JP5514709B2 - A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet - Google Patents

A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet Download PDF

Info

Publication number
JP5514709B2
JP5514709B2 JP2010284790A JP2010284790A JP5514709B2 JP 5514709 B2 JP5514709 B2 JP 5514709B2 JP 2010284790 A JP2010284790 A JP 2010284790A JP 2010284790 A JP2010284790 A JP 2010284790A JP 5514709 B2 JP5514709 B2 JP 5514709B2
Authority
JP
Japan
Prior art keywords
furnace
fluid
outlet
boiler
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010284790A
Other languages
Japanese (ja)
Other versions
JP2012132617A (en
Inventor
一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2010284790A priority Critical patent/JP5514709B2/en
Publication of JP2012132617A publication Critical patent/JP2012132617A/en
Application granted granted Critical
Publication of JP5514709B2 publication Critical patent/JP5514709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、貫流ボイラに係わり、火炉出口において、火炉水壁各部を通る伝熱管内流体の蒸気温度のアンバランスを抑制するのに好適な貫流ボイラに関する。   The present invention relates to a once-through boiler, and more particularly to a once-through boiler suitable for suppressing an unbalance of steam temperature of a fluid in a heat transfer pipe passing through each part of a furnace water wall at a furnace outlet.

貫流ボイラの火炉出口伝熱管内の流体温度は、火炉を螺旋状に上昇するスパイラル壁を構成することで、熱吸収量の均一化による蒸気温度アンバランスを抑制したり、火炉入口部の伝熱管や連絡管にオリフィスを設置して火炉水壁各部の流量調整を行うことによって、蒸気温度の均一化を図っている。しかし、火炉内の燃焼は、必ずしも均一とはならず、動的にも変化するため、上述の方法では、流体温度のアンバランスを解消することは困難である。   The temperature of the fluid in the furnace outlet heat transfer tube of the once-through boiler can be controlled by configuring a spiral wall that rises spirally in the furnace, thereby suppressing steam temperature imbalance due to uniform heat absorption and heat transfer tubes at the furnace inlet. The steam temperature is made uniform by installing an orifice in the connecting pipe and adjusting the flow rate of each part of the furnace water wall. However, the combustion in the furnace is not necessarily uniform and changes dynamically, so that it is difficult to eliminate the fluid temperature imbalance by the above-described method.

火炉出口の伝熱管内流体温度のアンバランスを解消する従来技術として、例えば、特許文献1に火炉の中間部に混合装置を設けることが提案されている。特許文献1に開示された実施例を図5に示す。図5に示す実施例によると、火炉中間混合装置23を設置することにより、それぞれの混合装置に流入する蒸気のエンタルピは均一化されるが、火炉の左右や前後を繋ぐ連絡管が無いため、火炉の左右や前後の流体を入れ替えることはできない構造となっている。この構造では火炉の前壁や左右の流体温度のアンバランスを解消することはできない。   As a prior art for eliminating the imbalance of the fluid temperature in the heat transfer tube at the furnace outlet, for example, Patent Document 1 proposes to provide a mixing device in the middle part of the furnace. An embodiment disclosed in Patent Document 1 is shown in FIG. According to the embodiment shown in FIG. 5, by installing the furnace intermediate mixing device 23, the enthalpy of the steam flowing into each mixing device is made uniform, but there is no connecting pipe that connects the left and right and front and rear of the furnace, It has a structure in which the left and right and front and rear fluids of the furnace cannot be interchanged. With this structure, the imbalance between the front wall of the furnace and the left and right fluid temperatures cannot be resolved.

また、特許文献1の別の実施例の火炉中間管寄せ部の断面図を図6に示し、その側面図を図7に示す。図6と図7に示す別の実施例によると、火炉の中間管寄せ35の内部に管寄せ仕切り壁34を設置し、管寄せ中央部に仕切り壁によじれを入れることにより、管寄せの左右の流体を混合かつ入れ替える構造となっている。この構造では、それぞれの火炉中間間寄せの内部においてのみ流体の入れ替えを行っているため、管寄せ内に限定された左右の入れ替え及び流体混合に限定され、燃焼に起因する火炉水壁全体の左右や前後の流体温度アンバランス解消には至っていない。   Moreover, sectional drawing of the furnace intermediate header part of another Example of patent document 1 is shown in FIG. 6, and the side view is shown in FIG. According to another embodiment shown in FIG. 6 and FIG. 7, by installing a header partition wall 34 inside the intermediate header 35 of the furnace and inserting a twist in the central portion of the header, It is structured to mix and replace the fluid. In this structure, since the fluid is exchanged only inside each furnace intermediate gap, it is limited to the left and right exchange and fluid mixing limited to the inside of the header, and left and right of the entire furnace water wall caused by combustion. And fluid temperature imbalance before and after has not been resolved.

特開平8−327007号公報JP-A-8-327007

上記の特許文献1に開示されているような従来技術は、火炉全体の左右又は前後の入れ替えを行っていないこと、火炉の中間に直接注水することを行っていないことから、燃焼に起因する火炉の左右又は前後の熱吸収量の違いによる火炉出口の伝熱管内の流体温度アンバランスを解消することは困難である。   The prior art as disclosed in the above-mentioned Patent Document 1 does not replace the left and right or the front and rear of the entire furnace, and does not directly pour water into the middle of the furnace. It is difficult to eliminate the fluid temperature imbalance in the heat transfer tube at the furnace outlet due to the difference in the amount of heat absorption between left and right or front and rear.

また一方で、過熱器出口蒸気温度を従来よりも上昇させた高蒸気条件(例えば、700℃の高蒸気温度)のボイラにおいては、燃焼性能から火炉の大きさが決定され、火炉の相対的な熱吸収量割合が従来のボイラと同等であっても、過熱器出口蒸気エンタルピが上昇するため、火炉出口流体のエンタルピも上昇し、火炉出口流体温度(過熱器に至る火炉上部出口管寄せの出力温度)が上昇するため、流体温度アンバランスが拡大する。この流体温度アンバランスにより発生する熱応力により火炉が損傷する虞がある。このため、ボイラの過熱器出口温度を従来よりも上昇させたボイラにおいては、従来のボイラよりも、拡大した流体温度のアンバランスの抑制並びにその抑制のための火炉出口流体温度の低減を行う必要がある。   On the other hand, in a boiler with a high steam condition (for example, a high steam temperature of 700 ° C.) in which the superheater outlet steam temperature is increased compared to the conventional one, the size of the furnace is determined from the combustion performance, and the relative Even if the heat absorption rate is equivalent to that of a conventional boiler, the superheater outlet steam enthalpy rises, so the enthalpy of the furnace outlet fluid also rises, and the furnace outlet fluid temperature (the output of the furnace upper outlet header leading to the superheater) Temperature) increases, so fluid temperature imbalance increases. There is a risk that the furnace will be damaged by the thermal stress generated by this fluid temperature imbalance. For this reason, in a boiler in which the boiler superheater outlet temperature has been raised compared to the conventional boiler, it is necessary to suppress the unbalance of the expanded fluid temperature and reduce the furnace outlet fluid temperature for the suppression, compared to the conventional boiler. There is.

上記の特許文献1に開示されているような従来技術のように、火炉の中間で部分的に流体を混合しても、火炉の下部と火炉の上部で前壁からは前壁へ、後壁からは後壁へと火炉断面の同じ場所を内部流体が通過した場合は、燃焼に起因する左右又は前後の熱吸収アンバランスは解消されない。   Even if the fluid is partially mixed in the middle of the furnace as in the prior art disclosed in Patent Document 1 above, the front wall from the front wall to the front wall at the lower part of the furnace and the upper part of the furnace, the rear wall When the internal fluid passes through the same location on the cross section of the furnace to the rear wall, the left and right or front and rear heat absorption imbalance due to combustion is not eliminated.

本発明の目的は、火炉水壁各部を通る伝熱管内流体の左右壁又は前後壁の入れ替えを火炉の中間部で行うことにより、ボイラの火炉出口流体温度のアンバランスを抑制することにある。   An object of the present invention is to suppress an imbalance in the boiler outlet fluid temperature of the boiler by replacing the left and right walls or the front and rear walls of the heat transfer pipe fluid passing through each part of the furnace water wall at the middle part of the furnace.

前記課題を解決するために、本発明は次のような構成を採用する。
前壁、後壁、左側壁、右側壁からなる内壁をもつ火炉と、前記内壁に設けられた伝熱管と、前記火炉の下方部に設けたバーナと、を備え、前記伝熱管内の流体が前記火炉内の燃焼ガスから熱吸収する貫流ボイラにおいて、
前記バーナより上方の前記火炉の中間部に、各内壁に対応した伝熱管内の流体を寄せる4つの火炉下部出口管寄せを設け、前記4つの火炉下部出口管寄せから送給された流体を混合する2つの流体混合手段を設け、前記2つの流体混合手段から前記混合した流体がそれぞれの連絡管を通してそれぞれ送給される2つの流体分配手段を設け、前記2つの流体分配手段から流体が送給される4つの火炉上部入口管寄せを前記火炉の中間部に設け、前記2つの流体混合手段は、火炉の左右にそれぞれ配置された火炉下部出口管寄せからの流体を左右ごとに集めて混合し、前記混合した流体をそれぞれの連絡管を通してそれぞれの流体分配手段に送給し、前記2つの流体分配手段は、火炉の下部と上部との間で、火炉の左右の伝熱管内の流体を入れ替えるように前記4つの火炉上部入口管寄せに対して流体流路を形成する構成とする。
In order to solve the above problems, the present invention adopts the following configuration.
A furnace having an inner wall consisting of a front wall, a rear wall, a left side wall, and a right side wall; a heat transfer tube provided on the inner wall; and a burner provided at a lower portion of the furnace, wherein the fluid in the heat transfer tube In the once-through boiler that absorbs heat from the combustion gas in the furnace,
Four furnace lower outlet headers that draw fluid in the heat transfer tubes corresponding to the inner walls are provided in the middle of the furnace above the burner, and the fluids fed from the four furnace lower outlet headers are mixed. Two fluid mixing means are provided, and two fluid distribution means are provided to supply the mixed fluid from the two fluid mixing means through respective connecting pipes, and the fluid is supplied from the two fluid distribution means. Provided in the middle part of the furnace, and the two fluid mixing means collect and mix the fluid from the furnace lower outlet header arranged on the left and right sides of the furnace, left and right respectively. The mixed fluid is supplied to each fluid distribution means through each communication pipe, and the two fluid distribution means exchange the fluid in the left and right heat transfer tubes of the furnace between the lower part and the upper part of the furnace. A structure forming a fluid flow path to the on so that four of the furnace upper inlet pipe pulling.

また、前記貫流ボイラにおいて、流体を火炉の左右ごとに集めて混合する代わりに、流体を火炉の前後ごとに集めて混合し、火炉の下部と上部との間で、火炉の前後の伝熱管内の流体を入れ替えるように流体流路を形成すること。さらに、前記連絡管にはボイラ給水ポンプ出口からの水又は複数の高圧給水加熱器間から分岐した水を注水するスプレ装置を設けること。さらに、火炉出口の流体温度を計測し、前記計測した流体温度に応じて前記それぞれの連絡管への注水量を制御して流体温度のアンバランスを抑制すること。   Further, in the once-through boiler, instead of collecting and mixing the fluids at the left and right sides of the furnace, the fluids are collected and mixed before and after the furnace, and between the lower and upper parts of the furnace, Forming a fluid flow path to replace the fluid. Furthermore, a spray device for injecting water from the boiler feed pump outlet or water branched from a plurality of high-pressure feed water heaters is provided in the connecting pipe. Furthermore, the fluid temperature at the furnace outlet is measured, and the amount of water injected into each of the connecting pipes is controlled according to the measured fluid temperature to suppress the fluid temperature unbalance.

本発明によれば、火炉水壁各部を通る伝熱管内流体の左右壁又は前後壁の入れ替えを行うことで、貫流ボイラの火炉出口流体温度のアンバランスの抑制をすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the imbalance of the furnace exit fluid temperature of a once-through boiler can be suppressed by replacing the right-and-left wall or front-and-back wall of the fluid in a heat exchanger tube which passes through each part of a furnace water wall.

また、火炉壁の各部を通る伝熱管内の流体を入れ替えるための火炉中間混合部の連絡管に注水スプレを設けることで、火炉出口流体温度のアンバランスをより的確に抑制をすることができ、さらに、高蒸気温度条件のボイラにおいて、注水スプレのスプレ水制御をすることで、火炉出口における熱応力の発生を抑え、火炉の損傷を防止することができる。   Moreover, by providing a water injection spray to the connecting pipe of the furnace intermediate mixing part for replacing the fluid in the heat transfer pipe passing through each part of the furnace wall, the imbalance of the furnace outlet fluid temperature can be suppressed more accurately, Furthermore, by controlling the spray water of the water injection spray in a boiler with a high steam temperature condition, it is possible to suppress the generation of thermal stress at the furnace outlet and prevent the furnace from being damaged.

本発明の実施形態に係る貫流ボイラの概略構造とボイラ給水の概略系統を示す図である。It is a figure showing a schematic structure of a once-through boiler concerning an embodiment of the present invention, and a schematic system of boiler feed water. 本実施形態に係る貫流ボイラにおける節炭器から火炉出口までの伝熱管内流体の系統図である。It is a systematic diagram of fluid in a heat exchanger tube from a economizer to a furnace exit in a once-through boiler concerning this embodiment. 本実施形態に係る貫流ボイラにおける火炉中間混合部での流体系統の断面図である。It is sectional drawing of the fluid system | strain in the furnace intermediate mixing part in the once-through boiler which concerns on this embodiment. 本実施形態に関する中間混合部の概略側面図である。It is a schematic side view of the intermediate mixing part regarding this embodiment. 従来技術に関する火炉中間混合部での流体系統を示す図である。It is a figure which shows the fluid system | strain in the furnace intermediate mixing part regarding a prior art. 他の従来技術に関する火炉中間混合部での流体系統を示す説明図である。It is explanatory drawing which shows the fluid system | strain in the furnace intermediate mixing part regarding another prior art. 他の従来技術に関する火炉中間混合部での流体系統を示す側面図である。It is a side view which shows the fluid system | strain in the furnace intermediate mixing part regarding another prior art.

本発明の実施形態に係る貫流ボイラにおける伝熱管を流れる流体流れ並びに流体温度調整について、図1〜図4を参照しながら以下説明する。図面において、1はボイラ給水ポンプ、2は高圧給水加熱器、3はボイラ給水管、4は節炭器、5は火炉(下部)、6は火炉(上部)、7はバーナ、8は過熱器、9は再熱器、10は火炉中間混合部、11は節炭器入口管寄せ、12は節炭器出口管寄せ、13は火炉入口降水管、14は火炉入口分配管マニホルド、15は火炉入口分配管、16は火炉入口管寄せ、17は火炉下部左側壁、18は火炉下部前壁、19は火炉下部右側壁、20は火炉下部後壁、21は火炉下部出口管寄せ、22は火炉下部出口混合装置接続管、23は火炉中間混合装置、24は火炉中間連絡管、25は火炉中間スプレ装置、26は火炉上部入口分配管マニホルド、27は火炉上部入口分配管、28は火炉上部入口管寄せ、29は火炉上部左側壁、30は火炉上部前壁、31は火炉上部右側壁、32は火炉上部後壁、33は火炉上部出口管寄せ、をそれぞれ表す。   The fluid flow flowing through the heat transfer tube and the fluid temperature adjustment in the once-through boiler according to the embodiment of the present invention will be described below with reference to FIGS. In the drawings, 1 is a boiler feed pump, 2 is a high-pressure feed heater, 3 is a boiler feed pipe, 4 is a economizer, 5 is a furnace (lower part), 6 is a furnace (upper part), 7 is a burner, and 8 is a superheater. , 9 is a reheater, 10 is a furnace intermediate mixing section, 11 is a economizer inlet header, 12 is a economizer outlet header, 13 is a furnace inlet precipitation pipe, 14 is a furnace inlet distribution manifold, and 15 is a furnace. Inlet distribution pipe, 16 is a furnace inlet header, 17 is a left lower wall of the furnace, 18 is a lower front wall of the furnace, 19 is a lower right wall of the furnace, 20 is a lower rear wall of the furnace, 21 is a lower outlet outlet header, and 22 is a furnace Lower outlet mixing device connection pipe, 23 is a furnace intermediate mixing device, 24 is a furnace intermediate connecting pipe, 25 is a furnace intermediate spray device, 26 is a furnace upper inlet distribution manifold, 27 is a furnace upper inlet distribution pipe, and 28 is a furnace upper inlet The header, 29 is the upper left wall of the furnace, 30 is the upper part of the furnace Wall 31 furnace top right side wall, 32 furnace upper rear wall, 33 denotes the furnace top outlet pipe pulling, respectively.

図1において、ボイラへの給水は、ボイラ給水ポンプ1より高圧給水加熱器2を経てボイラ給水管3により、ボイラ内の節炭器4に供給される。給水は、バーナ7が設置されている火炉(下部)5、火炉(上部)6及び過熱器8などによって加熱され、蒸気となって高圧タービンに供給される。また、高圧タービンより戻った蒸気は再熱器9で加熱され、中圧タービンに供給されて発電が行われる。ここで、火炉(下部)5と火炉(上部)6との中間に火炉中間混合部10を設置する。   In FIG. 1, feed water to a boiler is supplied from a boiler feed pump 1 through a high-pressure feed heater 2 through a boiler feed pipe 3 to a economizer 4 in the boiler. The feed water is heated by the furnace (lower part) 5, the furnace (upper part) 6, the superheater 8 and the like in which the burner 7 is installed, and is supplied to the high-pressure turbine as steam. The steam returned from the high-pressure turbine is heated by the reheater 9 and supplied to the intermediate-pressure turbine to generate power. Here, a furnace intermediate mixing unit 10 is installed between the furnace (lower part) 5 and the furnace (upper part) 6.

図2、図3及び図4において、節炭器4からの給水は、火炉入口降水管13等を通して火炉(下部)5に送られ、火炉下部前壁18、火炉下部後壁20、火炉下部左側壁17、火炉下部右側壁19の4つの伝熱管で構成された周壁を火炉の燃焼ガスにより加熱され上昇する。火炉中間混合部10では、伝熱管内の流体は火炉下部出口管寄せ21で一旦火炉の外に出され、火炉下部出口混合装置接続管22にて両側壁横に設置された火炉中間混合装置23に集められ、混合される。   2, 3 and 4, the feed water from the economizer 4 is sent to the furnace (lower part) 5 through the furnace inlet precipitation pipe 13 and the like, and the furnace lower front wall 18, the furnace lower rear wall 20, and the furnace lower left side The peripheral wall composed of the four heat transfer tubes of the wall 17 and the furnace lower right wall 19 is heated and raised by the combustion gas of the furnace. In the furnace intermediate mixing section 10, the fluid in the heat transfer tube is once taken out of the furnace at the furnace lower outlet header 21, and the furnace intermediate mixing device 23 installed beside the both side walls at the furnace lower outlet mixer connecting pipe 22. Collected and mixed.

次に、混合された流体は、火炉中間連絡管24にて火炉の左右反対側に送られるが(図3を参照)、連絡管24の途中に火炉中間スプレ装置25が設置され、ボイラ給水ポンプ1出口の給水を注入する。火炉の反対側に送られた流体は、火炉上部入口分配管マニホルド26、火炉入口分配管27を経て火炉上部入口管寄せ28に送られ、再び、火炉(上部)6を構成する伝熱管からなる4つの周壁、すなわち、火炉上部前壁30、火炉上部後壁32、火炉上部左側壁29、火炉上部右側壁31で加熱されて上昇し、蒸気となって火炉出口管寄せ33に達する。ここで、不図示であるが、火炉出口管寄せ33の出力側には、火炉出口流体温度を計測する温度センサが設けられている。   Next, the mixed fluid is sent to the left and right sides of the furnace through the furnace intermediate connecting pipe 24 (see FIG. 3). A furnace intermediate spray device 25 is installed in the middle of the connecting pipe 24, and the boiler feed pump Inject 1 outlet water supply. The fluid sent to the opposite side of the furnace is sent to the furnace upper inlet header 28 via the furnace upper inlet manifold 26 and the furnace inlet distribution pipe 27, and again comprises a heat transfer tube constituting the furnace (upper) 6. The four peripheral walls, that is, the furnace upper front wall 30, the furnace upper rear wall 32, the furnace upper left wall 29, and the furnace upper right wall 31 are heated and risen to become steam and reach the furnace outlet header 33. Although not shown, a temperature sensor for measuring the furnace outlet fluid temperature is provided on the output side of the furnace outlet header 33.

次に、図2と図3を用いて、中間混合部10における流体の流れの詳細系統について説明する。ボイラの両側壁横に設置している火炉中間混合装置10において、右側の混合装置23−1には火炉下部右側壁19の全部、および火炉下部前壁18と火炉下部後壁20のそれぞれの右側半分の流体が集められ、左側の混合装置23−2には、火炉下部左側壁17の全部、および火炉下部前壁18と火炉下部後壁20のそれぞれの左側半分の流体が集められている。混合装置23−1と23−2において、火炉の右側半分と左側半分の流体のエンタルピはそれぞれが均一化される。   Next, the detailed system of the flow of the fluid in the intermediate mixing part 10 is demonstrated using FIG. 2 and FIG. In the furnace intermediate mixing device 10 installed beside the both side walls of the boiler, the right mixing device 23-1 includes all of the furnace lower right wall 19 and the right side of each of the furnace lower front wall 18 and the furnace lower rear wall 20. Half of the fluid is collected, and the left mixing device 23-2 collects all of the lower left wall 17 of the furnace and the left half of each of the lower front wall 18 and the lower rear wall 20 of the furnace. In the mixing devices 23-1 and 23-2, the enthalpies of the fluid in the right half and the left half of the furnace are made uniform.

ここで、バーナ部7においてボイラの前後に燃焼にアンバランスが生じていた場合、前壁18の半分づつと後壁20の半分づつを、それぞれ混合装置23−1と23−2で混合しているため、前後の流体のエンタルピ差は解消される。   Here, in the case where there is an imbalance in combustion before and after the boiler in the burner section 7, the front wall 18 and the rear wall 20 are mixed by the mixing devices 23-1 and 23-2, respectively. Therefore, the enthalpy difference between the front and rear fluids is eliminated.

これに対して、左右に燃焼アンバランスが生じていた場合、2つの混合装置23−1,23−2の流体エンタルピには差が生じることになる。そこで、混合した流体を火炉中間連絡管24で左右を入れ替えることとし、火炉下部の右側半分(右側壁の全部と前壁の右半分と後壁の右半分)で加熱されていた流体が、火炉上部左側壁29及び火炉上部前壁30の左半分と火炉上部後壁32の左半分に送られ、火炉下部の左側半分(左側壁の全部と前壁の左半分と後壁の左半分)で加熱されていた流体が、火炉上部右側壁31および火炉上部前壁30の右半分と火炉上部後壁32の右半分に送られることで、火炉下部で加熱されていた流体が上部では完全に左右が入れ替わることになる。   On the other hand, when the combustion imbalance has arisen on right and left, a difference will arise in the fluid enthalpy of the two mixing apparatuses 23-1 and 23-2. Therefore, the left and right sides of the mixed fluid are exchanged in the furnace intermediate connecting pipe 24, and the fluid heated in the right half of the lower part of the furnace (all of the right side wall, the right half of the front wall and the right half of the rear wall) Sent to the left half of the upper left wall 29 and the upper front wall 30 of the furnace and the left half of the upper rear wall 32 of the furnace, and the left half of the lower part of the furnace (the entire left wall, the left half of the front wall and the left half of the rear wall) The heated fluid is sent to the right half of the furnace upper right wall 31 and the furnace upper front wall 30 and the right half of the furnace upper rear wall 32, so that the fluid heated in the lower part of the furnace is completely left and right in the upper part. Will be replaced.

ここにおいて、火炉下部で発生する燃焼のアンバランスは、火炉上部や過熱器などの後流側にもそのまま前後や左右のアンバランスとなって影響する。したがって、左右の混合装置の流体エンタルピに差があった場合においても、伝熱管内の内部流体を火炉下部と上部で入れ替えたことにより、火炉出口流体のエンタルピ差が緩和され、火炉出口の伝熱管内の流体が水と蒸気の2相流や過熱蒸気、超臨界圧の蒸気であった場合においても、温度アンバランスを抑制することができる。これは、火炉の前後に混合装置を配置しても同様である。   Here, the unbalance of the combustion generated in the lower part of the furnace affects the wake side of the upper part of the furnace and the superheater as the unbalance of the front and rear and the left and right as it is. Therefore, even if there is a difference in the fluid enthalpy between the left and right mixing devices, the difference in the enthalpy of the furnace outlet fluid is mitigated by replacing the internal fluid in the heat transfer tube between the lower part and the upper part of the furnace. Even when the fluid in the pipe is a two-phase flow of water and steam, superheated steam, or supercritical pressure steam, temperature imbalance can be suppressed. This is the same even if a mixing device is arranged before and after the furnace.

また、火炉中間混合装置23と火炉上部入口分配管マニホルド26を結ぶ火炉中間連絡管24において、火炉中間スプレ装置25を用いてボイラ給水ポンプ出口の給水を注入することにより、火炉出口の流体エンタルピを低減することで流体温度のアンバランスを抑制することができる。その際、火炉出口で左右に温度差が発生した場合において、それぞれの出口に該当する部分において温度を計測し、その温度に応じてそれぞれの注入量を制御すれば温度差を一層小さくするように効果的に抑制することができる。   Also, in the furnace intermediate connecting pipe 24 connecting the furnace intermediate mixing device 23 and the furnace upper inlet distribution manifold 26, the feed water at the boiler feed pump outlet is injected by using the furnace intermediate spray device 25, thereby reducing the fluid enthalpy at the furnace outlet. By reducing, the fluid temperature imbalance can be suppressed. At that time, if a temperature difference occurs on the left and right at the furnace outlet, measure the temperature at the part corresponding to each outlet, and control each injection amount according to the temperature, so that the temperature difference is further reduced It can be effectively suppressed.

さらに、この火炉中間スプレ装置25によるスプレ水の注入を利用することによって、高蒸気温度条件のボイラにおける火炉出口流体温度の低減を図り、火炉出口における熱応力の発生を抑え、火炉の損傷を防止することができる。以上の説明では、火炉中間混合部10において、火炉の4つの内壁(前壁、後壁、右側壁、左側壁)を左右に分けて混合手段、連絡管、及び分配手段を用いて、火炉の伝熱管内流体を左右で入れ替えることを述べてきたが、左右に限らず、火炉の前後で伝熱管内流体を入れ替えても同様の効果が得られる。   Furthermore, by using spray water injection by the furnace intermediate spray device 25, the furnace outlet fluid temperature in the boiler with high steam temperature conditions is reduced, the generation of thermal stress at the furnace outlet is suppressed, and damage to the furnace is prevented. can do. In the above description, in the furnace intermediate mixing unit 10, the four inner walls (front wall, rear wall, right side wall, left side wall) of the furnace are divided into left and right, using the mixing means, the connecting pipe, and the distributing means. Although it has been described that the fluid in the heat transfer tube is replaced on the left and right, the same effect can be obtained even if the fluid in the heat transfer tube is replaced before and after the furnace.

本実施形態では、火炉の中間に注水するスプレ水を節炭器4の入口や出口ではなく、ボイラ給水ポンプ1の出口から分岐している。ポンプ1出口からの分岐の意味は、ボイラ給水が高圧給水加熱器2を通過することで給水の圧力が低下するため、火炉中間混合部10との圧力差は、節炭器の入口又は出口よりも、ボイラ給水ポンプ1出口の方が大きくなることになり、スプレの注水を容易に実施することができるからである。   In this embodiment, the spray water that is poured into the middle of the furnace is branched from the outlet of the boiler feed pump 1 instead of the inlet or outlet of the economizer 4. The meaning of branching from the outlet of the pump 1 is that the pressure of the feed water is lowered when the boiler feed water passes through the high-pressure feed water heater 2, so the pressure difference with the furnace intermediate mixing section 10 is greater than the entrance or exit of the economizer. This is because the outlet of the boiler feed pump 1 becomes larger, and spraying of the spray can be easily performed.

また、高圧給水加熱器2(図1を参照)では、タービンの抽気蒸気によって給水を加熱することから、節炭器4の入口温度よりボイラ給水ポンプ1の出口の方が給水温度は低く、スプレの注水量が節炭器入口又は出口よりも少ない量で火炉中間混合部10における流体のエンタルピを低減し、火炉出口流体温度の低減効果が大きく、制御性に優れている。   Further, in the high-pressure feed water heater 2 (see FIG. 1), the feed water is heated by the extracted steam of the turbine. Therefore, the feed water temperature at the outlet of the boiler feed pump 1 is lower than the inlet temperature of the economizer 4, and the spray water is heated. Is less than the economizer inlet or outlet, reducing the enthalpy of the fluid in the furnace intermediate mixing section 10, greatly reducing the furnace outlet fluid temperature, and being excellent in controllability.

以上のように、本発明の実施形態の特徴を繰り返して説明すると、火炉下部において加熱上昇した伝熱管内の流体は、火炉の中間に設置する2つの流体混合装置により、それぞれ50%づつの均一なレベルのエンタルピとなり、この流体を2本の連絡管により火炉の左右または前後の反対側に接続し、火炉上部で加熱することにより、火炉内の燃焼に起因する左右または前後の火炉出口流体温度アンバランスは抑制することができる。   As described above, the features of the embodiment of the present invention will be described repeatedly. The fluid in the heat transfer tube heated and raised in the lower part of the furnace is uniformly distributed by 50% each by the two fluid mixing devices installed in the middle of the furnace. By connecting the fluid to the left and right or front and back opposite sides of the furnace with two connecting pipes and heating at the top of the furnace, the fluid temperature at the left and right or front and rear furnace outlets caused by combustion in the furnace Unbalance can be suppressed.

さらに、2本の連絡管においてスプレ装置により注水するに際して、2本の連絡管の注水量を火炉出口流体温度に応じて変えることにより、流体温度アンバランスを効果的に抑制できる。また、高蒸気温度条件のボイラにおいて、注水スプレのスプレ水制御をすることで、火炉出口流体温度の低減を図り、火炉出口における熱応力の発生を抑えることができる。   Furthermore, when water is injected by the spray device in the two connecting pipes, the fluid temperature imbalance can be effectively suppressed by changing the water injection amount of the two connecting pipes according to the furnace outlet fluid temperature. Moreover, in the boiler of high steam temperature conditions, by controlling the spray water of the water injection spray, it is possible to reduce the furnace outlet fluid temperature and suppress the generation of thermal stress at the furnace outlet.

また、貫流ボイラでは、過熱器へのスプレ水は節炭器の入口または出口の給水より分岐するのに対して、火炉の中間における連絡管内へのスプレ水は、節炭器の入口又は出口の給水より温度の低く且つ連絡管内流体との圧力差を大きく取れる、ボイラ給水ポンプ出口又は複数の高圧給水加熱器の中間から分岐した給水を用いることにより、注水量の減少と流体温度の低減幅を広げることができる。この結果、流体温度アンバランスの抑制と火炉出口流体温度の低減とにより、熱応力の発生を抑え、火炉の損傷を防ぐことができる。   In the once-through boiler, the spray water to the superheater branches off from the feed water at the inlet or outlet of the economizer, whereas the spray water into the connecting pipe in the middle of the furnace is at the inlet or outlet of the economizer. By using feed water branched from the boiler feed water pump outlet or the middle of multiple high-pressure feed water heaters, which can take a larger pressure difference from the fluid in the communication pipe and lower in temperature than the feed water, the amount of water injection and fluid temperature can be reduced. Can be spread. As a result, generation of thermal stress can be suppressed and damage to the furnace can be prevented by suppressing the fluid temperature imbalance and reducing the furnace outlet fluid temperature.

1 ボイラ給水ポンプ
2 高圧給水加熱器
3 ボイラ給水管
4 節炭器
5 火炉(下部)
6 火炉(上部)
7 バーナ
8 過熱器
9 再熱器
10 火炉中間混合部
11 節炭器入口管寄せ
12 節炭器出口管寄せ
13 火炉入口降水管
14 火炉入口分配管マニホルド
15 火炉入口分配管
16 火炉入口管寄せ
17 火炉下部左側壁
18 火炉下部前壁
19 火炉下部右側壁
20 火炉下部後壁
21 火炉下部出口管寄せ
22 火炉下部出口混合装置接続管
23 火炉中間混合装置
24 火炉中間連絡管
25 火炉中間スプレ装置
26 火炉上部入口分配管マニホルド
27 火炉上部入口分配管
28 火炉上部入口管寄せ
29 火炉上部左側壁
30 火炉上部前壁
31 火炉上部右側壁
32 火炉上部後壁
33 火炉上部出口管寄せ
34 管寄せ仕切壁
35 火炉周壁中間管寄せ
DESCRIPTION OF SYMBOLS 1 Boiler feed pump 2 High pressure feed water heater 3 Boiler feed pipe 4 Carbon-saving device 5 Furnace (lower part)
6 Furnace (upper part)
7 Burner 8 Superheater 9 Reheater 10 Furnace intermediate mixing section 11 Fuel saver inlet header 12 Fuel saver outlet header 13 Furnace inlet precipitation tube 14 Furnace inlet distribution pipe manifold 15 Furnace inlet distribution pipe 16 Furnace inlet header 17 Furnace lower left wall 18 Furnace lower front wall 19 Furnace lower right wall 20 Furnace lower rear wall 21 Furnace lower outlet header 22 Furnace lower outlet mixer connecting pipe 23 Furnace intermediate mixing device 24 Furnace intermediate connecting pipe 25 Furnace intermediate spray device 26 Furnace Upper inlet distribution manifold 27 Furnace upper inlet distribution pipe 28 Upper furnace inlet inlet 29 Upper furnace left wall 30 Upper furnace front wall 31 Upper furnace right wall 32 Upper furnace rear wall 33 Upper furnace outlet header 34 Upper divider wall 35 Furnace Peripheral wall header

Claims (5)

前壁、後壁、左側壁、右側壁からなる内壁をもつ火炉と、前記内壁に設けられた伝熱管と、前記火炉の下方部に設けたバーナと、を備え、前記伝熱管内の流体が前記火炉内の燃焼ガスから熱吸収する貫流ボイラにおいて、
前記バーナより上方の前記火炉の中間部に、各内壁に対応した伝熱管内の流体を寄せる4つの火炉下部出口管寄せを設け、
前記4つの火炉下部出口管寄せから送給された流体を混合する2つの流体混合手段を設け、
前記2つの流体混合手段から前記混合した流体がそれぞれの連絡管を通してそれぞれ送給される2つの流体分配手段を設け、
前記2つの流体分配手段から流体が送給される4つの火炉上部入口管寄せを前記火炉の中間部に設け、
前記2つの流体混合手段は、火炉の左右にそれぞれ配置された火炉下部出口管寄せからの流体を左右ごとに集めて混合し、前記混合した流体をそれぞれの連絡管を通してそれぞれの流体分配手段に送給し、
前記2つの流体分配手段は、火炉の下部と上部との間で、火炉の左右の伝熱管内の流体を入れ替えるように前記4つの火炉上部入口管寄せに対して流体流路を形成する
ことを特徴とする貫流ボイラ。
A furnace having an inner wall consisting of a front wall, a rear wall, a left side wall, and a right side wall; a heat transfer tube provided on the inner wall; and a burner provided at a lower portion of the furnace, wherein the fluid in the heat transfer tube In the once-through boiler that absorbs heat from the combustion gas in the furnace,
In the middle part of the furnace above the burner, four furnace lower outlet headers for bringing fluid in the heat transfer tubes corresponding to the inner walls are provided,
Two fluid mixing means for mixing fluids fed from the four furnace lower outlet headers are provided,
Two fluid distribution means for supplying the mixed fluid from the two fluid mixing means through respective connecting pipes;
Four furnace upper inlet headers to which fluid is fed from the two fluid distribution means are provided in the middle of the furnace,
The two fluid mixing means collect and mix the fluid from the bottom outlet outlets arranged at the left and right sides of the furnace for each left and right, and send the mixed fluid to the respective fluid distribution means through the respective connecting pipes. And
The two fluid distribution means form a fluid flow path for the four furnace upper inlet headers so that the fluid in the left and right heat transfer tubes of the furnace is exchanged between the lower and upper parts of the furnace. A once-through boiler.
請求項1において、
前記2つの流体混合手段が火炉の左右にそれぞれ配置された火炉下部出口管寄せからの流体を左右ごとに集めて混合する代わりに、前記2つの流体混合手段が火炉の前後にそれぞれ配置された火炉下部出口管寄せからの流体を前後ごとに集めて混合し、前記2つの流体分配手段は、火炉の下部と上部との間で、火炉の前後の伝熱管内の流体を入れ替えるように前記4つの火炉上部入口管寄せに対して流体流路を形成する
ことを特徴とする貫流ボイラ。
In claim 1,
A furnace in which the two fluid mixing means are arranged in front of and behind the furnace instead of collecting and mixing the fluid from the bottom outlet outlet of the furnace in which the two fluid mixing means are arranged on the left and right of the furnace, respectively. The fluid from the lower outlet header is collected and mixed on the front and back sides, and the two fluid distribution means are arranged so that the fluid in the heat transfer tubes before and after the furnace is exchanged between the lower part and the upper part of the furnace. A once-through boiler characterized in that a fluid flow path is formed with respect to a furnace upper inlet header.
請求項1または2において、
ボイラ給水ポンプ出口からの水又は複数の高圧給水加熱器間から分岐した水を注水するスプレ装置が、前記連絡管に設けられる
ことを特徴とする貫流ボイラ。
In claim 1 or 2,
A once-through boiler, wherein a spray device for injecting water from an outlet of a boiler feed water pump or water branched from between a plurality of high-pressure feed water heaters is provided in the connecting pipe.
請求項3において、
火炉出口の流体温度を計測し、前記計測した流体温度に応じて前記それぞれの連絡管への注水量を制御して流体温度のアンバランスを抑制する
ことを特徴とする貫流ボイラ。
In claim 3,
A once-through boiler, wherein a fluid temperature at a furnace outlet is measured, and an unbalance of the fluid temperature is suppressed by controlling a water injection amount to each of the connecting pipes according to the measured fluid temperature.
請求項3において、
高蒸気温度条件のボイラにおける火炉出口の流体温度を計測し、前記計測した流体温度に応じて前記それぞれの連絡管への注水量を制御して火炉出口の流体温度を低減する
ことを特徴とする貫流ボイラ。
In claim 3,
It measures the fluid temperature at the furnace outlet in a boiler with high steam temperature conditions, and controls the amount of water injected into each of the connecting pipes according to the measured fluid temperature to reduce the fluid temperature at the furnace outlet. Once-through boiler.
JP2010284790A 2010-12-21 2010-12-21 A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet Active JP5514709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284790A JP5514709B2 (en) 2010-12-21 2010-12-21 A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284790A JP5514709B2 (en) 2010-12-21 2010-12-21 A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet

Publications (2)

Publication Number Publication Date
JP2012132617A JP2012132617A (en) 2012-07-12
JP5514709B2 true JP5514709B2 (en) 2014-06-04

Family

ID=46648412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284790A Active JP5514709B2 (en) 2010-12-21 2010-12-21 A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet

Country Status (1)

Country Link
JP (1) JP5514709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803254B2 (en) * 2017-02-08 2020-12-23 株式会社アマダ Optical sensor installation structure and work loading system

Also Published As

Publication number Publication date
JP2012132617A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
TWI529350B (en) Once through evaporator
BG110614A (en) An integrated air heater with bifurcated flux of the water worm pipe and economizer
AU2009249510B2 (en) Continuous steam generator with equalizing chamber
US9267678B2 (en) Continuous steam generator
CN103711532A (en) Steam power plant with steam turbine extraction control
US20120073520A1 (en) Continuous evaporator
JP5514709B2 (en) A once-through boiler capable of adjusting the fluid temperature in the heat transfer tube at the furnace outlet
JP5345217B2 (en) Once-through boiler
JP4489773B2 (en) Once-through boiler and its operation method
JP2014085038A (en) Boiler system
AU2011287835B2 (en) Forced-flow steam generator
CN103727519A (en) Device for preventing low-temperature corrosion of economizer heating surface
RU2376524C1 (en) Steam boiler with sectionalised live steam superheater and automatic gas control system of uniform steam heating in sections of such superheater
CN207365046U (en) Waste heat boiler reheater tube panel arrangement
CN103052848B (en) Forced once-through boiler
CN106288322A (en) A kind of nothing reducing low-pressure heater device diameters is indulged and is plunderred heat exchange superheat section structure
JP2007504431A (en) Horizontal once-through boiler and its operation method
CN205535732U (en) Header tube socket in middle of exhaust -heat boiler's high -pressure over heater
JP2012519831A (en) Through-flow evaporator and its design method
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
CN205373460U (en) Just put vertical syllogic U -shaped pipe high pressure feed water heater
CN107477565A (en) A kind of waste heat boiler reheater tube panel arrangement
CN106369588A (en) Gas-fired boiler
KR102115055B1 (en) Waste heat recovery system of floating type marine structure
JP2023541492A (en) Steam generator with attemperator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350