JP5514435B2 - Method for producing white conductive powder - Google Patents

Method for producing white conductive powder Download PDF

Info

Publication number
JP5514435B2
JP5514435B2 JP2008335477A JP2008335477A JP5514435B2 JP 5514435 B2 JP5514435 B2 JP 5514435B2 JP 2008335477 A JP2008335477 A JP 2008335477A JP 2008335477 A JP2008335477 A JP 2008335477A JP 5514435 B2 JP5514435 B2 JP 5514435B2
Authority
JP
Japan
Prior art keywords
stannous
inorganic powder
white
stannic oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008335477A
Other languages
Japanese (ja)
Other versions
JP2010157447A (en
Inventor
明 中林
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2008335477A priority Critical patent/JP5514435B2/en
Publication of JP2010157447A publication Critical patent/JP2010157447A/en
Application granted granted Critical
Publication of JP5514435B2 publication Critical patent/JP5514435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、優れた導電性を有し、環境汚染を生じない白色導電性無機粉末とその製造方法に関する。より詳しくは、本発明は、酸化チタン等の担体表面に導電性酸化錫層を有する白色導電性無機粉末であって、環境汚染等を生じる虞がなく、優れた導電性を有し、製造が容易である白色導電性無機粉末とその製造方法に関する。   The present invention relates to a white conductive inorganic powder having excellent conductivity and causing no environmental pollution, and a method for producing the same. More specifically, the present invention is a white conductive inorganic powder having a conductive tin oxide layer on the surface of a carrier such as titanium oxide, has no risk of causing environmental pollution, has excellent conductivity, and is manufactured. The present invention relates to an easily white conductive inorganic powder and a method for producing the same.

白色導電粉末は帯電防止・帯電制御・制電防止・防塵等の用途に現在広く用いられている。従来、導電性を高めるために、アンチモン等をドープした導電粉末が使用されているが、近時、環境汚染防止等の観点から、アンチモンフリーの導電材料が求められている。   White conductive powder is currently widely used for antistatic, charge control, antistatic control, dustproof and other applications. Conventionally, conductive powder doped with antimony or the like has been used in order to enhance conductivity, but recently, an antimony-free conductive material is required from the viewpoint of preventing environmental pollution.

具体的には、従来、白色導電粉末として、例えば、酸化アルミニウムをドープした酸化亜鉛、二酸化チタン粉末等の表面に酸化アンチモンをドープした酸化錫膜を形成した白色導電粉末が知られている(特許文献1、特許文献2)。また、アンチモン成分を含有する酸化錫からなる導電被膜をチタン酸カリウム繊維に形成した白色導電繊維が知られている(特許文献3、特許文献4)。   Specifically, conventionally, as the white conductive powder, for example, white conductive powder in which a tin oxide film doped with antimony oxide is formed on the surface of zinc oxide doped with aluminum oxide, titanium dioxide powder or the like (patent) Literature 1, Patent Literature 2). Moreover, the white conductive fiber which formed the conductive film which consists of a tin oxide containing an antimony component in the potassium titanate fiber is known (patent documents 3 and patent documents 4).

さらに、二酸化チタン粒子表面に酸化錫およびリンを含む導電層を形成した白色導電性二酸化チタン粉末が知られている(特許文献5)。ただし、これらの粉末は透明性を有しない。透明導電粉としては、アンチモンドープ酸化錫が知られている(特許文献6)。しかし、酸化アンチモンをドープした導電粉末は、導電性が安定しているものの環境汚染防止の観点から、アンチモンフリーの導電粉末が求められている。アンチモンフリーの導電粉末としては、リンをドープしたものが知られているが、これは導電性が不安定であり、またリンの偏在性の問題があった。また、酸化第二錫を水素還元した粉末も知られているが(特許文献7)、水素還元では金属錫まで還元され、反応の制御が難しい。表面改質されたノンドープ酸化錫からなる透明導電性酸化錫粉末もあるが、カーボン残存等の問題がある。また、白色粉末ではないので外観や機能性の点から白色環境を要求される用途には適さないという問題もある。
特開昭58−209002号公報 特開昭62−180903号公報 特開昭61−136532号公報 特開平07−053217号公報 国際公開WO2005/012449号公報 特開2006−59806号公報 特開2005−108733〜5号公報
Furthermore, a white conductive titanium dioxide powder is known in which a conductive layer containing tin oxide and phosphorus is formed on the surface of titanium dioxide particles (Patent Document 5). However, these powders do not have transparency. As the transparent conductive powder, antimony-doped tin oxide is known (Patent Document 6). However, although the conductive powder doped with antimony oxide has stable conductivity, an antimony-free conductive powder is required from the viewpoint of preventing environmental pollution. As the antimony-free conductive powder, one doped with phosphorus is known, but this has unstable conductivity and has a problem of uneven distribution of phosphorus. Moreover, although the powder which reduced hydrogenation of stannic oxide is also known (patent document 7), in hydrogen reduction, it reduces to metal tin and control of reaction is difficult. There are transparent conductive tin oxide powders made of surface-modified non-doped tin oxide, but there are problems such as carbon remaining. Moreover, since it is not a white powder, there also exists a problem that it is not suitable for the use for which a white environment is requested | required from the point of an external appearance or functionality.
JP 58-209002 A Japanese Patent Laid-Open No. 62-180903 JP-A 61-136532 Japanese Patent Application Laid-Open No. 07-053217 International Publication WO2005 / 012449 JP 2006-59806 A JP 2005-108733-5 A

本発明は、従来の導電粉末における上記問題を解決したものであり、酸化チタン等の担体表面に導電性酸化錫層を有する白色導電性無機粉末であって、環境汚染等を生じる虞がなく、優れた導電性を有し、製造が容易であるアンチモン、リン、およびインジウムを含まない白色導電性無機粉末製造方法を提供する。
The present invention is a solution of the above-mentioned problems in conventional conductive powder, and is a white conductive inorganic powder having a conductive tin oxide layer on the surface of a carrier such as titanium oxide, and there is no risk of causing environmental pollution or the like. It has excellent conductivity, provides antimony easy manufacturing, phosphorus, and a method for manufacturing a white conductive inorganic powder that does not contain indium.

本発明は、以下に示す構成によって上記課題を解決した白色導電性無機粉末の製造方法に関する。
〔1〕酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液(第一錫のフッ化物溶液を除く)とを混合して固体状態の酸化第二錫層に2価イオンの第一錫イオンを接触させ、加熱乾燥し、上記酸化第二錫を第一錫イオンで還元して導電性酸化錫層を形成することを特徴とするアンチモン、リン、およびインジウムを含まない白色導電性無機粉末の製造方法。
〔2〕酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液(第一錫のフッ化物溶液を除く)とを混合して固体状態の酸化第二錫層に2価イオンの第一錫イオンを接触させ、非酸化性の第一錫イオン可溶性溶媒雰囲気下で加熱して上記酸化第二錫を還元する上記[1]に記載する白色導電性無機粉末の製造方法。
〔3〕酸化第二錫表面層を有する白色無機粉末に第一錫イオン溶液(第一錫のフッ化物溶液を除く)を加えてペーストにして加熱乾燥し、上記酸化第二錫を第一錫イオンで還元して導電性酸化錫層を形成する上記[1]に記載する白色導電性無機粉末の製造方法。
〔4〕酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液(第一錫のフッ化物溶液を除く)混合してスラリーにし、該スラリーまたは該スラリーを乾燥したものを、非酸化性の第一錫イオン可溶性溶媒雰囲気下で加熱し、上記酸化第二錫を還元して導電性酸化錫層を形成する上記[1]に記載する白色導電性無機粉末の製造方法。
The present invention relates to a method for producing a white conductive inorganic powder that solves the above-described problems with the following configuration.
[1] A white inorganic powder having a surface layer of stannic oxide and a stannous ion solution (excluding a stannous fluoride solution) are mixed to form a solid state stannic oxide layer containing divalent ions. Contact with stannous ions, heat drying, reducing the above-mentioned stannic oxide with stannous ions to form a conductive tin oxide layer, white conductivity free from antimony, phosphorus and indium Manufacturing method of inorganic powder.
[2] A white inorganic powder having a surface layer of stannic oxide and a stannous ion solution (excluding a stannous fluoride solution) are mixed to form a solid state stannic oxide layer containing divalent ions. The method for producing a white conductive inorganic powder according to the above [1], wherein the tin oxide is brought into contact and heated in a non-oxidizing stannous ion-soluble solvent atmosphere to reduce the stannic oxide .
[3] A stannous ion solution (excluding a stannous fluoride solution) is added to a white inorganic powder having a surface layer of stannic oxide to obtain a paste , which is heat-dried. The method for producing a white conductive inorganic powder according to the above [1], wherein the conductive tin oxide layer is formed by reduction with ions .
[4] A white inorganic powder having a surface layer of stannic oxide and a stannous ion solution (excluding a stannous fluoride solution) are mixed to form a slurry, and the slurry or the slurry dried The method for producing a white conductive inorganic powder according to the above [1], wherein the conductive tin oxide layer is formed by reducing the stannic oxide by heating in an oxidizing stannous ion-soluble solvent atmosphere.

本発明の白色導電性無機粉末は優れた導電性を有し、環境汚染を生じる虞がなく、環境への負担が少ない。また、本発明の白色導電性無機粉末は、アンチモン等の特定元素をドープするものではないので、製造が容易であり、安価に製造することができる。また、酸化第二錫に対する第一錫イオンの比率を変えることによって導電性を制御することができるので、目的の導電性を有する粉末を容易に製造することができる。   The white conductive inorganic powder of the present invention has excellent conductivity, there is no risk of causing environmental pollution, and the burden on the environment is small. Moreover, since the white electroconductive inorganic powder of this invention does not dope special elements, such as antimony, manufacture is easy and can be manufactured cheaply. In addition, since the conductivity can be controlled by changing the ratio of stannous ions to stannic oxide, a powder having the desired conductivity can be easily produced.

以下、本発明を実施形態に基づいて具体的に説明する。なお%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

〔導電性無機粉末〕
本発明の白色導電性無機粉末は、白色無機粉末表面に導電性酸化錫層を有し、粉末体積抵抗が104Ω・cm以下であることを特徴とする白色導電性無機粉末である。
[Conductive inorganic powder]
The white conductive inorganic powder of the present invention is a white conductive inorganic powder characterized by having a conductive tin oxide layer on the surface of the white inorganic powder and having a powder volume resistance of 10 4 Ω · cm or less.

本発明の白色導電性無機粉末は、好ましくは、粉末表面に酸化第二錫層を有する白色無機粉末を用い、この酸化第二錫層を第一錫イオンによって還元することによって導電性酸化錫層を形成した白色導電性無機粉末である。導電性酸化錫層を担持する白色無機粉末は、例えば、酸化チタン、チタン酸カリウム、白色雲母などの粉末を用いることができる。   The white conductive inorganic powder of the present invention preferably uses a white inorganic powder having a stannic oxide layer on the powder surface, and the conductive tin oxide layer is reduced by reducing the stannic oxide layer with stannous ions. Is a white conductive inorganic powder. As the white inorganic powder supporting the conductive tin oxide layer, for example, powders such as titanium oxide, potassium titanate, and white mica can be used.

酸化第二錫が導電性を有するには酸素欠陥が存在することが必要であり、本発明の白色導電性無機粉末は、好ましくは、粉末表面の酸化第二錫層(SnO2)を第一錫イオン(Sn2+)によって還元することにより、酸素欠陥を生じさせて導電性を発現するようにしたものである。 In order for stannic oxide to have conductivity, oxygen defects must be present, and the white conductive inorganic powder of the present invention preferably has a stannic oxide layer (SnO 2 ) on the surface of the powder as the first. By reducing with tin ions (Sn 2+ ), oxygen defects are caused to develop conductivity.

従来、第二錫を水素などで還元することにより、導電性を有する酸化錫粉末を製造する方法が知られている。一方、本発明の白色導電性無機粉末は、イオン化していない固体状態の酸化第二錫層に、2価イオンの第一錫イオンを作用させて、酸化第二錫を還元して導電性酸化錫層を形成する。固体状態の酸化錫層を第一錫イオンによって直接に還元するこのような方法は、全く新しい画期的な手法である。   Conventionally, a method for producing a tin oxide powder having conductivity by reducing stannic with hydrogen or the like is known. On the other hand, the white conductive inorganic powder of the present invention reduces the stannic oxide by allowing divalent stannous ions to act on the solid stannic oxide layer that is not ionized, thereby conducting conductive oxidation. A tin layer is formed. Such a method of directly reducing the solid state tin oxide layer with stannous ions is a completely new and innovative method.

導電性酸化錫層を形成するには、具体的には、例えば、以下の方法を利用することができる。
〔イ〕酸化第二錫表面層を有する白色無機粉末に、第一錫イオン含有溶液を加えてペーストにすることによって酸化第二錫を還元して酸素欠陥を形成する方法。
〔ロ〕酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液をスラリーにし、該スラリーまたは該スラリーを乾燥したものを、非酸化性の第一錫イオン可溶性溶媒雰囲気下で加熱して酸化第二錫を還元して酸素欠陥を形成する方法。
Specifically, for example, the following method can be used to form the conductive tin oxide layer.
[A] A method of forming oxygen defects by reducing stannic oxide by adding a stannous ion-containing solution to a white inorganic powder having a stannic oxide surface layer to form a paste.
[B] A white inorganic powder having a stannic oxide surface layer and a stannous ion solution are made into a slurry, and the slurry or the dried slurry is heated in a non-oxidizing stannous ion soluble solvent atmosphere. A method of reducing stannic oxide to form oxygen defects.

第一錫イオンによる還元反応は、出発物質として第一錫イオンが存在しない場合でも可能である。下記反応式に示すように、例えば、微量でも塩酸が存在すると酸化第二錫と反応して第一錫イオンが生成し、これによって還元反応が進行する。本発明の製造反応はこのような反応も含む。
SnO2 + 4HCl → SnCl2 + 2H2O + Cl2
The reduction reaction with stannous ions is possible even when stannous ions are not present as a starting material. As shown in the following reaction formula, for example, if hydrochloric acid is present even in a trace amount, it reacts with stannic oxide to produce stannous ions, and thereby the reduction reaction proceeds. The production reaction of the present invention includes such a reaction.
SnO 2 + 4HCl → SnCl 2 + 2H 2 O + Cl 2

第一錫イオンの供給源である第一錫塩としては、塩化第一錫、硫酸第一錫、酸化第一錫、硝酸第一錫、ピロリン酸錫、スルファミン酸錫、亜錫酸塩などの無機系の可溶性塩を用いることができ、また、アルカノールスルホン酸第一錫、スルホコハク酸第一錫、脂肪族カルボン酸第一錫などの有機系の可溶性塩などを用いることができる。
Examples of stannous salts that supply stannous ions include stannous chloride, stannous sulfate, stannous oxide, stannous nitrate, tin pyrophosphate, tin sulfamate, and stannate. Inorganic soluble salts can be used, and organic soluble salts such as stannous alkanol sulfonate, stannous sulfosuccinate, stannous aliphatic carboxylate, and the like can be used.

本発明の白色導電性無機粉末は、粉末体積抵抗が500Ω・cm以下である。粉末体積抵抗が104Ω・cmより大きいと、帯電防止効果を発揮する表面抵抗109Ω/□を得るための必要量(樹脂への混入量)が多くなり、樹脂の物性を劣化させてしまう。本発明の白色導電性無機錫粉末は粉末体積抵抗が小さく、高い導電性を有するのでこのような問題がない。
The white conductive inorganic powder of the present invention has a powder volume resistance of 500 Ω · cm or less. If the powder volume resistance is greater than 10 4 Ω · cm, the amount necessary to obtain a surface resistance of 10 9 Ω / □ that exhibits an antistatic effect increases (the amount mixed into the resin), which degrades the physical properties of the resin. End up. Since the white conductive inorganic tin powder of the present invention has low powder volume resistance and high conductivity, there is no such problem.

還元に用いる第一錫化合物の使用量(上限)は、酸化第二錫に対して第一錫10mol%以下、好ましくは5mol%以下が適当であり、下限量は第一錫0.1mol%以上が適当である。第一錫量が10mol%より多くても導電性は大差なく、むしろ還元反応後の洗浄処理の負担が増す。一方、第一錫量が0.1mol%より少ないと、粉末体積抵抗が104Ω・cmより大きく、導電性が低い傾向がある。 The amount (upper limit) of the stannous compound used for the reduction is suitably 10 mol% or less, preferably 5 mol% or less of stannous with respect to stannic oxide, and the lower limit is 0.1 mol% or more of stannous. Is appropriate. Even if the amount of stannous is more than 10 mol%, there is no great difference in conductivity, but rather the burden of cleaning treatment after the reduction reaction is increased. On the other hand, if the amount of stannous is less than 0.1 mol%, the powder volume resistance tends to be greater than 10 4 Ω · cm and the conductivity tends to be low.

本発明の白色導電性無機粉末は、粉末の色調が、Lab表色系において、L値70以上であり、具体的には、実施例1〜実施例4に示すように、L値70以上、好ましくは、L値80以上の白色粉末である。なお、酸化錫層の酸素欠陥が多いほど導電性が高く、かつL値が低くなる。L値が70より低いと、色が濃くなり白色環境での用途に使用できなくなるので好ましくない。   In the white conductive inorganic powder of the present invention, the color tone of the powder has an L value of 70 or more in the Lab color system, specifically, as shown in Examples 1 to 4, an L value of 70 or more, A white powder having an L value of 80 or more is preferable. Note that the more oxygen defects in the tin oxide layer, the higher the conductivity and the lower the L value. An L value lower than 70 is not preferable because the color becomes dark and cannot be used in a white environment.

本発明の白色導電性無機粉末は、アンチモン、リン、インジウムを何れも含まないので環境汚染を生じる懸念がない。また、アンチモン、リン、インジウムを含まないので低コストである。なお、本発明において、アンチモン、リン、およびインジウムを含まないとは、原料および工程中でアンチモン、リン、およびインジウム源を使用せず、従って検出限界500ppmの標準的な測定装置によってこれらの元素が検出されないことを云う。   Since the white conductive inorganic powder of the present invention does not contain antimony, phosphorus, or indium, there is no concern of causing environmental pollution. Further, since it does not contain antimony, phosphorus, and indium, it is low cost. In the present invention, “antimony, phosphorus, and indium are not included” means that no source of antimony, phosphorus, and indium is used in the raw materials and processes, and therefore these elements are detected by a standard measuring device having a detection limit of 500 ppm. It is said that it is not detected.

本発明の白色導電性無機粉末は、アンチモン等のドープ成分を含まずに高い導電性を有するので、外観や機能面から白色環境が求められる用途、例えば、半導体クリーンルームやコンピュータルーム、病院等の内装材ないしカーペットなどにおける導電材料として好適である。   Since the white conductive inorganic powder of the present invention has high conductivity without containing a doping component such as antimony, it is used in applications where a white environment is required in terms of appearance and function, for example, interiors of semiconductor clean rooms, computer rooms, hospitals, etc. It is suitable as a conductive material for materials or carpets.

本発明の白色導電性無機粉末は、水に分散可能であるので、分散液や水性塗料等の導電材料として用いることができ、この塗料によって導電性の膜組成物を形成することができる。   Since the white conductive inorganic powder of the present invention can be dispersed in water, it can be used as a conductive material such as a dispersion or water-based paint, and a conductive film composition can be formed with this paint.

〔製造方法〕
本発明の白色導電性無機粉末は、第一錫イオンの可溶性溶媒中あるいは可溶性溶媒雰囲気下で、酸化第二錫表面層に第一錫イオンを接触させて還元させることによって製造することができる。
〔Production method〕
The white conductive inorganic powder of the present invention can be produced by bringing stannous ions into contact with the surface layer of stannous oxide in a soluble solvent of stannous ions or in a soluble solvent atmosphere and reducing it.

第一錫イオンの可溶性溶媒とは、水、アルコール、酢酸エチル、氷酢酸などであるが、水またはアルコールが扱い易く、低コストであるので好ましい。第一錫イオンの可溶性溶媒中で第一錫イオンを生じさせるには、可溶性溶媒に第一錫塩を溶解させるか、酸またはアルカリを加えた可溶性溶媒に第一錫塩を溶解させてもよい。   The soluble solvent for stannous ions is water, alcohol, ethyl acetate, glacial acetic acid, etc., but water or alcohol is preferable because it is easy to handle and low in cost. In order to generate stannous ions in the soluble solvent of stannous ions, the stannous salt may be dissolved in the soluble solvent, or the stannous salt may be dissolved in the soluble solvent to which an acid or an alkali is added. .

還元反応は、酸化第二錫表面層を有する白色無機粉末を、可溶性溶媒に分散し、これに第一錫イオン塩または第一錫イオン溶液を加えるか、第一錫イオン溶液に酸化第二錫表面層を有する無機粉末を分散してもよい。微量の第一錫イオンによっても還元反応が進み、常温でも還元反応が進行する。還元反応を促進させるために加熱してもよい。   In the reduction reaction, a white inorganic powder having a stannic oxide surface layer is dispersed in a soluble solvent, and a stannous ion salt or a stannous ion solution is added thereto, or stannic oxide is added to the stannous ion solution. You may disperse | distribute the inorganic powder which has a surface layer. The reduction reaction proceeds even with a small amount of stannous ions, and the reduction reaction proceeds even at room temperature. Heating may be performed to promote the reduction reaction.

可溶性溶媒雰囲気下での反応は、不活性ガス雰囲気および第一錫イオンの可溶性溶媒蒸気の存在下、酸素を排除し、熱処理して、酸化第二錫表面層と酸化第一錫イオンを反応させればよい。また、酸化第二錫表面層を有する無機粉末と第一錫イオン溶液をスラリー化し、スラリーの状態で用いてもよく、これを乾燥したものを用いてもよい。   The reaction under a soluble solvent atmosphere is performed by excluding oxygen in the presence of an inert gas atmosphere and a soluble solvent vapor of stannous ions, heat treatment, and reacting the stannous oxide surface layer with stannous oxide ions. Just do it. In addition, an inorganic powder having a stannic oxide surface layer and a stannous ion solution may be slurried and used in a slurry state, or a dried product thereof may be used.

熱処理は、雰囲気調整した不活性ガス雰囲気下で行うのがよく、具体的には、窒素ガスやアルゴンガスなどの不活性ガス雰囲気および第一錫イオンの可溶性溶媒蒸気の存在下、酸素を排除して行うのが好ましい。   The heat treatment should be performed in an inert gas atmosphere with an adjusted atmosphere. Specifically, oxygen is removed in the presence of an inert gas atmosphere such as nitrogen gas or argon gas and a soluble solvent vapor of stannous ions. Preferably.

第一錫イオンの可溶性溶媒蒸気を導入する方法は限定されない。熱処理炉の不活性ガス雰囲気中に可溶性溶媒蒸気を導入してもよく、スラリーのまま、またはその乾燥を適度にして湿った状態にしてもよい。あるいは、不活性ガスを可溶性溶媒に通じてバブリングさせてもよい。   The method for introducing the soluble solvent vapor of stannous ions is not limited. Soluble solvent vapor may be introduced into the inert gas atmosphere of the heat treatment furnace, or the slurry may be left in a slurry state or may be moistened with moderate drying. Alternatively, an inert gas may be bubbled through the soluble solvent.

可溶性溶媒の蒸気圧は飽和蒸気圧30%以上が好ましい。この蒸気圧を保って熱処理するには密閉型の熱処理炉を用いるのが好ましい。また、雰囲気から酸素を排除して加熱する。従来、酸素を含む不活性ガス化で熱処理する方法が知られているが、酸素が含まれていると、安定して低抵抗粉末を得ることができず、また反応が不均一である。これらの処理により、白色無機粉末表面の酸化第二錫層を第一錫イオンで還元することにより、導電性酸化錫層を形成することができ、低抵抗の白色導電性無機粉末を得ることができる。   The vapor pressure of the soluble solvent is preferably a saturated vapor pressure of 30% or more. In order to perform the heat treatment while maintaining the vapor pressure, it is preferable to use a closed heat treatment furnace. Also, heating is performed by removing oxygen from the atmosphere. Conventionally, a heat treatment method using an inert gas containing oxygen is known. However, when oxygen is contained, a low-resistance powder cannot be stably obtained, and the reaction is non-uniform. By these treatments, the conductive tin oxide layer can be formed by reducing the stannous oxide layer on the surface of the white inorganic powder with stannous ions, and a low resistance white conductive inorganic powder can be obtained. it can.

反応後の洗浄は特に必要としないが、不純物元素の残留が問題となる場合は洗浄を行い不純物元素を除去してもよい。   Cleaning after the reaction is not particularly required. However, when the impurity element remains problematic, cleaning may be performed to remove the impurity element.

本発明の実施例を比較例と共に以下に示す。実施例および比較例において、粉末体積抵抗は試料粉末を圧力容器に入れて100kgf/cm2で圧縮し、この圧粉をデジタルマルチメーター(横河電機製:型式7561−02)によって測定した。L値はスガ試験機社製装置(SM-7-IS-2B)によって測定した。 Examples of the present invention are shown below together with comparative examples. In Examples and Comparative Examples, the powder volume resistance was measured with a digital multimeter (manufactured by Yokogawa Electric Corporation: Model 7561-02) after putting the sample powder in a pressure vessel and compressing it at 100 kgf / cm 2 . The L value was measured with a device manufactured by Suga Test Instruments Co., Ltd. (SM-7-IS-2B).

〔実施例1〕
酸化チタン粉末(ルチル型)150gを水1Lに分散させ、90℃に加温した。塩化第二錫50%溶液100g(0.19mol)と、1N水酸化ナトリウム溶液とを同時に撹拌下にpH3〜4を保ちながら30分で滴下した。これを濾別回収し、乾燥後に大気中600℃で1時間熱処理し、粉末表面に酸化第二錫層を有する酸化チタン粉末を得た。
これを塩化第一錫二水塩4.3g(0.019mol%=10mol%)をイオン交換水200mlに溶解した第一錫イオン溶液に加えて乳鉢で練り、ペースト化した。これを90℃で乾燥して導電性無機粉末を得た。塩化第一錫を2.1g(5mol%)、1.1g(2.5mol%)に変えた以外は上記操作と同様にしてペーストを作成し、乾燥して導電性無機粉末を得た。これらの粉末体積抵抗を測定した。また粉末のL値を測定した。この結果を表1に示す。
[Example 1]
150 g of titanium oxide powder (rutile type) was dispersed in 1 L of water and heated to 90 ° C. 100 g (0.19 mol) of 50% stannic chloride solution and 1N sodium hydroxide solution were added dropwise over 30 minutes while maintaining pH 3-4 while stirring. This was collected by filtration, dried and then heat treated at 600 ° C. in the air for 1 hour to obtain a titanium oxide powder having a stannic oxide layer on the powder surface.
This was added to a stannous ion solution in which 4.3 g (0.019 mol% = 10 mol%) of stannous chloride dihydrate was dissolved in 200 ml of ion-exchanged water and kneaded in a mortar to form a paste. This was dried at 90 ° C. to obtain a conductive inorganic powder. A paste was prepared in the same manner as above except that stannous chloride was changed to 2.1 g (5 mol%) and 1.1 g (2.5 mol%), and dried to obtain a conductive inorganic powder. These powder volume resistances were measured. The L value of the powder was measured. The results are shown in Table 1.

Figure 0005514435
Figure 0005514435

〔実施例2〕
酸化チタン粉末(ルチル型)150gを水1Lに分散させ、90℃に加温した。塩化第二錫50%溶液100g(0.19mol)と、1N水酸化ナトリウム溶液とを同時に撹拌下にpH3〜4を保ちながら30分で滴下した。これを濾別回収し、乾燥後に大気中600℃で1時間熱処理し、粉末表面に酸化第二錫層を有する酸化チタン粉末を得た。
これを、硫酸第一錫4.1g(0.019mol%=10mol%)をイオン交換水200mlに溶解した第一錫イオン溶液に加えて乳鉢で練り、ペースト化した。これを90℃で乾燥して導電性無機粉末を得た。硫酸第一錫をおのおの2.0g(5mol%)、1.0g(2.5mol%)に変えた以外は上記操作と同様にしてペーストを作成し、乾燥して導電性無機粉末を得た。これらの粉末体積抵抗を測定した。また粉末のL値を測定した。この結果を表2に示す。
[Example 2]
150 g of titanium oxide powder (rutile type) was dispersed in 1 L of water and heated to 90 ° C. 100 g (0.19 mol) of 50% stannic chloride solution and 1N sodium hydroxide solution were added dropwise over 30 minutes while maintaining pH 3-4 with stirring. This was collected by filtration, dried and then heat treated at 600 ° C. in the air for 1 hour to obtain a titanium oxide powder having a stannic oxide layer on the powder surface.
This was added to a stannous ion solution in which 4.1 g (0.019 mol% = 10 mol%) of stannous sulfate was dissolved in 200 ml of ion-exchanged water and kneaded in a mortar to form a paste. This was dried at 90 ° C. to obtain a conductive inorganic powder. A paste was prepared in the same manner as above except that stannous sulfate was changed to 2.0 g (5 mol%) and 1.0 g (2.5 mol%), respectively, and dried to obtain a conductive inorganic powder. These powder volume resistances were measured. The L value of the powder was measured. The results are shown in Table 2.

Figure 0005514435
Figure 0005514435

Claims (4)

酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液(第一錫のフッ化物溶液を除く)とを混合して固体状態の酸化第二錫層に2価イオンの第一錫イオンを接触させ、加熱乾燥し、上記酸化第二錫を第一錫イオンで還元して導電性酸化錫層を形成することを特徴とするアンチモン、リン、およびインジウムを含まない白色導電性無機粉末の製造方法。 A white inorganic powder having a stannic oxide surface layer and a stannous ion solution (excluding a stannous fluoride solution) are mixed to form a divalent stannous ion in a solid stannic oxide layer. A white conductive inorganic powder containing no antimony, phosphorus, and indium, wherein the conductive tin oxide layer is formed by reducing the stannic oxide with stannous ions . Production method. 酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液(第一錫のフッ化物溶液を除く)とを混合して固体状態の酸化第二錫層に2価イオンの第一錫イオンを接触させ、非酸化性の第一錫イオン可溶性溶媒雰囲気下で加熱して上記酸化第二錫を還元する請求項1に記載する白色導電性無機粉末の製造方法。 A white inorganic powder having a stannic oxide surface layer and a stannous ion solution (excluding a stannous fluoride solution) are mixed to form a divalent stannous ion in a solid stannic oxide layer. The method for producing a white conductive inorganic powder according to claim 1, wherein the stannic oxide is reduced by heating in a non-oxidizing stannous ion-soluble solvent atmosphere . 酸化第二錫表面層を有する白色無機粉末に第一錫イオン溶液(第一錫のフッ化物溶液を除く)を加えてペーストにして加熱乾燥し、上記酸化第二錫を第一錫イオンで還元して導電性酸化錫層を形成する請求項1に記載する白色導電性無機粉末の製造方法。 Add stannous ion solution (excluding stannous fluoride solution) to white inorganic powder with stannic oxide surface layer, paste to heat and dry, reduce the above stannic oxide with stannous ions The method for producing a white conductive inorganic powder according to claim 1, wherein a conductive tin oxide layer is formed . 酸化第二錫表面層を有する白色無機粉末と第一錫イオン溶液(第一錫のフッ化物溶液を除く)混合してスラリーにし、該スラリーまたは該スラリーを乾燥したものを、非酸化性の第一錫イオン可溶性溶媒雰囲気下で加熱し、上記酸化第二錫を還元して導電性酸化錫層を形成する請求項1に記載する白色導電性無機粉末の製造方法。 A white inorganic powder having a surface layer of stannic oxide and a stannous ion solution (excluding a stannous fluoride solution) are mixed to form a slurry, and the slurry or the dried slurry is made non-oxidizing. The method for producing a white conductive inorganic powder according to claim 1, wherein the conductive tin oxide layer is formed by heating in a stannous ion-soluble solvent atmosphere to reduce the stannic oxide.
JP2008335477A 2008-12-27 2008-12-27 Method for producing white conductive powder Active JP5514435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335477A JP5514435B2 (en) 2008-12-27 2008-12-27 Method for producing white conductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335477A JP5514435B2 (en) 2008-12-27 2008-12-27 Method for producing white conductive powder

Publications (2)

Publication Number Publication Date
JP2010157447A JP2010157447A (en) 2010-07-15
JP5514435B2 true JP5514435B2 (en) 2014-06-04

Family

ID=42575190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335477A Active JP5514435B2 (en) 2008-12-27 2008-12-27 Method for producing white conductive powder

Country Status (1)

Country Link
JP (1) JP5514435B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054508A (en) * 2009-09-04 2011-03-17 Mitsubishi Materials Corp White conductive powder
JP5865182B2 (en) * 2011-06-14 2016-02-17 チタン工業株式会社 Tin oxide-coated conductive powder and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071621B2 (en) * 2006-12-28 2012-11-14 三菱マテリアル株式会社 Method for producing white conductive powder
JP5181322B2 (en) * 2006-12-28 2013-04-10 三菱マテリアル株式会社 Method for producing conductive tin oxide powder

Also Published As

Publication number Publication date
JP2010157447A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
CN101304829A (en) Indium nanowire, oxide nanowire, conductive oxide nanowire and manufacturing methods thereof
JP5400307B2 (en) White conductive powder and its use
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
JP5788694B2 (en) Fluorine-doped tin oxide particles and method for producing the same
JP5181322B2 (en) Method for producing conductive tin oxide powder
JP2008066276A (en) Oxide conductive material, and its manufacturing method
JP5071621B2 (en) Method for producing white conductive powder
JP5514435B2 (en) Method for producing white conductive powder
JP5514436B2 (en) Method for producing white conductive powder having tin oxide layer
JP5400306B2 (en) White conductive powder and its use
JP2001058822A (en) Tin-doped indium oxide powder and its production
JP5335328B2 (en) Method for producing conductive tin oxide powder
JP5224160B2 (en) White conductive powder and production method and use thereof
JP5592067B2 (en) Method for producing conductive tin oxide powder
JP5007970B2 (en) Method for producing transparent conductive powder
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
TWI568676B (en) ITO powder and its manufacturing method
JP2014010903A (en) White conductive powder, fluid dispersion of the same, coating material, and film composition
TW201341316A (en) Processes for the preparation of stannic oxide
JP3838615B2 (en) Tin-doped indium oxide powder and method for producing the same
JP6453533B2 (en) Fluorine-doped phosphorus-doped conductive tin oxide powder, process for producing the same, and film composition using the same
JP2010123428A (en) White conductive powder and its manufacturing method
JP2010111553A (en) Conductive tin oxide powder and method for producing the same
JP2010080316A (en) Transparent conductive substrate, and method for manufacturing the same
KR20110023189A (en) Manufacturing method of ultrafine composite metal oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250