JP5516127B2 - Zoom lens, imaging device, and zoom lens manufacturing method - Google Patents

Zoom lens, imaging device, and zoom lens manufacturing method Download PDF

Info

Publication number
JP5516127B2
JP5516127B2 JP2010142941A JP2010142941A JP5516127B2 JP 5516127 B2 JP5516127 B2 JP 5516127B2 JP 2010142941 A JP2010142941 A JP 2010142941A JP 2010142941 A JP2010142941 A JP 2010142941A JP 5516127 B2 JP5516127 B2 JP 5516127B2
Authority
JP
Japan
Prior art keywords
lens
negative
front group
lens component
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142941A
Other languages
Japanese (ja)
Other versions
JP2012008268A (en
Inventor
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010142941A priority Critical patent/JP5516127B2/en
Priority to US13/166,631 priority patent/US8830592B2/en
Priority to CN201110173964.2A priority patent/CN102298203B/en
Publication of JP2012008268A publication Critical patent/JP2012008268A/en
Application granted granted Critical
Publication of JP5516127B2 publication Critical patent/JP5516127B2/en
Priority to US14/462,103 priority patent/US9354430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、デジタル一眼レフカメラ、フィルムカメラ、ビデオカメラ等の撮影光学系に好適なズームレンズ、撮像装置、ズームレンズの製造方法に関する。   The present invention relates to a zoom lens, an image pickup apparatus, and a zoom lens manufacturing method suitable for a photographing optical system such as a digital single-lens reflex camera, a film camera, and a video camera.

従来、大画角を有するズームレンズが提案されている(例えば、特許文献1を参照。)。   Conventionally, zoom lenses having a large angle of view have been proposed (see, for example, Patent Document 1).

特開2004−21223号公報JP 2004-21223 A

しかしながら、上述のような従来のズームレンズの中で、35mm判カメラ用の大画角を有するものは、前玉径が大きいため、常用フィルターサイズを逸脱してしまう。また、従来技術を用いてズームレンズのさらなる大画角化を実現しようとすれば、非点収差、像面湾曲、コマ収差、及び歪曲収差について重大な欠点を有するズームレンズとなってしまう。したがって、従来の大画角のズームレンズにはさらなる改良の余地があった。
そこで本発明は上記問題点に鑑みてなされたものであり、小型で、諸収差を良好に補正し、高い結像性能を有する大画角のズームレンズ、撮像装置、ズームレンズの製造方法を提供することを目的とする。
However, among the conventional zoom lenses as described above, those having a large field angle for a 35 mm camera have a large front lens diameter, and thus deviate from the regular filter size. Further, if it is attempted to further increase the angle of view of the zoom lens using the conventional technology, the zoom lens has serious defects with respect to astigmatism, field curvature, coma aberration, and distortion. Therefore, there is room for further improvement in the conventional zoom lens having a large angle of view.
Accordingly, the present invention has been made in view of the above problems, and provides a zoom lens, an imaging device, and a zoom lens manufacturing method that are small in size, correct various aberrations, and have high imaging performance. The purpose is to do.

上記課題を解決するために本発明は、
物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、
前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、
以下の条件式を満足することを特徴とするズームレンズを提供する。
0.0406≦(−Fa)/|Fb|<0.600
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
また、本発明は、
物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、
前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcを少なくとも有し、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、
以下の条件式を満足することを特徴とするズームレンを提供する。
0.000<(−Fa)/|Fb|<0.650
0.50<(−Fc)/Fw≦1.883
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
Fc:前記前群内の前記接合負レンズ成分Gcの焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
また、本発明は、
物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、
前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcと、前記接合負レンズ成分Gcの像側に配置された正レンズとを有し、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、
以下の条件式を満足することを特徴とするズームレンズを提供する。
0.000<(−Fa)/|Fb|<0.600
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
In order to solve the above problems, the present invention
In order from the object side, it has a front group having negative refractive power and a rear group having positive refractive power,
The front group includes, in order from the object side, an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspheric lens component Gb having a shape that shifts to the refractive power of the lens or a shape that has a negative refractive power and the negative refractive power increases toward the periphery,
Performing zooming by changing the air spacing between the front group and the rear group,
Provided is a zoom lens that satisfies the following conditional expression.
0.0406 ≦ (−Fa) / | Fb | < 0.600
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group
The present invention also provides:
In order from the object side, it has a front group having negative refractive power and a rear group having positive refractive power,
The front group includes, in order from the object side, an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspherical lens component Gb having a negative refractive power or a shape having a negative refractive power and a negative refractive power increasing toward the periphery, and a cemented negative lens of a negative lens and a positive lens Having at least component Gc,
Performing zooming by changing the air spacing between the front group and the rear group,
Provided is a zoom lens that satisfies the following conditional expression.
0.000 <(− Fa) / | Fb | <0.650
0.50 <(− Fc) /Fw≦1.883
However,
Fa: Focal length of the aspheric lens component Ga in the front group
Fb: focal length of the aspheric lens component Gb in the front group
Fc: focal length of the cemented negative lens component Gc in the front group
Fw: focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state
The present invention also provides:
In order from the object side, it has a front group having negative refractive power and a rear group having positive refractive power,
The front group includes, in order from the object side, an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspherical lens component Gb having a negative refractive power or a shape having a negative refractive power and a negative refractive power increasing toward the periphery, and a cemented negative lens of a negative lens and a positive lens A component Gc, and a positive lens disposed on the image side of the cemented negative lens component Gc,
Performing zooming by changing the air spacing between the front group and the rear group,
Provided is a zoom lens that satisfies the following conditional expression.
0.000 <(-Fa) / | Fb | <0.600
However,
Fa: Focal length of the aspheric lens component Ga in the front group
Fb: focal length of the aspheric lens component Gb in the front group

また本発明は、
前記ズームレンズを有することを特徴とする撮像装置を提供する。
また本発明は、
物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有するズームレンズの製造方法であって、
前記前群が、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有するようにし、
前記非球面レンズ成分Gaと前記非球面レンズ成分Gbが、以下の条件式を満足するようにし、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行うようにすることを特徴とするズームレンズの製造方法を提供する。
0.0406≦(−Fa)/|Fb|<0.600
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
The present invention also provides
An imaging apparatus comprising the zoom lens is provided.
The present invention also provides
In order from the object side, a zoom lens having a front group having negative refractive power and a rear group having positive refractive power,
In order from the object side, the front group has an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspherical lens component Gb having a shape that shifts to the refractive power of the lens or a shape that has a negative refractive power and the negative refractive power increases toward the periphery,
The aspheric lens component Ga and the aspheric lens component Gb satisfy the following conditional expression:
A zoom lens manufacturing method is provided, wherein zooming is performed by changing an air gap between the front group and the rear group.
0.0406 ≦ (−Fa) / | Fb | < 0.600
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group

本発明によれば、小型で、諸収差を良好に補正し、高い結像性能を有する大画角のズームレンズ、撮像装置、ズームレンズの製造方法を提供することができる。   According to the present invention, it is possible to provide a zoom lens, an imaging apparatus, and a manufacturing method of a zoom lens that are small in size, correct various aberrations, and have high imaging performance and a large angle of view.

本願の第1実施例に係るズームレンズの構成を示す断面図である。It is sectional drawing which shows the structure of the zoom lens which concerns on 1st Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。(A), (b), and (c) are various aberrations when focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 1 of the present application, and focusing on the object at infinity in an intermediate focal length state. It is a figure which shows the various aberrations at the time of the various aberrations at the time, and the infinity object in a telephoto end state. 本願の第2実施例に係るズームレンズの構成を示す断面図である。It is sectional drawing which shows the structure of the zoom lens which concerns on 2nd Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。(A), (b), and (c) are various aberrations when focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 2 of the present application, and focusing on the object at infinity in the intermediate focal length state, respectively. It is a figure which shows the various aberrations at the time of the various aberrations at the time, and the infinity object in a telephoto end state. 本願の第3実施例に係るズームレンズの構成を示す断面図である。It is sectional drawing which shows the structure of the zoom lens which concerns on 3rd Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。(A), (b), and (c) are various aberrations when focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 3 of the present application, and focusing on the object at infinity in the intermediate focal length state, respectively. It is a figure which shows the various aberrations at the time of the various aberrations at the time, and the infinity object in a telephoto end state. 本願の第4実施例に係るズームレンズの構成を示す断面図である。It is sectional drawing which shows the structure of the zoom lens which concerns on 4th Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。(A), (b), and (c) are various aberrations when focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 4 of the present application, and focusing on the object at infinity in the intermediate focal length state, respectively. It is a figure which shows the various aberrations at the time of the various aberrations at the time, and the infinity object in a telephoto end state. 本願の第5実施例に係るズームレンズの構成を示す断面図である。It is sectional drawing which shows the structure of the zoom lens which concerns on 5th Example of this application. (a)、(b)、及び(c)はそれぞれ、本願の第5実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。(A), (b), and (c) are various aberrations when focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 5 of the present application, and focusing on the object at infinity in the intermediate focal length state, respectively. It is a figure which shows the various aberrations at the time of the various aberrations at the time, and the infinity object in a telephoto end state. 本願のズームレンズを備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the zoom lens of this application. 本願のズームレンズの製造方法を示す図である。It is a figure which shows the manufacturing method of the zoom lens of this application.

以下、本願のズームレンズ、撮像装置、ズームレンズの製造方法について説明する。
本願のズームレンズは、物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、以下の条件式(1)を満足することを特徴とする。
(1) 0.000≦(−Fa)/|Fb|<0.650
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
Hereinafter, the manufacturing method of the zoom lens, the imaging device, and the zoom lens of the present application will be described.
The zoom lens of the present application has a front group having negative refractive power and a rear group having positive refractive power in order from the object side, and the front group has negative refractive power in order from the object side. Aspherical lens component Ga having a shape in which the negative refractive power decreases toward the periphery, and a shape that has a positive refractive power and changes to a negative refractive power toward the periphery, or has a negative refractive power toward the periphery. And an aspheric lens component Gb having a shape in which the negative refractive power increases as it goes, and zooming is performed by changing the air gap between the front group and the rear group, and the following conditional expression ( 1) is satisfied.
(1) 0.000 ≦ (−Fa) / | Fb | <0.650
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group

一般に、大画角を有するレトロフォーカス型のズームレンズは、負の屈折力を有する前群が巨大化しやすく、フィルター径も巨大化する傾向にあった。35mmフルサイズの撮像領域をカバーするズームレンズ、特に画角2ω=106°を越える超広角ズームレンズは、フィルターサイズが一般的な常用サイズの77mmφフィルターを大きく越えてしまう傾向があった。
そこで、本願のズームレンズは、小型化、特に前玉径の小型化を図るために、上記構成の非球面レンズ成分Ga及び非球面レンズ成分Gbを前群に配置している。まず、非球面レンズ成分Gaを前群に配置することで、コマ収差、像面湾曲、非点収差、及び歪曲収差等の諸収差を良好に補正することができる。非球面レンズ成分Gaは、比較的近軸では大きな負の屈折力を有しており、周辺では負の屈折力が小さくなる。この構成は、歪曲収差、像面湾曲、非点収差等の軸外収差を良好にコントロールできるという特徴を有している。
In general, in a retrofocus zoom lens having a large angle of view, the front group having negative refractive power tends to be large, and the filter diameter tends to be large. Zoom lenses that cover an image area of 35 mm full size, particularly ultra-wide-angle zoom lenses with an angle of view exceeding 2ω = 106 °, have a tendency that the filter size greatly exceeds the 77 mmφ filter, which is a common regular size.
Therefore, in the zoom lens of the present application, the aspheric lens component Ga and the aspheric lens component Gb having the above-described configuration are arranged in the front group in order to reduce the size, particularly the front lens diameter. First, by arranging the aspheric lens component Ga in the front group, various aberrations such as coma, curvature of field, astigmatism, and distortion can be corrected well. The aspherical lens component Ga has a large negative refractive power at a relatively paraxial axis, and has a small negative refractive power at the periphery. This configuration has a feature that it can satisfactorily control off-axis aberrations such as distortion, field curvature, and astigmatism.

しかしながら、本願のように非球面形状が著しく変化する場合、補正過剰となるため、非球面レンズ成分Ga以外のレンズによって歪曲収差やコマ収差を補正することが必要となる。また、非球面レンズ成分Gaの周辺で負の屈折力が極端に小さくなれば、斜光線の入射高が大きくなるため、前玉径が大きくなってしまう。
そこで本願のズームレンズは、この2点を改善するために、非球面レンズ成分Gbを前群に導入している。非球面レンズ成分Gbは、所謂非球面補正板のような効果を奏するレンズである。非球面レンズ成分Gbの近軸の屈折力は比較的小さく、正でも負でもよい。そして、周辺で比較的大きな負の屈折力を有することが非球面レンズ成分Gbの特徴である。このような非球面レンズ成分Gbにより、斜光線の入射高を小さくすることができ、前玉径を小型化することができる。さらに、収差補正上、過剰になった歪曲収差、コマ収差、像面湾曲、及び非点収差を良好に補正することができる。
したがって、本願は上述のような非球面レンズ成分Ga及び非球面レンズ成分Gbを用いることで、小型で、諸収差を良好に補正し、高い結像性能を有する大画角のズームレンズを達成することができる。
However, when the aspherical shape changes remarkably as in the present application, the correction becomes excessive, so that it is necessary to correct distortion and coma with lenses other than the aspherical lens component Ga. Further, if the negative refractive power becomes extremely small around the aspheric lens component Ga, the incident height of oblique rays increases, so that the front lens diameter increases.
Therefore, the zoom lens of the present application introduces an aspheric lens component Gb into the front group in order to improve these two points. The aspheric lens component Gb is a lens that has an effect like a so-called aspheric correction plate. The paraxial refractive power of the aspheric lens component Gb is relatively small and may be positive or negative. A characteristic of the aspheric lens component Gb is that it has a relatively large negative refractive power in the periphery. By such an aspheric lens component Gb, the incident height of oblique rays can be reduced, and the front lens diameter can be reduced. Further, it is possible to satisfactorily correct distortion, coma, curvature of field, and astigmatism that are excessive in terms of aberration correction.
Therefore, the present application uses the aspheric lens component Ga and the aspheric lens component Gb as described above to achieve a zoom lens with a large angle of view that is small, corrects various aberrations well, and has high imaging performance. be able to.

次に、本願のズームレンズの特徴を各条件式に基づいて説明する。
上記条件式(1)は、前群内の非球面レンズ成分Gaと非球面レンズ成分Gbの近軸の屈折力の比を規定する条件式である。なお、いずれも「レンズ成分」と記しているのは、所謂複合型非球面レンズを念頭に置いているためである。樹脂とガラス材料の複合型非球面レンズの場合、樹脂部は独立して存在することはできないため、一般の接合レンズとは異なり、全体で1枚のレンズと考えるのが妥当である。したがって、本願の条件式(1)の対応値を計算する際には、非球面レンズ成分Gaや非球面レンズ成分Gbが複合型非球面レンズである場合、樹脂部とガラスレンズ部の合成した近軸の焦点距離を用いるものとする。
本願のズームレンズは、非球面レンズ成分Gaの近軸の焦点距離が比較的小さい、即ち屈折力が大きく、非球面レンズ成分Gbの近軸の焦点距離が比較的大きい、即ち屈折力が小さいことが特徴である。この特徴による効果は、上述のように歪曲収差、コマ収差、像面湾曲、及び非点収差を良好に補正することができ、かつ前玉径の小径化が可能になることである。
Next, features of the zoom lens of the present application will be described based on the conditional expressions.
The conditional expression (1) is a conditional expression that defines the ratio of paraxial refractive powers of the aspheric lens component Ga and the aspheric lens component Gb in the front group. Note that the reason why all are described as “lens components” is because a so-called composite aspherical lens is taken into consideration. In the case of a composite aspherical lens made of a resin and a glass material, the resin portion cannot exist independently. Therefore, unlike a general cemented lens, it is appropriate to consider it as a single lens as a whole. Therefore, when calculating the corresponding value of the conditional expression (1) of the present application, when the aspheric lens component Ga or the aspheric lens component Gb is a composite aspheric lens, the resin portion and the glass lens portion are combined. The focal length of the axis shall be used.
The zoom lens of the present application has a relatively small paraxial focal length of the aspheric lens component Ga, that is, a large refractive power, and a relatively large paraxial focal length of the aspheric lens component Gb, that is, a small refractive power. Is a feature. The effect of this feature is that distortion, coma, field curvature, and astigmatism can be corrected well as described above, and the front lens diameter can be reduced.

本願のズームレンズの条件式(1)の対応値が上限値を上回ると、非球面レンズ成分Gaの近軸の焦点距離の絶対値が大きくなる、即ち近軸の負の屈折力が小さくなる。この場合、斜光線の入射高が大きくなり、前玉径の大型化を招いてしまうため好ましくない。一方では、非球面レンズ成分Gbの近軸の焦点距離が小さく、即ち近軸の屈折力が大きくなる。この場合、広角端状態におけるコマ収差と像面湾曲と非点収差、及び望遠端状態におけるコマ収差と球面収差が悪化してしまうため好ましくない。
なお、本願の効果をより確実にするために、条件式(1)の上限値を0.625以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の上限値を0.600以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の上限値を0.550以下とすることがより好ましく、これによってコマ収差等をより良好に補正することができる。また、本願の効果をより確実にするために、条件式(1)の上限値を0.300以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の上限値を0.200以下とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(1)の上限値を0.100以下とすることがより好ましい。
When the corresponding value of the conditional expression (1) of the zoom lens of the present application exceeds the upper limit value, the absolute value of the paraxial focal length of the aspheric lens component Ga increases, that is, the paraxial negative refractive power decreases. In this case, the incident height of oblique rays increases, leading to an increase in the diameter of the front lens, which is not preferable. On the other hand, the paraxial focal length of the aspheric lens component Gb is small, that is, the paraxial refractive power is large. In this case, coma aberration, field curvature and astigmatism in the wide-angle end state, and coma aberration and spherical aberration in the telephoto end state are deteriorated, which is not preferable.
In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 0.625 or less. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1) to 0.600 or less. In order to further secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1) to 0.550 or less, whereby coma aberration and the like can be corrected more favorably. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1) to 0.300 or less. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 0.200 or less. In order to maximize the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 0.100 or less.

一方、本願のズームレンズの条件式(1)の対応値が下限値を下回ると、非球面レンズ成分Gaが正の屈折力を有することになる。この場合、斜光線の入射高が大きくなり、前群全体が巨大化してしまう。また、広角端状態におけるコマ収差と像面湾曲、及び望遠端状態におけるコマ収差と像面湾曲と非点収差が悪化してしまうため好ましくない。
なお、本願の効果をより確実にするために、条件式(1)の下限値を0.005以上とすることがより好ましく、これによって諸収差をより良好に補正することができる。また、本願の効果を最大限に発揮するために、条件式(1)の下限値を0.010以上とすることがより好ましい。
On the other hand, when the corresponding value of the conditional expression (1) of the zoom lens of the present application is lower than the lower limit value, the aspheric lens component Ga has a positive refractive power. In this case, the incident height of oblique rays increases and the entire front group becomes enormous. Further, it is not preferable because coma aberration and field curvature in the wide-angle end state, and coma aberration, field curvature and astigmatism in the telephoto end state are deteriorated.
In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1) to 0.005 or more, whereby various aberrations can be corrected more favorably. In order to maximize the effects of the present application, it is more preferable to set the lower limit of conditional expression (1) to 0.010 or more.

また、本願のズームレンズは、以下の条件式(2)を満足することが望ましい。
(2) 0.50<(−Fn)/√(Fw・Ft)<1.30
ただし、
Fn:無限遠物体合焦時の前記前群の焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
Ft:望遠端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
In addition, it is desirable that the zoom lens of the present application satisfies the following conditional expression (2).
(2) 0.50 <(− Fn) / √ (Fw · Ft) <1.30
However,
Fn: Focal length of the front group when focusing on an object at infinity Fw: Focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state Ft: Said focal length when focusing on an object at infinity in the telephoto end state Focal length of the entire zoom lens system

条件式(2)は、前群の焦点距離に関する条件式である。なお、条件式(2)の対応値が1.00のとき、本願のズームレンズの全長が広角端状態と望遠端状態で一致することを意味する。また、条件式(2)の対応値が1.00より小さいときには全長が望遠端状態で最大になり、当該対応値が1.00より大きいときには全長が広角端状態で最大になることを意味する。
本願のズームレンズの条件式(2)の対応値が上限値を上回ると、前群の焦点距離の絶対値が大きくなる、即ち前群の負の屈折力が小さくなる。また、前述のように本願のズームレンズの全長が広角端状態において最大になる。この場合、広角端状態において斜光線の入射高が大きくなり、前玉径及びフィルター径が増大し、周辺光量も低下してしまうため好ましくない。また、収差補正上は、変倍によるコマ収差の変動が大きくなる傾向があるため好ましくない。
なお、本願の効果をより確実にするために、条件式(2)の上限値を1.20以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の上限値を1.10以下とすることがより好ましく、これによって諸収差をより良好に補正することができる。また、本願の効果をより確実にするために、条件式(2)の上限値を1.05以下とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(2)の上限値を1.02以下とすることがより好ましい。
Conditional expression (2) is a conditional expression related to the focal length of the front group. When the corresponding value of conditional expression (2) is 1.00, it means that the entire length of the zoom lens according to the present application matches in the wide-angle end state and the telephoto end state. Further, when the corresponding value of conditional expression (2) is smaller than 1.00, the total length is maximum in the telephoto end state, and when the corresponding value is larger than 1.00, the total length is maximum in the wide-angle end state. .
When the corresponding value of conditional expression (2) of the zoom lens of the present application exceeds the upper limit value, the absolute value of the focal length of the front group increases, that is, the negative refractive power of the front group decreases. As described above, the entire length of the zoom lens of the present application is maximized in the wide-angle end state. In this case, the incident height of oblique rays increases in the wide-angle end state, the front lens diameter and the filter diameter increase, and the peripheral light amount also decreases, which is not preferable. In addition, aberration correction is not preferable because coma variation due to zooming tends to increase.
In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 1.20 or less. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 1.10 or less, whereby various aberrations can be corrected more favorably. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2) to 1.05 or less. In order to maximize the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 1.02 or less.

一方、本願のズームレンズの条件式(2)の対応値が下限値を下回ると、前群の焦点距離の絶対値が小さく、即ち負の屈折力が大きくなる。また、前述のように本願のズームレンズの全長が望遠端状態において最大になる。この場合、広角端状態における歪曲収差、コマ収差、像面湾曲の変倍による変動、望遠端状態における球面収差を補正することが困難になる。
なお、本願の効果をより確実にするために、条件式(2)の下限値を0.60以上とすることがより好ましく、これによってコマ収差等の諸収差の補正に有利となる。また、本願の効果をより確実にするために、条件式(2)の下限値を0.70以上とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(2)の下限値を0.80以上とすることがより好ましい。
On the other hand, when the corresponding value of conditional expression (2) of the zoom lens of the present application is below the lower limit value, the absolute value of the focal length of the front group is small, that is, the negative refractive power is large. Further, as described above, the entire length of the zoom lens of the present application is maximized in the telephoto end state. In this case, it becomes difficult to correct distortion aberration, coma aberration in the wide-angle end state, fluctuation due to zooming of the field curvature, and spherical aberration in the telephoto end state.
In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 0.60 or more, which is advantageous for correction of various aberrations such as coma. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2) to 0.70 or more. In order to maximize the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 0.80 or more.

また、本願のズームレンズは、以下の条件式(3)を満足することが望ましい。
(3) 1.50<Fp/Fw<3.00
ただし、
Fp:無限遠物体合焦時の前記後群の焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
Moreover, it is desirable that the zoom lens of the present application satisfies the following conditional expression (3).
(3) 1.50 <Fp / Fw <3.00
However,
Fp: Focal length of the rear group when focusing on an object at infinity Fw: Focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state

条件式(3)は、本願のズームレンズの無限遠物体合焦時の後群の焦点距離の大きさ、即ち後群の屈折力を規定する条件式である。
本願のズームレンズの条件式(3)の対応値が上限値を上回ると、後群の焦点距離が大きくなる、即ち後群の屈折力が小さくなることを意味する。この場合、変倍時の後群の移動量が増加し、全長が大きくなる。また、収差補正上は変倍による像面湾曲の変動が大きくなるため好ましくない。
なお、本願の効果をより確実にするために、条件式(3)の上限値を2.90以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を2.80以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を2.70以下とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(3)の上限値を2.45以下とすることがより好ましい。
Conditional expression (3) is a conditional expression that defines the magnitude of the focal length of the rear group when the zoom lens of the present application is focused on an object at infinity, that is, the refractive power of the rear group.
If the corresponding value of conditional expression (3) of the zoom lens of the present application exceeds the upper limit value, it means that the focal length of the rear group is increased, that is, the refractive power of the rear group is decreased. In this case, the amount of movement of the rear group at the time of zooming increases and the overall length increases. Also, aberration correction is not preferable because the variation in field curvature due to zooming becomes large.
In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 2.90 or less. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (3) to 2.80 or less. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 2.70 or less. In order to maximize the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 2.45 or less.

一方、本願のズームレンズの条件式(3)の対応値が下限値を下回ると、後群の焦点距離が小さくなる、即ち後群の屈折力が大きくなることを意味する。この場合、球面収差とコマ収差が悪化し、変倍による球面収差とコマ収差の変動が大きくなるため好ましくない。
なお、本願の効果をより確実にするために、条件式(3)の下限値を1.70以上とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の下限値を1.80以上とすることがより好ましく、これによって諸収差をより良好に補正することができる。また、本願の効果をより確実にするために、条件式(3)の下限値を1.90以上とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(3)の下限値を2.00以上とすることがより好ましい。
On the other hand, if the corresponding value of the conditional expression (3) of the zoom lens of the present application is below the lower limit value, it means that the focal length of the rear group is reduced, that is, the refractive power of the rear group is increased. In this case, the spherical aberration and the coma aberration are deteriorated, and fluctuations of the spherical aberration and the coma aberration due to the magnification change become large.
In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 1.70 or more. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (3) to 1.80 or more, whereby various aberrations can be corrected more favorably. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (3) to 1.90 or more. In order to maximize the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 2.00 or more.

また、本願のズームレンズは、前記前群が、前記非球面レンズ成分Gaと、前記非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcを少なくとも有することが望ましい。この接合負レンズ成分Gcによって、より良好な収差補正、特にコマ収差、倍率色収差、像面湾曲の良好な補正を行うことができる。   In the zoom lens according to the present application, the front group includes the aspheric lens component Ga and the aspheric lens component Gb, and further includes at least a cemented negative lens component Gc of a negative lens and a positive lens. Is desirable. With this cemented negative lens component Gc, it is possible to perform better aberration correction, particularly correction of coma aberration, lateral chromatic aberration, and field curvature.

また、本願のズームレンズは、以下の条件式(4)を満足することが望ましい。
(4) 0.50<(−Fc)/Fw<5.00
ただし、
Fc:前記前群内の前記接合負レンズ成分Gcの焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
Moreover, it is desirable that the zoom lens of the present application satisfies the following conditional expression (4).
(4) 0.50 <(− Fc) / Fw <5.00
However,
Fc: focal length of the cemented negative lens component Gc in the front group Fw: focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state

条件式(4)は、前群内の接合負レンズ成分Gcの焦点距離の大きさ、即ち接合負レンズ成分Gcの屈折力を規定する条件式である。
本願のズームレンズの条件式(4)の対応値が上限値を上回ると、接合負レンズ成分Gcの焦点距離の絶対値が大きくなる、即ち接合負レンズ成分Gcの負の屈折力が小さくなる。このため、十分に補正されていた倍率色収差と像面湾曲が悪化してしまう。
なお、本願の効果をより確実にするために、条件式(4)の上限値を4.00以下とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の上限値を3.00以下とすることがより好ましく、これによって諸収差の補正が有利になる。また、本願の効果をより確実にするために、条件式(4)の上限値を2.80以下とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(4)の上限値を2.50以下とすることがより好ましい。
Conditional expression (4) is a conditional expression that defines the magnitude of the focal length of the cemented negative lens component Gc in the front group, that is, the refractive power of the cemented negative lens component Gc.
When the corresponding value of conditional expression (4) of the zoom lens of the present application exceeds the upper limit value, the absolute value of the focal length of the cemented negative lens component Gc increases, that is, the negative refractive power of the cemented negative lens component Gc decreases. For this reason, the lateral chromatic aberration and the curvature of field, which have been sufficiently corrected, are deteriorated.
In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 4.00 or less. In order to further secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4) to 3.00 or less, which makes it advantageous to correct various aberrations. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4) to 2.80 or less. In order to maximize the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 2.50 or less.

一方、本願のズームレンズの条件式(4)の対応値が下限値を下回ると、接合負レンズ成分Gcの焦点距離の絶対値が小さくなる、即ち接合負レンズ成分Gcの負の屈折力が大きくなる。このため、画角の差による倍率色収差の変化と、波長毎の像面湾曲の残差が発生してしまうため好ましくない。
なお、本願の効果をより確実にするために、条件式(4)の下限値を0.60以上とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の下限値を0.80以上とすることがより好ましく、これによって諸収差をより良好に補正することができる。また、本願の効果をより確実にするために、条件式(4)の下限値を1.00以上とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(4)の下限値を1.30以上とすることがより好ましい。
On the other hand, when the corresponding value of conditional expression (4) of the zoom lens of the present application is less than the lower limit value, the absolute value of the focal length of the cemented negative lens component Gc decreases, that is, the negative refractive power of the cemented negative lens component Gc increases. Become. For this reason, a change in chromatic aberration of magnification due to a difference in the angle of view and a residual in field curvature for each wavelength occur, which is not preferable.
In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.60 or more. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4) to 0.80 or more, whereby various aberrations can be corrected more favorably. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 1.00 or more. In order to maximize the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 1.30 or more.

また、本願のズームレンズは、前記前群が、前記非球面レンズ成分Gaと、前記非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcと、前記接合負レンズ成分Gcの像側に配置された正レンズとを有することが望ましい。この構成により、特に広角端状態における歪曲収差と像面湾曲とコマ収差、及び望遠端状態におけるコマ収差と球面収差を良好に補正することができる。   In the zoom lens of the present application, the front group includes the aspheric lens component Ga and the aspheric lens component Gb, and further includes a negative lens component Gc of a negative lens and a positive lens, and the cemented lens. It is desirable to have a positive lens disposed on the image side of the negative lens component Gc. With this configuration, it is possible to satisfactorily correct distortion, field curvature, and coma in the wide-angle end state, and coma and spherical aberration in the telephoto end state.

また、本願のズームレンズは、以下の条件式(5)を満足することが望ましい。
(5) 0.00<Ncn−Ncp
ただし、
Ncn:前記接合負レンズ成分Gc中の前記負レンズの媒質のd線(波長λ=587.6nm)に対する屈折率
Ncp:前記接合負レンズ成分Gc中の前記正レンズの媒質のd線(波長λ=587.6nm)に対する屈折率
Moreover, it is desirable that the zoom lens of the present application satisfies the following conditional expression (5).
(5) 0.00 <Ncn-Ncp
However,
Ncn: refractive index with respect to d-line (wavelength λ = 587.6 nm) of the negative lens medium in the cemented negative lens component Gc Ncp: d-line (wavelength λ) of the medium of the positive lens in the cemented negative lens component Gc = 587.6 nm)

条件式(5)は、接合負レンズ成分Gc中の負レンズと正レンズの屈折率の差を規定する条件式である。本願のズームレンズでは、接合負レンズ成分Gc中の負レンズの屈折率が正レンズの屈折率よりも大きいことが収差補正上有効である。
したがって、本願のズームレンズの条件式(5)の対応値が下限値を下回ると、前記負レンズの屈折率が相対的に小さくなる。このため、ペッツバール和の最適な設定が困難になり、像面湾曲と非点収差が悪化してしまうため好ましくない。
なお、本願の効果をより確実にするために、条件式(5)の下限値を0.05以上とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5)の下限値を0.10以上とすることがより好ましく、これによって諸収差をより良好に補正することができる。また、本願の効果をより確実にするために、条件式(5)の下限値を0.15以上とすることがより好ましい。また、本願の効果を最大限に発揮するために、条件式(5)の下限値を0.20以上とすることがより好ましい。
Conditional expression (5) is a conditional expression that defines the difference in refractive index between the negative lens and the positive lens in the cemented negative lens component Gc. In the zoom lens of the present application, it is effective for aberration correction that the refractive index of the negative lens in the cemented negative lens component Gc is larger than the refractive index of the positive lens.
Therefore, when the corresponding value of conditional expression (5) of the zoom lens of the present application is below the lower limit value, the refractive index of the negative lens becomes relatively small. For this reason, it becomes difficult to optimally set the Petzval sum, and the field curvature and astigmatism are deteriorated.
In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.05 or more. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (5) to 0.10 or more, whereby various aberrations can be corrected more favorably. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.15 or more. In order to maximize the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.20 or more.

また、本願のズームレンズは、前記前群内の前記非球面レンズ成分Gaが、像側の面が周辺へ向かうにつれて曲率半径が大きくなる形状の非球面であり、物体側の面が周辺へ向かうにつれて曲率半径が小さくなる形状の非球面であることが望ましい。この構成により、特に広角端状態における歪曲収差、像面湾曲、及びコマ収差を良好に補正することができる。
また、本願のズームレンズは、前記前群内の前記非球面レンズ成分Gbが、ガラスと樹脂による複合レンズで構成されていることが望ましい。この構成により、非球面レンズ成分Gbを安価に製造することができ、また硝材を自由に選択することができる。そして結果的に、より良い光学性能を達成することができるため好ましい。
また、本願の撮像装置は、上述した構成のズームレンズを備えたことを特徴とする。これにより、小型で、諸収差を良好に補正し、高い結像性能を有する大画角の撮像装置を実現することができる。
In the zoom lens of the present application, the aspheric lens component Ga in the front group is an aspheric surface having a radius of curvature that increases as the image-side surface moves toward the periphery, and the object-side surface moves toward the periphery. It is desirable that the aspherical surface has a shape with a radius of curvature that decreases with time. With this configuration, it is possible to satisfactorily correct distortion, field curvature, and coma particularly in the wide-angle end state.
In the zoom lens of the present application, it is desirable that the aspheric lens component Gb in the front group is composed of a compound lens made of glass and resin. With this configuration, the aspheric lens component Gb can be manufactured at low cost, and the glass material can be freely selected. As a result, it is preferable because better optical performance can be achieved.
Further, the imaging apparatus of the present application includes the zoom lens having the above-described configuration. As a result, it is possible to realize an imaging device with a large angle of view that is small, corrects various aberrations, and has high imaging performance.

また、本願のズームレンズの製造方法は、物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有するズームレンズの製造方法であって、前記前群が、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有するようにし、前記非球面レンズ成分Gaと前記非球面レンズ成分Gbが、以下の条件式(1)を満足するようにし、前記前群と前記後群との間の空気間隔を変化させることによって変倍を行うようにすることを特徴とする。
(1) 0.000≦(−Fa)/|Fb|<0.650
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
斯かる本願のズームレンズの製造方法により、小型で、諸収差を良好に補正し、高い結像性能を有する大画角のズームレンズを製造することができる。
The zoom lens manufacturing method of the present application is a zoom lens manufacturing method including a front group having a negative refractive power and a rear group having a positive refractive power in order from the object side. In order from the object side, the aspherical lens component Ga has a negative refracting power and a shape in which the negative refracting power decreases as it goes to the periphery, and has a positive refracting power and becomes negative as it goes to the periphery. An aspheric lens component Gb having a shape that turns or has a negative refractive power and a negative refractive power that increases toward the periphery, the aspheric lens component Ga and the aspheric lens component Gb, The following conditional expression (1) is satisfied, and zooming is performed by changing the air gap between the front group and the rear group.
(1) 0.000 ≦ (−Fa) / | Fb | <0.650
However,
Fa: Focal length of the aspheric lens component Ga in the front group Fb: Focal length of the aspheric lens component Gb in the front group By the method for manufacturing a zoom lens of the present application, the zoom lens is small and has various aberrations. A zoom lens having a large angle of view and high imaging performance can be manufactured.

以下、本願の数値実施例に係るズームレンズを添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係るズームレンズの構成を示す断面図である。
本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する前群Gnと、正の屈折力を有する後群Gpとから構成されている。
前群Gnは、物体側から順に、非球面レンズ成分Gaと、非球面レンズ成分Gbと、接合負レンズ成分Gcと、両凸形状の正レンズL15とからなる。
非球面レンズ成分Gaは、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有しており、像側に凹面を向けた両側非球面メニスカスレンズL11からなる。
非球面レンズ成分Gbは、合成で正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状を有しており、樹脂部とガラスレンズとを複合してなる複合型非球面正レンズL12からなる。
接合負レンズ成分Gcは、物体側から順に、両凹形状の負レンズL13と物体側に凸面を向けた正メニスカスレンズL14との接合負レンズからなる。
Hereinafter, zoom lenses according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a zoom lens according to Example 1 of the present application.
The zoom lens according to the present embodiment includes, in order from the object side, a front group Gn having negative refractive power and a rear group Gp having positive refractive power.
The front group Gn includes, in order from the object side, an aspheric lens component Ga, an aspheric lens component Gb, a cemented negative lens component Gc, and a biconvex positive lens L15.
The aspheric lens component Ga has a negative refractive power and a shape in which the negative refractive power decreases as it goes toward the periphery, and includes a double-sided aspheric meniscus lens L11 with a concave surface facing the image side.
The aspherical lens component Gb has a composite positive aspherical power and a shape that changes to a negative refractive power toward the periphery, and is a composite aspherical positive lens formed by combining a resin portion and a glass lens. L12.
The cemented negative lens component Gc is composed of, in order from the object side, a cemented negative lens of a biconcave negative lens L13 and a positive meniscus lens L14 having a convex surface facing the object side.

後群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合正レンズと、開口絞りSと、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、両凹形状の負レンズL25と両凸形状の正レンズL26との接合正レンズと、像側に凸面を向けた正メニスカスレンズL27と像側に凸面を向けた負メニスカスレンズL28との接合正レンズとからなる。
また、本実施例に係るズームレンズでは、前群Gnと後群Gpとの間の空気間隔を変化させることによって、広角端状態から望遠端状態への変倍を行う。なお、図1中の矢印は、広角端状態から望遠端状態への変倍時の前群Gn及び後群Gpの移動軌跡を示している。
The rear group Gp includes, in order from the object side, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, an aperture stop S, and a biconvex positive lens L23. A negative meniscus lens L24 having a concave surface facing the object side, a cemented positive lens of a biconcave negative lens L25 and a biconvex positive lens L26, a positive meniscus lens L27 having a convex surface facing the image side, and the image side It consists of a cemented positive lens with a negative meniscus lens L28 having a convex surface.
In the zoom lens according to the present embodiment, zooming from the wide-angle end state to the telephoto end state is performed by changing the air gap between the front group Gn and the rear group Gp. The arrows in FIG. 1 indicate the movement trajectories of the front group Gn and the rear group Gp during zooming from the wide-angle end state to the telephoto end state.

以下の表1に、本実施例に係るズームレンズの諸元値を掲げる。
表1において、Fは焦点距離、BFはバックフォーカスを示す。
[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、面番号の左側に付された米印「*」は非球面を示している。
[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の円錐係数と非球面係数を示す。
X(y)=(y/r)/[1+{1−κ(y/r)}1/2]
+A4×y+A6×y+A8×y+A10×y10+A12×y12
ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐係数をκ、n次の非球面係数をAnとする。なお、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。
Table 1 below lists specifications of the zoom lens according to the present example.
In Table 1, F indicates the focal length and BF indicates the back focus.
In [Surface data], the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surfaces, d is the distance between the lens surfaces, nd is the refractive index with respect to the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). Further, the object plane indicates the object plane, the variable indicates the variable plane spacing, the (aperture S) indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. Further, an asterisk “*” attached to the left side of the surface number indicates an aspherical surface.
[Aspherical data] shows the conical coefficient and aspherical coefficient when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
X (y) = (y 2 / r) / [1+ {1-κ (y 2 / r 2 )} 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12
Here, the height in the direction perpendicular to the optical axis is y, the amount of displacement in the optical axis direction at height y is X (y), the radius of curvature of the reference sphere (paraxial radius of curvature) is r, the cone coefficient is κ, Let the n-th order aspheric coefficient be An. “En” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”.

[各種データ]において、FNOはFナンバー、ωは半画角(単位:度)、Yは像高、TLは光学系全長、Σdは最も物体側のレンズ面(第1面)から最も像側のレンズ面までの距離、d0は物体面から第1面までの距離、di(i:整数)は第i面の可変の面間隔をそれぞれ示す。なお、1-POSは広角端状態における無限遠物体合焦時、2-POSは中間焦点距離状態における無限遠物体合焦時、3-POSは望遠端状態における無限遠物体合焦時をそれぞれ示す。
ここで、表1に掲載されている焦点距離F、曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
In [Various data], FNO is the F number, ω is the half angle of view (unit: degree), Y is the image height, TL is the total length of the optical system, and Σd is the most object side lens surface (first surface). , D0 is a distance from the object surface to the first surface, and di (i: integer) is a variable surface interval of the i-th surface. 1-POS indicates when an object at infinity is in focus at the wide-angle end state, 2-POS indicates when the object at infinity is in focus at the intermediate focal length state, and 3-POS indicates when the object at infinity is in focus at the telephoto end state. .
Here, the focal length F, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
*1) 120.0323 3.0000 1.744430 49.53
*2) 14.8111 11.0000 1.000000
3) 320.0965 3.0000 1.516800 64.12
4) 70.0000 1.0000 1.553890 38.09
*5) -993.8663 4.5000 1.000000
6) -56.5907 2.0000 1.816000 46.63
7) 17.0196 7.0000 1.603420 38.02
8) 73.8459 0.1000 1.000000
9) 32.4760 5.0000 1.717360 29.52
10) -157.9244 可変 1.000000
11) 23.8096 1.0000 1.795000 45.30
12) 15.6593 3.0000 1.497820 82.56
13) -1090.6220 6.0000 1.000000
14) (絞りS) ∞ 0.7000 1.000000
15) 26.3980 2.5000 1.497820 82.56
16) -79.3224 4.6000 1.000000
17) -39.5467 8.0000 1.744000 44.79
18) -162.0229 2.0000 1.000000
19) -92.3426 1.0000 1.755000 52.29
20) 20.8016 5.0000 1.518230 58.89
21) -21.0542 0.1000 1.000000
22) -344.4872 5.5000 1.497820 82.56
23) -13.5094 1.0000 1.834810 42.72
24) -31.7192 BF 1.000000
像面 ∞

[非球面データ]
第1面
κ = 12.7063
A4 = 2.52869E-07
A6 = 5.51300E-10
A8 = 4.77913E-13
A10 = -3.07832E-16
A12 = -0.49549E-19
第2面
κ = -0.0947
A4 = -6.70196E-06
A6 = -1.78783E-08
A8 = -5.15142E-12
A10 = -4.83366E-14
A12 = 0.21367E-15
第5面
κ = 0.000
A4 = 2.50710E-05
A6 = 2.09871E-08
A8 = 1.63612E-10
A10 = -1.20936E-13
A12 = -0.17594E-14

[各種データ]
ズーム比 1.77

1-POS 2-POS 3-POS
F 16.48 〜 24.00 〜 29.10
FNO 4.41 〜 5.29 〜 5.88
ω 53.27 〜 41.72 〜 36.32°
Y 21.60 〜 21.60 〜 21.60
TL 138.15 〜 135.51 〜 138.24
Σd 99.84 〜 84.47 〜 78.57
BF 38.31 〜 51.04 〜 59.67

1-POS 2-POS 3-POS
F 16.48000 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83854 7.47382 1.57260
BF 38.31325 51.03766 59.66724

[レンズ群データ]
群 始面 F
Gn 1 -21.85385
Gp 11 36.97834

[条件式対応値]
(1) (−Fa)/|Fb| = 0.0620
(2) (−Fn)/√(Fw・Ft) = 0.998
(3) Fp/Fw = 2.243
(4) (−Fc)/Fw = 1.636
(5) Ncn−Ncp = 0.2126
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
* 1) 120.0323 3.0000 1.744430 49.53
* 2) 14.8111 11.0000 1.000000
3) 320.0965 3.0000 1.516800 64.12
4) 70.0000 1.0000 1.553890 38.09
* 5) -993.8663 4.5000 1.000000
6) -56.5907 2.0000 1.816000 46.63
7) 17.0196 7.0000 1.603420 38.02
8) 73.8459 0.1000 1.000000
9) 32.4760 5.0000 1.717360 29.52
10) -157.9244 Variable 1.000000
11) 23.8096 1.0000 1.795000 45.30
12) 15.6593 3.0000 1.497820 82.56
13) -1090.6220 6.0000 1.000000
14) (Aperture S) ∞ 0.7000 1.000000
15) 26.3980 2.5000 1.497820 82.56
16) -79.3224 4.6000 1.000000
17) -39.5467 8.0000 1.744000 44.79
18) -162.0229 2.0000 1.000000
19) -92.3426 1.0000 1.755000 52.29
20) 20.8016 5.0000 1.518230 58.89
21) -21.0542 0.1000 1.000000
22) -344.4872 5.5000 1.497820 82.56
23) -13.5094 1.0000 1.834810 42.72
24) -31.7192 BF 1.000000
Image plane ∞

[Aspherical data]
First side κ = 12.7063
A4 = 2.52869E-07
A6 = 5.51300E-10
A8 = 4.77913E-13
A10 = -3.07832E-16
A12 = -0.49549E-19
Second surface κ = -0.0947
A4 = -6.70196E-06
A6 = -1.78783E-08
A8 = -5.15142E-12
A10 = -4.83366E-14
A12 = 0.21367E-15
Fifth surface κ = 0.000
A4 = 2.50710E-05
A6 = 2.09871E-08
A8 = 1.63612E-10
A10 = -1.20936E-13
A12 = -0.17594E-14

[Various data]
Zoom ratio 1.77

1-POS 2-POS 3-POS
F 16.48-24.00-29.10
FNO 4.41-5.29-5.88
ω 53.27 to 41.72 to 36.32 °
Y 21.60-21.60-21.60
TL 138.15-135.51-138.24
Σd 99.84 to 84.47 to 78.57
BF 38.31 to 51.04 to 59.67

1-POS 2-POS 3-POS
F 16.48000 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83854 7.47382 1.57260
BF 38.31325 51.03766 59.66724

[Lens group data]
Group start surface F
Gn 1 -21.85385
Gp 11 36.97834

[Conditional expression values]
(1) (−Fa) /|Fb|=0.0620
(2) (−Fn) / √ (Fw · Ft) = 0.998
(3) Fp / Fw = 2.243
(4) (−Fc) /Fw=1.636
(5) Ncn-Ncp = 0.2126

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。
各収差図において、FNOはFナンバー、Yは像高、dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示している。また、非点収差図において実線はサジタル像面、点線はメリジオナル像面を示し、コマ収差図における実線はメリジオナルコマ収差を示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。
各諸収差図より、本実施例に係るズームレンズは、球面収差、像面湾曲、非点収差、及びコマ収差を含む諸収差が良好に補正されていることがわかる。
2 (a), 2 (b), and 2 (c) respectively show various aberrations and intermediate focal length states at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 1 of the present application. It is a figure which shows the various aberrations at the time of focusing on an object at infinity and various aberrations at the time of focusing on an object at infinity in the telephoto end state.
In each aberration diagram, FNO is an F number, Y is an image height, d is a d-line (λ = 587.6 nm), and g is a g-line (λ = 435.8 nm). The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, and the astigmatism diagram and the distortion diagram show the maximum image height. In the astigmatism diagram, the solid line indicates the sagittal image plane, the dotted line indicates the meridional image plane, and the solid line in the coma aberration diagram indicates the meridional coma aberration. Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below.
From the various aberration diagrams, it can be seen that the zoom lens according to the present example is well corrected for various aberrations including spherical aberration, field curvature, astigmatism, and coma.

(第2実施例)
図3は、本願の第2実施例に係るズームレンズの構成を示す断面図である。
本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する前群Gnと、正の屈折力を有する後群Gpとから構成されている。
前群Gnは、物体側から順に、非球面レンズ成分Gaと、非球面レンズ成分Gbと、接合負レンズ成分Gcと、両凸形状の正レンズL15とからなる。
非球面レンズ成分Gaは、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有しており、像側に凹面を向けた両側非球面メニスカスレンズL11からなる。
非球面レンズ成分Gbは、合成で正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状を有しており、樹脂部とガラスレンズとを複合してなる複合型非球面正レンズL12からなる。
接合負レンズ成分Gcは、物体側から順に、両凹形状の負レンズL13と物体側に凸面を向けた正メニスカスレンズL14との接合負レンズからなる。
(Second embodiment)
FIG. 3 is a cross-sectional view showing a configuration of a zoom lens according to Example 2 of the present application.
The zoom lens according to the present embodiment includes, in order from the object side, a front group Gn having negative refractive power and a rear group Gp having positive refractive power.
The front group Gn includes, in order from the object side, an aspheric lens component Ga, an aspheric lens component Gb, a cemented negative lens component Gc, and a biconvex positive lens L15.
The aspheric lens component Ga has a negative refractive power and a shape in which the negative refractive power decreases as it goes toward the periphery, and includes a double-sided aspheric meniscus lens L11 with a concave surface facing the image side.
The aspherical lens component Gb has a composite positive aspherical power and a shape that changes to a negative refractive power toward the periphery, and is a composite aspherical positive lens formed by combining a resin portion and a glass lens. L12.
The cemented negative lens component Gc is composed of, in order from the object side, a cemented negative lens of a biconcave negative lens L13 and a positive meniscus lens L14 having a convex surface facing the object side.

後群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合正レンズと、開口絞りSと、両凸形状の正レンズL23と、両凹形状の負レンズL24と、両凹形状の負レンズL25と両凸形状の正レンズL26とを接合してなる接合正レンズと、両凹形状の正レンズL27と像側に凸面を向けた負メニスカスレンズL28との接合負レンズとからなる。
また、本実施例に係るズームレンズでは、前群Gnと後群Gpとの間の空気間隔を変化させることによって、広角端状態から望遠端状態への変倍を行う。なお、図3中の矢印は、広角端状態から望遠端状態への変倍時の前群Gn及び後群Gpの移動軌跡を示している。
以下の表2に、本実施例に係るズームレンズの諸元値を示す。
The rear group Gp includes, in order from the object side, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, an aperture stop S, and a biconvex positive lens L23. A biconcave negative lens L24, a cemented positive lens formed by cementing a biconcave negative lens L25 and a biconvex positive lens L26, and a biconcave positive lens L27 and a convex surface facing the image side. It consists of a cemented negative lens with a negative meniscus lens L28.
In the zoom lens according to the present embodiment, zooming from the wide-angle end state to the telephoto end state is performed by changing the air gap between the front group Gn and the rear group Gp. Note that the arrows in FIG. 3 indicate the movement trajectories of the front group Gn and the rear group Gp during zooming from the wide-angle end state to the telephoto end state.
Table 2 below shows specification values of the zoom lens according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
*1) 82.7358 3.0000 1.744429 49.52
*2) 14.1379 9.0000 1.000000
3) 75.5790 3.0000 1.516800 64.12
4) 40.0000 0.5000 1.553890 38.09
*5) 83.8029 6.0000 1.000000
6) -77.5324 2.0000 1.816000 46.63
7) 17.4612 6.5000 1.603420 38.02
8) 70.9358 1.0500 1.000000
9) 34.6649 5.0000 1.717360 29.52
10) -214.0325 可変 1.000000
11) 27.4177 1.0000 1.788000 47.38
12) 15.1887 3.0000 1.497820 82.56
13) -218.1559 6.0000 1.000000
14) (絞りS) ∞ 0.7000 1.000000
15) 23.2434 2.8000 1.487490 70.45
16) -45.2239 4.6270 1.000000
17) -39.0084 8.0000 1.755000 52.29
18) 114.1192 2.0000 1.000000
19) -94.3568 1.0000 1.755000 52.29
20) 26.8051 5.0000 1.518230 58.89
21) -18.1493 0.1000 1.000000
22) 471.7364 5.5000 1.497820 82.56
23) -12.7396 1.0000 1.834810 42.72
24) -33.4851 BF 1.000000
像面 ∞

[非球面データ]
第1面
κ = 4.0103
A4 = 1.16908E-06
A6 = 4.58987E-10
A8 = 4.52741E-14
A10 = -7.38248E-16
A12 = 0.0000

第2面
κ = -0.0638
A4 = -7.94597E-07
A6 = -5.98169E-09
A8 = 2.11786E-11
A10 = -5.51429E-14
A12 = 0.81892E-16
第5面
κ = -5.6064
A4 = 2.51241E-05
A6 = 2.20702E-08
A8 = 5.50134E-11
A10 = -1.42359E-13
A12 = -0.72010E-15

[各種データ]
ズーム比 1.77

1-POS 2-POS 3-POS
F 16.48 〜 24.00 〜 29.10
FNO 4.40 〜 5.27 〜 5.87
ω 53.20 〜 41.29 〜 35.96°
Y 21.60 〜 21.60 〜 21.60
TL 137.91 〜 135.13 〜 137.77
Σd 99.61 〜 84.25 〜 78.35
BF 38.29 〜 50.88 〜 59.41

1-POS 2-POS 3-POS
F 16.48028 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83788 7.47624 1.57589
BF 38.29222 50.87810 59.41406

[レンズ群データ]
群 始面 F
Gn 1 -21.97176
Gp 11 36.77451

[条件式対応値]
(1) (−Fa)/|Fb| = 0.0292
(2) (−Fn)/√(Fw・Ft) = 1.003
(3) Fp/Fw = 2.232
(4) (−Fc)/Fw = 1.883
(5) Ncn−Ncp = 0.2126
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
* 1) 82.7358 3.0000 1.744429 49.52
* 2) 14.1379 9.0000 1.000000
3) 75.5790 3.0000 1.516800 64.12
4) 40.0000 0.5000 1.553890 38.09
* 5) 83.8029 6.0000 1.000000
6) -77.5324 2.0000 1.816000 46.63
7) 17.4612 6.5000 1.603420 38.02
8) 70.9358 1.0500 1.000000
9) 34.6649 5.0000 1.717360 29.52
10) -214.0325 Variable 1.000000
11) 27.4177 1.0000 1.788000 47.38
12) 15.1887 3.0000 1.497820 82.56
13) -218.1559 6.0000 1.000000
14) (Aperture S) ∞ 0.7000 1.000000
15) 23.2434 2.8000 1.487490 70.45
16) -45.2239 4.6270 1.000000
17) -39.0084 8.0000 1.755000 52.29
18) 114.1192 2.0000 1.000000
19) -94.3568 1.0000 1.755000 52.29
20) 26.8051 5.0000 1.518230 58.89
21) -18.1493 0.1000 1.000000
22) 471.7364 5.5000 1.497820 82.56
23) -12.7396 1.0000 1.834810 42.72
24) -33.4851 BF 1.000000
Image plane ∞

[Aspherical data]
First side κ = 4.0103
A4 = 1.16908E-06
A6 = 4.58987E-10
A8 = 4.52741E-14
A10 = -7.38248E-16
A12 = 0.0000

Second surface κ = -0.0638
A4 = -7.94597E-07
A6 = -5.98169E-09
A8 = 2.11786E-11
A10 = -5.51429E-14
A12 = 0.81892E-16
Fifth surface κ = -5.6064
A4 = 2.51241E-05
A6 = 2.20702E-08
A8 = 5.50134E-11
A10 = -1.42359E-13
A12 = -0.72010E-15

[Various data]
Zoom ratio 1.77

1-POS 2-POS 3-POS
F 16.48-24.00-29.10
FNO 4.40-5.27-5.87
ω 53.20 to 41.29 to 35.96 °
Y 21.60-21.60-21.60
TL 137.91-135.13-137.77
Σd 99.61-84.25-78.35
BF 38.29-50.88-59.41

1-POS 2-POS 3-POS
F 16.48028 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83788 7.47624 1.57589
BF 38.29222 50.87810 59.41406

[Lens group data]
Group start surface F
Gn 1 -21.97176
Gp 11 36.77451

[Conditional expression values]
(1) (−Fa) /|Fb|=0.0292
(2) (−Fn) / √ (Fw · Ft) = 1.003
(3) Fp / Fw = 2.232
(4) (−Fc) /Fw=1.883
(5) Ncn-Ncp = 0.2126

図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第2実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。
各諸収差図より、本実施例に係るズームレンズは、球面収差、像面湾曲、非点収差、及びコマ収差を含む諸収差が良好に補正されていることがわかる。
4 (a), 4 (b), and 4 (c) respectively show various aberrations and intermediate focal length states at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 2 of the present application. It is a figure which shows the various aberrations at the time of focusing on an object at infinity and various aberrations at the time of focusing on an object at infinity in the telephoto end state.
From the various aberration diagrams, it can be seen that the zoom lens according to the present example is well corrected for various aberrations including spherical aberration, field curvature, astigmatism, and coma.

(第3実施例)
図5は、本願の第3実施例に係るズームレンズの構成を示す断面図である。
本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する前群Gnと、正の屈折力を有する後群Gpとから構成されている。
前群Gnは、物体側から順に、非球面レンズ成分Gaと、非球面レンズ成分Gbと、接合負レンズ成分Gcと、両凸形状の正レンズL15とからなる。
非球面レンズ成分Gaは、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有しており、像側に凹面を向けた両側非球面メニスカスレンズL11からなる。
非球面レンズ成分Gbは、合成で正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状を有しており、樹脂部とガラスレンズとを複合してなる複合型非球面正レンズL12からなる。
接合負レンズ成分Gcは、物体側から順に、両凹形状の負レンズL13と物体側に凸面を向けた正メニスカスレンズL14との接合負レンズからなる。
(Third embodiment)
FIG. 5 is a cross-sectional view showing a configuration of a zoom lens according to Example 3 of the present application.
The zoom lens according to the present embodiment includes, in order from the object side, a front group Gn having negative refractive power and a rear group Gp having positive refractive power.
The front group Gn includes, in order from the object side, an aspheric lens component Ga, an aspheric lens component Gb, a cemented negative lens component Gc, and a biconvex positive lens L15.
The aspheric lens component Ga has a negative refractive power and a shape in which the negative refractive power decreases as it goes toward the periphery, and includes a double-sided aspheric meniscus lens L11 with a concave surface facing the image side.
The aspherical lens component Gb has a composite positive aspherical power and a shape that changes to a negative refractive power toward the periphery, and is a composite aspherical positive lens formed by combining a resin portion and a glass lens. L12.
The cemented negative lens component Gc is composed of, in order from the object side, a cemented negative lens of a biconcave negative lens L13 and a positive meniscus lens L14 having a convex surface facing the object side.

後群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合正レンズと、開口絞りSと、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、両凹形状の負レンズL25と両凸形状の正レンズL26との接合正レンズと、像側に凸面を向けた正メニスカスレンズL27と像側に凸面を向けた負メニスカスレンズL28との接合正レンズとからなる。
また、本実施例に係るズームレンズでは、前群Gnと後群Gpとの間の空気間隔を変化させることによって、広角端状態から望遠端状態への変倍を行う。なお、図5中の矢印は、広角端状態から望遠端状態への変倍時の前群Gn及び後群Gpの移動軌跡を示している。
以下の表3に、本実施例に係るズームレンズの諸元値を示す。
The rear group Gp includes, in order from the object side, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, an aperture stop S, and a biconvex positive lens L23. A negative meniscus lens L24 having a concave surface facing the object side, a cemented positive lens of a biconcave negative lens L25 and a biconvex positive lens L26, a positive meniscus lens L27 having a convex surface facing the image side, and the image side It consists of a cemented positive lens with a negative meniscus lens L28 having a convex surface.
In the zoom lens according to the present embodiment, zooming from the wide-angle end state to the telephoto end state is performed by changing the air gap between the front group Gn and the rear group Gp. Note that the arrows in FIG. 5 indicate the movement trajectories of the front group Gn and the rear group Gp during zooming from the wide-angle end state to the telephoto end state.
Table 3 below shows specification values of the zoom lens according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
*1) 118.9748 3.0000 1.744429 49.52
*2) 14.7456 11.0000 1.000000
3) 284.3220 3.0000 1.516800 64.12
4) 70.0000 1.0000 1.553890 38.09
*5) -763.4452 4.5000 1.000000
6) -55.5066 2.0000 1.816000 46.63
7) 17.0766 7.0000 1.603420 38.02
8) 75.0652 0.1000 1.000000
9) 32.6574 5.0000 1.717360 29.52
10) -157.9244 可変 1.000000
11) 23.8427 1.0000 1.795000 45.30
12) 15.6582 3.0000 1.497820 82.56
13) -1090.6220 6.0000 1.000000
14) (絞りS) ∞ 0.7000 1.000000
15) 26.3772 2.5000 1.497820 82.56
16) -77.6232 4.6000 1.000000
17) -39.5697 8.0000 1.744000 44.79
18) -168.4305 2.0000 1.000000
19) -92.1532 1.0000 1.755000 52.29
20) 20.6673 5.0000 1.518230 58.89
21) -21.0064 0.1000 1.000000
22) -353.1908 5.5000 1.497820 82.56
23) -13.5255 1.0000 1.834810 42.72
24) -31.7192 BF 1.000000
像面 ∞

[非球面データ]
第1面
κ = 12.7326
A4 = 2.83606E-07
A6 = 4.94742E-10
A8 = 4.56144E-13
A10 = -3.11089E-16
A12 = 0.14795E-19
第2面
κ = -0.0904
A4 = -6.75619E-06
A6 = -1.80695E-08
A8 = -4.67950E-12
A10 = -4.79969E-14
A12 = 0.21420E-15
第5面
κ = 0.000
A4 = 2.50236E-05
A6 = 2.14959E-08
A8 = 1.65356E-10
A10 = -1.19372E-13
A12 = -0.17563E-14

[各種データ]
ズーム比 1.77

1-POS 2-POS 3-POS
F 16.48 〜 24.00 〜 29.10
FNO 4.41 〜 5.29 〜 5.88
ω 53.17 〜 41.64 〜 36.27°
Y 21.60 〜 21.60 〜 21.60
TL 138.13 〜 135.48 〜 138.21
Σd 99.84 〜 84.47 〜 78.57
BF 38.29 〜 51.01 〜 59.64

1-POS 2-POS 3-POS
F 16.48000 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83880 7.47127 1.56898
BF 38.29336 51.01228 59.63815

[レンズ群データ]
群 始面 F
Gn 1 -21.86055
Gp 11 36.97375

[条件式対応値]
(1) (−Fa)/|Fb| = 0.0702
(2) (−Fn)/√(Fw・Ft) = 0.998
(3) Fp/Fw = 2.244
(4) (−Fc)/Fw = 1.663
(5) Ncn−Ncp = 0.2126
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞
* 1) 118.9748 3.0000 1.744429 49.52
* 2) 14.7456 11.0000 1.000000
3) 284.3220 3.0000 1.516800 64.12
4) 70.0000 1.0000 1.553890 38.09
* 5) -763.4452 4.5000 1.000000
6) -55.5066 2.0000 1.816000 46.63
7) 17.0766 7.0000 1.603420 38.02
8) 75.0652 0.1000 1.000000
9) 32.6574 5.0000 1.717360 29.52
10) -157.9244 Variable 1.000000
11) 23.8427 1.0000 1.795000 45.30
12) 15.6582 3.0000 1.497820 82.56
13) -1090.6220 6.0000 1.000000
14) (Aperture S) ∞ 0.7000 1.000000
15) 26.3772 2.5000 1.497820 82.56
16) -77.6232 4.6000 1.000000
17) -39.5697 8.0000 1.744000 44.79
18) -168.4305 2.0000 1.000000
19) -92.1532 1.0000 1.755000 52.29
20) 20.6673 5.0000 1.518230 58.89
21) -21.0064 0.1000 1.000000
22) -353.1908 5.5000 1.497820 82.56
23) -13.5255 1.0000 1.834810 42.72
24) -31.7192 BF 1.000000
Image plane ∞

[Aspherical data]
First surface κ = 12.7326
A4 = 2.83606E-07
A6 = 4.94742E-10
A8 = 4.56144E-13
A10 = -3.11089E-16
A12 = 0.14795E-19
Second surface κ = -0.0904
A4 = -6.75619E-06
A6 = -1.80695E-08
A8 = -4.67950E-12
A10 = -4.79969E-14
A12 = 0.21420E-15
Fifth surface κ = 0.000
A4 = 2.50236E-05
A6 = 2.14959E-08
A8 = 1.65356E-10
A10 = -1.19372E-13
A12 = -0.17563E-14

[Various data]
Zoom ratio 1.77

1-POS 2-POS 3-POS
F 16.48-24.00-29.10
FNO 4.41-5.29-5.88
ω 53.17 to 41.64 to 36.27 °
Y 21.60-21.60-21.60
TL 138.13-135.48-138.21
Σd 99.84 to 84.47 to 78.57
BF 38.29-51.01-59.64

1-POS 2-POS 3-POS
F 16.48000 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83880 7.47127 1.56898
BF 38.29336 51.01228 59.63815

[Lens group data]
Group start surface F
Gn 1 -21.86055
Gp 11 36.97375

[Conditional expression values]
(1) (−Fa) /|Fb|=0.0702
(2) (−Fn) / √ (Fw · Ft) = 0.998
(3) Fp / Fw = 2.244
(4) (−Fc) /Fw=1.663
(5) Ncn-Ncp = 0.2126

図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第3実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。
各諸収差図より、本実施例に係るズームレンズは、球面収差、像面湾曲、非点収差、及びコマ収差を含む諸収差が良好に補正されていることがわかる。
6 (a), 6 (b), and 6 (c) respectively show various aberrations and intermediate focal length states at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 3 of the present application. It is a figure which shows the various aberrations at the time of focusing on an object at infinity and various aberrations at the time of focusing on an object at infinity in the telephoto end state.
From the various aberration diagrams, it can be seen that the zoom lens according to the present example is well corrected for various aberrations including spherical aberration, field curvature, astigmatism, and coma.

(第4実施例)
図7は、本願の第4実施例に係るズームレンズの構成を示す断面図である。
本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する前群Gnと、正の屈折力を有する後群Gpとから構成されている。
前群Gnは、物体側から順に、非球面レンズ成分Gaと、非球面レンズ成分Gbと、接合負レンズ成分Gcと、両凸形状の正レンズL15とからなる。
非球面レンズ成分Gaは、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有しており、像側に凹面を向けた両側非球面メニスカスレンズL11からなる。
非球面レンズ成分Gbは、負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面負メニスカスレンズL12からなる。
接合負レンズ成分Gcは、物体側から順に、両凹形状の負レンズL13と物体側に凸面を向けた正メニスカスレンズL14との接合負レンズからなる。
(Fourth embodiment)
FIG. 7 is a sectional view showing the structure of a zoom lens according to Example 4 of the present application.
The zoom lens according to the present embodiment includes, in order from the object side, a front group Gn having negative refractive power and a rear group Gp having positive refractive power.
The front group Gn includes, in order from the object side, an aspheric lens component Ga, an aspheric lens component Gb, a cemented negative lens component Gc, and a biconvex positive lens L15.
The aspheric lens component Ga has a negative refractive power and a shape in which the negative refractive power decreases as it goes toward the periphery, and includes a double-sided aspheric meniscus lens L11 with a concave surface facing the image side.
The aspheric lens component Gb includes an aspheric negative meniscus lens L12 having a negative refractive power and a shape in which the negative refractive power increases toward the periphery.
The cemented negative lens component Gc is composed of, in order from the object side, a cemented negative lens of a biconcave negative lens L13 and a positive meniscus lens L14 having a convex surface facing the object side.

後群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL23と、開口絞りSと、両凸形状の正レンズL24と、物体側に凹面を向けた負メニスカスレンズL25と、両凹形状の負レンズL26と両凸形状の正レンズL27とを接合してなる接合正レンズと、像側に凸面を向けた正メニスカスレンズL28と像側に凸面を向けた負メニスカスレンズL29との接合負レンズとからなる。
また、本実施例に係るズームレンズでは、前群Gnと後群Gpとの間の空気間隔を変化させることによって、広角端状態から望遠端状態への変倍を行う。なお、図7中の矢印は、広角端状態から望遠端状態への変倍時の前群Gn及び後群Gpの移動軌跡を示している。
以下の表4に、本実施例に係るズームレンズの諸元値を示す。
The rear group Gp includes a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. L23, aperture stop S, biconvex positive lens L24, negative meniscus lens L25 having a concave surface facing the object side, biconcave negative lens L26, and biconvex positive lens L27 are cemented together. And a cemented negative lens of a positive meniscus lens L28 having a convex surface facing the image side and a negative meniscus lens L29 having a convex surface facing the image side.
In the zoom lens according to the present embodiment, zooming from the wide-angle end state to the telephoto end state is performed by changing the air gap between the front group Gn and the rear group Gp. 7 indicate the movement trajectories of the front group Gn and the rear group Gp during zooming from the wide-angle end state to the telephoto end state.
Table 4 below shows specification values of the zoom lens according to the present example.

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
*1) 143.1913 3.0000 1.744430 49.53
*2) 15.6782 11.0000 1.000000
3) 410.4013 3.0000 1.713000 53.89
*4) 206.9456 4.5000 1.000000
5) -89.1834 2.0000 1.816000 46.63
6) 15.1616 7.5000 1.603420 38.02
7) 40.8243 0.1000 1.000000
8) 26.8914 5.5000 1.717360 29.52
9) -157.9244 可変 1.000000
10) 46.8881 1.0000 1.804000 46.58
11) 16.8336 2.5000 1.516800 64.12
12) 141.4373 0.1000 1.000000
13) 25.7582 2.5000 1.497820 82.56
14) 353.5585 6.0000 1.000000
15) (絞りS) ∞ 0.7000 1.000000
16) 29.4255 2.5000 1.497820 82.56
17) -63.3534 4.6000 1.000000
18) -51.5779 8.0000 1.744000 44.79
19) -65.0596 2.0000 1.000000
20) -78.0641 1.0000 1.755000 52.29
21) 17.7780 5.0000 1.518230 58.89
22) -21.4040 0.1000 1.000000
23) -67.9060 5.5000 1.497820 82.56
24) -12.6974 1.0000 1.834810 42.72
25) -31.7192 BF 1.000000
像面 ∞

[非球面データ]
第1面
κ = 17.6085
A4 = 1.79431E-06
A6 = 6.80079E-10
A8 = -1.86415E-13
A10 = -8.67549E-16
A12 = 0.16129E-17

第2面
κ = -0.2161
A4 = -7.04903E-06
A6 = -1.23127E-08
A8 = -1.85973E-11
A10 = -5.29912E-14
A12 = 0.27950E-15
第4面
κ = 0.000
A4 = 2.47716E-05
A6 = 2.95962E-08
A8 = 1.29703E-10
A10 = -1.58560E-13
A12 = -0.20420E-14

[各種データ]
ズーム比 1.88

1-POS 2-POS 3-POS
F 16.48 〜 24.92 〜 31.01
FNO 4.32 〜 5.19 〜 5.86
ω 52.87 〜 40.72 〜 34.68°
Y 21.60 〜 21.60 〜 21.60
TL 140.236 〜 139.54 〜 144.237
Σd 101.939 〜 86.57 〜 80.673
BF 38.297 〜 52.964 〜 63.565

1-POS 2-POS 3-POS
F 16.48254 24.91831 31.01490
d0 ∞ ∞ ∞
d9 22.83854 7.47382 1.57260
BF 38.29718 52.96439 63.56450

[レンズ群データ]
群 始面 F
Gn 1 -20.74244
Gp 10 36.06477

[条件式対応値]
(1) (−Fa)/|Fb| = 0.0406
(2) (−Fn)/√(Fw・Ft) = 0.884
(3) Fp/Fw = 2.188
(4) (−Fc)/Fw = 1.5222
(5) Ncn−Ncp = 0.2126
(Table 4) Fourth Example
[Surface data]
Surface number r d nd νd
Object ∞
* 1) 143.1913 3.0000 1.744430 49.53
* 2) 15.6782 11.0000 1.000000
3) 410.4013 3.0000 1.713000 53.89
* 4) 206.9456 4.5000 1.000000
5) -89.1834 2.0000 1.816000 46.63
6) 15.1616 7.5000 1.603420 38.02
7) 40.8243 0.1000 1.000000
8) 26.8914 5.5000 1.717360 29.52
9) -157.9244 Variable 1.000000
10) 46.8881 1.0000 1.804000 46.58
11) 16.8336 2.5000 1.516800 64.12
12) 141.4373 0.1000 1.000000
13) 25.7582 2.5000 1.497820 82.56
14) 353.5585 6.0000 1.000000
15) (Aperture S) ∞ 0.7000 1.000000
16) 29.4255 2.5000 1.497820 82.56
17) -63.3534 4.6000 1.000000
18) -51.5779 8.0000 1.744000 44.79
19) -65.0596 2.0000 1.000000
20) -78.0641 1.0000 1.755000 52.29
21) 17.7780 5.0000 1.518230 58.89
22) -21.4040 0.1000 1.000000
23) -67.9060 5.5000 1.497820 82.56
24) -12.6974 1.0000 1.834810 42.72
25) -31.7192 BF 1.000000
Image plane ∞

[Aspherical data]
First side κ = 17.6085
A4 = 1.79431E-06
A6 = 6.80079E-10
A8 = -1.86415E-13
A10 = -8.67549E-16
A12 = 0.16129E-17

Second surface κ = -0.2161
A4 = -7.04903E-06
A6 = -1.23127E-08
A8 = -1.85973E-11
A10 = -5.29912E-14
A12 = 0.27950E-15
4th surface κ = 0.000
A4 = 2.47716E-05
A6 = 2.95962E-08
A8 = 1.29703E-10
A10 = -1.58560E-13
A12 = -0.20420E-14

[Various data]
Zoom ratio 1.88

1-POS 2-POS 3-POS
F 16.48 to 24.92 to 31.01
FNO 4.32 to 5.19 to 5.86
ω 52.87 to 40.72 to 34.68 °
Y 21.60-21.60-21.60
TL 140.236-139.54-144.237
Σd 101.939 to 86.57 to 80.673
BF 38.297-52.964-63.565

1-POS 2-POS 3-POS
F 16.48254 24.91831 31.01490
d0 ∞ ∞ ∞
d9 22.83854 7.47382 1.57260
BF 38.29718 52.96439 63.56450

[Lens group data]
Group start surface F
Gn 1 -20.74244
Gp 10 36.06477

[Conditional expression values]
(1) (−Fa) /|Fb|=0.0406
(2) (-Fn) / √ (Fw · Ft) = 0.884
(3) Fp / Fw = 2.188
(4) (−Fc) /Fw=1.5222
(5) Ncn-Ncp = 0.2126

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第4実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。
各諸収差図より、本実施例に係るズームレンズは、球面収差、像面湾曲、非点収差、及びコマ収差を含む諸収差が良好に補正されていることがわかる。
FIGS. 8A, 8B, and 8C are graphs showing various aberrations and intermediate focal length states at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 4 of the present application, respectively. It is a figure which shows the various aberrations at the time of focusing on an object at infinity and various aberrations at the time of focusing on an object at infinity in the telephoto end state.
From the various aberration diagrams, it can be seen that the zoom lens according to the present example is well corrected for various aberrations including spherical aberration, field curvature, astigmatism, and coma.

(第5実施例)
図9は、本願の第5実施例に係るズームレンズの構成を示す断面図である。
本実施例に係るズームレンズは、物体側から順に、負の屈折力を有する前群Gnと、正の屈折力を有する後群Gpと、固定群Gsとから構成されている。
前群Gnは、物体側から順に、非球面レンズ成分Gaと、非球面レンズ成分Gbと、接合負レンズ成分Gcと、両凸形状の正レンズL15とからなる。
非球面レンズ成分Gaは、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有しており像側に凹面を向けた両側非球面メニスカスレンズL11からなる。
非球面レンズ成分Gbは、合成で正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状を有しており樹脂部とガラスレンズとを複合してなる複合型非球面正レンズL12からなる。
接合負レンズ成分Gcは、物体側から順に、両凹形状の負レンズL13と物体側に凸面を向けた正メニスカスレンズL14との接合負レンズからなる。
後群Gpは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合正レンズと、開口絞りSと、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、両凹形状の負レンズL25と両凸形状の正レンズL26との接合正レンズと、像側に凸面を向けた正メニスカスレンズL27と像側に凸面を向けた負メニスカスレンズL28との接合正レンズとからなる。
固定群Gsは、像側に凸面を向けた負メニスカスレンズL31のみからなる。
また、本実施例に係るズームレンズでは、前群Gnと後群Gpとの間の空気間隔を変化させることによって、広角端状態から望遠端状態への変倍を行う。なお、固定群Gsの位置は、変倍に際して固定である。また、図9中の矢印は、広角端状態から望遠端状態への変倍時の前群Gn及び後群Gpの移動軌跡を示している。
以下の表5に、本実施例に係るズームレンズの諸元値を示す。
(5th Example)
FIG. 9 is a sectional view showing the structure of a zoom lens according to Example 5 of the present application.
The zoom lens according to the present embodiment includes, in order from the object side, a front group Gn having a negative refractive power, a rear group Gp having a positive refractive power, and a fixed group Gs.
The front group Gn includes, in order from the object side, an aspheric lens component Ga, an aspheric lens component Gb, a cemented negative lens component Gc, and a biconvex positive lens L15.
The aspheric lens component Ga has a negative refracting power and a shape in which the negative refracting power decreases as it goes to the periphery, and is composed of a double-sided aspheric meniscus lens L11 having a concave surface facing the image side.
The aspherical lens component Gb has a shape that has a positive refracting power and turns to a negative refracting power toward the periphery, and is a composite aspherical positive lens L12 formed by combining a resin portion and a glass lens. Consists of.
The cemented negative lens component Gc is composed of, in order from the object side, a cemented negative lens of a biconcave negative lens L13 and a positive meniscus lens L14 having a convex surface facing the object side.
The rear group Gp includes, in order from the object side, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, an aperture stop S, and a biconvex positive lens L23. A negative meniscus lens L24 having a concave surface facing the object side, a cemented positive lens of a biconcave negative lens L25 and a biconvex positive lens L26, a positive meniscus lens L27 having a convex surface facing the image side, and the image side It consists of a cemented positive lens with a negative meniscus lens L28 having a convex surface.
The fixed group Gs includes only a negative meniscus lens L31 having a convex surface facing the image side.
In the zoom lens according to the present embodiment, zooming from the wide-angle end state to the telephoto end state is performed by changing the air gap between the front group Gn and the rear group Gp. Note that the position of the fixed group Gs is fixed during zooming. Further, the arrows in FIG. 9 indicate the movement trajectories of the front group Gn and the rear group Gp during zooming from the wide-angle end state to the telephoto end state.
Table 5 below shows specification values of the zoom lens according to the present example.

(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞
*1) 120.0323 3.0000 1.744430 49.53
*2) 14.8111 11.0000 1.000000
3) 320.0965 3.0000 1.516800 64.12
4) 70.0000 1.0000 1.553890 38.09
*5) -993.8663 4.5000 1.000000
6) -56.5907 2.0000 1.816000 46.63
7) 17.0196 7.0000 1.603420 38.02
8) 73.8459 0.1000 1.000000
9) 32.4760 5.0000 1.717360 29.52
10) -157.9244 可変 1.000000
11) 23.8096 1.0000 1.795000 45.30
12) 15.6593 3.0000 1.497820 82.56
13) -1090.6220 5.9435 1.000000
14) (絞りS) ∞ 0.7000 1.000000
15) 26.3980 2.5000 1.497820 82.56
16) -79.3224 4.6000 1.000000
17) -39.5467 8.0000 1.744000 44.79
18) -162.0229 2.0000 1.000000
19) -92.3426 1.0000 1.755000 52.29
20) 20.8016 5.0000 1.518230 58.89
21) -21.0542 0.1000 1.000000
22) -344.4872 5.5000 1.497820 82.56
23) -13.5094 1.0000 1.834810 42.72
24) -31.7192 可変 1.000000
25) -100.0000 2.0000 1.516800 64.12
26) -107.0000 BF 1.000000
像面 ∞

[非球面データ]
第1面
κ = 12.7063
A4 = 2.52869E-07
A6 = 5.51300E-10
A8 = 4.77913E-13
A10 = -3.07832E-16
A12 = -0.49549E-19
第2面
κ = -0.0947
A4 = -6.70196E-06
A6 = -1.78783E-08
A8 = -5.15142E-12
A10 = -4.83366E-14
A12 = 0.21367E-15
第5面
κ = 0.000
A4 = 2.50710E-05
A6 = 2.09871E-08
A8 = 1.63612E-10
A10 = -1.20936E-13
A12 = -0.17594E-14

[各種データ]
ズーム比 1.77

1-POS 2-POS 3-POS
F 16.48 〜 24.00 〜 29.10
FNO 4.49 〜 5.33 〜 5.93
ω 52.73 〜 41.73 〜 36.33°
Y 21.60 〜 21.60 〜 21.60
TL 139.69 〜 136.93 〜 139.40
Σd 102.78 〜 100.03 〜102.50
BF 36.90 〜 36.90 〜 36.90

1-POS 2-POS 3-POS
F 16.48000 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83854 8.08582 2.08111
d24 1.00000 12.99953 21.47140
BF 36.90477 36.90477 36.90477

[レンズ群データ]
群 始面 F
Gn 1 -21.85385
Gp 11 36.95878
Gs 25 -3276.74607

[条件式対応値]
(1) (−Fa)/|Fb| = 0.0620
(2) (−Fn)/√(Fw・Ft) = 0.998
(3) Fp/Fw = 2.243
(4) (−Fc)/Fw = 1.636
(5) Ncn−Ncp = 0.2126
(Table 5) Fifth Example
[Surface data]
Surface number r d nd νd
Object ∞
* 1) 120.0323 3.0000 1.744430 49.53
* 2) 14.8111 11.0000 1.000000
3) 320.0965 3.0000 1.516800 64.12
4) 70.0000 1.0000 1.553890 38.09
* 5) -993.8663 4.5000 1.000000
6) -56.5907 2.0000 1.816000 46.63
7) 17.0196 7.0000 1.603420 38.02
8) 73.8459 0.1000 1.000000
9) 32.4760 5.0000 1.717360 29.52
10) -157.9244 Variable 1.000000
11) 23.8096 1.0000 1.795000 45.30
12) 15.6593 3.0000 1.497820 82.56
13) -1090.6220 5.9435 1.000000
14) (Aperture S) ∞ 0.7000 1.000000
15) 26.3980 2.5000 1.497820 82.56
16) -79.3224 4.6000 1.000000
17) -39.5467 8.0000 1.744000 44.79
18) -162.0229 2.0000 1.000000
19) -92.3426 1.0000 1.755000 52.29
20) 20.8016 5.0000 1.518230 58.89
21) -21.0542 0.1000 1.000000
22) -344.4872 5.5000 1.497820 82.56
23) -13.5094 1.0000 1.834810 42.72
24) -31.7192 Variable 1.000000
25) -100.0000 2.0000 1.516800 64.12
26) -107.0000 BF 1.000000
Image plane ∞

[Aspherical data]
First side κ = 12.7063
A4 = 2.52869E-07
A6 = 5.51300E-10
A8 = 4.77913E-13
A10 = -3.07832E-16
A12 = -0.49549E-19
Second surface κ = -0.0947
A4 = -6.70196E-06
A6 = -1.78783E-08
A8 = -5.15142E-12
A10 = -4.83366E-14
A12 = 0.21367E-15
Fifth surface κ = 0.000
A4 = 2.50710E-05
A6 = 2.09871E-08
A8 = 1.63612E-10
A10 = -1.20936E-13
A12 = -0.17594E-14

[Various data]
Zoom ratio 1.77

1-POS 2-POS 3-POS
F 16.48-24.00-29.10
FNO 4.49-5.33-5.93
ω 52.73 to 41.73 to 36.33 °
Y 21.60-21.60-21.60
TL 139.69-136.93-139.40
Σd 102.78 to 100.03 to 102.50
BF 36.90-36.90-36.90

1-POS 2-POS 3-POS
F 16.48000 24.00000 29.10000
d0 ∞ ∞ ∞
d10 22.83854 8.08582 2.08111
d24 1.00000 12.99953 21.47140
BF 36.90477 36.90477 36.90477

[Lens group data]
Group start surface F
Gn 1 -21.85385
Gp 11 36.95878
Gs 25 -3276.74607

[Conditional expression values]
(1) (−Fa) /|Fb|=0.0620
(2) (−Fn) / √ (Fw · Ft) = 0.998
(3) Fp / Fw = 2.243
(4) (−Fc) /Fw=1.636
(5) Ncn-Ncp = 0.2126

図10(a)、図10(b)、及び図10(c)はそれぞれ、本願の第5実施例に係るズームレンズの広角端状態における無限遠物体合焦時の諸収差、中間焦点距離状態における無限遠物体合焦時の諸収差、及び望遠端状態における無限遠物体合焦時の諸収差を示す図である。
各諸収差図より、本実施例に係るズームレンズは、球面収差、像面湾曲、非点収差、及びコマ収差を含む諸収差が良好に補正されていることがわかる。
10 (a), 10 (b), and 10 (c) respectively show various aberrations and intermediate focal length states at the time of focusing on an object at infinity in the wide-angle end state of the zoom lens according to Example 5 of the present application. It is a figure which shows the various aberrations at the time of focusing on an object at infinity and various aberrations at the time of focusing on an object at infinity in the telephoto end state.
From the various aberration diagrams, it can be seen that the zoom lens according to the present example is well corrected for various aberrations including spherical aberration, field curvature, astigmatism, and coma.

以上の各実施例によれば、一眼レフカメラ等の撮像装置に好適な、広角端状態で包括角2ω=106.3°を越え、Fナンバー=4〜5.6程度の口径を有し、レンズ枚数が少なく、前玉径が小さく即ちフィルター径が小さく、小型で、諸収差を良好に補正し、高い結像性能を有するレトロフォーカス型のズームレンズを実現することができる。
ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願のズームレンズの光学性能を損なわない範囲で適宜採用することが可能である。
本願のズームレンズの数値実施例として2群、3群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群、5群等)のズームレンズを構成することもできる。具体的には、本願のズームレンズの最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは空気間隔で分離された少なくとも1枚のレンズを有する部分をいう。
According to each of the above embodiments, the wide angle end state is suitable for an imaging device such as a single-lens reflex camera, and the inclusive angle exceeds 2ω = 106.3 °, and the aperture number is about F-number = 4 to 5.6. A retrofocus zoom lens having a small number of lenses, a small front lens diameter, that is, a small filter diameter, a small size, excellent correction of various aberrations, and high imaging performance can be realized.
Here, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be appropriately adopted within a range that does not impair the optical performance of the zoom lens of the present application.
As a numerical example of the zoom lens of the present application, a two-group and three-group configuration is shown, but the present application is not limited to this, and a zoom lens having other group configurations (for example, four groups, five groups, etc.) should be configured. You can also. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the zoom lens of the present application may be used. The lens group means a portion having at least one lens separated by an air space.

また、本願のズームレンズは、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。また、合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。特に、本願のズームレンズでは前群又は後群の少なくとも一部を合焦レンズ群とすることが好ましい。
また、本願のズームレンズにおいて、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に直交する方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることで、手ブレによって生じる像ブレを補正する構成とすることもできる。特に、本願のズームレンズでは後群の少なくとも一部を防振レンズ群とすることが好ましい。
In addition, the zoom lens of the present application is used in order to focus from an object at infinity to an object at a short distance in the direction of the optical axis using a part of the lens group, the entire lens group, or a plurality of lens groups as the focusing lens group. It is good also as a structure moved to. The focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor. In particular, in the zoom lens of the present application, it is preferable that at least a part of the front group or the rear group is a focusing lens group.
Also, in the zoom lens of the present application, either all or a part of any lens group is moved so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group, or rotated in an in-plane direction including the optical axis. It can also be configured to correct image blur caused by camera shake by moving (swinging). In particular, in the zoom lens of the present application, it is preferable that at least a part of the rear group is an anti-vibration lens group.

また、本願のズームレンズを構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
また、本願のズームレンズにおいて開口絞りは後群の内部又は近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
The lens surface of the lens constituting the zoom lens of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
In the zoom lens of the present application, it is preferable that the aperture stop is disposed in or near the rear group, and the role may be substituted by a lens frame without providing a member as the aperture stop.

また、本願のズームレンズを構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願のズームレンズは、ズーム比が2〜7程度である。
また、本願のズームレンズにおいて前群は、正レンズ成分を2つと、負レンズ成分を2つ有することが好ましく、特にこれらのレンズ成分を物体側から順に負、正、負、正の順番で空気間隔を介在させて配置することが好ましい。或いは前群は、正レンズ成分を1つと、負レンズ成分を3つ有することが好ましく、特にこれらのレンズ成分を物体側から順に負、負、負、正の順番で空気間隔を介在させて配置することが好ましい。また、後群は、正レンズ成分を3つと、負レンズ成分を1つ有することが好ましく、特にこれらのレンズ成分を物体側から順に正、正、負、正の順番で空気間隔を介在させて配置することが好ましい。
Further, an antireflection film having a high transmittance in a wide wavelength range may be provided on the lens surface of the lens constituting the zoom lens of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
The zoom lens of the present application has a zoom ratio of about 2 to 7.
In the zoom lens of the present application, it is preferable that the front group has two positive lens components and two negative lens components. In particular, these lens components are in order of negative, positive, negative, and positive in order from the object side. It is preferable to arrange them at intervals. Alternatively, the front group preferably has one positive lens component and three negative lens components, and in particular, these lens components are arranged in order of negative, negative, negative, and positive in this order from the object side. It is preferable to do. The rear group preferably has three positive lens components and one negative lens component. In particular, these lens components are arranged in order of positive, positive, negative, and positive in order from the object side. It is preferable to arrange.

次に、本願のズームレンズを備えたカメラを図11に基づいて説明する。
図11は、本願のズームレンズを備えたカメラの構成を示す図である。
本カメラ1は、撮影レンズ2として上記第1実施例に係るズームレンズを備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera equipped with the zoom lens of the present application will be described with reference to FIG.
FIG. 11 is a diagram illustrating a configuration of a camera including the zoom lens of the present application.
The camera 1 is a digital single-lens reflex camera provided with the zoom lens according to the first embodiment as a photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and imaged on the focusing screen 4 through the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係るズームレンズは、その特徴的なレンズ構成により、小型で、レンズ枚数が少なく、諸収差を良好に補正し、高い結像性能と大画角を有している。これにより本カメラ1は、小型で、諸収差を良好に補正し、高い結像性能を有しており、大画角を包括する広角撮影が可能となる。なお、上記第2〜第5実施例に係るズームレンズを撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。
When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
Here, the zoom lens according to the first embodiment mounted on the camera 1 as the photographing lens 2 is small in size, has a small number of lenses, corrects various aberrations, and has high results due to its characteristic lens configuration. Has image performance and large angle of view. As a result, the camera 1 is small, corrects various aberrations well, has high imaging performance, and can perform wide-angle imaging including a large angle of view. Even if the camera having the zoom lens according to the second to fifth embodiments mounted as the taking lens 2 is configured, the same effect as the camera 1 can be obtained.

最後に、本願のズームレンズの製造方法の概略を図12に基づいて説明する。
本願のズームレンズの製造方法は、物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有するズームレンズの製造方法であって、以下のステップS1〜S3を含むものである。
ステップS1:前群が、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有するようにする。
Finally, the outline of the manufacturing method of the zoom lens of this application is demonstrated based on FIG.
The zoom lens manufacturing method of the present application is a zoom lens manufacturing method including a front group having negative refractive power and a rear group having positive refractive power in order from the object side, and includes the following steps S1 to S3. Is included.
Step S1: In order from the object side, the front group has an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power becomes smaller toward the periphery, and has a positive refracting power toward the periphery. The aspherical lens component Gb has a shape that changes to negative refractive power as it goes or a shape that has negative refractive power and increases toward the periphery.

ステップS2:非球面レンズ成分Gaと非球面レンズ成分Gbが以下の条件式(1)を満足するようにして、前群と後群を鏡筒内に物体側から順に配置する。
(1) 0.000≦(−Fa)/|Fb|<0.650
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
ステップS3:前群と後群との間の空気間隔を変化させることによって変倍を行うようにする。
斯かる本願のズームレンズの製造方法によれば、小型で、諸収差を良好に補正し、高い結像性能を有する大画角のズームレンズを製造することができる。
Step S2: Arrange the front group and the rear group in order from the object side in the lens barrel so that the aspheric lens component Ga and the aspheric lens component Gb satisfy the following conditional expression (1).
(1) 0.000 ≦ (−Fa) / | Fb | <0.650
However,
Fa: Focal length of the aspheric lens component Ga in the front group Fb: Focal length of the aspheric lens component Gb in the front group Step S3: Changing an air interval between the front group and the rear group. To change the magnification.
According to the zoom lens manufacturing method of the present application, it is possible to manufacture a zoom lens having a large angle of view that is small in size, corrects various aberrations favorably, and has high imaging performance.

Gn 前群
Gp 後群
Ga 非球面レンズ成分
Gb 非球面レンズ成分
Gc 接合負レンズ成分
S 開口絞り
I 像面
Gn Front group Gp Rear group Ga Aspheric lens component Gb Aspheric lens component Gc Joint negative lens component S Aperture stop I Image surface

Claims (12)

物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、
前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、
以下の条件式を満足することを特徴とするズームレンズ。
0.0406≦(−Fa)/|Fb|<0.600
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
In order from the object side, it has a front group having negative refractive power and a rear group having positive refractive power,
The front group includes, in order from the object side, an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspheric lens component Gb having a shape that shifts to the refractive power of the lens or a shape that has a negative refractive power and the negative refractive power increases toward the periphery,
Performing zooming by changing the air spacing between the front group and the rear group,
A zoom lens satisfying the following conditional expression:
0.0406 ≦ (−Fa) / | Fb | < 0.600
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group
物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、
前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcを少なくとも有し、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、
以下の条件式を満足することを特徴とするズームレンズ。
0.000(−Fa)/|Fb|<0.650
0.50<(−Fc)/Fw≦1.883
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
Fc:前記前群内の前記接合負レンズ成分Gcの焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
In order from the object side, it has a front group having negative refractive power and a rear group having positive refractive power,
The front group includes, in order from the object side, an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspherical lens component Gb having a negative refractive power or a shape having a negative refractive power and a negative refractive power increasing toward the periphery, and a cemented negative lens of a negative lens and a positive lens Having at least component Gc,
Performing zooming by changing the air spacing between the front group and the rear group,
A zoom lens satisfying the following conditional expression:
0.000 < (-Fa) / | Fb | <0.650
0.50 <(− Fc) /Fw≦1.883
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group
Fc: focal length of the cemented negative lens component Gc in the front group
Fw: focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state
物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有し、
前記前群は、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcと、前記接合負レンズ成分Gcの像側に配置された正レンズとを有し、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行い、
以下の条件式を満足することを特徴とするズームレンズ。
0.000(−Fa)/|Fb|<0.600
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
In order from the object side, it has a front group having negative refractive power and a rear group having positive refractive power,
The front group includes, in order from the object side, an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspherical lens component Gb having a negative refractive power or a shape having a negative refractive power and a negative refractive power increasing toward the periphery, and a cemented negative lens of a negative lens and a positive lens A component Gc, and a positive lens disposed on the image side of the cemented negative lens component Gc,
Performing zooming by changing the air spacing between the front group and the rear group,
A zoom lens satisfying the following conditional expression:
0.000 < (-Fa) / | Fb | < 0.600
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group
前記前群は、前記非球面レンズ成分Gaと、前記非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcを少なくとも有し、
以下の条件式を満足することを特徴とする請求項1または3に記載のズームレンズ。
0.50<(−Fc)/Fw<5.00
ただし、
Fc:前記前群内の前記接合負レンズ成分Gcの焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
The front group includes the aspheric lens component Ga and the aspheric lens component Gb, and further includes at least a cemented negative lens component Gc of a negative lens and a positive lens.
The zoom lens according to claim 1 or 3, characterized by satisfying the following conditional expression.
0.50 <(− Fc) / Fw <5.00
However,
Fc: focal length of the cemented negative lens component Gc in the front group Fw: focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state
前記前群は、前記非球面レンズ成分Gaと、前記非球面レンズ成分Gbとを有し、さらに、負レンズと正レンズとの接合負レンズ成分Gcと、前記接合負レンズ成分Gcの像側に配置された正レンズとを有することを特徴とする請求項1または2に記載のズームレンズ。 The front group includes the aspheric lens component Ga and the aspheric lens component Gb, and further includes a cemented negative lens component Gc of a negative lens and a positive lens, and an image side of the cemented negative lens component Gc. the zoom lens according to claim 1 or 2, characterized in that it has a deployed positive lens. 以下の条件式を満足することを特徴とする請求項2から5のいずれか1項に記載のズームレンズ。
0.00<Ncn−Ncp
ただし、
Ncn:前記接合負レンズ成分Gc中の前記負レンズの媒質のd線(波長λ=587.6nm)に対する屈折率
Ncp:前記接合負レンズ成分Gc中の前記正レンズの媒質のd線(波長λ=587.6nm)に対する屈折率
The zoom lens according to any one of claims 2 to 5, wherein the following conditional expression is satisfied.
0.00 <Ncn-Ncp
However,
Ncn: refractive index with respect to d-line (wavelength λ = 587.6 nm) of the negative lens medium in the cemented negative lens component Gc Ncp: d-line (wavelength λ) of the medium of the positive lens in the cemented negative lens component Gc = 587.6 nm)
以下の条件式を満足することを特徴とする請求項1からのいずれか1項に記載のズームレンズ。
0.50<(−Fn)/√(Fw・Ft)<1.30
ただし、
Fn:無限遠物体合焦時の前記前群の焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
Ft:望遠端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
The zoom lens according to any one of claims 1 to 6 , wherein the following conditional expression is satisfied.
0.50 <(− Fn) / √ (Fw · Ft) <1.30
However,
Fn: Focal length of the front group when focusing on an object at infinity Fw: Focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state Ft: Said focal length when focusing on an object at infinity in the telephoto end state Focal length of the entire zoom lens system
以下の条件式を満足することを特徴とする請求項1から7のいずれか1項に記載のズームレンズ。
1.50<Fp/Fw<3.00
ただし、
Fp:無限遠物体合焦時の前記後群の焦点距離
Fw:広角端状態における無限遠物体合焦時の前記ズームレンズ全系の焦点距離
The zoom lens according to any one of claims 1 7, characterized by satisfying the following conditional expression.
1.50 <Fp / Fw <3.00
However,
Fp: Focal length of the rear group when focusing on an object at infinity Fw: Focal length of the entire zoom lens system when focusing on an object at infinity in the wide-angle end state
前記前群内の前記非球面レンズ成分Gaは、物体側の面が周辺へ向かうにつれて曲率が大きくなる形状の非球面であり、像側の面が周辺へ向かうにつれて曲率が小さくなる形状の非球面であることを特徴とする請求項1からのいずれか一項に記載のズームレンズ。 The aspheric lens component Ga in the front group is an aspheric surface having a curvature that increases as the object-side surface moves toward the periphery, and an aspheric surface that decreases in curvature as the image-side surface moves toward the periphery. the zoom lens according to any one of claims 1 to 8, characterized in that. 前記前群内の前記非球面レンズ成分Gbは、ガラスと樹脂による複合レンズで構成されていることを特徴とする請求項1からのいずれか一項に記載のズームレンズ。 Wherein the aspherical lens component Gb in the previous group, the zoom lens according to any one of claims 1 to 9, characterized in that it is a composite lens of glass and resin. 請求項1から10のいずれか一項に記載のズームレンズを備えたことを特徴とする撮像装置。 Imaging apparatus characterized by comprising a zoom lens according to any one of claims 1 to 10. 物体側から順に、負の屈折力を有する前群と、正の屈折力を有する後群とを有するズームレンズの製造方法であって、
前記前群が、物体側から順に、負の屈折力を有し周辺へ向かうにつれて負の屈折力が小さくなる形状を有する非球面レンズ成分Gaと、正の屈折力を有し周辺へ向かうにつれて負の屈折力に転じる形状又は負の屈折力を有し周辺へ向かうにつれて負の屈折力が大きくなる形状を有する非球面レンズ成分Gbとを有するようにし、
前記非球面レンズ成分Gaと前記非球面レンズ成分Gbが、以下の条件式を満足するようにし、
前記前群と前記後群との間の空気間隔を変化させることによって変倍を行うようにすることを特徴とするズームレンズの製造方法。
0.0406≦(−Fa)/|Fb|<0.600
ただし、
Fa:前記前群内の前記非球面レンズ成分Gaの焦点距離
Fb:前記前群内の前記非球面レンズ成分Gbの焦点距離
In order from the object side, a zoom lens having a front group having negative refractive power and a rear group having positive refractive power,
In order from the object side, the front group has an aspheric lens component Ga having a negative refracting power and a shape in which the negative refracting power decreases as it goes toward the periphery, and has a positive refracting power and becomes negative as it goes toward the periphery. An aspherical lens component Gb having a shape that shifts to the refractive power of the lens or a shape that has a negative refractive power and the negative refractive power increases toward the periphery,
The aspheric lens component Ga and the aspheric lens component Gb satisfy the following conditional expression:
A zoom lens manufacturing method, wherein zooming is performed by changing an air gap between the front group and the rear group.
0.0406 ≦ (−Fa) / | Fb | < 0.600
However,
Fa: focal length of the aspheric lens component Ga in the front group Fb: focal length of the aspheric lens component Gb in the front group
JP2010142941A 2010-06-23 2010-06-23 Zoom lens, imaging device, and zoom lens manufacturing method Active JP5516127B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010142941A JP5516127B2 (en) 2010-06-23 2010-06-23 Zoom lens, imaging device, and zoom lens manufacturing method
US13/166,631 US8830592B2 (en) 2010-06-23 2011-06-22 Zoom lens, imaging apparatus, and method for manufacturing zoom lens
CN201110173964.2A CN102298203B (en) 2010-06-23 2011-06-23 Zoom lens, imaging device and the method for the manufacture of zoom lens
US14/462,103 US9354430B2 (en) 2010-06-23 2014-08-18 Zoom lens, imaging apparatus, and method for manufacturing zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142941A JP5516127B2 (en) 2010-06-23 2010-06-23 Zoom lens, imaging device, and zoom lens manufacturing method

Publications (2)

Publication Number Publication Date
JP2012008268A JP2012008268A (en) 2012-01-12
JP5516127B2 true JP5516127B2 (en) 2014-06-11

Family

ID=45538910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142941A Active JP5516127B2 (en) 2010-06-23 2010-06-23 Zoom lens, imaging device, and zoom lens manufacturing method

Country Status (1)

Country Link
JP (1) JP5516127B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959894B2 (en) 2012-03-28 2016-08-02 キヤノン株式会社 Optical system and imaging apparatus having the same
JP5868275B2 (en) * 2012-06-29 2016-02-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6422231B2 (en) * 2013-04-25 2018-11-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6426063B2 (en) * 2015-07-22 2018-11-21 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2023233798A1 (en) * 2022-05-31 2023-12-07 富士フイルム株式会社 Optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505910B2 (en) * 1999-12-08 2010-07-21 株式会社ニコン Zoom lens and photographing apparatus provided with the lens
JP2009276733A (en) * 2008-04-18 2009-11-26 Olympus Imaging Corp Zoom lens and imaging apparatus using the same

Also Published As

Publication number Publication date
JP2012008268A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5510113B2 (en) Photographic lens, optical apparatus equipped with photographic lens, and method of manufacturing photographic lens
JP4946445B2 (en) Wide-angle lens, imaging device, and wide-angle lens focusing method
JP4946457B2 (en) Retro focus lens, imaging device
JP5396888B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5887708B2 (en) Zoom lens, imaging device
JP5428775B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5407363B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP5516127B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP2017161847A (en) Optical system, optical instrument and method for manufacturing optical system
JP5333906B2 (en) Zoom lens and optical equipment
JP5545064B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5510114B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP6828252B2 (en) Optical system and optical equipment
JP5407365B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6816370B2 (en) Optical system and optical equipment
JP5407364B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5434006B2 (en) Zoom lens, image pickup apparatus, and zooming method
JP5445040B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5115870B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5115871B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250