JP5289077B2 - Acicular tin oxide fine powder and method for producing the same - Google Patents

Acicular tin oxide fine powder and method for producing the same Download PDF

Info

Publication number
JP5289077B2
JP5289077B2 JP2009014823A JP2009014823A JP5289077B2 JP 5289077 B2 JP5289077 B2 JP 5289077B2 JP 2009014823 A JP2009014823 A JP 2009014823A JP 2009014823 A JP2009014823 A JP 2009014823A JP 5289077 B2 JP5289077 B2 JP 5289077B2
Authority
JP
Japan
Prior art keywords
tin oxide
fine powder
oxide fine
acicular
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009014823A
Other languages
Japanese (ja)
Other versions
JP2010168260A (en
Inventor
浩之 今井
修 坂谷
一敏 山本
幸男 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2009014823A priority Critical patent/JP5289077B2/en
Publication of JP2010168260A publication Critical patent/JP2010168260A/en
Application granted granted Critical
Publication of JP5289077B2 publication Critical patent/JP5289077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、アンチモン等を含有せずに優れた導電性を有する針状酸化錫微粉末およびその製造方法に関する。より詳しくは、本発明は、アンチモン等を含有せずに優れた導電性を有し、かつ環境汚染等を生じる虞のない針状酸化錫微粉末およびその製造方法に関し、導電性塗料または導電性樹脂のフィラーとして、種々の用途分野において適用され、高付加価値化を図り得る優れた高機能性材料に関する。   The present invention relates to a fine powder of acicular tin oxide having excellent conductivity without containing antimony or the like and a method for producing the same. More specifically, the present invention relates to acicular tin oxide fine powder that does not contain antimony or the like and has excellent conductivity and does not cause environmental pollution, and a method for producing the same. The present invention relates to an excellent high-functional material that can be applied as a resin filler in various fields of use and can achieve high added value.

導電性材料は、プラスチックス、ゴム、繊維などの導電性付与剤或いは帯電防止剤として、更には電子写真複写紙、静電記録紙などの記録材料の支持体用導電性付与剤等に利用される。   The conductive material is used as a conductivity imparting agent or antistatic agent for plastics, rubber, fiber, etc., and further as a conductivity imparting agent for a support for recording materials such as electrophotographic copying paper and electrostatic recording paper. The

現在、導電性材料としては、界面活性剤、イオン導電材などのいわゆるイオン伝導型のタイプと、カーボンや酸化物系導電性粉末などのいわゆる電子伝導型のタイプが多く使用されている。   At present, as the conductive material, a so-called ion conduction type such as a surfactant or an ionic conductive material and a so-called electron conduction type such as carbon or oxide-based conductive powder are often used.

この電子伝導型のタイプのものは、イオン伝導型のものに比べ、湿度や温度に対する導電性の安定性が高いため、近年例えば、塗料、インク、プラスチックス、繊維など種々の分野での素材や製品の帯電防止用導電性付与剤として、環境に依存しない材料として非常に有効に使用されている。   This electron conduction type has higher conductivity stability with respect to humidity and temperature than the ion conduction type, so in recent years, for example, in various fields such as paints, inks, plastics, fibers, etc. As an antistatic conductivity imparting agent for products, it is very effectively used as an environment-independent material.

電子伝導型のタイプの例としては、カーボン系材料、ITO粉末、ATO粉末、SnO、AZOなどの酸化物系が知られている。カーボン系材料として代表的なカーボンブラックには、着色や発癌性誘発、ITOには、高価であること、ATO粉末、AZO粉末には、アンチモン使用による青味色調化や環境汚染などの課題があり、その中で、酸化スズ(主成分がSnO)系の酸化物導電性粉末は、安価で安全かつ安定性に優れた材料として、特に有効である。 As examples of the electron conduction type, carbon materials, ITO powders, ATO powders, oxides such as SnO 2 and AZO are known. Carbon black, which is a typical carbon-based material, has problems such as coloring and carcinogenicity, ITO is expensive, and ATO powder and AZO powder have problems such as bluish color tone due to the use of antimony and environmental pollution. Among them, tin oxide (main component is SnO 2 ) -based oxide conductive powder is particularly effective as a cheap, safe and stable material.

更に言えば、一般に導電性付与剤を塗布して使用する場合には、導電性粉末は、ゴム、プラスチックス、紙等に充填されるか、或いは結合剤を含む溶液中に分散して塗布液とされ、この塗布液が、種々のフィルム、シート、支持体、さらには筐体などの被処理体上に塗布して用いられる。その場合、良好な導電性を得るには、少なくとも隣接する粉末同志が密に接触するように導電性粉末の含有量を多くしなければならず、球状等の粉末を用いる場合には、多量の導電性粉末の混入を必要とする。ここで、針状或いは繊維状の導電性粉末は、単位面積当たり或いは単位容積当たりで、少量の導電性粉末でも導電路を有効に形成することが可能となり、有利である。   Furthermore, in general, when a conductivity imparting agent is applied and used, the conductive powder is filled in rubber, plastics, paper, or the like, or dispersed in a solution containing a binder and applied as a coating solution. The coating solution is applied to various films, sheets, supports, and objects to be processed such as a casing. In that case, in order to obtain good conductivity, the content of the conductive powder must be increased so that at least adjacent powders are in close contact with each other. Requires mixing of conductive powder. Here, the needle-like or fiber-like conductive powder is advantageous in that the conductive path can be effectively formed even with a small amount of the conductive powder per unit area or unit volume.

そこで、針状或いは繊維状導電性酸化錫として、種々のものが提案されている。例えば、導電性酸化第二錫繊維を製造するために、しゅう酸錫を非常にゆっくりと昇温焼成したり(特許文献1)、銅を溶媒として酸化錫を蒸発させ、低温部に導入させ析出させたり(特許文献2)、錫化合物で紡糸液を作成し、紡糸する(特許文献3)等の方法で製造されることが知られているが、これらの方法で得られた物は、いずれも短軸が約0.5μmと太い、或いは、工業的生産性が極めて低い等の問題があった。   Accordingly, various types of needle-like or fibrous conductive tin oxide have been proposed. For example, in order to produce conductive stannic oxide fibers, tin oxalate is fired at a very slow temperature (Patent Document 1), or tin oxide is evaporated using copper as a solvent, and introduced into a low temperature portion for precipitation. (Patent Document 2), making a spinning solution with a tin compound, and spinning (Patent Document 3) are known to be manufactured. However, the short axis is as thick as about 0.5 μm, or the industrial productivity is extremely low.

また、特に透明導電性と有する用途として、フィルムの埃防止のための帯電防止やICパッケージや電子機器の筐体などの静電気障害回避のための帯電防止処理、液晶ディスプレイやその他EL体の透明電極などが挙げられるが、このような用途に適用すると、粒子の径が大きいため、光吸収を起こし、かつ超薄膜の導電性膜を形成できないという課題があった。   In particular, as an application with transparent conductivity, antistatic treatment for dust prevention of film, antistatic treatment for avoiding static electricity damage such as IC package and electronic equipment housing, liquid crystal display and other transparent electrodes of EL body However, when applied to such a use, there is a problem that light absorption occurs and an ultra-thin conductive film cannot be formed because the particle diameter is large.

そこで、短軸平均粒子径が0.005〜0.05μmであり、長軸平均粒子径が0.1〜3μmであり、かつアスペクト比が5以上であって、ケイ素成分を含有させることによる、針状導電性酸化錫微粉末または針状導電性アンチモン含有酸化錫微粉末が、提案されている(特許文献4、5)。これらは、錫成分、ケイ素成分およびアルカリ金属のハロゲン化物を含む被焼成処理物を焼成し、次いで得られた焼成物の可溶性塩類を除去することにより製造される。   Therefore, the minor axis average particle diameter is 0.005 to 0.05 μm, the major axis average particle diameter is 0.1 to 3 μm, the aspect ratio is 5 or more, and the silicon component is contained. Needle-like conductive tin oxide fine powder or needle-like conductive antimony-containing tin oxide fine powder has been proposed (Patent Documents 4 and 5). These are manufactured by baking the to-be-fired processed material containing a tin component, a silicon component, and an alkali metal halide, and then removing the soluble salts of the obtained fired product.

特開昭56−120519号公報JP-A-56-120519 特開昭62−158199号公報JP 62-158199 A 特開平5−117906号公報Japanese Patent Laid-Open No. 5-117906 特開平8−231222号公報JP-A-8-231222 特開平8−217445号公報JP-A-8-217445

しかしながら、ケイ素成分を添加して製造した針状導電性粒子は、塗膜にしたときのヘーズ値が高く、透明導電性膜として利用した場合に、塗膜が白濁してしまうため、ヘーズ値の低下が求められていた。   However, the acicular conductive particles produced by adding a silicon component have a high haze value when formed into a coating film, and when used as a transparent conductive film, the coating film becomes cloudy. A reduction was sought.

そこで、発明者らは、鋭意研究した結果、針状導電性粉末を作製するときに、酸化錫にゲルマニウムを添加することにより、導電性の高い針状微粉末であって、この針状微粉末を用いた塗膜の表面抵抗率を低く、全光透過率を高くでき、かつヘーズ値を低下できることを見出し、本発明を完成するに至った。   Therefore, the inventors have intensively studied that when producing acicular conductive powder, by adding germanium to tin oxide, the acicular fine powder having high conductivity is obtained. The present inventors have found that the surface resistivity of a coating film using the above can be lowered, the total light transmittance can be increased, and the haze value can be lowered, and the present invention has been completed.

本発明は、以下に示す構成によって上記課題を解決した針状酸化錫微粉末とその製造方法に関する。
(1)短軸平均粒子径が5〜50nmで、アスペクト比が5以上であり、かつゲルマニウムを錫に対して質量基準で0.1〜10%含有することを特徴とする、針状酸化錫微粉末。
(2)粉体体積抵抗が、1×10Ω・cm以下である、上記(1)記載の針状酸化錫微粉末。
(3)フッ素を質量基準で10%以下含有する、上記(1)または(2)記載の針状酸化錫微粉末。
(4)針状酸化錫微粉末を質量基準で20%含有する厚さ1μmの塗膜にしたとき、塗膜の表面抵抗値が1012Ω/□以下であり、全光透過率が90%以上であり、かつヘーズ値が10%以下である、上記(1)〜(3)のいずれか記載の針状酸化錫微粉末。
(5)錫成分、ゲルマニウム成分およびアルカリ金属のハロゲン化物を含む被焼成処理物を、アルカリ金属のハロゲン化物の融点より高い温度、かつ1200℃以下で焼成し、次いで得られた焼成物の可溶性塩類を除去する、ゲルマニウムを含有する針状酸化錫微粉末の製造方法。
(6)被焼成処理物が、フッ素源を含む、上記(5)記載の針状酸化錫微粉末の製造方法。
(7)焼成物の可溶性塩類を除去した後、更にフッ素処理する、上記(5)記載の針状酸化錫微粉末の製造方法。
(8)被焼成処理物が、錫の水酸化物および/またはその脱水物、ならびにゲルマニウム成分で構成される前駆物質と、アルカリ金属のハロゲン化物を含む、上記(5)〜(7)のいずれか記載の方法。
(9)被焼成処理物が、ゲルマニウム成分を含有する錫の水酸化物および/またはその脱水物で構成される前駆物質と、アルカリ金属のハロゲン化物を含む、上記(5)〜(7)のいずれか記載の針状酸化錫微粉末の製造方法。
(10)被焼成処理物が、錫の水酸化物および/またはその脱水物、ならびにゲルマニウムの水酸化物および/またはその脱水物で構成される前駆物質と、アルカリ金属のハロゲン化物を含む、上記(5)〜(7)のいずれか記載の針状酸化錫微粉末の製造方法。
(11)錫化合物とゲルマニウム化合物を含む溶液を、中和により共沈させ、ゲルマニウム成分を含有する錫の水酸化物を生成する、上記(9)記載の針状酸化錫微粉末の製造方法。
(12)被焼成処理物の錫成分が、塩化錫溶液を中和または加水分解して得られるものである、上記(5)〜(10)のいずれか記載の針状酸化錫微粉末の製造方法。
(13)アルカリ金属のハロゲン化物が、塩化ナトリウムまたは塩化カリウムである上記(5)〜(12)のいずれか記載の針状酸化錫微粉末の製造方法。
(14)アルカリ金属のハロゲン化物の量が、前駆物質の錫の質量基準で10%以上である、上記(5)〜(13)のいずれか記載の針状酸化錫微粉末の製造方法。
(15)上記(1)〜(4)のいずれか記載の針状酸化錫微粉末を、水性媒体に分散させてなる水性分散体。
(16)上記(1)〜(4)のいずれか記載の針状酸化錫微粉末、およびバインダー樹脂と水もしくは溶媒を含むバインダーを含む塗布組成物であって、針状酸化錫微粉末を、バインダー樹脂100質量部に対して3〜200質量部配合してなる、塗布組成物。
(17)固形分として針状酸化錫微粉末と分散剤を含む上記(15)記載の水性分散体と結合用樹脂を含む塗布組成物であって、水性分散体の固形分を、結合用樹脂100質量部に対して、3〜200質量部配合してなる、塗布組成物。
(18)上記(1)〜(4)のいずれか記載の針状酸化錫微粉末と成形用樹脂を含む導電性塗布組成物であって、針状酸化錫微粉末を、成形用樹脂100質量部に対して3〜200質量部配合してなる、樹脂組成物。
The present invention relates to a needle-like tin oxide fine powder and a method for producing the same, which have solved the above problems with the following configuration.
(1) Acicular tin oxide having a minor axis average particle diameter of 5 to 50 nm, an aspect ratio of 5 or more, and containing germanium in an amount of 0.1 to 10% based on mass. Fine powder.
(2) The acicular tin oxide fine powder according to (1), wherein the powder volume resistance is 1 × 10 8 Ω · cm or less.
(3) The acicular tin oxide fine powder according to the above (1) or (2), which contains 10% or less of fluorine by mass.
(4) When a coating film having a thickness of 1 μm containing 20% acicular tin oxide fine powder is used, the surface resistance of the coating film is 10 12 Ω / □ or less, and the total light transmittance is 90%. The acicular tin oxide fine powder according to any one of (1) to (3) above, which has a haze value of 10% or less.
(5) A to-be-fired product containing a tin component, a germanium component and an alkali metal halide is fired at a temperature higher than the melting point of the alkali metal halide and 1200 ° C. or less, and then the soluble salts of the obtained fired product The manufacturing method of the acicular tin oxide fine powder containing germanium which removes.
(6) The manufacturing method of the acicular tin oxide fine powder of the said (5) description that a to-be-fired processed material contains a fluorine source.
(7) The method for producing acicular tin oxide fine powder according to the above (5), wherein after the soluble salts of the fired product are removed, fluorine treatment is further performed.
(8) Any of the above (5) to (7), wherein the material to be fired includes a precursor composed of a hydroxide of tin and / or a dehydrate thereof, and a germanium component, and an alkali metal halide. Or the method described.
(9) The above-mentioned (5) to (7), wherein the material to be fired includes a precursor composed of a hydroxide of tin containing a germanium component and / or a dehydrate thereof, and an alkali metal halide. The manufacturing method of the acicular tin oxide fine powder in any one.
(10) The above-mentioned fired product includes a precursor composed of a hydroxide of tin and / or a dehydrate thereof, a hydroxide of germanium and / or a dehydrate thereof, and an alkali metal halide. (5) The manufacturing method of the acicular tin oxide fine powder in any one of (7).
(11) The method for producing fine acicular tin oxide powder according to (9), wherein a solution containing a tin compound and a germanium compound is coprecipitated by neutralization to produce a hydroxide of tin containing a germanium component.
(12) Production of acicular tin oxide fine powder according to any one of (5) to (10) above, wherein the tin component of the material to be fired is obtained by neutralizing or hydrolyzing a tin chloride solution. Method.
(13) The method for producing acicular tin oxide fine powder according to any one of (5) to (12), wherein the alkali metal halide is sodium chloride or potassium chloride.
(14) The method for producing acicular tin oxide fine powder according to any one of the above (5) to (13), wherein the amount of alkali metal halide is 10% or more based on the mass of the precursor tin.
(15) An aqueous dispersion obtained by dispersing the acicular tin oxide fine powder according to any one of (1) to (4) above in an aqueous medium.
(16) A coating composition containing the acicular tin oxide fine powder according to any one of (1) to (4) above and a binder containing a binder resin and water or a solvent, wherein the acicular tin oxide fine powder is The coating composition formed by blending 3 to 200 parts by mass with respect to 100 parts by mass of the binder resin.
(17) A coating composition comprising the aqueous dispersion according to the above (15) containing acicular tin oxide fine powder and a dispersing agent as a solid content and a binding resin, wherein the solid content of the aqueous dispersion is changed to a binding resin. The coating composition formed by blending 3 to 200 parts by mass with respect to 100 parts by mass.
(18) A conductive coating composition comprising the acicular tin oxide fine powder according to any one of (1) to (4) above and a molding resin, wherein the acicular tin oxide fine powder is converted to 100 masses of the molding resin. A resin composition comprising 3 to 200 parts by mass with respect to parts.

本発明(1)によれば、導電性を付与し得る針状の酸化錫微粉末を提供することができ、本発明(2)によれば、導電性が高い針状の酸化錫微粉末を、本発明(4)によれば、用いた塗膜の表面抵抗率を低く、全光透過率を高くでき、かつヘーズ値が低い針状酸化錫微粉末を提供することができる。また、本発明(5)によれば、針状酸化錫微粉末の製造方法を提供でき、この針状酸化錫微粉末の使用による透明導電膜の製造を可能とする。従来の導電性微粉末に比して、本発明(2)の針状酸化錫微粒子は、その配合量が少量であっても、これを用いた塗膜への導電性の付与が可能である。   According to the present invention (1), a needle-like tin oxide fine powder capable of imparting conductivity can be provided. According to the present invention (2), a needle-like tin oxide fine powder having high conductivity can be provided. According to the present invention (4), it is possible to provide acicular tin oxide fine powder having a low surface resistivity, a high total light transmittance, and a low haze value. Moreover, according to this invention (5), the manufacturing method of acicular tin oxide fine powder can be provided, and manufacture of a transparent conductive film by use of this acicular tin oxide fine powder is enabled. Compared to the conventional conductive fine powder, the acicular tin oxide fine particles of the present invention (2) can impart conductivity to a coating film using the fine particles even if the blending amount is small. .

また、本発明(2)の針状酸化錫微粉末は、上記アンチモン等のドープ成分を含まずに高い導電性を有し、かつアンチモン、リン、インジウムを何れも含まないので、製造が容易であって、環境汚染を生じる懸念がない。   In addition, the acicular tin oxide fine powder of the present invention (2) has high conductivity without containing a doping component such as antimony and does not contain any of antimony, phosphorus, and indium, so that it is easy to manufacture. Therefore, there is no concern of causing environmental pollution.

本発明(5)によれば、アンチモン等のドープ成分を含まずに高い導電性を有し、用いた塗膜のヘーズ値が低い針状酸化錫微粉末を、極めて容易に製造することができる。   According to the present invention (5), acicular tin oxide fine powder having high conductivity without containing a doping component such as antimony and having a low haze value of the coating film used can be produced very easily. .

本発明(6)または(7)によれば、フッ素処理の程度を変化させ、針状酸化錫微粉末に所望の導電性を得るための制御を容易に行うことができる。よって、目的の導電性を有する粉末を容易に製造することができる。   According to the present invention (6) or (7), the degree of fluorine treatment can be changed, and control for obtaining desired conductivity in the acicular tin oxide fine powder can be easily performed. Therefore, the target conductive powder can be easily produced.

また、本発明(11)で製造される針状酸化錫微粉末は、内部までほぼ均一であるので、高い導電率を有するものが安定して得られる。   Moreover, since the acicular tin oxide fine powder manufactured by this invention (11) is substantially uniform to the inside, what has high electrical conductivity can be obtained stably.

実施例1で得られた針状導電性酸化錫微粉末の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of acicular conductive tin oxide fine powder obtained in Example 1. FIG.

以下本発明を実施形態に基づいて具体的に説明する。なお%は特に示さない限り、また数値固有の場合を除いて質量基準の%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated,% is based on mass unless otherwise specified.

〔針状酸化錫微粉末〕
本発明の針状酸化錫微粉末は、短軸平均粒子径が5〜50nmで、アスペクト比が5以上であり、かつゲルマニウムを錫に対して質量基準で0.1〜10%含有することを特徴とする。この針状酸化錫微粉末は、酸化第二錫を主成分とし、酸化第二錫に酸素欠陥が存在するとき、針状酸化錫微粉末に導電性が付与される。
[Acicular tin oxide fine powder]
The acicular tin oxide fine powder of the present invention has a minor axis average particle diameter of 5 to 50 nm, an aspect ratio of 5 or more, and contains 0.1 to 10% of germanium on a mass basis with respect to tin. Features. This acicular tin oxide fine powder contains stannic oxide as a main component, and conductivity is imparted to the acicular tin oxide fine powder when oxygen defects are present in the stannic oxide.

ここで、平均粒子径は、透過型電子顕微鏡写真(倍率10万倍)を観察して求めた質量平均粒子径である(n=50)。短軸平均粒子径が5nm以上であると、良好な導電性、および良好な水への分散性を示し、50nm以下であると針状酸化錫微粉末を含有する塗膜の全光透過率を高める。また、本発明において、微粉末とは、短軸平均粒子径が50nm以下のものをいう。   Here, the average particle diameter is a mass average particle diameter obtained by observing a transmission electron micrograph (magnification of 100,000 times) (n = 50). When the minor axis average particle diameter is 5 nm or more, good conductivity and good dispersibility in water are exhibited, and when it is 50 nm or less, the total light transmittance of the coating film containing acicular tin oxide fine powder is obtained. Increase. Moreover, in this invention, a fine powder means a thing with a short-axis average particle diameter of 50 nm or less.

アスペクト比が5以上であると、針状酸化錫微粉末を用いる塗膜に良好な導電性を付与する。ここで、アスペクト比は、透過型電子顕微鏡写真(倍率10万倍)を観察して、(長軸平均粒子径/短軸平均粒子径)を計算して求める(n=10)。本発明において、「針状」とは、本発明の物性値で定義される針状のものの他、繊維状、柱状、棒状等の類似形状のものを含む。なお、針状酸化錫微粉末の長軸平均粒子径は、25nm〜10μmであることが、良好な導電性付与の観点から好ましく、25nm〜4μmが、より好ましい。   When the aspect ratio is 5 or more, good conductivity is imparted to the coating film using the acicular tin oxide fine powder. Here, the aspect ratio is obtained by observing a transmission electron micrograph (magnification of 100,000 times) and calculating (major axis average particle diameter / minor axis average particle diameter) (n = 10). In the present invention, the “needle shape” includes not only the needle shape defined by the physical property values of the present invention but also a similar shape such as a fiber shape, a column shape, a rod shape and the like. In addition, it is preferable from a viewpoint of favorable electroconductivity that the long-axis average particle diameter of acicular tin oxide fine powder is 25 nm-10 micrometers, and 25 nm-4 micrometers are more preferable.

ゲルマニウムが、錫に対して質量基準で0.1%以上であると透明性の針状粉末を得ることができ、10%以下であると良好な導電性が得られる。針状酸化錫微粉末中のゲルマニウムと錫の質量定量分析は、ICP法で行う。   A transparent needle-like powder can be obtained when germanium is 0.1% or more based on mass with respect to tin, and good conductivity can be obtained when it is 10% or less. Mass quantitative analysis of germanium and tin in acicular tin oxide fine powder is performed by ICP method.

針状酸化錫微粉末は、フッ素を、質量基準で10%以下含有することが好ましく、1〜5%含有することがより好ましい。フッ素の存在により、酸化第二錫中の酸素欠陥が安定し、針状酸化錫微粉末の導電性を安定させることができる。針状酸化錫微粉末中のフッ素が10%より多いと、酸化第二錫にドープされない遊離のフッ素もしくはフッ化物が増加し、針状酸化錫微粉末の間の通電パスを妨げるので、導電性が低下する。針状酸化錫微粉末中のフッ素の質量定量分析は、ゲルマニウム、錫と同様に行う。なお、フッ素が0%であっても、第一錫イオン等による酸化第二錫の還元などにより、針状酸化錫微粉末に高い導電性を付与することができる。   The acicular tin oxide fine powder preferably contains 10% or less of fluorine on a mass basis, more preferably 1 to 5%. Oxygen defects in stannic oxide are stabilized by the presence of fluorine, and the conductivity of acicular tin oxide fine powder can be stabilized. If the amount of fluorine in the acicular tin oxide fine powder is more than 10%, the amount of free fluorine or fluoride that is not doped into stannic oxide increases, and the current-carrying path between the acicular tin oxide fine powder is hindered. Decreases. Mass quantitative analysis of fluorine in the acicular tin oxide fine powder is performed in the same manner as germanium and tin. In addition, even if fluorine is 0%, high conductivity can be imparted to the acicular tin oxide fine powder by reduction of stannic oxide with stannous ions or the like.

針状酸化錫微粉末の粉体体積抵抗が、1×10Ω・cm以下であると、針状酸化錫微粉末を使用する塗膜が、帯電防止効果を発揮する表面抵抗10Ω/□を得るために必要な、塗膜への針状酸化錫微粉末の混入量を抑制することができ、塗膜の全光透過率等の物性を維持することが可能となり、好ましく、1×10Ω・cm以下が、より好ましい。ここで、粉体体積抵抗とは、試料粉末を円筒ドーナツ状のPP製絶縁ジグに入れ、開口部の両端を円筒の真鍮電極によって100kgf/cmで加圧し、真鍮電極間の抵抗値をデジタルマルチメーターによって測定し、これより粉体体積抵抗値を算出する。 When the powder volume resistance of the acicular tin oxide fine powder is 1 × 10 8 Ω · cm or less, the coating film using the acicular tin oxide fine powder exhibits a surface resistance of 10 9 Ω / It is possible to suppress the amount of acicular tin oxide fine powder mixed in the coating film necessary for obtaining □, and it is possible to maintain the physical properties such as the total light transmittance of the coating film. 10 3 Ω · cm or less is more preferable. Here, the powder volume resistance means that the sample powder is put into a cylindrical donut-shaped PP insulating jig, both ends of the opening are pressurized with a cylindrical brass electrode at 100 kgf / cm 2 , and the resistance value between the brass electrodes is digitally expressed. Measure with a multimeter and calculate the powder volume resistance.

針状酸化錫微粉末を質量基準で20%含有する厚さ1μmの塗膜にしたとき、塗膜の表面抵抗値が1012Ω/□であり、塗膜の全光透過率が90%以上であり、かつ塗膜のヘーズ値が10%以下であると、針状酸化錫微粉末を透明導電膜として使用するために、好ましい。全光透過率とヘーズ度(%)は、ヘーズメーターで測定する。このとき、塗膜は、針状酸化錫微粉末を質量基準で19〜21%含有すればよく、塗膜の残部は、後述するバインダー樹脂である。また、膜厚は、0.95〜1.04μmの範囲で測定する。 When a 1 μm thick coating containing 20% acicular tin oxide fine powder is used, the surface resistance of the coating is 10 12 Ω / □, and the total light transmittance of the coating is 90% or more. It is preferable that the haze value of the coating film is 10% or less in order to use the acicular tin oxide fine powder as a transparent conductive film. The total light transmittance and the haze degree (%) are measured with a haze meter. At this time, a coating film should just contain 19-21% of acicular tin oxide fine powder by mass reference | standard, and the remainder of a coating film is binder resin mentioned later. The film thickness is measured in the range of 0.95 to 1.04 μm.

本発明の針状酸化錫微粉末は、アンチモン、リン、インジウムを何れも含まないので環境汚染を生じる懸念がなく、かつ低コストである。なお、本発明において、アンチモン、リン、およびインジウムを含まないとは、原料および工程中でアンチモン、リン、およびインジウム源を使用せず、従って検出限界10ppmの標準的な測定装置によってこれらの元素が検出されないことをいう。   Since the acicular tin oxide fine powder of the present invention does not contain antimony, phosphorus, or indium, there is no fear of causing environmental pollution and the cost is low. In the present invention, “antimony, phosphorus, and indium are not included” means that antimony, phosphorus, and indium sources are not used in the raw materials and processes, and therefore these elements are detected by a standard measuring device having a detection limit of 10 ppm. It means that it is not detected.

針状酸化錫微粉末は、全質量の70%以上が、短軸平均粒子径が5〜50nmであり、アスペクト比が5以上であり、かつゲルマニウムを錫に対して質量基準で0.1〜10%含有することが好ましい。   The acicular tin oxide fine powder has 70% or more of the total mass, the minor axis average particle diameter of 5 to 50 nm, the aspect ratio of 5 or more, and germanium with respect to tin by 0.1 to 0.1 by mass. It is preferable to contain 10%.

〔製造方法〕
本発明の針状酸化錫微粉末の製造方法は、
錫成分、ゲルマニウム成分およびアルカリ金属のハロゲン化物を含む被焼成処理物を、アルカリ金属のハロゲン化物の融点より高い温度、かつ1200℃以下で焼成し、次いで得られた焼成物の可溶性塩類を除去することを特徴とする。
〔Production method〕
The method for producing the acicular tin oxide fine powder of the present invention,
A to-be-fired object containing a tin component, a germanium component, and an alkali metal halide is fired at a temperature higher than the melting point of the alkali metal halide and 1200 ° C. or lower, and then the soluble salts of the obtained fired product are removed It is characterized by that.

被焼成処理物を製造するための前駆物質を、まず生成させる。前駆物質は、錫成分およびゲルマニウム成分を含む。錫成分としては、錫の水酸化物および/またはその脱水物であることが、好ましい。   First, a precursor for producing a material to be fired is generated. The precursor includes a tin component and a germanium component. The tin component is preferably a tin hydroxide and / or a dehydrate thereof.

ここで用いられる錫成分の原料向けの錫化合物としては、塩化錫などのハロゲン化錫、酸化錫、水酸化錫或いは、錫の硫酸塩、硝酸錫などの錫の無機酸塩(第一錫塩、第二錫塩)などが挙げられ、これらを単独で或いは2種以上混合して用いてもよい。第一錫塩としては、フッ化第一錫、塩化第一錫、ホウフッ化第一錫、硫酸第一錫、酸化第一錫、硝酸第一錫、ピロリン酸錫、スルファミン酸錫、亜錫酸塩等の無機系の塩、アルカノールスルホン酸第一錫、スルホコハク酸第一錫、脂肪族カルボン酸第一錫等の有機系の塩が挙げられる。第二錫塩としては上記第一錫塩のそれぞれの第二錫塩が挙げられるが、気体であるもの、難溶性のもの等があるので、液体である塩化第二錫を用いるのが一般的であり、中でも塩化第二錫の塩酸水溶液を用いるのが、工業的にも望ましい。錫水酸化物は、塩化錫の塩酸水溶液をアルカリ中に滴下することで得られる。また、錫成分は、加水分解によっても得られる。この加水分解の方法は、当業者に公知の方法でよい。   The tin compound for the raw material of the tin component used here includes tin halides such as tin chloride, tin oxide, tin hydroxide, or tin inorganic acid salts (such as stannous salts) such as tin sulfate and tin nitrate. , Stannic salts) and the like, and these may be used alone or in admixture of two or more. Examples of stannous salts include stannous fluoride, stannous chloride, stannous borofluoride, stannous sulfate, stannous oxide, stannous nitrate, tin pyrophosphate, tin sulfamate, and stannic acid. Examples thereof include inorganic salts such as salts, and organic salts such as stannous alkanol sulfonate, stannous sulfosuccinate, and stannous aliphatic carboxylate. Examples of stannic salts include the respective stannic salts of the above stannous salts. However, since there are those that are gases and those that are sparingly soluble, it is common to use liquid stannic chloride. Among them, it is industrially desirable to use a hydrochloric acid aqueous solution of stannic chloride. Tin hydroxide is obtained by dropping an aqueous hydrochloric acid solution of tin chloride into an alkali. The tin component can also be obtained by hydrolysis. This hydrolysis method may be a method known to those skilled in the art.

ゲルマニウム成分の原料向けのゲルマニウム化合物としては、四塩化ゲルマニウム、水酸化ゲルマニウム、酸化ゲルマニウム等のほか、有機ゲルマニウム等も使用できる。中でも、酸化ゲルマニウムは、アルカリに溶解するので、工業的に好ましい。具体的には、ゲルマニウム成分は、酸化ゲルマニウムをアルカリ水溶液に溶解させ、その後中和反応することによって生成する。   As the germanium compound for the raw material of the germanium component, in addition to germanium tetrachloride, germanium hydroxide, germanium oxide and the like, organic germanium can be used. Among these, germanium oxide is industrially preferable because it dissolves in an alkali. Specifically, the germanium component is generated by dissolving germanium oxide in an alkaline aqueous solution and then performing a neutralization reaction.

また、前駆物質は、ゲルマニウム成分を含有する錫の水酸化物および/またはその脱水物であることが、より好ましく、ゲルマニウム成分と錫を混合状態とすることにより、均一な針状微粒子を得ることができる。この方法は、各化合物の溶液を用いる種々の方法で行い得る。例えば、(a)70〜90℃の熱水中に、錫化合物の塩酸水溶液と、ゲルマニウム化合物のアルカリ水溶液とを、それぞれ並行して、ほぼpH7を保持するように添加しながら中和し、ゲルマニウム成分と錫が混合した水酸化物を共沈させる方法、(b)ゲルマニウム化合物のアルカリ水溶液中に、錫化合物の塩酸水溶液を添加して、中和することにより混合した水酸化物を共沈させる方法、(c)錫化合物中の塩酸水溶液中に、ゲルマニウム化合物のアルカリ水溶液を添加して中和し、混合した水酸化物を共沈させる方法、等の方法が挙げられる。このような方法の中でも特に上記(a)の方法が工業的には望ましく、この場合、中和反応液のpHを5〜10に保持するように行うのが好ましい。   The precursor is more preferably a hydroxide of tin containing a germanium component and / or a dehydrate thereof, and uniform needle-like fine particles can be obtained by mixing the germanium component and tin. Can do. This method can be performed by various methods using a solution of each compound. For example, (a) neutralizing an aqueous hydrochloric acid solution of a tin compound and an alkaline aqueous solution of a germanium compound in hot water at 70 to 90 ° C. in parallel so as to maintain approximately pH 7, respectively, (B) Coprecipitates a mixed hydroxide by adding a hydrochloric acid aqueous solution of a tin compound to the alkaline aqueous solution of the germanium compound and neutralizing it. Examples thereof include (c) a method in which an alkaline aqueous solution of a germanium compound is added to a hydrochloric acid aqueous solution in a tin compound to neutralize, and a mixed hydroxide is coprecipitated. Among these methods, the method (a) is particularly desirable industrially. In this case, the neutralization reaction solution is preferably maintained at a pH of 5 to 10.

また、前駆物質は、錫の水酸化物および/またはその脱水物、ならびにゲルマニウム成分で構成することができ、錫の水酸化物および/またはその脱水物、ならびにゲルマニウムの水酸化物および/またはその脱水物で構成することもできる。この場合も、当業者に公知の方法で、前駆物質を作製すればよい。   The precursor may be composed of a hydroxide of tin and / or a dehydrate thereof, and a germanium component, and a hydroxide of tin and / or a dehydrate thereof, and a hydroxide of germanium and / or thereof It can also consist of a dehydrated product. In this case, the precursor may be prepared by a method known to those skilled in the art.

被焼成処理物中のゲルマニウムを、好ましくは、錫に対して質量基準で0.1〜10%、より好ましくは0.3〜5%、特に好ましくは0.5〜3%添加する。0.1%より少ないと針状性が得られず、10%以上添加しても添加効果の増大が少なく、経済的に有利でない。   The germanium in the material to be fired is preferably added in an amount of 0.1 to 10%, more preferably 0.3 to 5%, and particularly preferably 0.5 to 3% based on the mass with respect to tin. If it is less than 0.1%, acicularity cannot be obtained, and even if added in an amount of 10% or more, the effect of addition is small, which is not economically advantageous.

ゲルマニウム化合物は、より良好な針状性を得るためにはある程度多量に添加することが望ましいが、焼成後の生成物にゲルマニウム化合物が多量に残存すると、導電性に悪影響を及ぼし望ましくないので、可溶性であるゲルマニウム化合物を除去処理し、不必要な量のゲルマニウム化合物を除くことが、好ましい。   It is desirable to add a large amount of germanium compound in order to obtain better acicularity. However, if a large amount of germanium compound remains in the product after firing, it is undesirable because it adversely affects conductivity and is not soluble. It is preferable to remove the germanium compound and remove an unnecessary amount of the germanium compound.

ゲルマニウム化合物のアルカリ水溶液に使用するアルカリとしては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の水酸化物、炭酸塩やアンモニア等が挙げられ、これらを単独で或いは2種以上混合して用いてもよい。   Examples of the alkali used in the alkaline aqueous solution of the germanium compound include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, carbonates and ammonia, and these are used alone or in two kinds. You may mix and use the above.

上記中和反応は水中、熱水中或いはアルコール中で行うことができ、熱水中で行うのが好ましい。ここで、アルコールとしては、エタノール、メタノール等が挙げられる。   The neutralization reaction can be performed in water, hot water, or alcohol, and is preferably performed in hot water. Here, ethanol, methanol, etc. are mentioned as alcohol.

次に、得られた前駆物質に、通常の洗浄、乾燥、粉砕等の処理を施した後、アルカリ金属のハロゲン化物と混合して被焼成処理物を生成する。   Next, the obtained precursor is subjected to normal washing, drying, pulverization and the like, and then mixed with an alkali metal halide to produce a fired product.

アルカリ金属のハロゲン化物としては、種々のものを使用し得るが、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム等を挙げることができる。これらは単独で或いは混合して用いてもよい。   Various alkali metal halides can be used, and examples thereof include sodium chloride, potassium chloride, and lithium chloride. These may be used alone or in combination.

アルカリ金属のハロゲン化物の使用量としては、前駆物質の錫の質量基準で好ましくは10%以上、より好ましくは25%以上、特に好ましくは75〜160%である。10%より低いと良好な針状粒子が得られず、また160%より多いと、添加の効果は現れず、後工程で余剰分を洗浄することになるため、経済的でない。   The amount of alkali metal halide used is preferably 10% or more, more preferably 25% or more, and particularly preferably 75 to 160%, based on the mass of the precursor tin. If it is lower than 10%, good acicular particles cannot be obtained, and if it is higher than 160%, the effect of addition does not appear, and the surplus portion is washed in a subsequent step, which is not economical.

前駆物質とアルカリ金属のハロゲン化物との混合は、種々の方法によって行なうことができ、例えば、上記処理をした前駆物質とアルカリ金属のハロゲン化物とをヘンシェルミキサー等の混合攪拌機で行なうことができる。更に、この混合後、乾式粉砕機で粉砕を行うと、酸化錫微粉末の針状性の点で、好ましい。   The precursor and the alkali metal halide can be mixed by various methods. For example, the precursor and the alkali metal halide treated as described above can be mixed with a mixing stirrer such as a Henschel mixer. Further, after this mixing, it is preferable to perform pulverization with a dry pulverizer from the viewpoint of the acicularity of the tin oxide fine powder.

なお、このとき、酸化錫微粉末の性状を調節する目的で、種々の調節剤を添加することができる。例えば、針状微粉末の針状性を調節する目的で、カリウム塩等を添加することもできる。   At this time, various regulators can be added for the purpose of regulating the properties of the tin oxide fine powder. For example, a potassium salt or the like can be added for the purpose of adjusting the acicularity of the acicular fine powder.

焼成は、アルカリ金属のハロゲン化物の融点以上、かつ1200℃以下で、好ましくは、800〜1200℃で行なう。焼成温度がアルカリ金属のハロゲン化物の融点以下であると、粒子の針状性が低くなり、1200℃を超えると粒成長が促進され、短軸径が太くなり、酸化錫微粉末、およびこれを用いた塗膜の透明性が損なわれる。アルカリ金属のハロゲン化物の融点としては、NaClの800℃、KClの776℃、LiClの606℃等が挙げられる。   Firing is carried out at a temperature not lower than the melting point of the alkali metal halide and not higher than 1200 ° C., preferably 800 to 1200 ° C. When the firing temperature is lower than the melting point of the alkali metal halide, the acicularity of the particles is lowered, and when it exceeds 1200 ° C., grain growth is promoted, the minor axis diameter becomes thicker, tin oxide fine powder, and The transparency of the used coating is impaired. Examples of the melting point of the alkali metal halide include NaCl at 800 ° C., KCl at 776 ° C., LiCl at 606 ° C., and the like.

焼成は、水蒸気またはアルコール蒸気が存在し、かつ酸素を排除した不活性ガス雰囲気中で行うことが好ましい。不活性ガスとしては、窒素ガスやアルゴンガス等が挙げられる。アルコール蒸気としては、エタノール蒸気、メタノール蒸気が挙げられる。   Firing is preferably performed in an inert gas atmosphere in which water vapor or alcohol vapor is present and oxygen is excluded. Examples of the inert gas include nitrogen gas and argon gas. Examples of alcohol vapor include ethanol vapor and methanol vapor.

不活性ガス雰囲気中に、水蒸気またはアルコール蒸気を導入する方法は限定されない。熱処理炉の不活性ガス雰囲気中に水蒸気またはアルコール蒸気を導入してもよく、また、前駆物質をスラリーのままで、またはその乾燥を適度にして湿った状態にしてもよい。あるいは、不活性ガスを、水またはアルコールに通じて、バブリングさせてもよい。   A method for introducing water vapor or alcohol vapor into the inert gas atmosphere is not limited. Water vapor or alcohol vapor may be introduced into the inert gas atmosphere of the heat treatment furnace, and the precursor may be left in a slurry state or may be in a moist state with appropriate drying. Alternatively, the inert gas may be bubbled through water or alcohol.

水蒸気またはアルコール蒸気の蒸気圧は、飽和蒸気圧の30%以上であると、酸化錫微粉末が還元され、導電性が高くなる点で好ましい。この蒸気圧を保って熱処理するには密閉型の熱処理炉を用いるのが好ましい。   The vapor pressure of water vapor or alcohol vapor is preferably 30% or more of the saturated vapor pressure in that the tin oxide fine powder is reduced and the conductivity becomes high. In order to perform the heat treatment while maintaining the vapor pressure, it is preferable to use a closed heat treatment furnace.

また、不活性ガス雰囲気から酸素を排除して加熱することが好ましい。従来、酸素を含む不活性ガス化で熱処理する方法が知られているが、酸素が含まれていると、安定して低抵抗粉末が得られず、また導電性が不均一である。酸素は、不活性ガスに対して、1%以下が好ましい。   Moreover, it is preferable to heat by removing oxygen from the inert gas atmosphere. Conventionally, a heat treatment method using an inert gas containing oxygen is known. However, when oxygen is contained, a low-resistance powder cannot be obtained stably and the conductivity is not uniform. Oxygen is preferably 1% or less with respect to the inert gas.

焼成時間は、特に制限はないが、30分〜5時間が適当である。   The firing time is not particularly limited, but is suitably 30 minutes to 5 hours.

次に、上記焼成生成物を、水、酸またはアルカリの水性媒液で処理して可溶性塩類を除去する。ここで用いる酸としては種々のものを使用し得るが、例えば、無機酸や有機酸等が挙げられ、中でも塩酸、硫酸、フッ化水素酸等の無機酸が好ましい。ここで、水またはNaOH、KOH等のアルカリの水溶液で除去される可溶性塩類は、上記ゲルマニウム化合物等が挙げられ、酸の水溶液で除去される可溶性塩類は、Na、K等が挙げられる。   Next, the fired product is treated with water, acid or alkali aqueous medium to remove soluble salts. Various acids can be used as the acid used here, and examples thereof include inorganic acids and organic acids, among which inorganic acids such as hydrochloric acid, sulfuric acid and hydrofluoric acid are preferable. Here, examples of the soluble salts that can be removed with water or an alkaline aqueous solution such as NaOH and KOH include the germanium compounds, and examples of the soluble salts that can be removed with an aqueous acid solution include Na and K.

上記のようにして可溶性塩類を除去して得た処理物は、必要に応じて、例えば、遠心沈降処理や種々の分級手段で針状性の不充分なものを除去した後、通常の濾過、洗浄、乾燥、仕上げ粉砕等を行なう。   The processed product obtained by removing the soluble salts as described above is, as necessary, for example, after removing the insufficient acicularity by centrifugal sedimentation treatment or various classification means, followed by normal filtration, Wash, dry, finish pulverize, etc.

以上によって、短軸平均粒子径が5〜50nmであり、アスペクト比が5以上であり、かつゲルマニウムを錫に対して質量基準で0.1〜10%含有する針状導電性酸化錫微粉末を得ることができる。   As described above, the acicular conductive tin oxide fine powder having a minor axis average particle size of 5 to 50 nm, an aspect ratio of 5 or more, and containing 0.1 to 10% of germanium on a mass basis with respect to tin. Can be obtained.

また、被焼成処理物をさらに第一錫イオンによって還元すると、導電性向上の観点から好ましい。第一錫イオンによって還元する方法の例としては、被焼成処理物を第一錫イオン含有水溶液中にて混合し、水洗、乾燥する方法がある。また、焼成処理物を第一錫イオン含有水溶液中で混合して、ペースト状にし、スラリーのままあるいは乾燥したものを、水蒸気またはアルコール蒸気を含有する非酸化性雰囲気にて加熱する方法がある。   Moreover, it is preferable from a viewpoint of electroconductivity improvement to reduce a to-be-fired processed material with a stannous ion. As an example of the method of reducing with stannous ions, there is a method of mixing a material to be fired in a stannous ion-containing aqueous solution, washing with water and drying. Further, there is a method in which a fired product is mixed in a stannous ion-containing aqueous solution to form a paste, and the slurry or dried product is heated in a non-oxidizing atmosphere containing water vapor or alcohol vapor.

また、被焼成処理物は、フッ素処理されていることが好ましい。このフッ素処理は、湿式により、被焼成処理物にフッ素源を含有させることが、より好ましい。   Moreover, it is preferable that the to-be-fired processed material is fluorine-treated. In the fluorine treatment, it is more preferable that the material to be fired contains a fluorine source by a wet method.

フッ素源としては、フッ化アンモニウム、ケイフッ化アンモニウム、フッ化水素酸アンモニウム、フッ化スズ、フッ化スズ酸、フッ化水素、フッ化水素酸、フッ化ホウ素、フッ化臭素等を用いることができる。   As the fluorine source, ammonium fluoride, ammonium silicofluoride, ammonium hydrofluoride, tin fluoride, fluorostannic acid, hydrogen fluoride, hydrofluoric acid, boron fluoride, bromine fluoride, or the like can be used. .

具体的には、ゲルマニウムを含有する錫の水酸化物の原料の一部に、錫を含有するフッ素源を用いる方法、ゲルマニウムを含有する錫の水酸化物を生成するとき、フッ素源を含有させておく方法等が挙げられる。   Specifically, a method of using a fluorine source containing tin as a part of a raw material of a tin hydroxide containing germanium, a fluorine source is included when producing a tin hydroxide containing germanium. The method etc. to keep are mentioned.

また、被焼成処理物は、フッ素処理されていることが好ましい。このフッ素処理は、湿式で行うことが、より好ましい。   Moreover, it is preferable that the to-be-fired processed material is fluorine-treated. This fluorine treatment is more preferably performed in a wet manner.

具体的には、例えば、被焼成処理物にフッ素源を添加し、被焼成処理物中のスズ成分もしくはゲルマニウム成分とフッ素源を水溶液中で混合し、接触させることによって、スズ成分もしくはゲルマニウム成分の表面に、フッ素を均一に付着させることができる。   Specifically, for example, by adding a fluorine source to the object to be fired, mixing the tin component or germanium component in the object to be fired with the fluorine source in an aqueous solution, and bringing them into contact with each other, the tin component or germanium component Fluorine can be uniformly attached to the surface.

また、焼成物の可溶性塩類を除去した後、更にフッ素処理することも好ましい。このフッ素処理は、上記被焼成処理物のフッ素処理と同様に行うことができる。   Moreover, it is also preferable to perform a fluorine treatment after removing the soluble salts of the fired product. This fluorine treatment can be performed in the same manner as the fluorine treatment of the article to be fired.

また、フッ素は、焼成後の針状導電性酸化錫微粉末をフッ素処理することによっても、導入することができる。フッ素処理としては、針状酸化錫微粉末を、フッ素源を含む水溶液等で湿式処理する方法等が挙げられる。   Fluorine can also be introduced by subjecting the acicular conductive tin oxide fine powder after firing to fluorine treatment. Examples of the fluorine treatment include a method of wet-treating acicular tin oxide fine powder with an aqueous solution containing a fluorine source.

フッ素処理は、これらの湿式処理の後、熱処理する方法が、より好ましい。この熱処理の温度は、300〜550℃であると、フッ素を十分に拡散することができる点から好ましい。さらに、熱処理の際に、窒素ガスや、水素もしくは水蒸気を含んだ不活性ガス(窒素ガス、アルゴンガス等)を流すことで、更にフッ素処理の反応が進行し、好ましい。   The fluorine treatment is more preferably a method of performing a heat treatment after these wet treatments. The temperature of this heat treatment is preferably 300 to 550 ° C. from the viewpoint that fluorine can be sufficiently diffused. Further, it is preferable that a fluorine treatment reaction further proceeds by flowing an inert gas (nitrogen gas, argon gas, or the like) containing nitrogen gas or hydrogen or water vapor during the heat treatment.

フッ素のドープ量は、フッ素源の添加量、熱処理温度および熱処理時間等を調整して制御することができるので、粉体体積抵抗率を所望の範囲に低下させた導電性酸化スズ粉末を製造することができる。なお、このフッ素処理は、上記第一錫イオンによる還元と組み合わせると、導電性向上の観点から、より好ましい。   Since the doping amount of fluorine can be controlled by adjusting the addition amount of the fluorine source, the heat treatment temperature, the heat treatment time, etc., a conductive tin oxide powder having a powder volume resistivity reduced to a desired range is produced. be able to. In addition, this fluorine treatment is more preferable from the viewpoint of improving conductivity when combined with the reduction with the stannous ion.

本発明の針状酸化錫微粉末は、水性媒体に分散させて、水性分散体として使用することができる。ここで、水性媒体には、水のほかに、分散剤や水と可溶する液体を含んでもよい。   The acicular tin oxide fine powder of the present invention can be dispersed in an aqueous medium and used as an aqueous dispersion. Here, in addition to water, the aqueous medium may include a dispersant and a liquid that is soluble with water.

上記水性分散体の固形分濃度は、質量基準で0.1〜50%、好ましくは1〜40%、より好ましくは5〜30%で、水性分散体のpHは4〜12、好ましくは5〜10である。ここで、固形分には、針状酸化錫微粉末、分散剤が含まれる。   The solid content concentration of the aqueous dispersion is 0.1 to 50% on a mass basis, preferably 1 to 40%, more preferably 5 to 30%, and the pH of the aqueous dispersion is 4 to 12, preferably 5 to 5. 10. Here, the solid content includes acicular tin oxide fine powder and a dispersant.

本発明の針状酸化錫微粉末は、導電性塗料或いは磁性塗料向けの導電性塗布組成物として利用することができる。この場合には、針状酸化錫微粉末を、バインダー樹脂と水もしくは溶媒とを含むバインダーに混合し、塗布組成物とする。ここで、バインダー樹脂としては、例えば、ポリビニルアルコール樹脂、塩ビ−酢ビ樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、ポリエステル樹脂、エチレン酢酸ビニル共重合体、アクリル−スチレン共重合体、繊維素樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、シリコーン樹脂、石油樹脂、セラック、ロジン誘導体、ゴム誘導体等の天然系樹脂等が挙げられる。   The acicular tin oxide fine powder of the present invention can be used as a conductive coating composition for conductive paints or magnetic paints. In this case, acicular tin oxide fine powder is mixed with a binder containing a binder resin and water or a solvent to obtain a coating composition. Here, as the binder resin, for example, polyvinyl alcohol resin, vinyl chloride-vinyl acetate resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, polyester resin, ethylene vinyl acetate copolymer, acrylic-styrene copolymer, fiber Examples thereof include natural resins such as organic resins, phenol resins, amino resins, fluororesins, silicone resins, petroleum resins, shellacs, rosin derivatives, and rubber derivatives.

針状酸化錫微粉末のバインダーへの配合量は、バインダー樹脂100質量部に対して3〜200質量部、好ましくは10〜100質量部である。   The compounding quantity with the binder of acicular tin oxide fine powder is 3-200 mass parts with respect to 100 mass parts of binder resin, Preferably it is 10-100 mass parts.

導電性塗料の場合には、該塗料を紙や高分子フィルム等の絶縁性基体に塗布することにより、該基体上に軽くて透明性や表面平滑性、さらには密着性に優れた導電性塗膜を形成させ、種々の静電防止塗膜、静電記録紙、電子写真複写紙等とすることができる。   In the case of a conductive paint, by applying the paint to an insulating substrate such as paper or a polymer film, the conductive coating is light, transparent and surface smooth, and has excellent adhesion on the substrate. Films can be formed into various antistatic coatings, electrostatic recording paper, electrophotographic copying paper, and the like.

なお、本発明の針状酸化錫微粉末を、水性系塗料向け導電性塗布組成物に適用する場合には、針状酸化錫微粉末、もしくは針状酸化錫微粉末の製造工程で生成する可溶性塩類を除去処理した後の処理物から、水性分散体を調製することができる。該水性分散体を塗料化に供すると、塗料化時の分散エネルギーや、針状酸化錫微粉末製造工程における脱水、乾燥エネルギーの軽減を図る上で、好ましい。水性分散体の固形分の配合量は、結合用樹脂100質量部に対して、3〜200質量部、好ましくは、10〜100質量部である。ここで、結合用樹脂としては、上記バインダー樹脂と同じものを使用することができる。   In addition, when the acicular tin oxide fine powder of the present invention is applied to a conductive coating composition for aqueous coatings, the acicular tin oxide fine powder, or the solubility produced in the manufacturing process of the acicular tin oxide fine powder. An aqueous dispersion can be prepared from the treated product after removing the salts. When the aqueous dispersion is used for coating, it is preferable to reduce the dispersion energy at the time of coating and the dehydration and drying energy in the production process of fine acicular tin oxide powder. The compounding amount of the solid content of the aqueous dispersion is 3 to 200 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass of the binding resin. Here, the same resin as the binder resin can be used as the binding resin.

このようにして得られた導電性組成物は、従来の球状の導電性粉末を配合した導電性組成物に比べて、バインダー樹脂または結合用樹脂に対してより少ない配合量で高い導電性が得られると共に、透明性も優れており、経済的にも有利である。   The conductive composition thus obtained has high conductivity with a smaller blending amount with respect to the binder resin or the binding resin than the conductive composition containing the conventional spherical conductive powder. In addition, it has excellent transparency and is economically advantageous.

このように少ない配合量で針状酸化錫微粉末を使用できることから、バインダー樹脂または結合用樹脂の接着強度低下を起こすことなく、透明で導電性の塗膜を形成可能な塗布組成物として利用することができる。   Since acicular tin oxide fine powder can be used in such a small amount, it can be used as a coating composition capable of forming a transparent and conductive coating film without causing a decrease in the adhesive strength of the binder resin or binding resin. be able to.

また高濃度の針状酸化錫微粉末を含む導電性塗料に塗布組成物を使用したときには、薄い塗膜であっても所望の導電性が得られる。   Further, when the coating composition is used for a conductive paint containing a high concentration of acicular tin oxide fine powder, desired conductivity can be obtained even with a thin coating film.

本発明の塗布組成物を塗布して、塗膜を形成する基板としては、電気・電子機器をはじめとして様々な分野において広く用いられている、各種の合成樹脂、ガラス、セラミックス等を挙げることができ、これらはシート状、フィルム状、板状等の任意の形状であり得る。合成樹脂の具体例としては、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート(PET)樹脂、アクリル樹脂、メタクリル樹脂、ポリ塩化ビニル、ポリエステル樹脂、ポリアミド樹脂およびフェノール樹脂等を挙げることができるが、これらに制限されるものではない。   Examples of the substrate on which the coating composition of the present invention is applied to form a coating film include various synthetic resins, glass, ceramics and the like that are widely used in various fields including electric and electronic devices. These can be in any shape such as sheet, film, plate and the like. Specific examples of the synthetic resin include polyethylene, polypropylene, polycarbonate, polyethylene terephthalate (PET) resin, acrylic resin, methacrylic resin, polyvinyl chloride, polyester resin, polyamide resin, and phenol resin, but are not limited thereto. Is not to be done.

本発明の塗布組成物の基板への塗布または印刷は、常法により、例えば、ロールコート、スピンコート、スクリーン印刷、アプリケーター等の手法で行うことができる。その後、塗布組成物を、必要により加熱して水または溶媒を蒸発させ、塗膜を乾燥させて硬化させる。このとき、加熱または紫外線等を照射してもよい。   Application | coating or printing to the board | substrate of the coating composition of this invention can be performed by methods, such as roll coating, spin coating, screen printing, an applicator, by a conventional method. Thereafter, the coating composition is heated as necessary to evaporate water or the solvent, and the coating film is dried and cured. At this time, you may irradiate a heating or an ultraviolet-ray.

本発明の塗布組成物で形成された塗膜の厚さは、表面抵抗値、全光透過率とヘーズ値の観点から、0.05〜50μmであると好ましく、0.1〜10μmであるとより好ましい。   The thickness of the coating film formed with the coating composition of the present invention is preferably 0.05 to 50 μm and preferably 0.1 to 10 μm from the viewpoints of surface resistance, total light transmittance, and haze value. More preferred.

また、本発明の針状導電性酸化錫微粉末は、プラスチックス、ゴム、繊維等に導電性付与材または基体として配合し、導電性プラスチックス、導電性塗料、磁性塗料、導電性ゴム、導電性繊維等の導電性樹脂組成物として利用することができる。   In addition, the needle-shaped conductive tin oxide fine powder of the present invention is blended in plastics, rubber, fiber, etc. as a conductivity-imparting material or substrate, and conductive plastics, conductive paint, magnetic paint, conductive rubber, conductive It can be used as a conductive resin composition such as a conductive fiber.

導電性プラスチックスとして利用する場合には、成形用樹脂として、いわゆる汎用プラスチックス、エンジニアリングプラスチックスの種々のものを使用し得るが、汎用プラスチックスとしては、例えば、ポリエチレン、塩化ビニル樹脂、ポリスチレン、ポリプロピレン、メタクリル樹脂、ユリア・メラミン樹脂が挙げられる。エンジニアリングプラスチック的汎用プラスチックスとしては、例えば、フェノール樹脂、不飽和ポリエステル樹脂、硬質塩化ビニル樹脂、ABS樹脂、AS樹脂が挙げられる。エンジニアリングプラスチックスとしては、例えば、エポキシ樹脂、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、フッ素樹脂等が挙げられる。また、スーパーエンジニアリングプラスチックスとしては、例えば、ジアリルフタレート樹脂、シリコーン樹脂、ポリイミド樹脂、ポリアミドイミド、ビスマレイミドトリアジン、ポリアミノビスマレイミド、オレフィンビニルアルコール共重合体、ポリオキシベンジレン、ポリメチルペンテン、ポリエーテルサルホン、ポリエーテルイミド、ポリアリレート、ポリエーテルエーテルケトン等が挙げられ、針状導電性酸化錫微粉末は、これらの成形用樹脂に配合される。   When used as conductive plastics, various resins such as so-called general-purpose plastics and engineering plastics can be used as molding resins. Examples of general-purpose plastics include polyethylene, vinyl chloride resin, polystyrene, Examples include polypropylene, methacrylic resin, and urea / melamine resin. Examples of the engineering plastic general-purpose plastics include phenol resin, unsaturated polyester resin, hard vinyl chloride resin, ABS resin, and AS resin. Examples of engineering plastics include epoxy resin, polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, polysulfone, and fluororesin. Examples of super engineering plastics include diallyl phthalate resin, silicone resin, polyimide resin, polyamideimide, bismaleimide triazine, polyamino bismaleimide, olefin vinyl alcohol copolymer, polyoxybenzylene, polymethylpentene, polyether. Examples include sulfone, polyetherimide, polyarylate, polyetheretherketone, and the like, and the needle-like conductive tin oxide fine powder is blended in these molding resins.

導電性ゴムとして利用する場合には、成形用樹脂として、例えば、シリコーンゴム、イソプレンゴム、スチレン−ブタジエンゴム、ブタジエンゴム、ブチルゴム、ブタジエン−アクリロニトリルゴム、エチレン−プロピレン−ジエタンポリマー、エチレン−プロピレンゴム、フッ素ゴム、エチレン−酢酸ビニル共重合体、塩素化ポリエチレン、アクリルゴム、クロロプレンゴム、ウレタンゴム、多硫化ゴム、クロロスルホン化ポリエチレンゴム、エピクロルヒドリンゴム等の従来から知られているものに、針状導電性酸化錫微粉末を配合する。   When used as a conductive rubber, examples of molding resins include silicone rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, butyl rubber, butadiene-acrylonitrile rubber, ethylene-propylene-diethane polymer, and ethylene-propylene rubber. , Fluoro rubber, ethylene-vinyl acetate copolymer, chlorinated polyethylene, acrylic rubber, chloroprene rubber, urethane rubber, polysulfide rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, etc. A conductive tin oxide fine powder is blended.

導電性繊維として利用する場合には、成形用樹脂として、例えばポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリビニル樹脂、ポリエーテル樹脂等の可錘性の繊維に、針状導電性酸化錫微粉末を配合する。   When used as a conductive fiber, for example, a needle-shaped conductive tin oxide fine powder is blended with a fusible fiber such as a polyamide resin, a polyester resin, a polyolefin resin, a polyvinyl resin, or a polyether resin as a molding resin. To do.

針状導電性酸化錫微粉末の上記成形用樹脂への配合量は、成形用樹脂100質量部に対して、3〜200質量部、好ましくは10〜100質量部である。   The compounding quantity of the acicular conductive tin oxide fine powder to the molding resin is 3 to 200 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass of the molding resin.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔実施例1〕
塩化第二錫5水塩50gを、3N塩酸水溶液50mlに溶解した溶液を、水酸化ナトリウム50gを溶解した90℃のイオン交換水1l中に滴下し、沈殿物を生成した。該沈殿物を濾過し、その後、濾液の比導電率が10(mS/m)以下になるまで水洗し、ケーキを作製した。
[Example 1]
A solution in which 50 g of stannic chloride pentahydrate was dissolved in 50 ml of 3N hydrochloric acid aqueous solution was dropped into 1 liter of 90 ° C. ion-exchanged water in which 50 g of sodium hydroxide was dissolved to form a precipitate. The precipitate was filtered, and then washed with water until the specific conductivity of the filtrate was 10 (mS / m) or less to prepare a cake.

作製したケーキを110℃で12時間乾燥した後、この乾燥物100質量部に対して、5質量部の酸化ゲルマニウム粉末と50質量部の割合の塩化ナトリウム粉末を加え、両者を均一に混合粉砕した。この混合物を電気炉に入れ、昇温前にあらかじめ、水を通して水蒸気を飽和させた窒素ガスを0.3(l/min)で30分流し、酸素を排除した後、その窒素ガスを流したまま、昇温速度10℃/分で昇温し、900℃にて3時間焼成した。   After the produced cake was dried at 110 ° C. for 12 hours, 5 parts by mass of germanium oxide powder and 50 parts by mass of sodium chloride powder were added to 100 parts by mass of the dried product, and both were uniformly mixed and pulverized. . This mixture was put into an electric furnace, and before raising the temperature, nitrogen gas saturated with water vapor in advance through water was allowed to flow at 0.3 (l / min) for 30 minutes to remove oxygen, and then the nitrogen gas was allowed to flow. The temperature was raised at a rate of temperature rise of 10 ° C./min, and firing was carried out at 900 ° C. for 3 hours.

焼成生成物を、80℃のイオン交換水で洗浄し、可溶性塩類を除去した後、乾燥、粉砕を行って、目的とする針状導電性酸化錫微粉末を得た。   The fired product was washed with ion exchange water at 80 ° C. to remove soluble salts, and then dried and pulverized to obtain a target acicular conductive tin oxide fine powder.

〔実施例2〕
塩化第二錫5水塩50gを50mlに溶解した溶液を、水酸化ナトリウム50gと酸化ゲルマニウム1.8gを溶解した90℃のイオン交換水1lに滴下し、沈殿物を生成した。該沈殿物を濾過し、その後濾液の比導電率が10(mS/m)以下になるまで水洗し、ケーキを作製した。
[Example 2]
A solution in which 50 g of stannic chloride pentahydrate was dissolved in 50 ml was added dropwise to 1 liter of 90 ° C. ion-exchanged water in which 50 g of sodium hydroxide and 1.8 g of germanium oxide were dissolved to form a precipitate. The precipitate was filtered, and then washed with water until the filtrate had a specific conductivity of 10 (mS / m) or less to prepare a cake.

作製したケーキを110℃で12時間乾燥した後、この乾燥物100質量部に対して、50質量部の塩化ナトリウムを加え、両者を均一に混合粉砕した。この混合物を電気炉に入れ、昇温前にあらかじめ、水を通して水蒸気を飽和させた窒素ガスを0.3(l/min)で30分流し、酸素を排除した後、その窒素ガスを流したまま、昇温速度10℃/分で昇温し、900℃にて3時間焼成した。   After drying the produced cake at 110 degreeC for 12 hours, 50 mass parts sodium chloride was added with respect to 100 mass parts of this dried material, and both were mixed and ground uniformly. This mixture was put into an electric furnace, and before raising the temperature, nitrogen gas saturated with water vapor in advance through water was allowed to flow at 0.3 (l / min) for 30 minutes to remove oxygen, and then the nitrogen gas was allowed to flow. The temperature was raised at a rate of temperature rise of 10 ° C./min, and firing was carried out at 900 ° C. for 3 hours.

焼成生成物を、80℃のイオン交換水で洗浄し、可溶性塩類を除去した後、乾燥、粉砕を行って、目的とする針状導電性酸化錫微粉末を得た。   The fired product was washed with ion exchange water at 80 ° C. to remove soluble salts, and then dried and pulverized to obtain a target acicular conductive tin oxide fine powder.

〔実施例3〕
塩化第二錫5水塩50gを3N塩酸水溶液50mlに溶解した溶液と、水酸化ナトリウム50gと酸化ゲルマニウム1.8gをイオン交換水100gに溶解した溶液を、90℃のイオン交換水1lにpHが5から8の範囲になるように同時に滴下し、沈殿物を生成した。該沈殿物を、濾過し、その後濾液の比導電率が10(mS/m)以下になるまで水洗し、ケーキを作製した。
Example 3
A solution prepared by dissolving 50 g of stannic chloride pentahydrate in 50 ml of 3N aqueous hydrochloric acid solution and a solution of 50 g of sodium hydroxide and 1.8 g of germanium oxide in 100 g of ion-exchanged water were dissolved in 1 l of 90 ° C. It was dripped simultaneously so that it might become the range of 5-8, and the deposit was produced | generated. The precipitate was filtered, and then washed with water until the specific conductivity of the filtrate was 10 (mS / m) or less to prepare a cake.

作製したケーキを110℃で12時間乾燥した後、この乾燥物100質量部に対して、50質量部の塩化ナトリウムを加え、両者を均一に混合粉砕した。この混合物を電気炉に入れ、昇温前にあらかじめ、水を通して水蒸気を飽和させた窒素ガスを0.3(l/min)で30分流し、酸素を排除した後、その窒素ガスを流したまま、昇温速度10℃/分で昇温し、900℃にて3時間焼成した。   After drying the produced cake at 110 degreeC for 12 hours, 50 mass parts sodium chloride was added with respect to 100 mass parts of this dried material, and both were mixed and ground uniformly. This mixture was put into an electric furnace, and before raising the temperature, nitrogen gas saturated with water vapor in advance through water was allowed to flow at 0.3 (l / min) for 30 minutes to remove oxygen, and then the nitrogen gas was allowed to flow. The temperature was raised at a rate of temperature rise of 10 ° C./min, and firing was carried out at 900 ° C. for 3 hours.

得られた焼成生成物を、80℃のイオン交換水で洗浄し、可溶性塩類を除去した後、乾燥、粉砕を行って、目的とする針状導電性酸化錫微粉末を得た。   The obtained baked product was washed with ion exchange water at 80 ° C. to remove soluble salts, and then dried and pulverized to obtain the desired acicular conductive tin oxide fine powder.

〔実施例4〕
実施例3で得られた針状導電性酸化錫微粉末10gを、フッ化第一錫を1g溶解したイオン交換水20g中に分散し、ろ過、乾燥して、フッ化第一錫処理した針状導電性酸化錫微粉末を得た。
Example 4
10 g of acicular fine conductive tin oxide powder obtained in Example 3 was dispersed in 20 g of ion-exchanged water in which 1 g of stannous fluoride was dissolved, filtered, dried, and treated with stannous fluoride. A fine conductive tin oxide fine powder was obtained.

〔実施例5〕
実施例3で得られた針状導電性酸化錫微粉末10gを、フッ化第一錫1gを溶解したイオン交換水10gと混合して、ペースト状にした。これを石英ボートに入れ、この石英ボートを石英管状炉に置き、昇温前にあらかじめ、水を通して水蒸気を飽和させた窒素ガスを0.3(l/min)で30分流し、酸素を排除した後、その窒素ガスを流したまま、昇温速度10℃/分で昇温し、500℃にて1時間熱処理して、フッ素処理した針状導電性酸化錫微粉末を得た。
Example 5
10 g of the acicular conductive tin oxide fine powder obtained in Example 3 was mixed with 10 g of ion-exchanged water in which 1 g of stannous fluoride was dissolved to make a paste. This was put in a quartz boat, this quartz boat was placed in a quartz tube furnace, and before raising the temperature, nitrogen gas saturated with water vapor through water was flowed at 0.3 (l / min) for 30 minutes to exclude oxygen. Thereafter, while the nitrogen gas was flowing, the temperature was increased at a rate of temperature increase of 10 ° C./min, and heat treatment was performed at 500 ° C. for 1 hour to obtain a fluorine-treated needle-like conductive tin oxide fine powder.

〔実施例6〜17、参考例1〕
表1に示す条件で、実施例5と同様にして、フッ素処理した針状導電性酸化錫微粉末を得た。
[Examples 6 to 17, Reference Example 1]
Under the conditions shown in Table 1, in the same manner as in Example 5, a fluorine-treated acicular conductive tin oxide fine powder was obtained.

実施例1で得られた針状導電性酸化錫微粉末の透過型電子顕微鏡写真を図1に示す。   A transmission electron micrograph of the acicular conductive tin oxide fine powder obtained in Example 1 is shown in FIG.

〔比較例1〕
表2に示すように、塩化ナトリウムを使用しなかったこと以外は、実施例1と同様にして、導電性酸化錫粉末を得た。
[Comparative Example 1]
As shown in Table 2, conductive tin oxide powder was obtained in the same manner as in Example 1 except that sodium chloride was not used.

〔比較例2〕
表2に示すように、ゲルマニウムを使用しなかったこと以外は、実施例1と同様にして、導電性酸化錫粉末を得た。
[Comparative Example 2]
As shown in Table 2, a conductive tin oxide powder was obtained in the same manner as in Example 1 except that germanium was not used.

比較例1、比較例2で得られた導電性酸化錫粉末はどちらも粒状であり、針状は得られなかった。   The conductive tin oxide powders obtained in Comparative Example 1 and Comparative Example 2 were both granular, and no needle shape was obtained.

〔比較例3〕
ケイ素を錫に対して質量基準で5%となる様に、シリカを添加した場合の例を示す。
[Comparative Example 3]
An example in which silica is added so that silicon is 5% by mass with respect to tin will be described.

〔試験例1〕
前記各実施例1〜17、参考例1および比較例1〜3で得られた各導電性微粉末について、(1)電子顕微鏡写真(倍率10万倍)を観察して短軸径の重量平均粒子径を求め、またそれに基づいてアスペクト比を算出した。表3に、短軸径の重量平均粒子径(「短軸径」と記載)、およびアスペクト比を示す。
[Test Example 1]
About each electroconductive fine powder obtained by each said Examples 1-17, the reference example 1, and Comparative Examples 1-3, (1) Observation of an electron micrograph (magnification 100,000 times), the weight average of a short axis diameter The particle diameter was determined, and the aspect ratio was calculated based on the particle diameter. Table 3 shows the weight average particle diameter of the minor axis diameter (described as “minor axis diameter”) and the aspect ratio.

さらに、(2)各試料粉末を円筒ドーナツ状のPP製絶縁ジグに入れ、開口部の両端を円筒の真鍮電極によって100kg/cmで加圧し、真鍮電極間の抵抗値を横河北辰電機会社製デジタルマルチメータ(型番:Model 2502A)で測定し、粉体体積抵抗値を算出した。これらの結果を表3に示す。なお、表3において、例えば「5.0E+06」は、「5.0×1006」を表す。 Further, (2) each sample powder is put into a cylindrical donut-shaped PP insulating jig, both ends of the opening are pressurized with a cylindrical brass electrode at 100 kg / cm 2 , and the resistance value between the brass electrodes is determined by Yokogawa Hokushin Electric Measurement was performed with a digital multimeter (model number: Model 2502A), and a powder volume resistance value was calculated. These results are shown in Table 3. In Table 3, for example, “5.0E + 06” represents “5.0 × 10 06 ”.

〔試験例2〕
実施例1〜17、参考例1および比較例1〜3で得られた導電性微粉末各20gを、水180gに分散した。分散液の作製には、ビーズミルを使用した。
[Test Example 2]
20 g of each conductive fine powder obtained in Examples 1 to 17, Reference Example 1 and Comparative Examples 1 to 3 was dispersed in 180 g of water. A bead mill was used to prepare the dispersion.

次に、上記水分散液を、樹脂固形分濃度60wt%であるDIC社製水溶性塗料(製品名:ハイドランAP−40)50gに攪拌し、混合して塗布組成物を調製した。   Next, the aqueous dispersion was stirred and mixed in 50 g of a water-soluble paint (product name: Hydran AP-40) manufactured by DIC having a resin solid content concentration of 60 wt% to prepare a coating composition.

これらの塗布組成物をバーコーターNo.3を用いてポリエステルフィルムに塗膜厚:6.87(μm)、塗工量:6.87×10−4(ml/cm)となるように塗布し、80℃で30分間自然乾燥して試験シートを作成した。なお、塗膜厚1μmのシートも同様に作製することができる。 These coating compositions were applied to bar coater no. 3 was applied to a polyester film so that the coating thickness was 6.87 (μm) and the coating amount was 6.87 × 10 −4 (ml / cm 2 ), followed by natural drying at 80 ° C. for 30 minutes. A test sheet was prepared. A sheet having a coating thickness of 1 μm can be similarly produced.

これらの試験シートの表面抵抗率(Ω/□)を、川口電気製作所製デジタルオームメーター(型番:R−506型、)を用いて測定した。これらの結果を表3に示す。なお、表3において、例えば「1.0E+12」は、1.0×1012を表し、「>1.0E13」は、表面抵抗率が「1.0×1013」よりも高く、上記デジタルオームメーターの測定レンジを超えていたことを表す。 The surface resistivity (Ω / □) of these test sheets was measured using a digital ohm meter (model number: R-506 type) manufactured by Kawaguchi Electric Mfg. Co., Ltd. These results are shown in Table 3. In Table 3, for example, “1.0E + 12” represents 1.0 × 10 12 , “> 1.0E13” has a surface resistivity higher than “1.0 × 10 13 ”, and the digital ohm Indicates that the measurement range of the meter has been exceeded.

また、試験シートの全光透過率(%)とヘーズ度(%)を、日本電色工業製ヘーズメーター(型番:NDH−300A)を用いて測定した。このとき、測定値からベースフィルムであるポリエステルフィルムの全光透過率とヘーズ度を除外した塗膜としての値に換算した。これらの結果を表3に示す。   Moreover, the total light transmittance (%) and haze degree (%) of the test sheet were measured using a Nippon Denshoku Industries haze meter (model number: NDH-300A). At this time, it converted into the value as a coating film which excluded the total light transmittance and haze degree of the polyester film which is a base film from a measured value. These results are shown in Table 3.

表1、3からわかるように、フッ素を質量基準で0.05〜12%含有する実施例1〜17において、短軸径が20nmで、アスペクト比が5以上である針状酸化錫微粉末が得られた。また、この針状酸化錫微粉末を用いた塗膜は、表面抵抗率、全光透過率、ヘーズ値ともに優れていた。特に、フッ素源を使用し、350〜600℃でフッ素処理された実施例5〜17では、粉体体積抵抗値が8〜100Ωと大変低く、これらを用いたと膜の表面抵抗率も1.5×10〜9.0×10と大変低かった。これに対して、アルカリ金属のハロゲン化物を使用しなかった比較例1、およびゲルマニウムを含有していない比較例2では、針状粉末が得られず、得られた粉末を使用した塗膜の表面抵抗率も非常に高かった。Geの替わりにSiを添加した比較例3では、得られた粉末を使用した塗膜のヘーズ値が高かった。なお、参考例1では、ゲルマニウム含有量が12%であったが、ゲルマニウム含有量が10%の実施例13と同様の結果であった。 As can be seen from Tables 1 and 3, in Examples 1 to 17 containing 0.05 to 12% by mass of fluorine, acicular tin oxide fine powder having a minor axis diameter of 20 nm and an aspect ratio of 5 or more is obtained. Obtained. Moreover, the coating film using this acicular tin oxide fine powder was excellent in surface resistivity, total light transmittance, and haze value. In particular, in Examples 5 to 17 in which a fluorine source was used and the fluorine treatment was performed at 350 to 600 ° C., the powder volume resistance was as low as 8 to 100Ω, and when these were used, the surface resistivity of the film was 1.5 It was very low with x10 < 9 > -9.0x10 < 8 >. On the other hand, in Comparative Example 1 in which no alkali metal halide was used, and in Comparative Example 2 in which no germanium was contained, acicular powder was not obtained, and the surface of the coating film using the obtained powder The resistivity was also very high. In Comparative Example 3 in which Si was added instead of Ge, the haze value of the coating film using the obtained powder was high. In Reference Example 1, the germanium content was 12%, but the result was the same as that of Example 13 in which the germanium content was 10%.

上記の実施例からわかるように、本発明の針状酸化錫微粉末は、導電性が高く、これを用い、表面抵抗率が低く、全光透過率が高く、かつヘーズ度が低い塗膜を得ることができた。   As can be seen from the above examples, the acicular tin oxide fine powder of the present invention has a high conductivity, a coating film having a low surface resistivity, a high total light transmittance, and a low haze degree. I was able to get it.

Claims (18)

短軸平均粒子径が5〜50nmで、アスペクト比が5以上であり、かつケイ素を含まず、ゲルマニウムを錫に対して質量基準で0.1〜10%含有することを特徴とする、針状酸化錫微粉末。 A short axis average particle diameter of 5 to 50 nm, an aspect ratio of 5 or more, no silicon , and 0.1 to 10% of germanium on a mass basis with respect to tin Tin oxide fine powder. 粉体体積抵抗が、1×10Ω・cm以下である、請求項1記載の針状酸化錫微粉末。 The acicular tin oxide fine powder according to claim 1, wherein the powder volume resistance is 1 × 10 8 Ω · cm or less. フッ素を質量基準で1%以上10%以下含有する、請求項1または2記載の針状酸化錫微粉末。 The acicular tin oxide fine powder according to claim 1 or 2, which contains 1% or more and 10% or less of fluorine by mass. 針状酸化錫微粉末を質量基準で20%含有する厚さ1μmの塗膜にしたとき、塗膜の表面抵抗値が1012Ω/□以下であり、全光透過率が90%以上であり、かつヘーズ値が10%以下である、請求項1〜3のいずれか1項記載の針状酸化錫微粉末。 When a 1 μm-thick coating film containing 20% acicular tin oxide fine powder is used, the surface resistance of the coating film is 10 12 Ω / □ or less, and the total light transmittance is 90% or more. And the acicular tin oxide fine powder of any one of Claims 1-3 whose haze value is 10% or less. 錫成分、ゲルマニウム成分およびアルカリ金属のハロゲン化物を含む被焼成処理物を、アルカリ金属のハロゲン化物の融点より高い温度、かつ1200℃以下で焼成し、次いで得られた焼成物の可溶性塩類を除去する、ゲルマニウムを含有する針状酸化錫微粉末の製造方法。   A to-be-fired object containing a tin component, a germanium component, and an alkali metal halide is fired at a temperature higher than the melting point of the alkali metal halide and 1200 ° C. or less, and then the soluble salts of the obtained fired product are removed. The manufacturing method of the acicular tin oxide fine powder containing germanium. 被焼成処理物が、フッ素源を含む、請求項5記載の針状酸化錫微粉末の製造方法。   The manufacturing method of the acicular tin oxide fine powder of Claim 5 with which a to-be-fired processed material contains a fluorine source. 焼成物の可溶性塩類を除去した後、更にフッ素処理する、請求項5記載の針状酸化錫微粉末の製造方法。   The method for producing acicular tin oxide fine powder according to claim 5, wherein after the soluble salts of the fired product are removed, fluorine treatment is further performed. 被焼成処理物が、錫の水酸化物および/またはその脱水物、ならびにゲルマニウム成分で構成される前駆物質と、アルカリ金属のハロゲン化物を含む、請求項5〜7のいずれか1項記載の針状酸化錫微粉末の製造方法。   The needle according to any one of claims 5 to 7, wherein the object to be fired includes a precursor composed of a hydroxide of tin and / or a dehydrate thereof, and a germanium component, and a halide of an alkali metal. Of fine tin oxide powder. 被焼成処理物が、ゲルマニウム成分を含有する錫の水酸化物および/またはその脱水物で構成される前駆物質と、アルカリ金属のハロゲン化物を含む、請求項5〜7のいずれか1項記載の針状酸化錫微粉末の製造方法。   The to-be-fired processed material contains the precursor comprised with the hydroxide of tin containing a germanium component, and / or the dehydration thing, and the halide of an alkali metal of Claim 5-7. A method for producing acicular tin oxide fine powder. 被焼成処理物が、錫の水酸化物および/またはその脱水物、ならびにゲルマニウムの水酸化物および/またはその脱水物で構成される前駆物質と、アルカリ金属のハロゲン化物を含む、請求項5〜7のいずれか1項記載の針状酸化錫微粉末の製造方法。   The to-be-fired processed material contains a precursor composed of a hydroxide of tin and / or a dehydrate thereof, a hydroxide of germanium and / or a dehydrate thereof, and an alkali metal halide. 8. The method for producing acicular tin oxide fine powder according to any one of 7 above. 錫化合物とゲルマニウム化合物を含む溶液を、中和により共沈させ、ゲルマニウム成分を含有する錫の水酸化物を生成する、請求項9記載の針状酸化錫微粉末の製造方法。   The method for producing fine acicular tin oxide powder according to claim 9, wherein a solution containing a tin compound and a germanium compound is co-precipitated by neutralization to produce a hydroxide of tin containing a germanium component. 被焼成処理物の錫成分が、塩化錫溶液を中和または加水分解して得られるものである、請求項5〜10のいずれか1項記載の針状酸化錫微粉末の製造方法。   The manufacturing method of the acicular tin oxide fine powder of any one of Claims 5-10 whose tin component of a to-be-fired processed material is obtained by neutralizing or hydrolyzing a tin chloride solution. アルカリ金属のハロゲン化物が、塩化ナトリウムまたは塩化カリウムである請求項5〜12のいずれか1項記載の針状導電性酸化錫微粉末の製造方法。   The method for producing fine acicular conductive tin oxide powder according to any one of claims 5 to 12, wherein the alkali metal halide is sodium chloride or potassium chloride. アルカリ金属のハロゲン化物の量が、前駆物質の錫の質量基準で10%以上である、請求項5〜13のいずれか1項記載の針状酸化錫微粉末の製造方法。   The method for producing acicular tin oxide fine powder according to any one of claims 5 to 13, wherein the amount of alkali metal halide is 10% or more based on the mass of the precursor tin. 請求項1〜4のいずれか1項記載の針状酸化錫微粉末を、水性媒体に分散させてなる水性分散体。   An aqueous dispersion obtained by dispersing the acicular tin oxide fine powder according to any one of claims 1 to 4 in an aqueous medium. 請求項1〜4のいずれか1項記載の針状導電性酸化錫微粉末、およびバインダー樹脂と水もしくは溶媒を含むバインダーを含む導電性塗布組成物であって、針状酸化錫微粉末を、バインダー樹脂100質量部に対して、3〜200質量部配合してなる、塗布組成物。   A conductive coating composition comprising the acicular conductive tin oxide fine powder according to any one of claims 1 to 4 and a binder containing a binder resin and water or a solvent, wherein the acicular tin oxide fine powder comprises: The coating composition formed by blending 3 to 200 parts by mass with respect to 100 parts by mass of the binder resin. 固形分として針状酸化錫微粉末と分散剤を含む請求項15記載の水性分散体と結合用樹脂を含む塗布組成物であって、水性分散体の固形分を、結合用樹脂100質量部に対して、3〜200質量部配合してなる、塗布組成物。   The coating composition containing the aqueous dispersion and the binding resin according to claim 15 containing acicular tin oxide fine powder and a dispersing agent as a solid content, wherein the solid content of the aqueous dispersion is added to 100 parts by weight of the binding resin. On the other hand, the coating composition formed by blending 3 to 200 parts by mass. 請求項1〜4のいずれか1項記載の針状酸化錫微粉末と成形用樹脂を含む樹脂組成物であって、針状酸化錫微粉末を、成形用樹脂100質量部に対して、3〜200質量部配合してなる、樹脂組成物。   A resin composition comprising the acicular tin oxide fine powder according to any one of claims 1 to 4 and a molding resin, wherein the acicular tin oxide fine powder is 3 to 100 parts by mass of the molding resin. A resin composition comprising -200 parts by mass.
JP2009014823A 2009-01-26 2009-01-26 Acicular tin oxide fine powder and method for producing the same Expired - Fee Related JP5289077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014823A JP5289077B2 (en) 2009-01-26 2009-01-26 Acicular tin oxide fine powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014823A JP5289077B2 (en) 2009-01-26 2009-01-26 Acicular tin oxide fine powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010168260A JP2010168260A (en) 2010-08-05
JP5289077B2 true JP5289077B2 (en) 2013-09-11

Family

ID=42700760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014823A Expired - Fee Related JP5289077B2 (en) 2009-01-26 2009-01-26 Acicular tin oxide fine powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5289077B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674354B2 (en) * 2009-06-30 2015-02-25 三菱マテリアル株式会社 Conductive acicular antimony tin oxide fine powder and method for producing the same
JP5416532B2 (en) * 2009-09-30 2014-02-12 三菱マテリアル株式会社 Acicular tin oxide fine powder and method for producing the same
WO2022181617A1 (en) * 2021-02-24 2022-09-01 国立大学法人東京大学 Transparent electroconductive composition and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232213B2 (en) * 1984-06-05 1990-07-19 Mitsubishi Metal Corp TEIDENKITEIKOSANKASUZUBIFUNMATSUNOSEIZOHO
DE4333673A1 (en) * 1993-10-02 1995-04-06 Merck Patent Gmbh Substrate-free, conductive pigments
JPH0823112A (en) * 1994-07-07 1996-01-23 Asahi Chem Ind Co Ltd Manufacture of chalcopyrite type compound thin film
JPH0823122A (en) * 1994-07-08 1996-01-23 Mitsubishi Cable Ind Ltd Structure of semiconductor light-emitting element
JP3365883B2 (en) * 1995-02-20 2003-01-14 石原産業株式会社 Needle-like conductive tin oxide fine powder and method for producing the same

Also Published As

Publication number Publication date
JP2010168260A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
KR100394889B1 (en) Needle-shaped electrically conductive tin oxide fine particles and preparation method thereof
JP5629344B2 (en) Tin oxide particles and method for producing the same
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
AU643017B2 (en) Electrically conductive barium sulfate and process of producing it
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
JP5181322B2 (en) Method for producing conductive tin oxide powder
WO2012091021A1 (en) White conductive powder, conductive mixed powder, dispersion liquid, coating material, and membrane composition
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP4904575B2 (en) Surface-modified transparent conductive tin oxide fine powder, production method thereof and dispersion thereof
JP5674354B2 (en) Conductive acicular antimony tin oxide fine powder and method for producing the same
JP5158537B2 (en) Conductive tin oxide powder, production method and use thereof
JP3609159B2 (en) Acicular conductive antimony-containing tin oxide fine powder and method for producing the same
JP2009199775A (en) White conductive powder, its manufacturing method, and usage
JP3365883B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP5416532B2 (en) Acicular tin oxide fine powder and method for producing the same
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
JP5977603B2 (en) White conductive powder, dispersion thereof, paint, and film
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP3647929B2 (en) Method for producing conductive antimony-containing tin oxide fine powder
JP5209877B2 (en) Copper sulfide powder, method for producing copper sulfide powder, and antistatic equipment obtained using the copper sulfide powder
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
JP2010123302A (en) Surface-modified white conductive powder, and method of manufacturing the same
JP3336148B2 (en) Needle-like conductive antimony-containing tin oxide fine powder and method for producing the same
JP2010157448A (en) White conductive powder with tin oxide layer, and manufacturing method thereof
JP2006338899A (en) Conductive fine powder having high dispersibility and its application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees