JP5181322B2 - Method for producing conductive tin oxide powder - Google Patents

Method for producing conductive tin oxide powder Download PDF

Info

Publication number
JP5181322B2
JP5181322B2 JP2006356033A JP2006356033A JP5181322B2 JP 5181322 B2 JP5181322 B2 JP 5181322B2 JP 2006356033 A JP2006356033 A JP 2006356033A JP 2006356033 A JP2006356033 A JP 2006356033A JP 5181322 B2 JP5181322 B2 JP 5181322B2
Authority
JP
Japan
Prior art keywords
powder
tin oxide
fluorine
tin
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006356033A
Other languages
Japanese (ja)
Other versions
JP2008166178A (en
Inventor
洋利 梅田
素彦 吉住
正道 室田
鈴夫 佐々木
浩史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2006356033A priority Critical patent/JP5181322B2/en
Publication of JP2008166178A publication Critical patent/JP2008166178A/en
Application granted granted Critical
Publication of JP5181322B2 publication Critical patent/JP5181322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、導電性に優れた酸化スズ粉末の製造方法に関し、より詳しくは、アンチモンを含有せずにATO粉末と同等の導電性を有し、環境に対する負荷が少なく、また透明性の高い導電性酸化スズ粉末の製造方法に関する。
The present invention relates to a method for producing a tin oxide powder excellent in electrical conductivity, and more specifically, has an electrical conductivity equivalent to that of ATO powder without containing antimony, has a low environmental burden, and has a high transparency. The present invention relates to a method for producing conductive tin oxide powder.

従来、導電性酸化スズ粉末には、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、ニオブドープ酸化スズ(NbTO)、タンタルドープ酸化スズ(TaTO)、フッ素ドープ酸化スズ(FTO)が知られている。また、その他の導電性金属酸化物粉末として、スズドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)が知られている。また、ドープ成分を導入する方法としては、金属酸化物前駆体とドーパントを、pH調整した水溶液中で混合し、生成した沈殿物を回収して加熱することによって金属酸化物にドープ成分を導入する方法、ドープ成分を含む二種以上の異なる金属酸化物を混練し、これを加熱することによってドープ成分を導入する方法などが知られている。   Conventionally, as the conductive tin oxide powder, antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), niobium-doped tin oxide (NbTO), tantalum-doped tin oxide (TaTO), and fluorine-doped tin oxide (FTO) are known. ing. As other conductive metal oxide powders, tin-doped indium oxide (ITO) and aluminum-doped zinc oxide (AZO) are known. As a method for introducing a dope component, a metal oxide precursor and a dopant are mixed in an aqueous solution adjusted in pH, and the generated precipitate is recovered and heated to introduce the dope component into the metal oxide. A method, a method of introducing a dope component by kneading two or more different metal oxides containing a dope component, and heating the same are known.

近年、液晶ディスプレイやプラズマディスプレイ等のフラットパネルディスプレイの電極や透明導電膜、タッチパネル等にATOやITO、AZO等の導電性粉末が使用されている。しかし、エレクトロニクス分野の発展と環境影響への関心が高まる中、さらに高付加価値の高い、低環境負荷タイプの新材料が求められている。また、環境面ではATOのアンチモンやITOのインジウムが環境や人体に影響を与えることが懸念されており、これら有害成分を含まない安全な材料が求められている。さらにATOについては、アンチモンが光を吸収する性質を有するため、成膜時の透明性に乏しく、一方、ITOは主原料となるインジウムの極端な価格高騰および原料の枯渇が懸念されている。   In recent years, conductive powders such as ATO, ITO, and AZO have been used for electrodes, transparent conductive films, touch panels, and the like of flat panel displays such as liquid crystal displays and plasma displays. However, with the growing interest in environmental development and the development of the electronics field, there is a need for new materials with a high added value and low environmental impact. In addition, in terms of the environment, there is a concern that antimony of ATO and indium of ITO may affect the environment and the human body, and a safe material that does not contain these harmful components is required. Furthermore, ATO has a property of absorbing light because antimony absorbs light, while ITO is poor in transparency at the time of film formation, while ITO is concerned about an extreme increase in price of indium as a main raw material and exhaustion of the raw material.

また、上記酸化スズ系粉末については、アンチモン等に代えて、フッ素をドープした酸化スズ(FTO)も知られている。酸化スズにフッ素をドープさせることによって導電性が向上するが、工程が複雑であると共に安定な導電性が得られ難いなどの課題があった。さらに、酸化スズ系粉末に代えて、AZO等の導電性酸化亜鉛粉末が知られているが、AZO等は導電性の安定性に問題がある(特許文献1〜6)。
特許第2605855号公報 特許第2724248号公報 特開2004−359521号公報 特許第2992572号公報 特開2003−081633号公報 特公平07−105166号公報
Moreover, about the said tin oxide type powder, it replaced with antimony etc. and the tin oxide (FTO) which doped the fluorine is also known. Although conductivity is improved by doping fluorine in tin oxide, there are problems such as complicated processes and difficulty in obtaining stable conductivity. Furthermore, conductive zinc oxide powders such as AZO are known instead of tin oxide-based powders, but AZO and the like have a problem with the conductive stability (Patent Documents 1 to 6).
Japanese Patent No. 2605855 Japanese Patent No. 2724248 JP 2004-359521 A Japanese Patent No. 2992572 JP 2003-081633 A Japanese Patent Publication No. 07-105166

本発明は、導電性酸化スズ粉末について、従来の上記問題を解決したものであり、アンチモンを含有せずにATO粉末と同等の導電性を有し、環境に対する負荷が少なく、かつ透明性の高い導電性酸化スズ粉末の製造方法を提供する。
The present invention solves the above-mentioned conventional problems with respect to conductive tin oxide powder, has the same conductivity as ATO powder without containing antimony, has a low environmental burden, and is highly transparent. A method for producing conductive tin oxide powder is provided.

本発明は、以下の構成を有することによって、上記問題を解決した導電性酸化スズ粉末の製造方法に関する。
〔1〕第二酸化スズ粉末または第二水酸化スズ粉末もしくはそれらの混合物からなるスズ源粉末を水に分散させ、この分散水溶液にフッ素源を添加し、上記スズ源粉末とフッ素源を水溶液中で混合し接触させて上記スズ源粉末の表面にフッ素を均一に付着させた後、脱水し、窒素雰囲気で加熱処理することによって、フッ素および窒素を含有する導電性酸化スズ粉末を製造することを特徴とする導電性酸化スズ粉末の製造方法。
〔2〕アンチモンを含まず、スズ1モルに対して、フッ素0.01〜0.2モル、および窒素0.001〜0.01モルを含有し、100kgf/cm2圧力下での圧粉体積抵抗率が10Ω・cm以下である導電性酸化スズ粉末を製造する上記[1]に記載する導電性酸化スズ粉末の製造方法。
〔3〕90%粒子径(D90)が5μm以下であり、結晶格子径が5〜20nmである導電性酸化スズ粉末を製造する上記[1]または上記[2]に記載する導電性酸化スズ粉末の製造方法。

This invention relates to the manufacturing method of the electroconductive tin oxide powder which solved the said problem by having the following structures.
[1] A tin source powder comprising a tin dioxide powder, a second tin hydroxide powder or a mixture thereof is dispersed in water, a fluorine source is added to the aqueous dispersion, and the tin source powder and the fluorine source are dispersed in the aqueous solution. A conductive tin oxide powder containing fluorine and nitrogen is produced by mixing and contacting to uniformly deposit fluorine on the surface of the tin source powder, followed by dehydration and heat treatment in a nitrogen atmosphere. A method for producing conductive tin oxide powder.
[2] Powder volume under 100 kgf / cm 2 pressure, containing 0.01 to 0.2 moles of fluorine and 0.001 to 0.01 moles of nitrogen with respect to 1 mole of tin without containing antimony The method for producing a conductive tin oxide powder as described in [1] above, wherein a conductive tin oxide powder having a resistivity of 10 Ω · cm or less is produced.
[3] The conductive tin oxide powder according to [1] or [2] above, wherein a conductive tin oxide powder having a 90% particle diameter (D90) of 5 μm or less and a crystal lattice diameter of 5 to 20 nm is produced. Manufacturing method.

本発明の方法によって製造した導電性酸化スズ粉末(以下、本発明の導電性酸化スズ粉末と云う)は、所定量のフッ素および窒素を含有し、好ましくは、フッ素は湿式処理によって導入され、窒素は窒素雰囲気で加熱処理することによって導入されるので、フッ素および窒素が均一に含有されており、アンチモンを含有せずに高い導電性を有する。具体的には、本発明の導電性酸化スズ粉末は、例えば、圧粉体積抵抗率が10Ω・cm以下の低抵抗粉末である。従って、本発明の導電性酸化スズ粉末を用いることによって、酸化スズ含有量20%以上および膜厚1μm以上の薄膜において、該薄膜の表面抵抗が1×1010Ω/□以下の膜組成物を得ることができる。この膜組成物の導電性は安定であり、例えば、40℃常圧下で500時間保持したときの、表面抵抗の比が2未満である。
The conductive tin oxide powder produced by the method of the present invention (hereinafter referred to as the conductive tin oxide powder of the present invention) contains a predetermined amount of fluorine and nitrogen. Preferably, fluorine is introduced by a wet process, Since is introduced by heat treatment in a nitrogen atmosphere, fluorine and nitrogen are uniformly contained, and have high conductivity without containing antimony. Specifically, the conductive tin oxide powder of the present invention is, for example, a low resistance powder having a powder volume resistivity of 10 Ω · cm or less. Therefore, by using the conductive tin oxide powder of the present invention, in a thin film having a tin oxide content of 20% or more and a film thickness of 1 μm or more, a film composition having a surface resistance of 1 × 10 10 Ω / □ or less is obtained. Can be obtained. The conductivity of this film composition is stable. For example, the ratio of the surface resistance when held at 40 ° C. under normal pressure for 500 hours is less than 2.

さらに、本発明の導電性酸化スズ粉末は、好ましくは結晶格子径が5〜20nmであって可視光線波長よりも非常に小さく、90%粒子径(D90)が5μm以下であるため、可視光透過率が高く、透明性に優れた粉末である。具体的には、例えば、酸化スズ含有量20%以上および膜厚1μm以上の薄膜において、可視光透過率が87%以上であり、従来のフッ素含有酸化スズ粉末(FTO)を含む同様の薄膜の可視光透過率が83〜86%であるのに対して透明性の高い導電膜を形成することができる。   Furthermore, the conductive tin oxide powder of the present invention preferably has a crystal lattice diameter of 5 to 20 nm and is much smaller than the visible light wavelength, and has a 90% particle diameter (D90) of 5 μm or less. It is a powder with a high rate and excellent transparency. Specifically, for example, in a thin film having a tin oxide content of 20% or more and a film thickness of 1 μm or more, the visible light transmittance is 87% or more, and a similar thin film containing conventional fluorine-containing tin oxide powder (FTO) is used. With a visible light transmittance of 83 to 86%, a highly transparent conductive film can be formed.

また、本発明の製造方法は、スズ源とフッ素源を水溶液中で混合するので、所定量のフッ素を均一に導入することができ、さらに加熱処理を窒素雰囲気下で行うことによって、微少量の窒素を均一に導入することができる。また、これらのドープ量はフッ素源の添加量、加熱温度および加熱時間などを調整して制御することができるので、粉体抵抗率等が所望の範囲に制御された高品質の導電性酸化スズ粉末を製造することができる。   In the production method of the present invention, since the tin source and the fluorine source are mixed in the aqueous solution, a predetermined amount of fluorine can be uniformly introduced. Nitrogen can be introduced uniformly. In addition, these dope amounts can be controlled by adjusting the amount of fluorine source added, heating temperature, heating time, etc., so that high-quality conductive tin oxide whose powder resistivity is controlled within a desired range A powder can be produced.

以下、本発明を実施例に基づいて具体的に説明する。
〔導電性酸化スズ粉末〕
本発明の導電性酸化スズ粉末は、第二酸化スズもしくは第二水酸化スズを水中でフッ素源に接触させ、窒素雰囲気下で加熱処理してなる酸化スズ粉末であって、アンチモンを含まず、スズ1モルに対して、フッ素0.01〜0.2モル、および窒素0.001〜0.01モルを含有することを特徴とする導電性酸化スズ粉末である。
なお、アンチモンを含まないとは、原料および工程中でアンチモン源を使用せず、従って、検出限界500ppmの標準的な測定装置によってアンチモンが検出されないことを云う。
Hereinafter, the present invention will be specifically described based on examples.
[Conductive tin oxide powder]
The conductive tin oxide powder of the present invention is a tin oxide powder obtained by bringing tin dioxide or stannic hydroxide into contact with a fluorine source in water and heat-treating in a nitrogen atmosphere, and does not contain antimony, tin It is a conductive tin oxide powder characterized by containing 0.01 to 0.2 mol of fluorine and 0.001 to 0.01 mol of nitrogen with respect to 1 mol.
“No antimony” means that no antimony source is used in the raw material and process, and therefore no antimony is detected by a standard measuring device having a detection limit of 500 ppm.

本発明の導電性酸化スズ粉末は、スズ1モルに対して0.01〜0.2モルのフッ素を含有し、かつ0.001〜0.01モルの窒素を含有する。上記所定量のフッ素および窒素を含有することによって粉体抵抗が低下する。これはフッ素および窒素が酸化スズの酸素欠陥に関与するなどの作用によることが考えられる。   The conductive tin oxide powder of the present invention contains 0.01 to 0.2 mol of fluorine and 0.001 to 0.01 mol of nitrogen with respect to 1 mol of tin. By containing the predetermined amount of fluorine and nitrogen, the powder resistance is lowered. This is considered to be due to the action of fluorine and nitrogen involved in oxygen defects of tin oxide.

上記フッ素量が0.01モル未満では粉体抵抗を低下させる効果が不十分であり、良好な導電性が得られない。また、フッ素量が0.2モルを上回る量のフッ素源を原料に加えると、酸化スズにドープされなかった遊離のフッ素源が残留し、これが通電パスを妨げるので、導電性が低下する。   If the amount of fluorine is less than 0.01 mol, the effect of reducing powder resistance is insufficient, and good conductivity cannot be obtained. Further, when a fluorine source having an amount of fluorine exceeding 0.2 mol is added to the raw material, a free fluorine source that is not doped with tin oxide remains, which hinders a current-carrying path, so that conductivity is lowered.

上記窒素量が0.001モル未満では粉体抵抗を低下させる効果が不十分であり、良好な導電性が得られない。また、窒素量が0.01モルを上回ると、フッ素の酸化スズへのドープが妨げられ、良好な導電性が得られない。
If the amount of nitrogen is less than 0.001 mol , the effect of reducing powder resistance is insufficient, and good conductivity cannot be obtained. On the other hand, if the nitrogen content exceeds 0.01 mol, doping of fluorine with tin oxide is hindered, and good conductivity cannot be obtained.

本発明の導電性酸化スズ粉末は、圧粉体積抵抗率が10Ω・cm以下の導電性を有することができる。なお、圧粉体積抵抗率は圧力100kgf/cm2で圧縮した粉体の体積抵抗率である。一方、従来のフッ素含有酸化スズ粉末の圧粉体積抵抗率は概ね100Ω・cm以上であり、本発明の導電性酸化スズ粉末の圧粉体積抵抗率は従来の1/10以下である。 The conductive tin oxide powder of the present invention can have conductivity with a powder volume resistivity of 10 Ω · cm or less. The powder volume resistivity is the volume resistivity of powder compressed at a pressure of 100 kgf / cm 2 . On the other hand, the dust volume resistivity of the conventional fluorine-containing tin oxide powder is approximately 100 Ω · cm or more, and the dust volume resistivity of the conductive tin oxide powder of the present invention is 1/10 or less of the conventional.

本発明の導電性酸化スズ粉末は、水などの溶媒に分散させた分散体(液)の形態で利用することができ、また樹脂成分に混合して導電性の薄膜を形成することができる。本発明の導電性酸化スズ粉末を用いることによって、酸化スズ含有量20%以上および膜厚1μm以上の薄膜において、該薄膜の表面抵抗が1×1010Ω/□以下の導電性薄膜を形成することができる。 The conductive tin oxide powder of the present invention can be used in the form of a dispersion (liquid) dispersed in a solvent such as water, and can be mixed with a resin component to form a conductive thin film. By using the conductive tin oxide powder of the present invention, a conductive thin film having a surface resistance of 1 × 10 10 Ω / □ or less is formed in a thin film having a tin oxide content of 20% or more and a film thickness of 1 μm or more. be able to.

本発明の導電性酸化スズ粉末を用いた上記膜組成物は導電性が安定であり、例えば、40℃常圧下で500時間保持したときの表面抵抗率Rsと、試験前の表面抵抗率Roの比(Rs/Ro)が2未満である。   The film composition using the conductive tin oxide powder of the present invention is stable in electrical conductivity, for example, the surface resistivity Rs when held at 40 ° C. and normal pressure for 500 hours, and the surface resistivity Ro before the test. The ratio (Rs / Ro) is less than 2.

〔製造方法〕
本発明の導電性酸化スズ粉末は、第二酸化スズもしくは第二水酸化スズと、フッ素またはフッ素化合物を水中で接触させ、脱水後、窒素雰囲気下で加熱処理することによって製造することができる。
〔Production method〕
The conductive tin oxide powder of the present invention can be produced by bringing tin dioxide or stannic hydroxide into contact with fluorine or a fluorine compound in water, followed by heat treatment in a nitrogen atmosphere after dehydration.

フッ素源としてはフッ化アンモニウム、ケイフッ化アンモニウム、フッ化水素酸アンモニウム、フッ化スズ、フッ化スズ酸、フッ化水素、フッ化水素酸、フッ化ホウ素、フッ化臭素などを用いることができる。   As the fluorine source, ammonium fluoride, ammonium silicofluoride, ammonium hydrofluoride, tin fluoride, fluorostannic acid, hydrogen fluoride, hydrofluoric acid, boron fluoride, bromine fluoride, or the like can be used.

具体的には、例えば、第二酸化スズ粉末または第二水酸化スズ粉末もしくはそれらの混合物からなるスズ源粉末を水に分散させ、この分散水溶液にフッ素源を添加し、上記スズ源粉末とフッ素源を水溶液中で混合し接触させることによって、上記スズ源粉末の表面にフッ素均一に付着させることができる。
Specifically, for example, a tin source powder consisting of the second tin oxide powder or the second tin hydroxide powder or a mixture thereof is dispersed in water, was added to the fluorine source to the dispersion solution, the tin source powder and a fluorine source Are mixed in an aqueous solution and brought into contact with each other to allow fluorine to uniformly adhere to the surface of the tin source powder.

この粉末を回収して乾燥し、窒素雰囲気で加熱処理する。窒素雰囲気下で加熱処理を行うことによって微少量の窒素を均一に導入することができる。これらのドープ量はフッ素源の添加量、加熱温度および加熱時間などを調整して制御することができるので、圧粉体積抵抗率を所望の範囲に低下させた導電性酸化スズ粉末を製造することができる。   This powder is recovered, dried, and heat-treated in a nitrogen atmosphere. By performing the heat treatment in a nitrogen atmosphere, a minute amount of nitrogen can be introduced uniformly. Since these dope amounts can be controlled by adjusting the amount of fluorine source added, the heating temperature and the heating time, etc., producing a conductive tin oxide powder with reduced powder volume resistivity within a desired range Can do.

上記加熱処理において、加熱温度は400℃〜700℃が好ましい。加熱温度がこれより低いと、フッ素および窒素のドープ効果が不十分になり、導電性が得難くなる。また、加熱温度がこれより高いと、酸化スズの酸素欠陥が多く発生するので、得られる粉末の色の黒味が強くなり、また粉末が焼結して粗粒になるので、薄膜を形成したときに透明性が大幅に低下する。   In the heat treatment, the heating temperature is preferably 400 ° C to 700 ° C. When the heating temperature is lower than this, the doping effect of fluorine and nitrogen becomes insufficient, and it becomes difficult to obtain conductivity. Also, if the heating temperature is higher than this, since many oxygen defects of tin oxide occur, the black color of the resulting powder becomes strong, and the powder sinters into coarse particles, so a thin film is formed. Sometimes transparency is greatly reduced.

さらに、上記粉末の加熱処理は、窒素雰囲気中の酸素をできるだけ排除して加熱するのが好ましい。従来、基板表面にフッ素含有酸化スズ膜を形成する方法において、一定濃度の酸素を導入した窒素雰囲気下で加熱処理する方法が知られているが、酸素が存在すると良好な低抵抗の粉末を得るのが難しい。   Furthermore, the heat treatment of the powder is preferably performed while eliminating oxygen in the nitrogen atmosphere as much as possible. Conventionally, in a method of forming a fluorine-containing tin oxide film on a substrate surface, a heat treatment method is known in a nitrogen atmosphere into which a constant concentration of oxygen is introduced. When oxygen is present, a good low-resistance powder is obtained. It is difficult.

上記製造方法によって、アンチモンを含まず、スズ1モルに対して、フッ素0.01〜0.2モル、および窒素0.001〜0.01モルを含有し、圧粉体積抵抗率が10Ω・cm以下の導電性酸化スズ粉末を得ることができる。   According to the above production method, containing 0.01 to 0.2 mol of fluorine and 0.001 to 0.01 mol of nitrogen with respect to 1 mol of tin without containing antimony, and the powder volume resistivity is 10 Ω · cm. The following conductive tin oxide powder can be obtained.

また、上記製造方法によって、90%粒子径(D90)が5μm以下であり、結晶格子径が5〜20nmである導電性酸化スズ粉末を得ることができる。この粉末の結晶格子径は可視光線波長よりも非常に小さく、また90%粒子径(D90)も小さいので、可視光透過率が高く、透明性に優れた粉末である。   Moreover, according to the said manufacturing method, the electroconductive tin oxide powder whose 90% particle diameter (D90) is 5 micrometers or less and whose crystal lattice diameter is 5-20 nm can be obtained. Since the crystal lattice diameter of this powder is much smaller than the visible light wavelength and the 90% particle diameter (D90) is also small, the powder has high visible light transmittance and excellent transparency.

従って、本発明の導電性酸化スズ粉末を用いることによって、例えば、酸化スズ含有量20%以上および膜厚1μm以上の薄膜において、可視光透過率が87%以上の透明性の高い導電膜を形成することができる。   Therefore, by using the conductive tin oxide powder of the present invention, for example, a highly transparent conductive film having a visible light transmittance of 87% or more is formed in a thin film having a tin oxide content of 20% or more and a film thickness of 1 μm or more. can do.

〔用途〕
本発明の導電性酸化スズ粉末は、環境に影響を及ぼす懸念のあるアンチモンおよびインジウムを含まない安全性に優れた粉末であり、また簡便な工程と安価な原料で製造される導電性および透明性に優れた、環境に対する負荷が小さい粉末である。従って、幅広い分野に用いることができる。具体的には、例えば、(a)毒性が問題視される食品包装材・梱包材分野、(b)液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイの分野、(c)帯電制御特性が要求されるタッチパネルの分野、(d)光ディスク等の磁気記録媒体の分野、(e)薄膜塗料の分野、(f)太陽電池や各種機器の内部電極、電極改質剤の分野、(g)静電記録材料として荷電制御が要求されるプリンタ、複写機関連の帯電ローラー、感光ドラム、トナー、静電ブラシ等の分野、(h)ガスセンサー用焼結体原料粉末などの分野、(i)埃付着防止が要求されるFPD、CRT、ブラウン管等の分野、
また本発明の導電性酸化スズ粉末は、その利用の際に、塗料、インク、エマルジョン、繊維その他のポリマー中に容易に分散混練することができ、塗料に添加して薄膜として被覆された場合に高透明性であり、かつ導電性に優れた導電性粉末の分散体および膜組成物を得ることできる。
[Use]
The conductive tin oxide powder of the present invention is a safe powder that does not contain antimony and indium, which may have an impact on the environment, and is manufactured using simple processes and inexpensive raw materials. It is an excellent powder with low environmental impact. Therefore, it can be used in a wide range of fields. Specifically, for example, (a) the field of food packaging materials and packaging materials where toxicity is regarded as a problem, (b) the field of flat panel displays such as liquid crystal displays and plasma displays, and (c) charge control characteristics are required. Field of touch panel, (d) Field of magnetic recording medium such as optical disk, (e) Field of thin film paint, (f) Field of internal electrode and electrode modifier of solar cell and various devices, (g) Electrostatic recording material Printers that require charge control, photocopier-related charging rollers, photosensitive drums, toners, electrostatic brushes, and other fields, (h) fields such as sintered powder for gas sensors, and (i) dust prevention Required fields such as FPD, CRT, CRT,
In addition, the conductive tin oxide powder of the present invention can be easily dispersed and kneaded in paints, inks, emulsions, fibers and other polymers when used, and when added to the paint and coated as a thin film. It is possible to obtain a dispersion and a film composition of conductive powder which is highly transparent and excellent in conductivity.

本発明の実施例を比較例と共に以下に示す。製造条件、フッ素および窒素のドープ量、粉末の粒子径、体積抵抗率、薄膜の表面抵抗を表1に示した。なお、測定方法は以下のとおりである。
〔フッ素量・窒素量〕フッ素および窒素の含有量はICP発光分析装置の組成分析によって測定した。
〔圧粉体積抵抗率〕圧粉体積抵抗率は、試料粉末を圧力容器に入れて100kgf/cm2で圧縮し、この圧粉をデジタルマルチメーター(横河電機製品:型式7561-02)によって測定した。
〔粒子径〕D90は試料粉末を水に分散させ、レーザー回折式粒度分布測定装置(島津製作所製品:型式SALD-1100)を使用して測定した。
〔薄膜の形成〕試料粉末を含む薄膜の形成は、試料粉末を市販のアクリル樹脂(製品名アクリディックA−168、樹脂分50%)とともに、キシレン・トルエン混合溶液に添加し、ペイントシェーカーでビーズ分散し、試料粉末含有量20%の分散体を作成し、この分散体をPETフィルムに塗布し1時間風乾して、膜厚1μmの薄膜を形成し、この薄膜の表面抵抗値を測定した。
〔表面抵抗〕表面抵抗は表面抵抗計(ハイレスタ:三菱油化製品:型式HT-210、供給電圧100V)を用い、試料粉末を含有する膜厚2μmの薄膜について測定した。
Examples of the present invention are shown below together with comparative examples. Table 1 shows the production conditions, fluorine and nitrogen doping amounts, powder particle diameter, volume resistivity, and thin film surface resistance. The measurement method is as follows.
[Fluorine content / nitrogen content] The fluorine and nitrogen contents were measured by composition analysis of an ICP emission spectrometer.
[Pressure Volume Resistivity] The powder volume resistivity is measured with a digital multimeter (Yokogawa Electric product: Model 7561-02) after putting the sample powder in a pressure vessel and compressing it at 100 kgf / cm 2. did.
[Particle size] D90 was measured by dispersing a sample powder in water and using a laser diffraction particle size distribution measuring apparatus (Shimadzu Corporation product: model SALD-1100).
[Formation of thin film] The thin film containing the sample powder is formed by adding the sample powder to a mixed solution of xylene / toluene together with a commercially available acrylic resin (product name: Acrydic A-168, resin content: 50%), and using a paint shaker A dispersion having a sample powder content of 20% was prepared. The dispersion was applied to a PET film and air-dried for 1 hour to form a thin film having a thickness of 1 μm. The surface resistance value of the thin film was measured.
[Surface Resistance] The surface resistance was measured on a thin film having a thickness of 2 μm containing a sample powder using a surface resistance meter (HIRESTA: Mitsubishi Yuka product: Model HT-210, supply voltage 100 V).

〔実施例1〕
第二酸化スズとフッ化アンモニウムを、F/Snモル比10となるように、水中に添加し、これらが均一に接触するよう攪拌した後に回収して脱水し、550℃の窒素雰囲気下で2時間加熱した後に冷却して、灰褐色の粉末を得た。該粉末の体積抵抗率は2.4Ω・cmであった。また、スズ1モルに対するフッ素量は0.03モル、窒素量は0.008モルであった。また、90%粒子径(D90)は4.7μmであった。さらに、この粉末を含む薄膜を形成し、その表面抵抗値を測定したところ、6.6×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
[Example 1]
Stannous dioxide and ammonium fluoride are added to water so that the F / Sn molar ratio is 10, and after stirring so that they are in uniform contact, they are recovered, dehydrated and dehydrated in a nitrogen atmosphere at 550 ° C. for 2 hours. After heating and cooling, a grayish brown powder was obtained. The volume resistivity of the powder was 2.4 Ω · cm. Moreover, the fluorine amount with respect to 1 mol of tin was 0.03 mol, and the nitrogen amount was 0.008 mol. The 90% particle size (D90) was 4.7 μm. Furthermore, when a thin film containing this powder was formed and the surface resistance value was measured, it was 6.6 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔実施例2〕
第二酸化スズとフッ化アンモニウムを、粉体のF/Snモル比が表1の実施例2に示す値になるように水中に添加した以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は0.8Ω・cm、Sn1モルに対するフッ素量は0.05モル、窒素量は0.005モル、D90は4.8μmであった。この粉末を含む薄膜の表面抵抗は2.5×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。


[Example 2]
A powder was produced in the same manner as in Example 1 except that tin dioxide and ammonium fluoride were added to water so that the F / Sn molar ratio of the powder became the value shown in Example 2 of Table 1 . The powder had a volume resistivity of 0.8 Ω · cm, a fluorine content of 0.05 mol, a nitrogen content of 0.005 mol, and a D90 of 4.8 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 2.5 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.


〔実施例3〕
第二酸化スズとフッ化スズを、F/Snモル比50となるように水中に添加した以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は0.8Ω・cm、Sn1モルに対するフッ素量は0.12モル、窒素量は0.003モル、D90は4.5μmであった。この粉末を含む薄膜の表面抵抗は2.0×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
Example 3
A powder was produced in the same manner as in Example 1 except that tin dioxide and tin fluoride were added to water so that the F / Sn molar ratio was 50. The powder had a volume resistivity of 0.8 Ω · cm, a fluorine content of 0.12 mol, a nitrogen content of 0.003 mol and a D90 of 4.5 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 2.0 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔実施例4〕
第二水酸化スズとフッ化アンモニウムを、F/Snモル比20となるように水中に添加し、加熱温度を650℃とした以外は実施例1と同様にしたところ、この粉体の圧粉体積抵抗率は0.4Ω・cm、Sn1モルに対するフッ素量は0.06モル、窒素量は0.005モル、D90は4.7μmであった。この粉末を含む薄膜の表面抵抗は1.3×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
Example 4
A powder compact of this powder was obtained in the same manner as in Example 1 except that stannous hydroxide and ammonium fluoride were added to water so that the F / Sn molar ratio was 20, and the heating temperature was 650 ° C. The volume resistivity was 0.4 Ω · cm, the fluorine content relative to 1 mol of Sn was 0.06 mol, the nitrogen content was 0.005 mol, and D90 was 4.7 μm. The surface resistance of the thin film containing this powder was 1.3 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔実施例5〕
第二水酸化スズとフッ化スズを、F/Snモル比20となるように水中に添加し、加熱温度を450℃とした以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は8.9Ω・cm、Sn1モルに対するフッ素量は0.01モル、窒素量は0.006モル、D90は4.5μmであった。この粉末を含む薄膜の表面抵抗は7.1×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
Example 5
A powder was produced in the same manner as in Example 1 except that second tin hydroxide and tin fluoride were added to water so that the F / Sn molar ratio was 20, and the heating temperature was changed to 450 ° C. This powder had a powder volume resistivity of 8.9 Ω · cm, a fluorine content of 0.01 mol, a nitrogen content of 0.006 mol, and a D90 of 4.5 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 7.1 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔実施例6〕
加熱時間を5時間とした以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は0.7Ω・cm、Sn1モルに対するフッ素量は0.16モル、窒素量は0.009モル、D90は4.8μmであった。この粉末を含む薄膜の表面抵抗は3.1×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
Example 6
A powder was produced in the same manner as in Example 1 except that the heating time was 5 hours. The powder had a volume resistivity of 0.7 Ω · cm, a fluorine content of 0.16 mol, a nitrogen content of 0.009 mol, and a D90 of 4.8 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 3.1 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔実施例7〕
第二酸化スズとフッ化アンモニウムを、F/Snモル比150となるように水中に添加した以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は0.3Ω・cm、Sn1モルに対するフッ素量は0.20モル、窒素量は0.001モル、D90は4.5μmであった。この粉末を含む薄膜の表面抵抗は1.7×108Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
Example 7
A powder was produced in the same manner as in Example 1 except that tin dioxide and ammonium fluoride were added to water so that the F / Sn molar ratio was 150. This powder had a powder volume resistivity of 0.3 Ω · cm, a fluorine content of 0.20 mol, a nitrogen content of 0.001 mol, and a D90 of 4.5 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 1.7 × 10 8 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔比較例1〕
フッ素源を添加しなかったこと以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は1.2×10Ω・cm、Sn1モルに対するフッ素量は0モル、窒素量は0.11モル、D90は4.8μmであった。この粉末を含む薄膜の表面抵抗は5.9×1012Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
[Comparative Example 1]
A powder was produced in the same manner as in Example 1 except that the fluorine source was not added. The powder had a volume resistivity of 1.2 × 10 Ω · cm, a fluorine content of 0 mol, a nitrogen content of 0.11 mol, and a D90 of 4.8 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 5.9 × 10 12 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

〔比較例2〕
大気雰囲気下で加熱した以外は実施例1と同様にして粉体を製造した。この粉体の圧粉体積抵抗率は6.3×105Ω・cm、Sn1モルに対するフッ素量は0.002モル、窒素量は0.01モル、D90は5.1μmであった。この粉末を含む薄膜の表面抵抗は4.4×1013Ω/□であった。また、40℃常圧下で500時間保持したときの表面抵抗値を測定し、先の表面抵抗値との比を求めた。この比を表1に示した。
[Comparative Example 2]
A powder was produced in the same manner as in Example 1 except that heating was performed in an air atmosphere. This powder had a compact volume resistivity of 6.3 × 10 5 Ω · cm, a fluorine content of 0.002 mol, a nitrogen content of 0.01 mol, and a D90 of 5.1 μm with respect to 1 mol of Sn. The surface resistance of the thin film containing this powder was 4.4 × 10 13 Ω / □. Moreover, the surface resistance value when it hold | maintains under 40 degreeC normal pressure for 500 hours was measured, and ratio with the previous surface resistance value was calculated | required. This ratio is shown in Table 1.

Figure 0005181322
Figure 0005181322

Claims (3)

第二酸化スズ粉末または第二水酸化スズ粉末もしくはそれらの混合物からなるスズ源粉末を水に分散させ、この分散水溶液にフッ素源を添加し、上記スズ源粉末とフッ素源を水溶液中で混合し接触させて上記スズ源粉末の表面にフッ素を均一に付着させた後、脱水し、窒素雰囲気で加熱処理することによって、フッ素および窒素を含有する導電性酸化スズ粉末を製造することを特徴とする導電性酸化スズ粉末の製造方法。 A tin source powder consisting of tin dioxide powder, tin hydroxide powder or a mixture thereof is dispersed in water, a fluorine source is added to this dispersed aqueous solution, and the above tin source powder and fluorine source are mixed and contacted in the aqueous solution. Then, after the fluorine is uniformly deposited on the surface of the tin source powder, the conductive tin oxide powder containing fluorine and nitrogen is produced by dehydration and heat treatment in a nitrogen atmosphere. For producing porous tin oxide powder. アンチモンを含まず、スズ1モルに対して、フッ素0.01〜0.2モル、および窒素0.001〜0.01モルを含有し、100kgf/cm2圧力下での圧粉体積抵抗率が10Ω・cm以下である導電性酸化スズ粉末を製造する請求項1に記載する導電性酸化スズ粉末の製造方法。 Contains no antimony and contains 0.01 to 0.2 moles of fluorine and 0.001 to 0.01 moles of nitrogen with respect to 1 mole of tin, and has a powder volume resistivity under a pressure of 100 kgf / cm 2. The manufacturing method of the electroconductive tin oxide powder of Claim 1 which manufactures the electroconductive tin oxide powder which is 10 ohm * cm or less. 90%粒子径(D90)が5μm以下であり、結晶格子径が5〜20nmである導電性酸化スズ粉末を製造する請求項1または請求項2に記載する導電性酸化スズ粉末の製造方法。 The manufacturing method of the electroconductive tin oxide powder of Claim 1 or Claim 2 which manufactures electroconductive tin oxide powder whose 90% particle diameter (D90) is 5 micrometers or less and whose crystal lattice diameter is 5-20 nm.
JP2006356033A 2006-12-28 2006-12-28 Method for producing conductive tin oxide powder Active JP5181322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356033A JP5181322B2 (en) 2006-12-28 2006-12-28 Method for producing conductive tin oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356033A JP5181322B2 (en) 2006-12-28 2006-12-28 Method for producing conductive tin oxide powder

Publications (2)

Publication Number Publication Date
JP2008166178A JP2008166178A (en) 2008-07-17
JP5181322B2 true JP5181322B2 (en) 2013-04-10

Family

ID=39695358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356033A Active JP5181322B2 (en) 2006-12-28 2006-12-28 Method for producing conductive tin oxide powder

Country Status (1)

Country Link
JP (1) JP5181322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008963A1 (en) 2014-06-23 2016-01-07 Merck Patent Gmbh Additive for LDS plastics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111553A (en) * 2008-11-10 2010-05-20 Mitsubishi Materials Corp Conductive tin oxide powder and method for producing the same
JP5592067B2 (en) * 2008-12-27 2014-09-17 三菱マテリアル株式会社 Method for producing conductive tin oxide powder
JP5514435B2 (en) * 2008-12-27 2014-06-04 三菱マテリアル株式会社 Method for producing white conductive powder
JP5676907B2 (en) * 2010-02-17 2015-02-25 石原産業株式会社 Method for treating lithium titanate particles
JP5788694B2 (en) * 2011-03-16 2015-10-07 三井金属鉱業株式会社 Fluorine-doped tin oxide particles and method for producing the same
WO2012157524A1 (en) * 2011-05-13 2012-11-22 ジオマテック株式会社 Substrate having transparent conductive film and dye-sensitized solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9000268A (en) * 1990-02-05 1991-09-02 Oce Nederland Bv Doped tin oxide powder, a process for its preparation, and its use in electrically conductive or anti-static coatings.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008963A1 (en) 2014-06-23 2016-01-07 Merck Patent Gmbh Additive for LDS plastics
US9982113B2 (en) 2014-06-23 2018-05-29 Merck Patent Gmbh Additive for LDS plastics

Also Published As

Publication number Publication date
JP2008166178A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5181322B2 (en) Method for producing conductive tin oxide powder
JP5062520B2 (en) Transparent tin oxide powder
JP5400307B2 (en) White conductive powder and its use
JP5071621B2 (en) Method for producing white conductive powder
JP2006059806A (en) Fine powder of surface-modified transparent conductive tin oxide, its manufacturing method, and its dispersion body
JP5400306B2 (en) White conductive powder and its use
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
JP4830393B2 (en) Method and apparatus for producing conductive tin oxide powder
JP5224160B2 (en) White conductive powder and production method and use thereof
JP5007970B2 (en) Method for producing transparent conductive powder
JP5158537B2 (en) Conductive tin oxide powder, production method and use thereof
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
JP5977603B2 (en) White conductive powder, dispersion thereof, paint, and film
JP4848672B2 (en) Highly dispersible conductive fine powder and its application
JP5514436B2 (en) Method for producing white conductive powder having tin oxide layer
JP5335328B2 (en) Method for producing conductive tin oxide powder
JP5592067B2 (en) Method for producing conductive tin oxide powder
JP5514435B2 (en) Method for producing white conductive powder
JP5562174B2 (en) Transparent conductive tin oxide powder, method for producing the same, and film composition using the same
JP6453533B2 (en) Fluorine-doped phosphorus-doped conductive tin oxide powder, process for producing the same, and film composition using the same
TW201422534A (en) ITO powder and method of producing the same
JP2010080316A (en) Transparent conductive substrate, and method for manufacturing the same
JP3394556B2 (en) Conductive barium sulfate filler and method for producing the same
JP2011054508A (en) White conductive powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5181322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250