)…(F2)
なお、数式F2の{MAX(10、Tw−(TE+2))}とは、10およびTw−(TE+2)のうち大きい方の値を意味している。
Details of step S5 will be described with reference to the flowchart of FIG. First, in step S51, a provisional air mix opening degree SWdd is calculated by the following formula F2, and the process proceeds to step S52.
SWdd = [{TAO− (TE + 2)} / {MAX (10, Tw− (TE + 2))}] × 100 (%) (F2)
Note that {MAX (10, Tw− (TE + 2))} in Formula F2 means the larger value of 10 and Tw− (TE + 2).

続く、ステップS52では、ステップS51にて算出された仮のエアミックス開度SWddに基づいて、予め空調制御装置50に記憶された制御マップを参照して、エアミックス開度SWを決定して、ステップS6へ進む。なお、この制御マップでは、図5のステップS52に示すように、仮のエアミックス開度SWddに対するエアミックス開度SWの値を非線形的に決定している。   Subsequently, in step S52, the air mix opening SW is determined based on the temporary air mix opening SWdd calculated in step S51 with reference to a control map stored in the air conditioning control device 50 in advance. Proceed to step S6. In this control map, as shown in step S52 of FIG. 5, the value of the air mix opening SW with respect to the temporary air mix opening SWdd is determined nonlinearly.

これは、前述の如く、本実施形態では、エアミックスドア39として片持ちドアを採用しているために、エアミックス開度SWの変化に対する実際の送風空気の流れ方向から見た冷風バイパス通路34の開口面積および加熱用冷風通路33の開口面積の変化が非線形的な関係となるからである。   As described above, since the cantilever door is adopted as the air mix door 39 in the present embodiment, the cold air bypass passage 34 viewed from the actual flow direction of the blown air with respect to the change in the air mix opening SW. This is because the change in the opening area and the change in the opening area of the heating cool air passage 33 have a non-linear relationship.

次のステップS6では、送風機32の送風能力(具体的には、電動モータに印加するブロワモータ電圧)を決定する。   In the next step S6, the blowing capacity of the blower 32 (specifically, the blower motor voltage applied to the electric motor) is determined.

このステップS6の詳細については、図6のフローチャートを用いて説明する。図6に示すように、まず、ステップS61では、操作パネル60のオートスイッチが投入(ON)されているか否かを判定する。この結果、オートスイッチが投入されていないと判定された場合は、ステップS62で、操作パネル60の風量設定スイッチによってマニュアル設定された乗員の所望の風量となるブロワモータ電圧が決定されて、ステップS7に進む。   Details of step S6 will be described with reference to the flowchart of FIG. As shown in FIG. 6, first, in step S61, it is determined whether or not the auto switch of the operation panel 60 is turned on. As a result, if it is determined that the auto switch is not turned on, in step S62, the blower motor voltage at which the passenger's desired air volume manually set by the air volume setting switch of the operation panel 60 is determined is determined, and the process proceeds to step S7. move on.

具体的には、本実施形態の風量設定スイッチは、Lo→M1→M2→M3→Hiの5段階の風量を設定することができ、それぞれ4V→6V→8V→10V→12Vの順にブロワモータ電圧が高くなるように決定される。   Specifically, the air volume setting switch of the present embodiment can set five levels of air volume of Lo → M1 → M2 → M3 → Hi, and the blower motor voltage is set in the order of 4V → 6V → 8V → 10V → 12V. Determined to be higher.

一方、ステップS61にて、オートスイッチが投入されていると判定された場合は、ステップS63で、ステップS4にて決定されたTAOに基づいて予め空調制御装置50に記憶された制御マップを参照して第1仮ブロワレベルf(TAO)を決定する。   On the other hand, if it is determined in step S61 that the auto switch is turned on, in step S63, the control map stored in advance in the air conditioning control device 50 is referred to based on the TAO determined in step S4. To determine the first temporary blower level f (TAO).

本実施形態における第1仮ブロワレベルf(TAO)を決定する制御マップは、TAOに対する第1仮ブロワレベルf(TAO)の値がバスタブ状の曲線を描くように構成されている。   The control map for determining the first temporary blower level f (TAO) in the present embodiment is configured such that the value of the first temporary blower level f (TAO) with respect to TAO draws a bathtub-like curve.

すなわち、図6のステップS63に示すように、TAOの極低温域(本実施形態では、−30℃以下)および極高温域(本実施形態では、80℃以上)では、送風機32の風量が最大風量付近となるように第1仮ブロワレベルf(TAO)を高レベルに上昇させる。   That is, as shown in step S63 of FIG. 6, the air volume of the blower 32 is maximum in the extremely low temperature range of TAO (in this embodiment, −30 ° C. or lower) and in the extremely high temperature region (in this embodiment, 80 ° C. or higher). The first temporary blower level f (TAO) is raised to a high level so that the air volume is near.

また、TAOが極低温域から中間温度域に向かって上昇すると、TAOの上昇に応じて送風機32の送風量が減少するように、第1仮ブロワレベルf(TAO)を減少させる。さらに、TAOが極高温域から中間温度域に向かって低下すると、TAOの低下に応じて、送風機32の風量が減少するように第1仮ブロワレベルf(TAO)を減少させる。そして、TAOが所定の中間温度域内(本実施形態では、10℃〜40℃)に入ると、送風機32の風量が最低風量となるように第1仮ブロワレベルf(TAO)を低レベルに低下させる。なお、上述の説明から明らかなように、この第1仮ブロワ電圧f(TAO)は、TAOに基づいて決定される値であるから、車室内設定温度Tset、内気温Tr、外気温Tam、日射量Tsに基づいて決定される値に基づいて決定されている。   Further, when TAO rises from the extremely low temperature region toward the intermediate temperature region, the first temporary blower level f (TAO) is decreased so that the amount of air blown from the blower 32 decreases as TAO increases. Further, when TAO decreases from the extremely high temperature range toward the intermediate temperature range, the first temporary blower level f (TAO) is decreased in accordance with the decrease in TAO so that the air volume of the blower 32 decreases. When TAO enters a predetermined intermediate temperature range (10 ° C. to 40 ° C. in this embodiment), the first temporary blower level f (TAO) is lowered to a low level so that the air volume of the blower 32 becomes the minimum air volume. Let As is apparent from the above description, the first temporary blower voltage f (TAO) is a value determined based on TAO, so that the vehicle interior set temperature Tset, the internal temperature Tr, the external temperature Tam, the solar radiation It is determined based on a value determined based on the amount Ts.

続くステップS64では、送風機32の送風能力を決定するために電動モータに印加する送風機電圧に対応するブロワレベルを決定する。このステップS64では、シートヒータ90およびシートファン91の作動状態に応じてブロワレベルを決定する。   In subsequent step S64, a blower level corresponding to the blower voltage applied to the electric motor to determine the blower capacity of the blower 32 is determined. In step S64, the blower level is determined according to the operating state of the seat heater 90 and the seat fan 91.

具体的には、シートヒータ90およびシートファン91の停止時は、第1仮ブロワレベルf(TAO)と同じ値をブロワレベルとして決定し、シートヒータ90およびシートファン91のうち少なくとも一方の作動時は、第1仮ブロワレベルf(TAO)よりも低い値をブロワレベルとして決定する。   Specifically, when the seat heater 90 and the seat fan 91 are stopped, the same value as the first temporary blower level f (TAO) is determined as the blower level, and at least one of the seat heater 90 and the seat fan 91 is activated. Determines a value lower than the first temporary blower level f (TAO) as the blower level.

具体的には、図6のステップS64に示すように、シートヒータ90がOFFかつシートファン91がOFFの場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。   Specifically, as shown in step S64 of FIG. 6, when the seat heater 90 is OFF and the seat fan 91 is OFF, the blower level is set to the same value as the first temporary blower level f (TAO).

シートヒータ90がOFF(停止)かつシートファン91の作動状態がLo(低風量)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。   When the seat heater 90 is OFF (stopped) and the operating state of the seat fan 91 is Lo (low air volume), the blower level is set to a value lower than the first temporary blower level f (TAO). However, in this example, when the first temporary blower level f (TAO) is 4 levels or less, the blower level is set to the same value as the first temporary blower level f (TAO).

シートヒータ90がOFFかつシートファン91の作動状態がHi(高風量)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。このときのブロワレベルは、シートヒータ90がOFFかつシートファン91がLoの場合よりも低い値となる。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。   When the seat heater 90 is OFF and the operation state of the seat fan 91 is Hi (high air flow), the blower level is set to a value lower than the first temporary blower level f (TAO). The blower level at this time is a lower value than when the seat heater 90 is OFF and the seat fan 91 is Lo. However, in this example, when the first temporary blower level f (TAO) is 4 levels or less, the blower level is set to the same value as the first temporary blower level f (TAO).

シートヒータ90の作動状態がLo(低温)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。   When the operating state of the seat heater 90 is Lo (low temperature), the blower level is set to a value lower than the first temporary blower level f (TAO). However, in this example, when the first temporary blower level f (TAO) is 4 levels or less, the blower level is set to the same value as the first temporary blower level f (TAO).

シートヒータ90の作動状態がHi(高温)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。このときのブロワレベルは、シートファン91がHiの場合よりも低い値となる。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。   When the operating state of the seat heater 90 is Hi (high temperature), the blower level is set to a value lower than the first temporary blower level f (TAO). The blower level at this time is a lower value than when the seat fan 91 is Hi. However, in this example, when the first temporary blower level f (TAO) is 4 levels or less, the blower level is set to the same value as the first temporary blower level f (TAO).

続くステップS65では、ステップS64にて決定したブロワレベルに基づいて、予め空調制御装置50に記憶された制御マップを参照して、送風機電圧(ブロワモータ電圧)を決定する。 In step S 65 subsequent, based on the blower level determined in step S 64, with reference to the control map stored in advance in the air-conditioning control unit 50, determines a blower voltage (blower motor voltage).

上述のステップS64で説明した通り、シートヒータ90およびシートファン91の停止時は、第1仮ブロワレベルf(TAO)と同じ値をブロワレベルとして決定し、シートヒータ90およびシートファン91のうち少なくとも一方の作動時は、第1仮ブロワレベルf(TAO)よりも低い値をブロワレベルとして決定する。   As described in step S64 above, when the seat heater 90 and the seat fan 91 are stopped, the same value as the first temporary blower level f (TAO) is determined as the blower level, and at least one of the seat heater 90 and the seat fan 91 is determined. During one operation, a value lower than the first temporary blower level f (TAO) is determined as the blower level.

このため、シートヒータ90およびシートファン91のうち少なくとも一方が作動している場合、シートヒータ90およびシートファン91が停止している場合に比べて送風機32の送風能力(送風量)が低減されるので、送風機32の消費電力(消費エネルギー)を低減できる。また、送風機32の送風能力を小さくすることで、暖房時にはヒータコア36における送風空気と冷却水との熱交換量が低減され、冷房時には蒸発器15における送風空気と冷媒との熱交換量が低減されるので、熱交換のための消費エネルギーを低減することができる。   For this reason, when at least one of the seat heater 90 and the seat fan 91 is operating, the blowing capacity (air flow rate) of the blower 32 is reduced as compared with the case where the seat heater 90 and the seat fan 91 are stopped. Therefore, the power consumption (energy consumption) of the blower 32 can be reduced. Further, by reducing the blowing capacity of the blower 32, the heat exchange amount between the blown air and the cooling water in the heater core 36 is reduced during heating, and the heat exchange amount between the blown air and the refrigerant in the evaporator 15 is reduced during cooling. Therefore, energy consumption for heat exchange can be reduced.

さらに、シートヒータ90が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な温感(暖房感)を与えることができる。また、シートファン91が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な冷感(冷房感)を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。   Furthermore, if the seat heater 90 is operating, a comfortable sensation of warmth (heating sensation) can be given to the occupant even if the volume of the air blown into the passenger compartment is small. Moreover, if the seat fan 91 is operating, a comfortable cooling feeling (cooling feeling) can be given to the occupant even if the volume of the blown air blown into the passenger compartment is small. Therefore, energy saving of air conditioning can be achieved without losing passenger comfort as much as possible.

次のステップS7では、吸込口モード、すなわち内外気切替箱の切替状態を決定する。この吸込口モードもTAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、基本的に外気を導入する外気モードが優先されるが、TAOが極低温域となって高い冷房性能を得たい場合等に内気を導入する内気モードが選択される。さらに、外気の排ガス濃度を検出する排ガス濃度検出手段を設け、排ガス濃度が予め定めた基準濃度以上となったときに、内気モードを選択するようにしてもよい。   In the next step S7, the inlet mode, that is, the switching state of the inside / outside air switching box is determined. This inlet mode is also determined based on TAO with reference to a control map stored in advance in the air conditioning controller 50. In the present embodiment, priority is given mainly to the outside air mode for introducing outside air. However, the inside air mode for introducing inside air is selected when TAO is in a very low temperature range and high cooling performance is desired. Further, an exhaust gas concentration detecting means for detecting the exhaust gas concentration of the outside air may be provided, and the inside air mode may be selected when the exhaust gas concentration becomes equal to or higher than a predetermined reference concentration.

次のステップS8では、吹出口モードを決定する。この吹出口モードも、TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。   In the next step S8, the air outlet mode is determined. This air outlet mode is also determined with reference to a control map stored in advance in the air conditioning control device 50 based on TAO.

本実施形態では、図7に示すように、TAOが低温域から高温域へと上昇するにつれて吹出口モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。   In this embodiment, as shown in FIG. 7, as the TAO rises from the low temperature range to the high temperature range, the air outlet mode is sequentially switched from the face mode to the bilevel mode to the foot mode.

従って、夏季は主にフェイスモード、春秋季は主にバイレベルモード、そして冬季は主にフットモードが選択され易くなる。さらに、湿度センサの検出値から窓ガラスに曇りが発生する可能性が高い場合には、フットデフロスタモードあるいはデフロスタモードを選択するようにしてもよい。   Accordingly, it is easy to select the face mode mainly in summer, the bi-level mode mainly in spring and autumn, and the foot mode mainly in winter. Furthermore, when there is a high possibility that fogging will occur on the window glass from the detection value of the humidity sensor, the foot defroster mode or the defroster mode may be selected.

次のステップS9では、圧縮機11の冷媒吐出能力(具体的には、回転数(rpm))を決定する。このステップS9では、ステップS4で決定したTAO等に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、蒸発器15からの吹出空気温度TEの目標吹出温度TEOを決定する。   In the next step S9, the refrigerant discharge capacity (specifically, the rotational speed (rpm)) of the compressor 11 is determined. In this step S9, based on the TAO determined in step S4 and the like, the target blow temperature TEO of the blown air temperature TE from the evaporator 15 is determined with reference to the control map previously stored in the air conditioning control device 50. .

そして、この目標吹出温度TEOと吹出空気温度TEの偏差En(TEO−TE)を算出し、今回算出された偏差Enから前回算出された偏差En−1を減算した偏差変化率Edot(En−(En−1))とを用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fCn−1に対する回転数変化量Δf_Cを求める。   Then, a deviation En (TEO-TE) between the target blowing temperature TEO and the blowing air temperature TE is calculated, and a deviation change rate Edot (En− (En− ()) obtained by subtracting the previously calculated deviation En−1 from the currently calculated deviation En. En-1)), and based on the fuzzy inference based on the membership function and rules stored in the air conditioning controller 50 in advance, the rotational speed change amount Δf_C with respect to the previous compressor rotational speed fCn-1 is calculated. Ask.

また、本実施形態の空調制御装置50に記憶されたメンバシップ関数とルールでは、上述の偏差Enと偏差変化率Edotに基づいて蒸発器15の着霜が防止されるようにΔf_Cが決定される。さらに、前回の圧縮機回転数fn−1に回転数変化量Δf_Cを加算した値を今回の圧縮機回転数fnとして更新する。なお、この圧縮機回転数fnの更新は、1秒毎の制御周期で実行される。   Further, in the membership function and the rule stored in the air conditioning control device 50 of the present embodiment, Δf_C is determined based on the deviation En and the deviation change rate Edot so that the frosting of the evaporator 15 is prevented. . Further, the value obtained by adding the rotational speed change amount Δf_C to the previous compressor rotational speed fn−1 is updated as the current compressor rotational speed fn. The update of the compressor speed fn is executed at a control cycle of 1 second.

次のステップS10では、PTCヒータ37の作動本数および電熱デフォッガの作動状態を決定する。まず、PTCヒータ37の作動本数の決定について説明すると、ステップS10では、外気温Tam、ステップS51にて決定した仮のエアミックス開度SWdd、冷却水温度Twに応じて、PTCヒータ37の作動本数を決定する。   In the next step S10, the number of operating PTC heaters 37 and the operating state of the electric heat defogger are determined. First, the determination of the number of operating PTC heaters 37 will be described. In step S10, the number of operating PTC heaters 37 is determined according to the outside air temperature Tam, the temporary air mix opening SWdd determined in step S51, and the cooling water temperature Tw. To decide.

具体的には、まず、外気温に基づいてPTCヒータ37の作動の要否を判定する。なお、PTCヒータ37の作動の要否判定処理としては、外気センサ52が検出した外気温が所定温度(本実施形態では、26℃)よりも高いか否かを判定すればよい。   Specifically, first, it is determined whether or not the PTC heater 37 needs to be operated based on the outside air temperature. In addition, as the necessity determination process of the operation of the PTC heater 37, it may be determined whether or not the outside air temperature detected by the outside air sensor 52 is higher than a predetermined temperature (26 ° C. in the present embodiment).

そして、外気温が26℃よりも高いと判定された場合は、PTCヒータ37による吹出温アシストは必要無いと判断して、PTCヒータ37の作動本数を0本に決定する。   When it is determined that the outside air temperature is higher than 26 ° C., it is determined that the blowout temperature assist by the PTC heater 37 is not necessary, and the number of operation of the PTC heater 37 is determined to be zero.

一方、外気温が26℃よりも低いと判定された場合は、さらに仮のエアミックス開度SWddに基づいてPTCヒータ37作動の要否を決定する。   On the other hand, when it is determined that the outside air temperature is lower than 26 ° C., it is further determined whether or not the PTC heater 37 needs to be operated based on the temporary air mix opening degree SWdd.

ここで、仮のエアミックス開度SWddが小さくなることは、加熱用冷風通路33にて送風空気を加熱する必要性が少なくなることを意味していることから、PTCヒータ37を作動させる必要性も少ないと判断できる。   Here, since the temporary air mix opening degree SWdd becomes small means that it is less necessary to heat the blown air in the heating cool air passage 33, it is necessary to operate the PTC heater 37. It can be judged that there are few.

このため、仮のエアミックス開度SWddを予め定めた基準開度と比較して、仮のエアミックス開度SWddが第1基準開度(本実施形態では、100%)以下であれば、PTCヒータ37を作動させる必要は無いものとして、PTCヒータ作動フラグf(SW)=OFFとする。   For this reason, if the temporary air mix opening degree SWdd is compared with the predetermined reference opening degree and the temporary air mix opening degree SWdd is equal to or less than the first reference opening degree (100% in this embodiment), the PTC Assuming that there is no need to operate the heater 37, the PTC heater operation flag f (SW) = OFF.

一方、仮のエアミックス開度SWddが第2基準開度(本実施形態では、110%)以上であれば、PTCヒータ37を作動させる必要があるものとして、PTCヒータ作動フラグf(SW)=ONとする。なお、第1基準開度と第2基準開度との開度差は、制御ハンチング防止のためのヒステリシス幅として設定されている。   On the other hand, if the temporary air mix opening degree SWdd is equal to or larger than the second reference opening degree (110% in the present embodiment), it is assumed that the PTC heater 37 needs to be operated, and the PTC heater operation flag f (SW) = Set to ON. The opening difference between the first reference opening and the second reference opening is set as a hysteresis width for preventing control hunting.

そして、上述のように設定されたPTCヒータ作動フラグf(SW)がOFFであれば、PTCヒータ37の作動本数を0本に決定し、PTCヒータ作動フラグf(SW)がONであれば、PTCヒータ37の作動本数を決定する。   If the PTC heater operation flag f (SW) set as described above is OFF, the number of operation of the PTC heater 37 is determined to be 0, and if the PTC heater operation flag f (SW) is ON, The number of operating PTC heaters 37 is determined.

なお、PTCヒータ37の作動本数は、冷却水温度Twに応じて決定する。具体的には、冷却水温度Twが上昇過程にあるときは、冷却水温度Twの上昇に伴って作動本数が減少するように決定し、冷却水温度が下降過程にあるときは、冷却水温度Twの下降に伴って作動本数が増加するように決定する。なお、上昇過程および下降過程における作動本数を決める冷却水温度Twの基準温度にヒステリシス幅を設けることで、制御ハンチングの防止を図るようにしてもよい。   The number of PTC heaters 37 to be operated is determined according to the coolant temperature Tw. Specifically, when the cooling water temperature Tw is in the increasing process, it is determined that the number of operations decreases as the cooling water temperature Tw increases, and when the cooling water temperature is in the decreasing process, the cooling water temperature The operation number is determined to increase as Tw decreases. Control hunting may be prevented by providing a hysteresis width at the reference temperature of the cooling water temperature Tw that determines the number of operations in the ascending process and descending process.

また、電熱デフォッガについては、車室内の湿度および温度から窓ガラスに曇りが発生する可能性が高い場合、あるいは窓ガラスに曇りが発生している場合は、電熱デフォッガを作動させる。   As for the electric heat defogger, the electric heat defogger is operated when there is a high possibility that the window glass is fogged due to the humidity and temperature in the passenger compartment or when the window glass is fogged.

次のステップS11では、空調制御装置50から駆動力制御装置70へ出力される要求信号を決定する。この要求信号としては、エンジンEGの作動要求信号(エンジンON要求信号)等がある。   In the next step S11, a request signal output from the air conditioning control device 50 to the driving force control device 70 is determined. The request signal includes an engine EG operation request signal (engine ON request signal) and the like.

ここで、車両走行用の駆動力をエンジンEGのみから得る通常の車両では、走行時に常時エンジンを作動させているので冷却水も常時高温となる。従って、通常の車両では冷却水をヒータコア36に流通させることで十分な暖房能力を発揮することができる。   Here, in a normal vehicle that obtains driving force for driving the vehicle only from the engine EG, the engine is always operated during driving, so that the cooling water is always at a high temperature. Therefore, in a normal vehicle, sufficient heating capacity can be exhibited by circulating cooling water through the heater core 36.

これに対して、本実施形態のプラグインハイブリッド車両では、車両走行用の駆動力を走行用電動モータからも得ることができることから、エンジンEGの作動を停止させることがあり、車両用空調装置1にて車室内の暖房を行う際に、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していない場合がある。   On the other hand, in the plug-in hybrid vehicle of the present embodiment, the driving force for traveling the vehicle can also be obtained from the traveling electric motor. Therefore, the operation of the engine EG may be stopped, and the vehicle air conditioner 1 When heating the vehicle interior at, the temperature of the cooling water may not rise to a sufficient temperature as a heat source for heating.

そこで、本実施形態の車両用空調装置1は、走行用の駆動力を出力させるためにエンジンEGを作動させる必要がない走行条件であっても、所定条件を満たした場合には、エンジンEGの駆動力を制御する駆動力制御装置70に対してエンジンEGの作動を要求する要求信号(作動要求信号)を出力して、冷却水温度を暖房用の熱源として充分な温度となるまで上昇させるようにしている。   Therefore, the vehicle air conditioner 1 according to the present embodiment does not require the engine EG to operate in order to output the driving force for traveling. A request signal (operation request signal) for requesting the operation of the engine EG is output to the driving force control device 70 that controls the driving force so that the cooling water temperature is raised to a temperature sufficient as a heat source for heating. I have to.

ステップS11の詳細については、図8のフローチャートを用いて説明する。まず、ステップS1101では、冷却水温度Twに基づくエンジンEGの作動要求信号あるいは停止要求信号の出力を行うか否かの判定に用いる判定閾値としてのエンジンON水温TwonおよびエンジンOFF水温Twoffを決定する。なお、エンジンON水温Twonは、作動要求信号を出力することを決定する判定基準となる閾値であり、エンジンOFF水温Twoffは、エンジンEGの停止要求信号を出力することを決定する判定基準となる閾値である。   Details of step S11 will be described with reference to the flowchart of FIG. First, in step S1101, an engine ON water temperature Twon and an engine OFF water temperature Toff are determined as determination threshold values used for determining whether to output an engine EG operation request signal or a stop request signal based on the coolant temperature Tw. The engine ON water temperature Twon is a threshold value serving as a determination criterion for determining that an operation request signal is output, and the engine OFF water temperature Twoff is a threshold value serving as a determination criterion for determining that an engine EG stop request signal is output. It is.

つまり、エンジンON水温Twonは、駆動力制御装置70がエンジンEGを作動させて冷却水温度Twを昇温させる際の下限温度となる値である。つまり、駆動力制御装置70は、冷却水温度TwがエンジンON水温Twonを下回ったら冷却水温度Twを昇温させるためにエンジンEGを作動させることになる。従って、本実施形態の制御ステップS1101は、下限温度決定手段を構成している。   That is, the engine ON water temperature Twon is a value that becomes a lower limit temperature when the driving force control device 70 operates the engine EG to raise the cooling water temperature Tw. That is, the driving force control device 70 operates the engine EG to raise the cooling water temperature Tw when the cooling water temperature Tw falls below the engine ON water temperature Twon. Therefore, the control step S1101 of the present embodiment constitutes a lower limit temperature determining unit.

つまり、エンジンOFF水温Twoffは、駆動力制御装置70がエンジンEGを作動させて冷却水温度Twを昇温させる際の上限温度となる値である。つまり、駆動力制御装置70は、冷却水温度Twを昇温させる際に、冷却水温度TwがエンジンOFF水温TwoffとなるまでエンジンEGを作動させることになる。従って、本実施形態の制御ステップS1101は、上限温度決定手段を構成している。   That is, the engine OFF water temperature Toff is a value that becomes the upper limit temperature when the driving force control device 70 operates the engine EG to raise the cooling water temperature Tw. That is, the driving force control device 70 operates the engine EG until the cooling water temperature Tw becomes the engine OFF water temperature Twoff when raising the cooling water temperature Tw. Therefore, the control step S1101 of the present embodiment constitutes an upper limit temperature determining unit.

換言すると、本実施形態の制御ステップS1101は、下限温度および上限温度を決定する温度決定手段を構成している。   In other words, the control step S1101 of the present embodiment constitutes temperature determining means for determining the lower limit temperature and the upper limit temperature.

具体的には、エンジンOFF水温Twoffは、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Tw1と、予め定められた基準温度(本実施形態では70℃)のうち小さい方の値に決定する。   Specifically, the engine OFF water temperature Twoff is smaller between the cooling water temperature Tw1 desirable for the vehicle air conditioner 1 to exhibit sufficient heating capacity and a predetermined reference temperature (70 ° C. in the present embodiment). Determine the value of either.

ここで、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Tw1は、以下の数式F3を用いて算出する。
Tw1={(TAO−ΔTptc)−(TE×0.2)}/0.8…(F3)
なお、ΔTptcは、PTCヒータ37の作動による吹出温上昇量、すなわち、各吹出口24〜26から車室内へ吹き出される空気の温度(吹出温)のうち、PTCヒータ37の発熱分が寄与した温度上昇量である。このΔTptcは、PTCヒータ37の作動本数の増加に伴って高い値が設定される。例えば、PTCヒータ37の作動本数が0本であればΔTptc=0℃、作動本数が1本であればΔTptc=3℃、作動本数が2本であればΔTptc=6℃、作動本数が3本であればΔTptc=9℃となるように設定されている。
Here, the cooling water temperature Tw1 desirable for the vehicle air conditioner 1 to exhibit a sufficient heating capacity is calculated using the following formula F3.
Tw1 = {(TAO−ΔTptc) − (TE × 0.2)} / 0.8 (F3)
Note that ΔTptc was contributed by the amount of heat generated by the PTC heater 37 among the amount of increase in the blown temperature due to the operation of the PTC heater 37, that is, the temperature of the air blown into the vehicle interior from each of the outlets 24 to 26 (blowout temperature). The amount of temperature rise. This ΔTptc is set to a high value as the number of operating PTC heaters 37 increases. For example, if the number of PTC heaters 37 is 0, ΔTptc = 0 ° C., if the number of operations is 1, ΔTptc = 3 ° C. If the number of operations is 2, ΔTptc = 6 ° C., the number of operations is 3 If so, ΔTptc = 9 ° C. is set.

ここで、冷却水目標温度f(TAO)から吹出温上昇量ΔTptcを減算した値は、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度TwからPTCヒータ37を作動させることによる温度上昇分を減算した値なので、この温度をエンジンOFF水温Twoffとすれば、車両用空調装置1に確実に充分な暖房能力を発揮させることができる。   Here, the value obtained by subtracting the blowout temperature rise amount ΔTptc from the cooling water target temperature f (TAO) operates the PTC heater 37 from the cooling water temperature Tw that is desirable for the vehicle air conditioner 1 to exhibit sufficient heating capacity. Therefore, if this temperature is set to the engine OFF water temperature Twoff, the vehicle air conditioner 1 can reliably exhibit sufficient heating capacity.

また、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Twと比較する基準温度は、確実にエンジンの停止要求信号を出力するための保護用の値として決定された値である。   Further, the reference temperature to be compared with the cooling water temperature Tw that is desirable for the vehicle air conditioner 1 to exhibit sufficient heating capacity is a value determined as a protective value for reliably outputting the engine stop request signal. It is.

一方、エンジンON水温Twonは、頻繁にエンジンがON/OFFするのを防止するため、エンジンOFF水温Twoffよりも所定の値(本実施形態では、5℃)だけ低く決定されており、この所定の値は、制御ハンチング防止のためのヒステリシス幅として設定されている。   On the other hand, the engine ON water temperature Twon is determined to be lower by a predetermined value (5 ° C. in the present embodiment) than the engine OFF water temperature Toff in order to prevent frequent engine ON / OFF. The value is set as a hysteresis width for preventing control hunting.

続くステップS1102では、冷却水温度Twに応じて、エンジンEGの作動要求信号あるいは停止要求信号を出力するか否かの仮の要求信号フラグf(Tw)を決定する。具体的には、冷却水温度TwがステップS1101で決定されたエンジンON水温Twonより低ければ、仮の要求信号フラグf(Tw)=ONとしてエンジンEGの作動要求信号を出力することを仮決定し、冷却水温度TwがエンジンOFF水温Twoffより高ければ、仮の要求信号フラグf(Tw)=OFFとしてエンジンEGの停止要求信号を出力することを仮決定する。   In the subsequent step S1102, a temporary request signal flag f (Tw) indicating whether or not to output an operation request signal or a stop request signal for the engine EG is determined according to the coolant temperature Tw. Specifically, if the cooling water temperature Tw is lower than the engine ON water temperature Twon determined in step S1101, it is temporarily determined that the temporary request signal flag f (Tw) = ON and the engine EG operation request signal is output. If the cooling water temperature Tw is higher than the engine OFF water temperature Twoff, it is temporarily determined that the temporary request signal flag f (Tw) = OFF and the engine EG stop request signal is output.

続くステップS1103では、エコノミースイッチ60bの投入状態(オンオフ状態)、目標吹出温度TAO、仮の要求信号フラグf(Tw)、および車室内設定温度Tsetに基づいて、予め空調制御装置50に記憶されている制御マップを参照して、駆動力制御装置70へ出力される要求信号を決定する。   In subsequent step S1103, the air conditioning control device 50 stores the economy switch 60b in advance based on the on state (on / off state) of the economy switch 60b, the target outlet temperature TAO, the temporary request signal flag f (Tw), and the vehicle interior set temperature Tset. The request signal output to the driving force control device 70 is determined with reference to the control map.

具体的には、ステップS1103では、図8の図表に示すように、車両用空調装置1の作動モードがエコモード以外(エコノミースイッチ60bがオフ)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。   Specifically, in step S1103, as shown in the chart of FIG. 8, when the operation mode of the vehicle air conditioner 1 is other than the eco mode (the economy switch 60b is off), the TAO sets a reference temperature that is set in advance. If it is less than (20 ° C. in the present embodiment), it is determined as a request signal for stopping the engine EG regardless of the provisional request signal flag f (Tw).

また、車両用空調装置1の作動モードがエコモード以外であって、且つTAOが基準温度以上である場合には、仮の要求信号フラグf(Tw)をそのまま要求信号に決定する。つまり、仮の要求信号フラグf(Tw)がONであれば、エンジンEGを作動させる要求信号に決定し、仮の要求信号フラグf(Tw)がOFFであれば、エンジンEGを停止させる要求信号に決定する。   Further, when the operation mode of the vehicle air conditioner 1 is other than the eco mode and the TAO is equal to or higher than the reference temperature, the temporary request signal flag f (Tw) is determined as the request signal as it is. That is, if the temporary request signal flag f (Tw) is ON, it is determined as a request signal for operating the engine EG, and if the temporary request signal flag f (Tw) is OFF, the request signal for stopping the engine EG. To decide.

さらに、車両用空調装置1の作動モードがエコモード(エコノミースイッチ60bがオン)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。   Further, when the operation mode of the vehicle air conditioner 1 is the eco mode (the economy switch 60b is on), if the TAO is lower than a predetermined reference temperature (20 ° C. in the present embodiment), a temporary request signal Regardless of the flag f (Tw), it is determined as a request signal for stopping the engine EG.

また、車両用空調装置1の作動モードがエコモードであって、且つTAOが基準温度以上である場合には、車室内設定温度Tsetが基準温度未満である場合を除いて、要求信号フラグf(Tw)をそのまま要求信号に決定する。つまり、仮の要求信号フラグf(Tw)がONであれば、エンジンEGを作動させる要求信号に決定し、仮の要求信号フラグf(Tw)がOFFであれば、エンジンEGを停止させる要求信号に決定する。なお、車室内設定温度Tsetの基準温度は、吹出口モードをバイレベルモードからフェイスモードに切り替える閾値(本実施形態では28℃:図7参照)と同じ温度が設定されている。   When the operation mode of the vehicle air conditioner 1 is the eco mode and TAO is equal to or higher than the reference temperature, the request signal flag f ( Tw) is determined as a request signal as it is. That is, if the temporary request signal flag f (Tw) is ON, it is determined as a request signal for operating the engine EG, and if the temporary request signal flag f (Tw) is OFF, the request signal for stopping the engine EG. To decide. Note that the reference temperature of the vehicle interior set temperature Tset is set to the same temperature as a threshold value (28 ° C. in this embodiment: see FIG. 7) for switching the air outlet mode from the bilevel mode to the face mode.

そして、車両用空調装置1の作動モードがエコモードであって、且つTAOが基準温度以上であり、さらに車室内設定温度Tsetが基準温度未満である場合には、仮の要求信号フラグf(Tw)がONであっても、エンジンEGを停止させる要求信号に決定する。   When the operation mode of the vehicle air conditioner 1 is the eco mode, the TAO is equal to or higher than the reference temperature, and the vehicle interior set temperature Tset is lower than the reference temperature, the provisional request signal flag f (Tw ) Is determined to be a request signal for stopping the engine EG even if ON.

これによると、TAOが基準温度未満である場合、駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、暖房負荷が小さい場合に空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。   According to this, when TAO is lower than the reference temperature, the request signal output to the driving force control device 70 is determined as a signal for stopping the operation of the engine EG. Therefore, when the heating load is small, the engine EG for air conditioning The frequency of operation can be reduced to suppress the reduction in vehicle fuel consumption.

さらに、車両用空調装置1の作動モードがエコモード以外の場合、車室内設定温度Tsetとは無関係に駆動力制御装置70へ出力する要求信号を決定しているのに対し、車両用空調装置1の作動モードがエコモードの場合、TAOが基準温度以上であっても車室内設定温度Tsetが基準温度未満であれば駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、エコモード時は乗員の省エネ要求に応じて空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下を一層抑制することができる。 Further, when the operation mode of the vehicle air conditioner 1 is other than the eco mode, the request signal to be output to the driving force control device 70 is determined regardless of the vehicle interior set temperature Tset, whereas the vehicle air conditioner 1 When the operation mode is eco-mode, even if TAO is equal to or higher than the reference temperature, if the vehicle interior set temperature Tset is lower than the reference temperature, a request signal output to the driving force control device 70 is a signal for stopping the operation of the engine EG. Thus, in the eco mode, the frequency of operation of the engine EG for air conditioning can be reduced in accordance with the passenger's energy saving request, and the reduction in vehicle fuel consumption can be further suppressed.

次に、ステップS12では、冷却水回路40にてヒータコア36とエンジンEGとの間で冷却水を循環させる冷却水ポンプ40aを作動させるか否かを決定する。このステップS12の詳細については、図9のフローチャートを用いて説明する。まず、ステップS121では、冷却水温度Twが吹出空気温度TEより高いか否かを判定する。   Next, in Step S12, it is determined whether or not to operate the cooling water pump 40a for circulating the cooling water between the heater core 36 and the engine EG in the cooling water circuit 40. Details of step S12 will be described with reference to the flowchart of FIG. First, in step S121, it is determined whether or not the coolant temperature Tw is higher than the blown air temperature TE.

ステップS121にて、冷却水温度Twが吹出空気温度TE以下となっている場合は、ステップS124へ進み、冷却水ポンプ40aを停止(OFF)させることを決定する。その理由は、冷却水温度Twが吹出空気温度TE以下となっている場合に冷却水をヒータコア36へ流すと、ヒータコア36を流れる冷却水が蒸発器15通過後の空気を冷却してしまうことになるため、かえって吹出口からの吹出空気温度を低くしてしまうからである。   In step S121, when the cooling water temperature Tw is equal to or lower than the blown air temperature TE, the process proceeds to step S124, and it is determined to stop (OFF) the cooling water pump 40a. The reason is that if the cooling water flows to the heater core 36 when the cooling water temperature Tw is equal to or lower than the blown air temperature TE, the cooling water flowing through the heater core 36 cools the air after passing through the evaporator 15. Therefore, the temperature of the air blown from the outlet is lowered.

一方、ステップS121にて、冷却水温度Twが吹出空気温度TEより高い場合は、ステップS122へ進む。ステップS122では、送風機32が作動しているか否かが判定される。ステップS122にて、送風機32が作動していないと判定された場合は、ステップS124に進み、省動力化のために冷却水ポンプ40aを停止(OFF)させることを決定する。   On the other hand, when the cooling water temperature Tw is higher than the blown air temperature TE in step S121, the process proceeds to step S122. In step S122, it is determined whether the blower 32 is operating. When it is determined in step S122 that the blower 32 is not operating, the process proceeds to step S124, and it is determined to stop (OFF) the cooling water pump 40a for power saving.

一方、ステップS122にて送風機32が作動していると判定された場合は、ステップS123へ進み、冷却水ポンプ40aを作動(ON)させることを決定する。これにより、冷却水ポンプ40aが作動して、冷却水が冷媒回路内を循環するので、ヒータコア36を流れる冷却水とヒータコア36を通過する空気とを熱交換させて送風空気を加熱することができる。   On the other hand, when it determines with the air blower 32 operating in step S122, it progresses to step S123 and determines operating the cooling water pump 40a (ON). As a result, the cooling water pump 40a operates and the cooling water circulates in the refrigerant circuit, so that the cooling air flowing through the heater core 36 and the air passing through the heater core 36 can be heat-exchanged to heat the blown air. .

次に、ステップS13では、上述のステップS5〜S12で決定された制御状態が得られるように、空調制御装置50より各種機器32、12a、61、62、63、64、12a、37、40a、80に対して制御信号および制御電圧が出力される。さらに、要求信号出力手段50cから駆動力制御装置70に対して、ステップS11にて決定された要求信号が送信される。   Next, in step S13, the various devices 32, 12a, 61, 62, 63, 64, 12a, 37, 40a, and the like are obtained from the air conditioning control device 50 so that the control state determined in the above-described steps S5 to S12 is obtained. A control signal and a control voltage are output to 80. Further, the request signal determined in step S11 is transmitted from the request signal output means 50c to the driving force control apparatus 70.

次に、ステップS14では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2に戻るようになっている。なお、本実施形態は制御周期τを250msとしている。これは、車室内の空調制御は、エンジン制御等と比較して遅い制御周期であってもその制御性に悪影響を与えないからである。これにより、車両内における空調制御のための通信量を抑制して、エンジン制御等のように高速制御を行う必要のある制御系の通信量を十分に確保することができる。   Next, in step S14, the process waits for the control period τ, and returns to step S2 when it is determined that the control period τ has elapsed. In the present embodiment, the control cycle τ is 250 ms. This is because the air conditioning control in the passenger compartment does not adversely affect the controllability even if the control period is slower than the engine control or the like. As a result, it is possible to suppress a communication amount for air conditioning control in the vehicle and sufficiently secure a communication amount of a control system that needs to perform high-speed control such as engine control.

本実施形態の車両用空調装置1は、以上の如く作動するので、送風機32から送風された送風空気が、蒸発器15にて冷却される。そして蒸発器15にて冷却された冷風は、エアミックスドア39の開度に応じて、加熱用冷風通路33および冷風バイパス通路34へ流入する。   Since the vehicle air conditioner 1 of this embodiment operates as described above, the blown air blown from the blower 32 is cooled by the evaporator 15. The cold air cooled by the evaporator 15 flows into the heating cold air passage 33 and the cold air bypass passage 34 according to the opening degree of the air mix door 39.

加熱用冷風通路33へ流入した冷風は、ヒータコア36およびPTCヒータ37を通過する際に加熱されて、混合空間35にて冷風バイパス通路34を通過した冷風と混合される。そして、混合空間35にて温度調整された空調風が、混合空間35から各吹出口を介して車室内に吹き出される。   The cold air flowing into the heating cold air passage 33 is heated when passing through the heater core 36 and the PTC heater 37, and is mixed with the cold air that has passed through the cold air bypass passage 34 in the mixing space 35. Then, the conditioned air whose temperature has been adjusted in the mixing space 35 is blown out from the mixing space 35 into the vehicle compartment via each outlet.

この車室内に吹き出される空調風によって車室内の内気温Trが外気温Tamより低く冷やされる場合には、車室内の冷房が実現されており、一方、内気温Trが外気温Tamより高く加熱される場合には、車室内の暖房が実現されることになる。   When the inside air temperature Tr in the passenger compartment is cooled below the outside air temperature Tam by the conditioned air blown into the inside of the passenger compartment, cooling of the inside of the passenger compartment is realized, while the inside air temperature Tr is heated higher than the outside air temperature Tam. In such a case, heating of the passenger compartment is realized.

さらに、本実施形態の車両用空調装置1では、制御ステップS64で説明した通り、シートヒータ90およびシートファン91の停止時は、第1仮ブロワレベルf(TAO)と同じ値をブロワレベルとして決定し、シートヒータ90およびシートファン91のうち少なくとも一方の作動時は、第1仮ブロワレベルf(TAO)よりも低い値をブロワレベルとして決定する。   Furthermore, in the vehicle air conditioner 1 according to the present embodiment, as described in control step S64, when the seat heater 90 and the seat fan 91 are stopped, the same value as the first temporary blower level f (TAO) is determined as the blower level. When at least one of the seat heater 90 and the seat fan 91 is operated, a value lower than the first temporary blower level f (TAO) is determined as the blower level.

このため、シートヒータ90およびシートファン91のうち少なくとも一方が作動している場合、シートヒータ90およびシートファン91が停止している場合に比べて送風機32の送風能力(送風量)が低減されるので、送風機32の消費電力(消費エネルギー)を低減できる。   For this reason, when at least one of the seat heater 90 and the seat fan 91 is operating, the blowing capacity (air flow rate) of the blower 32 is reduced as compared with the case where the seat heater 90 and the seat fan 91 are stopped. Therefore, the power consumption (energy consumption) of the blower 32 can be reduced.

さらに、送風機32の送風能力を小さくすることで、暖房時にはヒータコア36における送風空気と冷却水との熱交換量が低減され、冷房時には蒸発器15における送風空気と冷媒との熱交換量が低減される。その結果、熱交換のための消費エネルギーを低減することができる。   Further, by reducing the blowing capacity of the blower 32, the amount of heat exchange between the blown air and the cooling water in the heater core 36 is reduced during heating, and the amount of heat exchange between the blown air and the refrigerant in the evaporator 15 is reduced during cooling. The As a result, energy consumption for heat exchange can be reduced.

具体的には、暖房時には冷却水温度を上昇させるためのエンジンEGの稼動頻度を低減でき、ひいてはエンジンEGの消費燃料を低減できる。冷房時には圧縮機11の冷媒吐出能力を低減できるので、圧縮機11の消費動力を低減できる。   Specifically, the operating frequency of the engine EG for raising the coolant temperature during heating can be reduced, and consequently the fuel consumption of the engine EG can be reduced. Since the refrigerant discharge capacity of the compressor 11 can be reduced during cooling, the power consumption of the compressor 11 can be reduced.

さらに、シートヒータ90が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な温感(暖房感)を与えることができる。また、シートファン91が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な冷感(冷房感)を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。   Furthermore, if the seat heater 90 is operating, a comfortable sensation of warmth (heating sensation) can be given to the occupant even if the volume of the air blown into the passenger compartment is small. Moreover, if the seat fan 91 is operating, a comfortable cooling feeling (cooling feeling) can be given to the occupant even if the volume of the blown air blown into the passenger compartment is small. Therefore, energy saving of air conditioning can be achieved without losing passenger comfort as much as possible.

さらに、本実施形態の車両用空調装置1では、制御ステップS1103で説明した通り、TAOが基準温度未満である場合、駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、暖房負荷が小さい場合に空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。   Further, in the vehicle air conditioner 1 of the present embodiment, as described in control step S1103, when TAO is lower than the reference temperature, the request signal output to the driving force control device 70 is a signal for stopping the operation of the engine EG. Therefore, when the heating load is small, the frequency of operation of the engine EG for air conditioning can be reduced to suppress the reduction in vehicle fuel consumption.

また、車両用空調装置1の作動モードがエコモード以外の場合、車室内設定温度Tsetとは無関係に駆動力制御装置70へ出力する要求信号を決定しているのに対し、車両用空調装置1の作動モードがエコモードの場合、TAOが基準温度以上であっても車室内設定温度Tsetが基準温度未満であれば駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、エコモード時は乗員の省エネ要求に応じて空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下を一層抑制することができる。 Further, when the operation mode of the vehicle air conditioner 1 is other than the eco mode, the request signal to be output to the driving force control device 70 is determined regardless of the vehicle interior set temperature Tset, whereas the vehicle air conditioner 1 When the operation mode is eco-mode, even if TAO is equal to or higher than the reference temperature, if the vehicle interior set temperature Tset is lower than the reference temperature, a request signal output to the driving force control device 70 is a signal for stopping the operation of the engine EG. Thus, in the eco mode, the frequency of operation of the engine EG for air conditioning can be reduced in accordance with the passenger's energy saving request, and the reduction in vehicle fuel consumption can be further suppressed.

(第2実施形態)
上記第1実施形態では、ステップS11のエンジンON要求信号決定処理において、エンジンEGを作動させる要求信号に決定する条件は(1)車両用空調装置1の作動モードがエコモード以外、TAOが基準温度以上、且つ仮の要求信号フラグf(Tw)がONになっていること、または(2)車両用空調装置1の作動モードがエコモード、TAOが基準温度以上、仮の要求信号フラグf(Tw)がON、且つ車室内設定温度Tsetが基準温度以上になっていることであるが、本第2実施形態では、上記(1)、(2)の条件を満足する場合であっても、シートヒータ90が作動を開始してから所定時間が経過するまでの間はエンジンEGを停止させる要求信号に決定する。
(Second Embodiment)
In the first embodiment, in the engine ON request signal determination process in step S11, the conditions for determining the request signal for operating the engine EG are (1) The operation mode of the vehicle air conditioner 1 is other than the eco mode, and TAO is the reference temperature. As described above, the provisional request signal flag f (Tw) is ON, or (2) the operation mode of the vehicle air conditioner 1 is the eco mode, TAO is the reference temperature or more, and the provisional request signal flag f (Tw). ) Is ON and the vehicle interior set temperature Tset is equal to or higher than the reference temperature. In the second embodiment, even if the conditions (1) and (2) are satisfied, the seat A request signal for stopping the engine EG is determined until a predetermined time elapses after the heater 90 starts operating.

ステップS11の詳細については、図10のフローチャートを用いて説明する。まず、ステップS1111では、上記第1実施形態のステップS1101と同様に、冷却水温度Twに基づくエンジンEGの作動要求信号あるいは停止要求信号の出力を行うか否かの判定に用いる判定閾値としてのエンジンON水温TwonおよびエンジンOFF水温Twoffを決定する。なお、本実施形態の制御ステップS1111は、上限温度決定手段を構成している。   Details of step S11 will be described with reference to the flowchart of FIG. First, in step S1111, similarly to step S1101 of the first embodiment, the engine as a determination threshold value used for determining whether to output an operation request signal or a stop request signal for the engine EG based on the coolant temperature Tw. The ON water temperature Twon and the engine OFF water temperature Toff are determined. In addition, control step S1111 of this embodiment comprises the upper limit temperature determination means.

続くステップS1112では、上記第1実施形態のステップS1102と同様に、冷却水温度Twに応じて、エンジンEGの作動要求信号あるいは停止要求信号を出力するか否かの仮の要求信号フラグf(Tw)を決定する。   In subsequent step S1112, as in step S1102 of the first embodiment, a temporary request signal flag f (Tw) indicating whether to output an operation request signal or a stop request signal of the engine EG according to the coolant temperature Tw. ).

続くステップS1113では、シートヒータ90が作動を開始してからの所定時間が経過したか否かの経過時間フラグf(シートヒータ)を決定する。
具体的には、シートヒータ90が作動を開始してからの経過時間が0秒以上30秒以下であれば、経過時間フラグf(シートヒータ)=1とし、それ以外の場合、経過時間フラグf(シートヒータ)=0とする。
In subsequent step S1113, an elapsed time flag f (seat heater) indicating whether or not a predetermined time has elapsed since the seat heater 90 started operating is determined.
Specifically, if the elapsed time from the start of the operation of the seat heater 90 is not less than 0 seconds and not more than 30 seconds, the elapsed time flag f (seat heater) = 1, otherwise the elapsed time flag f (Seat heater) = 0.

続くステップS1114では、エコノミースイッチ60bの投入状態(オンオフ状態)、目標吹出温度TAO、仮の要求信号フラグf(Tw)、車室内設定温度Tset、および経過時間フラグf(シートヒータ)に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、駆動力制御装置70へ出力される要求信号を決定する。   In the subsequent step S1114, based on the on state (on / off state) of the economy switch 60b, the target blowing temperature TAO, the temporary request signal flag f (Tw), the vehicle interior set temperature Tset, and the elapsed time flag f (seat heater), A request signal output to the driving force control device 70 is determined with reference to a control map stored in the air conditioning control device 50 in advance.

具体的には、ステップS1114では、図10の図表に示すように、車両用空調装置1の作動モードがエコモード以外(エコノミースイッチ60bがオフ)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。   Specifically, in step S1114, as shown in the chart of FIG. 10, when the operation mode of the vehicle air conditioner 1 is other than the eco mode (the economy switch 60b is off), the TAO sets a reference temperature that is set in advance. If it is less than (20 ° C. in the present embodiment), it is determined as a request signal for stopping the engine EG regardless of the provisional request signal flag f (Tw).

また、車両用空調装置1の作動モードがエコモード以外であって、且つTAOが基準温度以上である場合には、仮の要求信号フラグf(Tw)がON且つ経過時間フラグf(シートヒータ)=0であれば、エンジンEGを作動させる要求信号に決定し、仮の要求信号フラグf(Tw)がON且つ経過時間フラグf(シートヒータ)=1であれば、エンジンEGを停止させる要求信号に決定し、仮の要求信号フラグf(Tw)がOFFであれば、エンジンEGを停止させる要求信号に決定する。   When the operation mode of the vehicle air conditioner 1 is other than the eco mode and the TAO is equal to or higher than the reference temperature, the temporary request signal flag f (Tw) is ON and the elapsed time flag f (seat heater). If = 0, it is determined as a request signal for operating the engine EG, and if the temporary request signal flag f (Tw) is ON and the elapsed time flag f (seat heater) = 1, a request signal for stopping the engine EG If the provisional request signal flag f (Tw) is OFF, the request signal for stopping the engine EG is determined.

さらに、車両用空調装置1の作動モードがエコモード(エコノミースイッチ60bがオン)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。   Further, when the operation mode of the vehicle air conditioner 1 is the eco mode (the economy switch 60b is on), if the TAO is lower than a predetermined reference temperature (20 ° C. in the present embodiment), a temporary request signal Regardless of the flag f (Tw), it is determined as a request signal for stopping the engine EG.

また、車両用空調装置1の作動モードがエコモードであって、TAOが基準温度以上であって、且つ仮の要求信号フラグf(Tw)がONである場合には、車室内設定温度Tsetが基準温度未満であればエンジンEGを停止させる要求信号に決定し、車室内設定温度Tsetが基準温度以上且つ経過時間フラグf(シートヒータ)=0であれば、エンジンEGを作動させる要求信号に決定し、車室内設定温度Tsetが基準温度以上且つ経過時間フラグf(シートヒータ)=1であれば、エンジンEGを停止させる要求信号に決定する。なお、車室内設定温度Tsetの基準温度は、吹出口モードをバイレベルモードからフェイスモードに切り替える閾値(本実施形態では28℃:図7参照)と同じ温度が設定されている。   When the operation mode of the vehicle air conditioner 1 is the eco mode, TAO is equal to or higher than the reference temperature, and the temporary request signal flag f (Tw) is ON, the vehicle interior set temperature Tset is If it is lower than the reference temperature, it is determined as a request signal for stopping the engine EG. If the vehicle interior set temperature Tset is equal to or higher than the reference temperature and the elapsed time flag f (seat heater) = 0, it is determined as a request signal for operating the engine EG. If the vehicle interior set temperature Tset is equal to or higher than the reference temperature and the elapsed time flag f (seat heater) = 1, the request signal for stopping the engine EG is determined. Note that the reference temperature of the vehicle interior set temperature Tset is set to the same temperature as a threshold value (28 ° C. in this embodiment: see FIG. 7) for switching the air outlet mode from the bilevel mode to the face mode.

そして、車両用空調装置1の作動モードがエコモードであって、TAOが基準温度以上であって、且つ仮の要求信号フラグf(Tw)がOFFである場合には、エンジンEGを停止させる要求信号に決定する。   Then, when the operation mode of the vehicle air conditioner 1 is the eco mode, TAO is equal to or higher than the reference temperature, and the temporary request signal flag f (Tw) is OFF, a request to stop the engine EG. Decide on a signal.

これによると、シートヒータ90が作動を開始してから所定時間が経過するまでの間は、駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。   According to this, since the request signal output to the driving force control device 70 is determined as a signal for stopping the operation of the engine EG until the predetermined time elapses after the seat heater 90 starts operating, Therefore, it is possible to reduce the frequency of operation of the engine EG for suppressing the decrease in vehicle fuel consumption.

さらに、乗員が操作パネル60に設けられたシートヒータ用スイッチを操作してシートヒータ90が作動を開始したときに、乗員のスイッチ操作に連動してエンジンEGが停止するので、消費エネルギーが低減されていることを乗員に確実に認識させることができ、ひいては省エネルギーに対する意識の高い乗員の満足感を高めることができる。   Further, when the occupant operates the seat heater switch provided on the operation panel 60 to start the operation of the seat heater 90, the engine EG stops in conjunction with the occupant switch operation, so that energy consumption is reduced. The passengers can be surely recognized, and as a result, the satisfaction of the passengers with a high awareness of energy saving can be enhanced.

また、本実施形態においても、車両用空調装置1の作動モードがエコモードの場合、TAOが基準温度以上であっても車室内設定温度Tsetが基準温度未満であれば駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、乗員の省エネ要求に応じて空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。   Also in the present embodiment, when the operation mode of the vehicle air conditioner 1 is the eco mode, even if TAO is equal to or higher than the reference temperature, if the vehicle interior set temperature Tset is lower than the reference temperature, an output is made to the driving force control device 70. Since the request signal to be used is determined as a signal for stopping the operation of the engine EG, the frequency of the operation of the engine EG for air conditioning can be reduced according to the occupant's energy saving request, and the reduction in vehicle fuel consumption can be suppressed.

(第3実施形態)
上記第1実施形態では、ステップS11のエンジンON要求信号決定処理において、エンジンOFF水温Twoffを、目標吹出温度TAO、PTCヒータ37の作動による吹出温上昇量ΔTptc、および蒸発器15からの吹出空気温度(蒸発器温度)TEに基づいて決定するが、本第3実施形態では、目標吹出温度TAO、PTCヒータ37の作動による吹出温上昇量ΔTptc、および蒸発器15からの吹出空気温度(蒸発器温度)TEに基づいて決定したエンジンOFF水温Twoffを、シートヒータ90の作動状態に基づいて補正する。
(Third embodiment)
In the first embodiment, in the engine ON request signal determination process of step S11, the engine OFF water temperature Twoff is set to the target blowing temperature TAO, the blowing temperature increase ΔTptc due to the operation of the PTC heater 37, and the blowing air temperature from the evaporator 15. (Evaporator temperature) TE is determined based on TE. In the third embodiment, the target blowing temperature TAO, the blowing temperature increase ΔTptc due to the operation of the PTC heater 37, and the blowing air temperature from the evaporator 15 (vaporizer temperature) ) The engine OFF water temperature Twoff determined based on TE is corrected based on the operating state of the seat heater 90.

ステップS11の詳細については、図11のフローチャートを用いて説明する。まず、ステップS1121では、エンジンOFF水温補正量f1(シートヒータ)を決定する。具体的には、シートヒータ90が作動している場合(ON時)、エンジンOFF水温補正量f1(シートヒータ)=5に決定し、シートヒータ90が停止している場合(OFF時)、エンジンOFF水温補正量f1(シートヒータ)=0に決定する。   Details of step S11 will be described with reference to the flowchart of FIG. First, in step S1121, the engine OFF water temperature correction amount f1 (seat heater) is determined. Specifically, when the seat heater 90 is operating (when ON), the engine OFF water temperature correction amount f1 (sheet heater) is determined to be 5 and when the seat heater 90 is stopped (when OFF), the engine The OFF water temperature correction amount f1 (seat heater) = 0 is determined.

続くステップS1122では、エンジンON水温TwonおよびエンジンOFF水温Twoffを決定する。具体的には、エンジンOFF水温Twoffは、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Tw1をエンジンOFF水温補正量f1(シートヒータ)で補正した値TW2と、予め定められた基準温度(本実施形態では70℃)のうち小さい方の値に決定する。   In the subsequent step S1122, the engine ON water temperature Twon and the engine OFF water temperature Toff are determined. Specifically, the engine OFF water temperature Twoff is a value TW2 obtained by correcting the cooling water temperature Tw1 desirable for the vehicle air conditioner 1 to exhibit sufficient heating capacity with the engine OFF water temperature correction amount f1 (seat heater), and The smaller one of the determined reference temperatures (70 ° C. in the present embodiment) is determined.

ここで、冷却水温度Tw1は、上述の数式F3を用いて算出し、冷却水温度Tw1をエンジンOFF水温補正量f1(シートヒータ)で補正した値TW2は、以下の数式F4を用いて算出する。
Tw2=Tw1−f1(シートヒータ)…(F4)
一方、エンジンON水温Twonは、頻繁にエンジンがON/OFFするのを防止するため、エンジンOFF水温Twoffよりも所定の値(本実施形態では、5℃)だけ低く決定されており、この所定の値は、制御ハンチング防止のためのヒステリシス幅として設定されている。
Here, the cooling water temperature Tw1 is calculated using the above formula F3, and the value TW2 obtained by correcting the cooling water temperature Tw1 with the engine OFF water temperature correction amount f1 (seat heater) is calculated using the following formula F4. .
Tw2 = Tw1-f1 (sheet heater) (F4)
On the other hand, the engine ON water temperature Twon is determined to be lower by a predetermined value (5 ° C. in the present embodiment) than the engine OFF water temperature Toff in order to prevent frequent engine ON / OFF. The value is set as a hysteresis width for preventing control hunting.

続くステップS1123では、冷却水温度Twに応じて、エンジンEGの作動要求信号あるいは停止要求信号を出力するか否かの仮の要求信号フラグf(Tw)を決定し、続くステップS1124では、エコノミースイッチ60bの投入状態(オンオフ状態)、目標吹出温度TAO、仮の要求信号フラグf(Tw)、および車室内設定温度Tsetに基づいて、予め空調制御装置50に記憶されている制御マップを参照して、駆動力制御装置70へ出力される要求信号を決定する。   In subsequent step S1123, a temporary request signal flag f (Tw) indicating whether or not to output an operation request signal or a stop request signal of the engine EG is determined according to the coolant temperature Tw. In subsequent step S1124, an economy switch is determined. Based on the ON state (ON / OFF state) of 60b, the target blowing temperature TAO, the temporary request signal flag f (Tw), and the vehicle interior set temperature Tset, the control map stored in advance in the air conditioning control device 50 is referred to The request signal output to the driving force control device 70 is determined.

このステップS1123、S1124は、上記第1実施形態(図8)のステップS1102、S1103と同じであるので説明を省略する。   Since steps S1123 and S1124 are the same as steps S1102 and S1103 of the first embodiment (FIG. 8), description thereof is omitted.

これによると、シートヒータ90が作動中の場合、シートヒータ90が停止中の場合に比べてエンジンON水温TwonおよびエンジンOFF水温Twoffを低下させるので、ヒータコア36に導入される冷却水の温度が低下するようにエンジンEGの作動を制御することができる。このため、空調のためのエンジンEGの作動頻度を低減することができ、ひいては空調の省エネルギー化を図ることができる。   According to this, when the seat heater 90 is operating, the engine ON water temperature Twon and the engine OFF water temperature Toff are reduced compared to when the seat heater 90 is stopped, so the temperature of the cooling water introduced into the heater core 36 is reduced. Thus, the operation of the engine EG can be controlled. For this reason, the operating frequency of the engine EG for air conditioning can be reduced, and as a result, energy saving of the air conditioning can be achieved.

また、本実施形態では、ステップS8の吹出口モード決定処理において、シートヒータ90が作動中の場合、吹出口モードをフットモードからフットデフロスタモードに切り替えてデフロスタ吹出口26から吹き出される風量の割合を増加させることによって、窓曇りの発生を抑制できるようにしている。   In the present embodiment, in the air outlet mode determination process in step S8, when the seat heater 90 is in operation, the ratio of the amount of air blown from the defroster air outlet 26 by switching the air outlet mode from the foot mode to the foot defroster mode. By increasing, the occurrence of window fogging can be suppressed.

ステップS8の詳細については、図12のフローチャートを用いて説明する。まず、ステップS81では、目標吹出温度TAOに基づいて仮の吹出口モードf1(TAO)を決定する。具体的には、TAOが低温域から高温域へと上昇するにつれて吹出口モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。   Details of step S8 will be described with reference to the flowchart of FIG. First, in step S81, a provisional outlet mode f1 (TAO) is determined based on the target outlet temperature TAO. Specifically, the outlet mode is sequentially switched from the face mode to the bi-level mode to the foot mode as TAO increases from the low temperature range to the high temperature range.

続くステップS82では、シートヒータ90が作動している(ON)か否かを判定する。シートヒータ90が作動していると判定した場合(YES判定)、ステップS83へ進み仮の吹出口モードf1(TAO)がフットモードか否かを判定する。仮の吹出口モードf1(TAO)がフットモードであると判定した場合(YES判定)、吹出口モードをフットデフロスタモード(F/D)に決定する。   In a succeeding step S82, it is determined whether or not the seat heater 90 is operating (ON). When it is determined that the seat heater 90 is operating (YES determination), the process proceeds to step S83, and it is determined whether or not the temporary outlet mode f1 (TAO) is the foot mode. When it is determined that the temporary air outlet mode f1 (TAO) is the foot mode (YES determination), the air outlet mode is determined to be the foot defroster mode (F / D).

一方、ステップS83において仮の吹出口モードf1(TAO)がフットモードでないと判定した場合(NO判定)、ステップS85へ進み吹出口モードを仮の吹出口モードf1(TAO)と同じモードに決定する。   On the other hand, if it is determined in step S83 that the temporary air outlet mode f1 (TAO) is not the foot mode (NO determination), the process proceeds to step S85, and the air outlet mode is determined to be the same mode as the temporary air outlet mode f1 (TAO). .

また、ステップS82においてシートヒータ90が停止していると判定した場合(NO判定)もステップS85へ進み吹出口モードを仮の吹出口モードf1(TAO)と同じモードに決定する。   Further, when it is determined in step S82 that the seat heater 90 is stopped (NO determination), the process proceeds to step S85 and the air outlet mode is determined to be the same mode as the temporary air outlet mode f1 (TAO).

これによると、シートヒータ90が作動中の場合、デフロスタ吹出口26からの吹き出し風量割合が増加するので、窓曇りの発生を抑制することができる。   According to this, when the seat heater 90 is in operation, the ratio of the blown air volume from the defroster outlet 26 increases, so that the occurrence of window fogging can be suppressed.

以上のことから、空調のためのエンジンEGの作動頻度を低減して空調の省エネルギー化を図ることと、窓曇りの発生を抑制して乗員の快適性をすることとを両立できる。   From the above, it is possible to reduce both the operating frequency of the engine EG for air conditioning and save energy of the air conditioning, and to suppress the occurrence of window fogging and make the passengers comfortable.

(他の実施形態)
(1)上述の各実施形態では、シートヒータスイッチ60cによってシートヒータ90の加熱能力を調整し、シートファンスイッチ60dによってシートファン91の送風能力を調整する構成になっているが、これに限定されない。例えば、TAOに応じてシートヒータ90の加熱レベルを調整し、TAOに応じてシートファン91の送風能力を調整する構成になっていてもよい。
(Other embodiments)
(1) In each of the above-described embodiments, the heating capacity of the seat heater 90 is adjusted by the seat heater switch 60c, and the blowing capacity of the seat fan 91 is adjusted by the seat fan switch 60d. However, the present invention is not limited to this. . For example, the heating level of the seat heater 90 may be adjusted according to TAO, and the air blowing capability of the seat fan 91 may be adjusted according to TAO.

(2)上述の各実施形態では、エコノミースイッチ60bによってエコモードを設定するようになっているが、これに限定されない。例えば、バッテリ81の蓄電残量SOCに応じてエコモードを設定するようになっていてもよい。   (2) In each of the embodiments described above, the eco mode is set by the economy switch 60b, but the present invention is not limited to this. For example, the eco mode may be set according to the remaining power storage SOC of the battery 81.

(3)上述の実施形態では、本発明の車両用空調装置1を、プラグインハイブリッド車両の車両走行用の駆動力について詳細を述べていないが、本発明の車両用空調装置1は、エンジンEGおよび走行用電動モータの双方から直接駆動力を得て走行可能な、いわゆるパラレル型のハイブリッド車両に適用してもよい。   (3) In the above-described embodiment, the vehicle air conditioner 1 of the present invention is not described in detail with respect to the driving force for driving the vehicle of the plug-in hybrid vehicle. However, the vehicle air conditioner 1 of the present invention is the engine EG. In addition, the present invention may be applied to a so-called parallel type hybrid vehicle that can travel by directly obtaining a driving force from both the traveling electric motor.

また、エンジンEGを発電機80の駆動源として用い、発電された電力をバッテリ81に蓄え、さらに、バッテリ81に蓄えられた電力を供給されることによって作動する走行用電動モータから駆動力を得て走行する、いわゆるシリアル型のハイブリッド車両に適用してもよい。   Further, the engine EG is used as a drive source of the generator 80, the generated power is stored in the battery 81, and the driving power is obtained from the traveling electric motor that operates by being supplied with the power stored in the battery 81. The present invention may also be applied to a so-called serial type hybrid vehicle that travels in a row.

さらに、本発明の車両用空調装置1は、ハイブリッド車両に限定されるものではなく、内燃機関(エンジン)EGまたは走行用電動モータから車両走行用の駆動力を得る車両にも適用可能である。   Furthermore, the vehicle air conditioner 1 of the present invention is not limited to a hybrid vehicle, but can be applied to a vehicle that obtains driving force for traveling from an internal combustion engine (engine) EG or a traveling electric motor.

25 フット吹出口(吹出口)
26 デフロスタ吹出口(吹出口)
25a フットドア(吹出口モード切替手段)
26a デフロスタドア(吹出口モード切替手段)
32 送風機(送風手段)
36 ヒータコア(加熱手段)
50 空調制御装置
50a 送風能力制御手段
50b 吹出口モード切替手段
50f 要求信号出力手段
60a 車室内温度設定スイッチ(目標温度設定手段)
60b エコノミースイッチ(省動力優先モード設定手段)
70 駆動力制御装置(駆動力制御手段)
90 シートヒータ(補助空調手段)
91 シートファン(補助空調手段)
S1122 温度決定手段
EG エンジン(内燃機関)
25 Foot outlet (air outlet)
26 Defroster outlet (air outlet)
25a Foot door (air outlet mode switching means)
26a Defroster door (air outlet mode switching means)
32 Blower (Blower means)
36 Heater core (heating means)
DESCRIPTION OF SYMBOLS 50 Air-conditioning control apparatus 50a Fan capacity control means 50b Outlet mode switching means 50f Request signal output means 60a Car interior temperature setting switch (target temperature setting means)
60b Economy switch (power saving priority mode setting means)
70 Driving force control device (driving force control means)
90 Seat heater (auxiliary air-conditioning means)
91 Seat fan (auxiliary air-conditioning means)
S1122 Temperature determining means EG engine (internal combustion engine)

Claims (6)

車室内へ空気を送風する送風手段(32)と、
前記送風手段(32)にて送風される送風空気と熱媒体とを熱交換する熱交換手段(36、15)と、
乗員の暖房感を補う補助空調手段(90)と、
前記送風手段(32)の送風能力を制御する送風能力制御手段(50a)と
前記送風空気を車室内に吹き出す複数の吹出口(25、26)から吹き出される風量の割合を変化させて吹出口モードを切り替える吹出口モード切替手段(25a、26a、50b)とを備え、
前記複数の吹出口(25、26)は、前記送風空気を窓に向けて吹き出すデフロスタ吹出口(26)を含み、
前記送風能力制御手段(50a)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて、前記送風手段(32)の送風能力を小さくし、
前記吹出口モード切替手段(25a、26a、50b)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて前記デフロスタ吹出口(26)から吹き出される風量の割合を増加させることを特徴とする車両用空調装置。
Air blowing means (32) for blowing air into the passenger compartment;
Heat exchange means (36, 15) for exchanging heat between the blown air blown by the blower means (32) and the heat medium;
Auxiliary air-conditioning means (90 ) to supplement the passenger's feeling of heating ,
A blowing capacity control means (50a) for controlling the blowing capacity of the blowing means (32) ;
Outlet mode switching means (25a, 26a, 50b) for switching the outlet mode by changing the ratio of the amount of air blown out from the plurality of outlets (25, 26) for blowing the blown air into the vehicle interior ,
The plurality of outlets (25, 26) include a defroster outlet (26) that blows out the blown air toward a window,
The air blowing capacity control means (50a) is configured such that when the auxiliary air conditioning means (90 ) is in operation, the air blowing capacity of the air blowing means (32) is greater than when the auxiliary air conditioning means (90 ) is stopped. Reduce the
The air outlet mode switching means (25a, 26a, 50b) is configured so that the defroster air outlet (26) is more effective when the auxiliary air conditioning means (90) is in operation than when the auxiliary air conditioning means (90) is stopped. A vehicle air conditioner characterized in that the ratio of the amount of air blown from the vehicle is increased .
前記補助空調手段(90)は、その作動能力を調節可能になっており、
前記送風能力制御手段(50a)は、前記補助空調手段(90)の作動能力が高い程、前記送風手段(32)の送風能力を小さくすることを特徴とする請求項1に記載の車両用空調装置。
The auxiliary air-conditioning means (90 ) can adjust its operating capability,
The vehicular capacity control means (50a) reduces the air blowing capacity of the air blowing means (32) as the operating capacity of the auxiliary air conditioning means (90 ) is higher. Air conditioner.
車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
前記内燃機関(EG)の冷却水を熱源として、車室内へ送風される送風空気を加熱する加熱手段(36)と、
乗員の暖房感を補う補助空調手段(90)と、
前記車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
前記要求信号出力手段(50f)は、前記冷却水の温度に基づき前記内燃機関(EG)を作動させる要求信号を出力する条件が満たされている場合であっても、前記補助空調手段(90)が作動を開始してから所定時間が経過するまでの間、前記駆動力制御手段(70)に対して前記内燃機関(EG)を停止させる要求信号を出力することを特徴とする車両用空調装置。
A vehicle air conditioner including a traveling electric motor and an internal combustion engine (EG) as a driving source for outputting driving force for traveling the vehicle,
Heating means (36) for heating the blown air blown into the vehicle interior, using the cooling water of the internal combustion engine (EG) as a heat source;
Auxiliary air-conditioning means (90) for supplementing the passenger's feeling of heating;
When heating the passenger compartment, the internal combustion engine (EG) when the temperature of the cooling water reaches the lower limit temperature (Twon) with respect to the driving force control means (70) for controlling the operation of the internal combustion engine (EG). And a request signal output means (50f) for outputting a request signal for stopping the internal combustion engine (EG) when the temperature of the cooling water reaches the upper limit temperature (Twoff),
Even if the requirement signal output means (50f) is a case where a condition for outputting a request signal for operating the internal combustion engine (EG) based on the temperature of the cooling water is satisfied, the auxiliary air conditioning means (90) The vehicle air conditioner outputs a request signal for stopping the internal combustion engine (EG) to the driving force control means (70) until a predetermined time elapses after the start of operation. .
乗員の操作により、車室内目標温度(Tset)を設定するための目標温度設定手段(60a)と、
乗員の操作により、作動モードを省動力優先モードに設定するための省動力優先モード設定手段(60b)とを備え、
前記要求信号出力手段(50f)は、
前記省動力優先モードが設定されていない場合、前記車室内目標温度(Tset)とは無関係に、前記駆動力制御手段(70)に対して前記要求信号を出力し、
前記省動力優先モードが設定されている場合、前記車室内目標温度(Tset)に基づいて、前記駆動力制御手段(70)に対して前記要求信号を出力することを特徴とする請求項3に記載の車両用空調装置。
A target temperature setting means (60a) for setting the vehicle interior target temperature (Tset) by the operation of the passenger;
Power saving priority mode setting means (60b) for setting the operation mode to the power saving priority mode by the operation of the passenger,
The request signal output means (50f)
When the power saving priority mode is not set, the request signal is output to the driving force control means (70) regardless of the vehicle interior target temperature (Tset),
The said request signal is output with respect to the said driving force control means (70) based on the said vehicle interior target temperature (Tset) when the said power saving priority mode is set. The vehicle air conditioner described.
車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
車室内へ空気を送風する送風手段(32)と、
前記内燃機関(EG)の冷却水を熱源として、前記送風手段(32)にて送風される送風空気を加熱する加熱手段(36)と、
前記加熱手段(36)で加熱された前記送風空気を車室内に吹き出す複数の吹出口(25、26)と、
前記複数の吹出口(25、26)から吹き出される風量の割合を変化させて吹出口モードを切り替える吹出口モード切替手段(25a、26a、50b)と、
乗員が着座する座席に設けられ、乗員の暖房感を補う補助空調手段(90)と、
前記車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
前記複数の吹出口(25、26)は、前記加熱手段(36)で加熱された前記送風空気を窓に向けて吹き出すデフロスタ吹出口(26)を含み、
前記要求信号出力手段(50f)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて前記加熱手段(36)に導入される冷却水の温度が低下するように前記駆動力制御手段(70)に対して前記要求信号を出力し、
前記吹出口モード切替手段(25a、26a、50b)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて前記デフロスタ吹出口(26)から吹き出される風量の割合を増加させることを特徴とする車両用空調装置。
A vehicle air conditioner including a traveling electric motor and an internal combustion engine (EG) as a driving source for outputting driving force for traveling the vehicle,
Air blowing means (32) for blowing air into the passenger compartment;
Heating means (36) for heating the blown air blown by the blower means (32) using the cooling water of the internal combustion engine (EG) as a heat source;
A plurality of outlets (25, 26) for blowing out the blown air heated by the heating means (36) into a vehicle interior;
Outlet mode switching means (25a, 26a, 50b) for switching the outlet mode by changing the ratio of the amount of air blown from the plurality of outlets (25, 26);
Auxiliary air-conditioning means (90) provided in a seat on which the occupant is seated to supplement the occupant's feeling of heating;
When heating the passenger compartment, the internal combustion engine (EG) when the temperature of the cooling water reaches the lower limit temperature (Twon) with respect to the driving force control means (70) for controlling the operation of the internal combustion engine (EG). And a request signal output means (50f) for outputting a request signal for stopping the internal combustion engine (EG) when the temperature of the cooling water reaches the upper limit temperature (Twoff),
The plurality of outlets (25, 26) include a defroster outlet (26) that blows out the blown air heated by the heating means (36) toward a window,
The request signal output means (50f) is a cooling water introduced into the heating means (36) when the auxiliary air conditioning means (90) is in operation compared to when the auxiliary air conditioning means (90) is stopped. Output the request signal to the driving force control means (70) so that the temperature of
The air outlet mode switching means (25a, 26a, 50b) is configured so that the defroster air outlet (26) is more effective when the auxiliary air conditioning means (90) is in operation than when the auxiliary air conditioning means (90) is stopped. A vehicle air conditioner characterized in that the ratio of the amount of air blown from the vehicle is increased.
記下限温度(Twon)および前記上限温度(Twoff)を決定する温度決定手段(S1122)を備え、
前記温度決定手段(S1122)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて前記下限温度(Twon)および前記上限温度(Twoff)を低くすることを特徴とする請求項5に記載の車両用空調装置。
Before SL includes a lower limit temperature temperature determining means for determining (Twon) and the upper limit temperature (Twoff) (S1122),
The temperature determination means (S1122) is configured such that when the auxiliary air conditioning means (90 ) is in operation, the lower limit temperature (Twon) and the upper limit temperature (when the auxiliary air conditioning means (90 ) is stopped ) (see FIG. The vehicle air conditioner according to claim 5, wherein Twoff) is lowered.
JP2011225061A 2011-10-12 2011-10-12 Air conditioner for vehicles Expired - Fee Related JP5516544B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011225061A JP5516544B2 (en) 2011-10-12 2011-10-12 Air conditioner for vehicles
PCT/JP2012/066975 WO2013054574A1 (en) 2011-10-12 2012-07-03 Vehicular air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225061A JP5516544B2 (en) 2011-10-12 2011-10-12 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2013082398A JP2013082398A (en) 2013-05-09
JP5516544B2 true JP5516544B2 (en) 2014-06-11

Family

ID=48081636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225061A Expired - Fee Related JP5516544B2 (en) 2011-10-12 2011-10-12 Air conditioner for vehicles

Country Status (2)

Country Link
JP (1) JP5516544B2 (en)
WO (1) WO2013054574A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324272B (en) * 2013-07-02 2017-07-21 松下知识产权经营株式会社 Heating used for vehicle
JP2015051657A (en) * 2013-09-05 2015-03-19 サンデン株式会社 Casing for vehicle air conditioner
JP6201847B2 (en) * 2014-03-24 2017-09-27 株式会社デンソー Air conditioner for vehicles
JP6278155B2 (en) 2015-04-01 2018-02-14 株式会社デンソー Head-up display device
JP6535613B2 (en) * 2016-01-29 2019-06-26 株式会社デンソー Vehicle air conditioner
JP2023171036A (en) * 2022-05-20 2023-12-01 株式会社オートネットワーク技術研究所 On-vehicle device, program, and information processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308133A (en) * 2006-04-19 2007-11-29 Toyota Motor Corp Air conditioning device for vehicle
JP4321594B2 (en) * 2007-01-17 2009-08-26 株式会社デンソー Air conditioner for vehicles
JP2011068154A (en) * 2009-09-22 2011-04-07 Denso Corp Air conditioner for vehicle
JP2011148439A (en) * 2010-01-22 2011-08-04 Toyota Motor Corp Controller for vehicle

Also Published As

Publication number Publication date
WO2013054574A1 (en) 2013-04-18
JP2013082398A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5531889B2 (en) Air conditioner for vehicles
JP5533812B2 (en) Air conditioner for vehicles
JP5880840B2 (en) Air conditioner for vehicles
JP5516544B2 (en) Air conditioner for vehicles
JP2011088600A (en) Air conditioner for vehicle
JP5928225B2 (en) Air conditioner for vehicles
JP2018052165A (en) Air conditioner for vehicle
JP5472024B2 (en) Air conditioner for vehicles
JP5640936B2 (en) Air conditioner for vehicles
JP5195702B2 (en) Air conditioner for vehicles
JP5609809B2 (en) VEHICLE AIR CONDITIONER AND CONTROL DEVICE THEREOF
JP5811964B2 (en) Air conditioner for vehicles
JP2016147544A (en) Vehicular air conditioner
JP5556783B2 (en) Air conditioner for vehicles
JP5556771B2 (en) Air conditioner for vehicles
JP6630615B2 (en) Vehicle air conditioner
JP2012086681A (en) Air conditioner for vehicle
JP2016144964A (en) Air conditioner for vehicle
JP5556770B2 (en) Air conditioner for vehicles
JP5472029B2 (en) Air conditioner for vehicles
JP6566884B2 (en) Air conditioner for vehicles
JP2016070171A (en) Air conditioner for vehicle
JP2013060143A (en) Vehicular air conditioner
JP2017140883A (en) Vehicular air conditioner
JP2017140881A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees