JP5224160B2 - White conductive powder and production method and use thereof - Google Patents

White conductive powder and production method and use thereof Download PDF

Info

Publication number
JP5224160B2
JP5224160B2 JP2007087758A JP2007087758A JP5224160B2 JP 5224160 B2 JP5224160 B2 JP 5224160B2 JP 2007087758 A JP2007087758 A JP 2007087758A JP 2007087758 A JP2007087758 A JP 2007087758A JP 5224160 B2 JP5224160 B2 JP 5224160B2
Authority
JP
Japan
Prior art keywords
powder
fluorine
white
tin oxide
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007087758A
Other languages
Japanese (ja)
Other versions
JP2008251210A (en
Inventor
正道 室田
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2007087758A priority Critical patent/JP5224160B2/en
Publication of JP2008251210A publication Critical patent/JP2008251210A/en
Application granted granted Critical
Publication of JP5224160B2 publication Critical patent/JP5224160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アンチモン等の有害成分を含有せずに優れた導電性を有する白色粉末に関する。より詳しくは、本発明は、白色繊維状無機粉末を基材とし、アンチモン等の有害成分を含有せずに優れた導電性を有し、環境汚染等を生じる虞のない白色導電粉末に関する。   The present invention relates to a white powder having excellent conductivity without containing harmful components such as antimony. More specifically, the present invention relates to a white conductive powder that uses white fibrous inorganic powder as a base material, has excellent conductivity without containing harmful components such as antimony, and does not cause environmental pollution.

導電粉末は帯電防止・帯電制御・静電防止・防塵等の用途に現在広く用いられている。従来、導電性を高めるために、アンチモン等をドープした導電粉末が使用されているが、アンチモンは有毒物質であり、近時、環境汚染防止等の観点から、アンチモンフリーの導電材料が求められている。さらに、従来の導電粉末は水に分散し難く、有機溶剤に分散させて使用しているが、環境への負荷を低減するため、水に分散可能であってプラスチックとの密着性も良い導電粉末が求められている。   Conductive powders are currently widely used in applications such as antistatic, charge control, antistatic, and dustproof. Conventionally, conductive powder doped with antimony or the like has been used in order to increase conductivity, but antimony is a toxic substance, and antimony-free conductive materials have recently been demanded from the viewpoint of preventing environmental pollution. Yes. Furthermore, conventional conductive powders are difficult to disperse in water and are used dispersed in organic solvents. However, in order to reduce environmental impact, conductive powders that can be dispersed in water and have good adhesion to plastics. Is required.

具体的には、従来、白色導電粉末として、例えば、酸化アルミニウムをドープした酸化亜鉛、二酸化チタン粉末等の表面に酸化アンチモンをドープした酸化錫膜を形成した白色導電粉末が知られている(特許文献1、特許文献2、特許文献3)。また、アンチモン成分を含有する酸化錫からなる導電被膜をチタン酸カリウム繊維に形成した白色導電繊維が知られている(特許文献4、特許文献5)。さらに、二酸化チタン粒子表面に酸化スズおよびリンを含む導電層を形成した白色導電性二酸化チタン粉末が知られている(特許文献6)。また、これらのドープ成分を含有しない表面改質した透明導電性酸化スズ粉末が知られている(特許文献7)。   Specifically, conventionally, as the white conductive powder, for example, white conductive powder in which a tin oxide film doped with antimony oxide is formed on the surface of zinc oxide doped with aluminum oxide, titanium dioxide powder or the like (patent) Literature 1, Patent Literature 2, Patent Literature 3). Moreover, the white conductive fiber which formed the conductive film which consists of tin oxide containing an antimony component in the potassium titanate fiber is known (patent documents 4 and patent documents 5). Furthermore, white conductive titanium dioxide powder in which a conductive layer containing tin oxide and phosphorus is formed on the surface of titanium dioxide particles is known (Patent Document 6). Further, a surface-modified transparent conductive tin oxide powder that does not contain these dope components is known (Patent Document 7).

しかし、酸化アンチモンをドープした酸化錫膜を有する白色導電粉末は、導電性が安定しているものの、アンチモンは有毒成分であるので、アンチモンフリーの導電粉末が求められている。一方、リンをドープした酸化錫膜を有する酸化チタンは、導電性が不安定であり、またリンの偏在性の問題があった。さらに、表面改質されたノンドープ酸化錫からなる透明導電性酸化スズ粉末はカーボン残存等の問題があり、また白色粉末ではないので外観や機能性の点から白色環境を要求される用途には適さないと云う問題もある。さらに酸化スズの担体として粒状の粉末を使用したものは、粒子相互の接触を確実にするためには樹脂への添加量を比較的多量に必要とするなどの問題がある。   However, although the white conductive powder having a tin oxide film doped with antimony oxide is stable in conductivity, antimony-free conductive powder is required because antimony is a toxic component. On the other hand, titanium oxide having a tin oxide film doped with phosphorus has unstable conductivity and has a problem of uneven distribution of phosphorus. In addition, transparent conductive tin oxide powder made of surface-modified non-doped tin oxide has problems such as carbon residue, and is not a white powder, so it is suitable for applications that require a white environment in terms of appearance and functionality. There is also the problem of not. Furthermore, those using granular powder as a support for tin oxide have problems such as requiring a relatively large amount of addition to the resin in order to ensure contact between the particles.

この他に、基板表面に気相反応によってフッ素含有酸化スズ膜を形成し、これを酸素導入下の不活性ガス下で熱処理することによって低抵抗にしたフッ素含有酸化スズ膜を形成する方法が知られているが(特許文献8)、粉体原料を気相処理したものは粉体表面に被膜が十分に形成されないので、粉体原料の処理方法として適さない。
特開昭59−145262号公報 特開昭58−209002号公報 特開昭62−180903号公報 特開昭61−136532号公報 特開平07−053217号公報 国際公開WO2005/012449号公報 特開2006−59806号公報 特開2003−81633号公報
In addition, a method for forming a fluorine-containing tin oxide film having a low resistance by forming a fluorine-containing tin oxide film on the substrate surface by a gas phase reaction and heat-treating the film in an inert gas with oxygen introduced is known. However, Patent Document 8 is not suitable as a method for treating a powder raw material, because a coating of a powder raw material is not sufficiently formed on the powder surface.
JP 59-145262 A JP 58-209002 A Japanese Patent Laid-Open No. 62-180903 JP-A 61-136532 Japanese Patent Application Laid-Open No. 07-053217 International Publication WO2005 / 012449 JP 2006-59806 A JP 2003-81633 A

本発明は、従来の白色導電粉末における上記問題を解決したものであり、白色繊維状無機粉末を基材とし、アンチモン等の有害成分を含有せずに優れた導電性を有し、環境汚染等を生じる虞れがなく、少量の添加量で良好な導電性を得ることができ、かつ水に分散可能で環境への負担が少ない白色導電粉末を提供するものである。   The present invention solves the above-mentioned problems in the conventional white conductive powder, is based on white fibrous inorganic powder, has excellent conductivity without containing harmful components such as antimony, environmental pollution, etc. The present invention provides a white conductive powder that can obtain good conductivity with a small amount of addition, can be dispersed in water, and has a low environmental burden.

本発明は、以下の構成によって上記課題を解決した白色導電粉末を提供する。
〔1〕基材の白色繊維状無機粉末を水に分散し、これにスズ源を加え、pH4以下で加水分解して該粉末表面にスズ化合物を析出させ、洗浄後、フッ素源を加えて乾燥した後に、不活性ガス雰囲気および水蒸気の存在下、酸素を排除して400℃以上〜800℃以下で熱処理して形成したフッ素含有酸化スズ層を有する白色導電粉末であって、該酸化スズ層中に0.1〜0.5質量%のフッ素を含有し、粉末中の酸化スズ層30〜60質量%において粉末体積抵抗10kΩ・cm以下であり、Lab表色系のL=77〜80、a=−2.5〜−1.2、b=−3.0〜−2.0であることを特徴とするアンチモン、リン、およびインジウムを含まない白色導電粉末。
This invention provides the white electrically conductive powder which solved the said subject with the following structures.
[1] Disperse the white fibrous inorganic powder of the base material in water, add a tin source to this, hydrolyze it at pH 4 or lower to precipitate a tin compound on the surface of the powder, wash, dry with adding a fluorine source after the presence of an inert gas atmosphere and water vapor, a white conductive powder having an oxygen fluorine-containing tin oxide layer formed by heat treatment at below to 800 ° C. 400 ° C. or higher to eliminate, oxide tin layer 0.1 to 0.5% by mass of fluorine, and 30 to 60% by mass of the tin oxide layer in the powder has a powder volume resistance of 10 kΩ · cm or less, L = 77 to 80 in the Lab color system, a White conductive powder containing no antimony, phosphorus and indium, wherein == 2.5 to -1.2 and b = -3.0 to -2.0.

本発明はさらに以下の製造方法および用途を提供する。
〔2〕基材の白色繊維状無機粉末を水に分散し、これにスズ源を加え、pH4以下で加水分解して該粉末表面にスズ化合物を析出させ、洗浄後、フッ素源を加えて乾燥した後に、不活性ガス雰囲気および水蒸気の存在下、酸素を排除して400℃以上〜800℃以下で熱処理することによって、粉末表面にフッ素含有酸化スズ層を形成し、該酸化スズ層中に0.1〜0.5質量%のフッ素を含有し、粉末中の酸化スズ層30〜60質量%において粉末体積抵抗10kΩ・cm以下であり、Lab表色系のL=77〜80、a=−2.5〜−1.2、b=−3.0〜−2.0であるアンチモン、リン、およびインジウムを含まない白色導電粉末を製造する方法。
〔3〕上記[1]に記載する白色導電粉末を水に分散してなる分散液。
〔4〕上記[1]に記載する白色導電粉末を含有する塗料。
〔5〕上記[1]に記載する白色導電粉末を含有する塗料によって形成した導電性塗膜。


The present invention further provides the following production methods and uses.
[2] Disperse the white fibrous inorganic powder of the base material in water, add a tin source to this, hydrolyze it at a pH of 4 or less to precipitate a tin compound on the powder surface, wash it, add a fluorine source and dry it Then, a fluorine-containing tin oxide layer is formed on the powder surface by excluding oxygen in the presence of an inert gas atmosphere and water vapor, and heat treatment at 400 ° C. to 800 ° C., and 0% in the tin oxide layer. 0.1 to 0.5% by mass of fluorine, 30 to 60% by mass of the tin oxide layer in the powder has a powder volume resistance of 10 kΩ · cm or less, Lab color system L = 77 to 80, a = − A method for producing a white conductive powder not containing antimony, phosphorus and indium, in which 2.5 to -1.2 and b = -3.0 to -2.0.
[3] A dispersion obtained by dispersing the white conductive powder described in [1] above in water.
[4] A paint containing the white conductive powder according to [1].
[5] A conductive coating film formed from a paint containing the white conductive powder described in [1] above.


本発明の導電粉末は、白色繊維状無機粉末を基材としており、高い導電性を有する白色繊維状導電粉末である。従って、外観や機能面から白色環境が求められる用途、例えば、半導体製造クリーンルームやコンピュータルーム、病院等の内装材ないしカーペットなどにおける導電材料として好適である。   The conductive powder of the present invention is a white fibrous conductive powder having white conductive inorganic powder as a base material and high conductivity. Therefore, it is suitable as a conductive material in applications requiring a white environment in terms of appearance and function, for example, interior materials or carpets for semiconductor manufacturing clean rooms, computer rooms, hospitals, and the like.

また、本発明の白色導電粉末は、酸スズ層にアンチモン、リン、インジウムを何れも含まないので環境汚染等を生じる懸念がない。また、アンチモン、リン、インジウムを含まないので低コストである。なお、本発明において、アンチモン、リン、およびインジウムを含まないとは、原料および工程中でアンチモン、リン、およびインジウム源を使用せず、従って検出限界500ppmの標準的な測定装置によってこれらの元素が検出されないことを云う。   Moreover, since the white conductive powder of the present invention does not contain any of antimony, phosphorus, and indium in the tin oxide layer, there is no concern of causing environmental pollution. Further, since it does not contain antimony, phosphorus, and indium, it is low cost. In the present invention, “antimony, phosphorus, and indium are not included” means that no source of antimony, phosphorus, and indium is used in the raw materials and processes, and therefore these elements are detected by a standard measuring device having a detection limit of 500 ppm. It is said that it is not detected.

本発明の白色導電粉末は、上記アンチモン等のドープ成分を含まずに高い導電性を有しており、酸化スズ層にフッ素が含有されているので安定した高い導電性を有し、安全な導電材料として各種の機器に広く用いることができる。具体的には、例えば、静電塗装プライマー、帯電防止効果を有する樹脂やタイル、導電性塗料、静電記録材料、複写機関連の帯電ローラー、感光ドラム、トナー、静電ブラシなどにおける導電材料として好適である。
White conductive powder of the present invention has a high conductivity without containing dope components such as the antimony has a stable and high conductivity because fluorine is contained in the tin oxide layer, a secure conductive As a material, it can be widely used for various devices. Specifically, for example, as conductive materials in electrostatic coating primers, resins and tiles having antistatic effects, conductive paints, electrostatic recording materials, copier-related charging rollers, photosensitive drums, toners, electrostatic brushes, etc. Is preferred.

本発明の白色導電粉末は水に分散可能であるので、水性塗料等の導電材料として用いることができる。   Since the white conductive powder of the present invention can be dispersed in water, it can be used as a conductive material such as an aqueous paint.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。
〔白色導電粉末〕
本発明に係る導電粉末は、基材の白色繊維状無機粉末を水に分散し、これにスズ源を加え、pH4以下で加水分解して該粉末表面にスズ化合物を析出させ、洗浄後、フッ素源を加えて乾燥した後に、不活性ガス雰囲気および水蒸気の存在下、酸素を排除して400℃以上〜800℃以下で熱処理して形成したフッ素含有酸化スズ層を有する白色導電粉末であって、該酸化スズ層中に0.1〜0.5質量%のフッ素を含有し、粉末中の酸化スズ層30〜60質量%において粉末体積抵抗10kΩ・cm以下であり、Lab表色系のL=77〜80、a=−2.5〜−1.2、b=−3.0〜−2.0であることを特徴とするアンチモン、リン、およびインジウムを含まない白色導電粉末である。

Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.
[White conductive powder]
Conductive powder according to the present invention, the white fibrous inorganic powder of the base material is dispersed in water, to which tin source was added, to precipitate a tin compound in powder surface was hydrolyzed under pH4 or less, after washing, fluorine A white conductive powder having a fluorine-containing tin oxide layer formed by drying after adding a source and excluding oxygen in the presence of an inert gas atmosphere and water vapor and heat-treating at 400 ° C. to 800 ° C., The tin oxide layer contains 0.1 to 0.5% by mass of fluorine, and 30 to 60% by mass of the tin oxide layer in the powder has a powder volume resistance of 10 kΩ · cm or less, and the Lab color system L = 77 to 80, a = −2.5 to −1.2, b = −3.0 to −2.0, white conductive powder containing no antimony, phosphorus and indium.

本発明の白色導電粉末は、基材の白色繊維状無機粉末として、チタン酸カリウム繊維を用いることができる。このチタン酸カリウム繊維は繊維径0.1μm〜1.0μm、繊維長さ5μm〜25μmのものが好ましい。   In the white conductive powder of the present invention, potassium titanate fibers can be used as the white fibrous inorganic powder of the base material. The potassium titanate fiber preferably has a fiber diameter of 0.1 μm to 1.0 μm and a fiber length of 5 μm to 25 μm.

上記基材表面に形成された酸化スズ層はアンチモン、リン、およびインジウムを含まない。従来の導電粉末は上記アンチモンやリン等をドープすることによって導電性を高めているが、本発明の白色導電粉末は白色繊維状無機粉末の基材表面に湿式処理によってスズ化合物を形成し、これを雰囲気調整した不活性ガス雰囲気下で熱処理して酸化スズ層を形成することによって高い導電性を達成しているので上記各元素を含有する必要がない。   The tin oxide layer formed on the substrate surface does not contain antimony, phosphorus, and indium. The conventional conductive powder has improved conductivity by doping with antimony, phosphorus, etc., but the white conductive powder of the present invention forms a tin compound by wet treatment on the surface of the white fibrous inorganic powder substrate. Since the high conductivity is achieved by forming a tin oxide layer by heat treatment in an inert gas atmosphere in which the atmosphere is adjusted, it is not necessary to contain each of the above elements.

また、本発明のフッ素含有酸化スズ層を有する白色導電粉末では、白色繊維状無機粉末表面に湿式処理によってスズ化合物を形成し、これにフッ素を導入しているのでこの酸化スズ層は導電性が高く、かつ安定である。
Moreover, in the white conductive powder having a fluorine-containing tin oxide layer of the present invention, a tin compound is formed on the surface of the white fibrous inorganic powder by wet treatment, and fluorine is introduced into this, so that this tin oxide layer has conductivity. High and stable.

本発明の白色導電粉末において、粉末中のフッ素含有酸化スズ層の割合は30〜60%が適当である。この量が30%未満では所望の導電性が得るのが難しく、60%より多いと低抵抗にはなるものの、凝集の問題が生じるので好ましくない。
In the white conductive powder of the present invention, the proportion of the fluorine-containing tin oxide layer in the powder is suitably 30 to 60%. If this amount is less than 30%, it is difficult to obtain the desired conductivity. If it exceeds 60%, the resistance becomes low, but the problem of aggregation occurs, which is not preferable.

フッ素を含有する酸化スズ層において、酸化スズ層中のフッ素量は0.1〜5.0%が好ましい。フッ素量が0.1%未満では粉末体積抵抗が低下しない。またフッ素量が5.0%より多くても、粉末体積抵抗は5.0%の場合と大差なく、抵抗値を低下する割合は小さい。   In the tin oxide layer containing fluorine, the amount of fluorine in the tin oxide layer is preferably 0.1 to 5.0%. When the fluorine content is less than 0.1%, the powder volume resistance does not decrease. Even if the fluorine content is more than 5.0%, the powder volume resistance is not much different from the case of 5.0%, and the ratio of decreasing the resistance value is small.

本発明の白色導電粉末の導電性は、粉末中の酸化スズ層の量が30〜60%において、酸化スズ層がフッ素を含有するものは粉末体積抵抗が10kΩ・cm以下、好ましくは5kΩ・cm以下の導電性を有することができる。なお、粉末体積抵抗が100kΩ・cmより大きいと、この粉末を樹脂に混入したときの表面抵抗が概ね1010Ω/□以上になるので粉末含有量60%において帯電防止効果が不十分になる。本発明の白色導電粉末の導電性は粉末体積抵抗が小さいのでこのような問題がない。
The conductivity of the white conductive powder of the present invention is such that when the amount of the tin oxide layer in the powder is 30 to 60% and the tin oxide layer contains fluorine, the powder volume resistance is 10 kΩ · cm or less, preferably 5 kΩ · cm. It can have the following conductivity. If the powder volume resistance is greater than 100 kΩ · cm, the surface resistance when this powder is mixed into the resin is approximately 10 10 Ω / □ or more, so that the antistatic effect is insufficient at a powder content of 60%. The conductivity of the white conductive powder of the present invention does not have such a problem because the powder volume resistance is small.

本発明の白色導電粉末は、Lab表色系において、L=77〜80、a=−2.5〜−1.2、b=−3.0〜−2.0である。Labの値が上記範囲を外れると明るさ、緑色〜赤色、青色〜黄色の項目において白色性に関連する色度が損なわれるので好ましくない。本発明の白色導電粉末はLabの各値が上記範囲内であり、濁りのない良好な白色を有する。
The white conductive powder of the present invention has L = 77 to 80, a = −2.5 to −1.2, and b = −3.0 to −2.0 in the Lab color system. If the value of Lab is out of the above range, the chromaticity related to whiteness is impaired in the items of brightness, green to red, and blue to yellow. The white conductive powder of the present invention has each value of Lab within the above range, and has a good white color without turbidity.

〔製造方法〕
本発明の白色導電粉末について、白色繊維状無機粉末の表面に湿式処理によってスズ化合物を形成し、雰囲気調整した不活性ガス雰囲気下で、熱処理して酸化スズ層を形成する。
〔Production method〕
About white conductive powder of the present invention, a tin compound formed by a wet treatment on the surface of the white fibrous inorganic powder, under an inert gas atmosphere with atmospheric adjustment, to form the tin oxide layer by heat treatment.

具体的には、基材の白色繊維状無機粉末を水に分散させ、これにスズ源を加え、低pH下、例えばpH4以下で加水分解して基材粉末表面にスズ化合物を析出させ、乾燥後、不活性ガス雰囲気および水蒸気の存在下、酸素を排除し、熱処理して基材表面に導電性酸化スズ層を形成する。
Specifically, the white fibrous inorganic powder of the base material is dispersed in water, a tin source is added to this, and the tin compound is precipitated on the surface of the base powder by hydrolysis at a low pH, for example, pH 4 or less, and then dried. Thereafter, oxygen is removed in the presence of an inert gas atmosphere and water vapor, and heat treatment is performed to form a conductive tin oxide layer on the surface of the substrate.

上記酸化スズ層にフッ素を含有させるには、白色繊維状無機粉末の表面に湿式処理によってスズ化合物を析出させ、これにフッ素を導入し、雰囲気調整した不活性ガス雰囲気下で熱処理してフッ素含有酸化スズ層を形成することができる。
In order to contain fluorine in the tin oxide layer, a tin compound is deposited on the surface of the white fibrous inorganic powder by wet treatment, fluorine is introduced into this, and heat treatment is performed in an inert gas atmosphere in which the atmosphere is adjusted to contain fluorine. A tin oxide layer can be formed.

好ましくは、基材の白色繊維状無機粉末を水に分散し、これにスズ源を加え、低pH下、例えばpH4以下で加水分解して基材粉末表面にスズ化合物を析出させ、この析出時またはその後にフッ素を導入して該粉末表面にフッ素含有スズ化合物を形成し、乾燥後、不活性ガス雰囲気および水蒸気の存在下、酸素を排除し、熱処理して基材表面にフッ素含有酸化スズ層を形成する。   Preferably, the white fibrous inorganic powder of the base material is dispersed in water, a tin source is added thereto, and the tin compound is precipitated on the surface of the base powder by hydrolysis at a low pH, for example, pH 4 or less. Or, after that, fluorine is introduced to form a fluorine-containing tin compound on the powder surface, and after drying, oxygen is removed in the presence of an inert gas atmosphere and water vapor, and heat treatment is performed to form a fluorine-containing tin oxide layer on the substrate surface. Form.

基材の白色繊維状無機粉末としては、例えば、繊維状のチタン酸カリウムが用いられる。該繊維状のチタン酸カリウムは繊維径0.1μm〜1.0μm、繊維長さ5μm〜25μmのものが好ましい。該基材粉末を水に分散させて40〜100℃に加温し、これにスズ源を加え、これを加水分解して基材粉末表面にスズ化合物を析出させる。スズ源としては塩化スズ、硝酸スズ、酢酸スズ、その他の可溶性スズ塩を用いることができる。   As the white fibrous inorganic powder of the base material, for example, fibrous potassium titanate is used. The fibrous potassium titanate preferably has a fiber diameter of 0.1 μm to 1.0 μm and a fiber length of 5 μm to 25 μm. The base powder is dispersed in water and heated to 40 to 100 ° C., a tin source is added thereto, and this is hydrolyzed to precipitate a tin compound on the surface of the base powder. As the tin source, tin chloride, tin nitrate, tin acetate, and other soluble tin salts can be used.

基材粉末表面にスズ化合物を析出させた後に、デカンテーションにより残留塩分を除去して乾燥する。なお、スズ源として塩化スズを用いる場合には、塩酸水溶液を加え、pH4以下でスズ化合物を析出させ、その後の洗浄は塩酸が僅かに残留する程度に止めるのが良い。   After depositing a tin compound on the surface of the substrate powder, the residual salt is removed by decantation and dried. When tin chloride is used as the tin source, an aqueous hydrochloric acid solution is added to precipitate a tin compound at a pH of 4 or lower, and the subsequent washing should be stopped to the extent that hydrochloric acid remains slightly.

フッ素を導入するには、デカンテーションの後に、フッ素源、例えば、フッ化第一スズを加える。このとき、水酸基とフッ素が置換してフッ素が取り込まれる。フッ素を含むことによって紛体はやや黄色味を帯びる。このフッ素はほとんど全てがスズ化合物に取り込まれるので遊離のフッ素が無く、熱処理において炉を傷めることが少ない。   To introduce fluorine, a fluorine source, for example stannous fluoride, is added after decantation. At this time, the hydroxyl group and fluorine are substituted and fluorine is taken in. By containing fluorine, the powder is slightly yellowish. Almost all of this fluorine is taken into the tin compound, so there is no free fluorine and the furnace is less likely to be damaged during heat treatment.

従来、CVD法などの気相反応によってシリカ基板表面にフッ素ドープ酸化スズ膜を形成することが知られているが(特許文献8)、粉末原料を用いる場合には気相処理では粉末全体に十分な酸化スズ層を形成することができない。   Conventionally, it is known that a fluorine-doped tin oxide film is formed on the surface of a silica substrate by a gas phase reaction such as a CVD method (Patent Document 8). However, when a powder raw material is used, the gas phase treatment is sufficient for the entire powder. A tin oxide layer cannot be formed.

本発明の白色導電粉末は、上記湿式処理の後に乾燥し、熱処理を行ってフッ素含有酸化スズ層を形成する。熱処理温度は400℃以上〜800℃以下が好ましい。熱処理温度が400℃より低いと十分な導電性が得られず、また800℃より高いと粉末の焼結が始まり、塗膜を形成したときに凝集体が存在する場合があるので好ましくない。
The white conductive powder of the present invention is dried after the wet treatment and heat-treated to form a fluorine- containing tin oxide layer. The heat treatment temperature is preferably 400 ° C. or higher and 800 ° C. or lower. When the heat treatment temperature is lower than 400 ° C., sufficient conductivity cannot be obtained, and when it is higher than 800 ° C., powder sintering starts, and aggregates may be present when a coating film is formed.

この熱処理は、雰囲気調整した不活性ガス雰囲気下で行うのが良く、具体的には、窒素ガスやアルゴンガスなどの不活性ガス雰囲気および水蒸気の存在下、酸素を排除して行うのが好ましい。水蒸気はアルコール蒸気でも良い。水蒸気またはアルコール蒸気を導入する方法は限定されない。熱処理炉の不活性ガス雰囲気中に水蒸気またはアルコール蒸気を導入してもよく、湿式処理後の原料粉末の乾燥を適度にして湿った状態にし、または原料粉末に水をまたはアルコールを噴霧しても良い。あるいは不活性ガスを水やアルコールに通じてバブリングさせて熱処理炉に導入しても良い。   This heat treatment is preferably performed in an inert gas atmosphere whose atmosphere is adjusted. Specifically, it is preferably performed in the presence of an inert gas atmosphere such as nitrogen gas or argon gas and water vapor, excluding oxygen. The water vapor may be alcohol vapor. The method for introducing water vapor or alcohol vapor is not limited. Water vapor or alcohol vapor may be introduced into the inert gas atmosphere of the heat treatment furnace, the raw material powder after the wet treatment may be appropriately dried to be moistened, or the raw material powder may be sprayed with water or alcohol. good. Alternatively, an inert gas may be bubbled through water or alcohol and introduced into the heat treatment furnace.

水またはアルコールの蒸気圧は飽和蒸気圧30%以上が好ましい。この蒸気圧を保って熱処理するには密閉型の熱処理炉を用いるのが好ましい。なお、スズ化合物の加熱時には水分が抜けるので、この水分を利用して同様の効果を得るようにしても良い。   The vapor pressure of water or alcohol is preferably 30% or higher. In order to perform the heat treatment while maintaining the vapor pressure, it is preferable to use a closed heat treatment furnace. In addition, since a water | moisture content lose | disappears at the time of the heating of a tin compound, you may make it acquire the same effect using this water | moisture content.

また、雰囲気から酸素を排除して加熱する。従来、酸素を含む不活性ガス下で熱処理する方法が知られているが(特許文献8)、酸素が含まれていると、安定して低抵抗粉末が製造できず、また不均一となる。   Also, heating is performed by removing oxygen from the atmosphere. Conventionally, a method of performing a heat treatment under an inert gas containing oxygen is known (Patent Document 8). However, if oxygen is contained, a low-resistance powder cannot be produced stably and becomes non-uniform.

湿式処理した原料粉末を、水蒸気またはアルコール蒸気を含む不活性ガス雰囲気下で酸化を排除して熱処理することによって、低抵抗の白色導電粉末が得られる。なお、フッ素含有酸化スズ層を有するものは、不活性ガスが水蒸気やアルコール蒸気を含まない場合でも抵抗が比較的低い粉末が得られるが、フッ素含有酸化スズ層を形成し、水蒸気またはアルコール蒸気の存在下で熱処理することによって粉末の抵抗をさらに低下させることができる。
A low-resistance white conductive powder can be obtained by heat-treating the wet-processed raw material powder in an inert gas atmosphere containing water vapor or alcohol vapor while eliminating oxidation. Incidentally, those having a fluorine-containing tin oxide layer is relatively low powder even resistance When the inert gas does not contain water vapor or alcohol vapor is obtained, to form a fluorine-containing tin oxide layer, water vapor or alcohol vapor The resistance of the powder can be further reduced by heat treatment in the presence.

以下に本発明の実施例を比較例と共に示す。実施例および比較例において、粉末体積抵抗は試料粉末を圧力容器に入れて100kgf/cm2で圧縮し、この圧粉をデジタルマルチメーター(横河電機製品:型式7561-02)によって測定した。粉体のL値、a値、b値はスガ試験機社製装置(SM-7-IS-2B)を用いて測定した。塗布膜の表面抵抗は白色導電粉末を含む膜厚約100μmの薄膜について表面抵抗計(ハイレスタ:三菱油化製品:型式HT-210、供給電圧100V)を用いて測定した。また、塗膜の性状(凝集体によるブツの有無)は目視にて確認し、塗膜の隠ぺい力は規格(JIS K5600)に従って観察した。 Examples of the present invention are shown below together with comparative examples. In Examples and Comparative Examples, the powder volume resistance was measured with a digital multimeter (Yokogawa Electric product: Model 7561-02) after putting the sample powder into a pressure vessel and compressing the powder at 100 kgf / cm 2 . The L value, a value, and b value of the powder were measured using an apparatus (SM-7-IS-2B) manufactured by Suga Test Instruments. The surface resistance of the coating film was measured using a surface resistance meter (Hiresta: Mitsubishi Yuka product: model HT-210, supply voltage 100 V) for a thin film having a thickness of about 100 μm containing white conductive powder. In addition, the properties of the coating film (presence or absence of irregularities due to aggregates) were confirmed visually, and the hiding power of the coating film was observed according to the standard (JIS K5600).

参考例1〕
チタン酸カリウム繊維(繊維径0.3〜0.6μm、長さ10〜20μm)50gを水300ccに分散させ、90℃に加温した。この分散液に、粉体中の酸化スズ含有量が表1の値になるように所定量の塩化スズを加え、塩酸水溶液を20分〜30分かけて添加してpH3〜4に調整した。この湿式処理した粉末を取り出して洗浄し乾燥した。上記湿式処理で加えた塩化スズは実質的に全量が加水分解され、粉末表面にスズ化合物(X線回折ではSnO2パターンを示す水酸化スズ)が析出していた。この乾燥粉末20gを石英管状炉に入れ、水を通して水蒸気を飽和させた窒素ガスを0.3L/分の割合で30分間炉内に流し、酸素を排除して、表1に示す温度で熱処理した。処理した粉末を取り出し、100kgf/cm2で圧粉して粉末体積抵抗を測定した。また、上記粉末のLab表色系の値を測定した。この結果を表1に示した。さらに、この粉末のX線回折によって粉末表面に酸化スズ層が形成されていることを確認した。またアンチモン、リン、インジウムは何れも検出されなかった。
[ Reference Example 1]
50 g of potassium titanate fiber (fiber diameter 0.3 to 0.6 μm, length 10 to 20 μm) was dispersed in 300 cc of water and heated to 90 ° C. A predetermined amount of tin chloride was added to this dispersion so that the tin oxide content in the powder would be the value shown in Table 1, and an aqueous hydrochloric acid solution was added over 20 to 30 minutes to adjust the pH to 3 to 4. The wet-processed powder was taken out, washed and dried. The entire amount of tin chloride added by the wet treatment was hydrolyzed, and a tin compound (tin hydroxide showing SnO2 pattern in X-ray diffraction) was precipitated on the powder surface. 20 g of this dry powder was put into a quartz tube furnace, and nitrogen gas saturated with water vapor through water was passed through the furnace at a rate of 0.3 L / min for 30 minutes to exclude oxygen and heat treatment was performed at the temperature shown in Table 1. . The treated powder was taken out and pressed at 100 kgf / cm @ 2 to measure the powder volume resistance. Moreover, the value of the Lab color system of the powder was measured. The results are shown in Table 1. Furthermore, it was confirmed by X-ray diffraction of this powder that a tin oxide layer was formed on the powder surface. Also, none of antimony, phosphorus, or indium was detected.

〔比較例1〕
酸化スズ含有量、熱処理温度、および加熱雰囲気を表2に示す条件にした以外は実施例1と同様にして白色導電粉末を製造した。この粉末について粉末体積抵抗およびLab表色系の値を測定した。この結果を表1に示した。
[Comparative Example 1]
A white conductive powder was produced in the same manner as in Example 1 except that the tin oxide content, the heat treatment temperature, and the heating atmosphere were changed to the conditions shown in Table 2. The powder volume resistance and Lab color system values of this powder were measured. The results are shown in Table 1.

参考例2・比較例2〕
参考例1および比較例1において製造した白色導電微粉末4.2gを、市販のアクリル塗料(樹脂含有量10%)100gに加え、ビーズを入れたペイントシェーカーで30分攪拌した。この塗料をアプリケータでPETフィルムに膜厚約100μmに塗布し、乾燥後の表面抵抗を表面抵抗計にて測定した。また、塗膜の性状および隠ぺい力を目視にて確認した。この結果を表1に示した。
[ Reference Example 2 / Comparative Example 2]
4.2 g of the white conductive fine powder produced in Reference Example 1 and Comparative Example 1 was added to 100 g of a commercially available acrylic paint (resin content: 10%) and stirred for 30 minutes with a paint shaker containing beads. This paint was applied to a PET film with an applicator to a film thickness of about 100 μm, and the surface resistance after drying was measured with a surface resistance meter. Moreover, the property and hiding power of the coating film were confirmed visually. The results are shown in Table 1.

表1に示すように、試料A1〜A3は何れも粉末体積抵抗が100kΩ・cm以下であって高い導電性を有する。一方、試料B1、B2、B3、B5は何れも粉末体積抵抗が各段に高く、導電性の低い。また、試料B4は塗膜に凝集体が存在する。また、試料B1〜B5の塗膜は何れも隠蔽力が不良である。   As shown in Table 1, all of the samples A1 to A3 have a high volume conductivity with a powder volume resistance of 100 kΩ · cm or less. On the other hand, all of the samples B1, B2, B3, and B5 have high powder volume resistance at each stage and low conductivity. Sample B4 has an aggregate in the coating film. Moreover, all the coating films of Samples B1 to B5 have poor hiding power.

Figure 0005224160
Figure 0005224160

実施例1
チタン酸カリウム繊維50gを水300ccに分散させ、90℃に加温した。この分散液に、粉体中の酸化スズ含有量が表2の値になるように所定量の塩化スズを加え、塩酸水溶液を20分〜30分かけて添加してpH3〜4に調整した。この湿式処理した粉末を取り出して洗浄した。上記湿式処理で加えた塩化スズは実質的に全量が加水分解され、粉末表面にスズ化合物(X線回折ではSnO2パターンを示す水酸化スズ)が析出していた。これにフッ化第一スズを表2に示すフッ素含有量になるように所定量を加え、攪拌し乾燥した。この乾燥粉末20gを石英管状炉に入れ、水を通して水蒸気を飽和させた窒素ガスを0.3L/分の割合で30分間炉内に流し、酸素を排除して表2に示す温度で熱処理した。処理した粉末を取り出し、100kgf/cm2で圧粉し、粉末体積抵抗を測定した。また上記粉末のLab表色系の値を測定した。この結果を表2に示した。さらに、この粉末のX線回折によって粉末表面に酸化スズ層が形成されていることを確認した。またアンチモン、リン、インジウムは何れも検出されなかった。
[ Example 1 ]
50 g of potassium titanate fiber was dispersed in 300 cc of water and heated to 90 ° C. A predetermined amount of tin chloride was added to this dispersion so that the tin oxide content in the powder would be the value shown in Table 2, and an aqueous hydrochloric acid solution was added over 20 to 30 minutes to adjust to pH 3 to 4. The wet-processed powder was taken out and washed. The entire amount of tin chloride added by the wet treatment was hydrolyzed, and a tin compound (tin hydroxide showing SnO 2 pattern in X-ray diffraction) was precipitated on the powder surface. A predetermined amount of stannous fluoride was added to the fluorine content shown in Table 2, and the mixture was stirred and dried. 20 g of this dry powder was placed in a quartz tube furnace, and nitrogen gas saturated with water vapor through water was passed through the furnace at a rate of 0.3 L / min for 30 minutes to exclude oxygen and heat treatment was performed at the temperature shown in Table 2. The treated powder was taken out and pressed at 100 kgf / cm 2 to measure the powder volume resistance. Moreover, the value of the Lab color system of the powder was measured. The results are shown in Table 2. Furthermore, it was confirmed by X-ray diffraction of this powder that a tin oxide layer was formed on the powder surface. Also, none of antimony, phosphorus, or indium was detected.

〔比較例3〕
酸化スズ含有量、酸化スズ中のフッ素量、熱処理温度、および加熱雰囲気を表2に示す条件にした以外は実施例3と同様にして白色導電粉末を製造した。この粉末について粉末体積抵抗およびLab表色系の値を測定した。この結果を表2に示した。
[Comparative Example 3]
A white conductive powder was produced in the same manner as in Example 3 except that the tin oxide content, the fluorine content in tin oxide, the heat treatment temperature, and the heating atmosphere were changed to the conditions shown in Table 2. The powder volume resistance and Lab color system values of this powder were measured. The results are shown in Table 2.

実施例2・比較例4〕
実施例1および比較例3において製造した白色導電微粉末4.2gを、市販のアクリル塗料(樹脂含有量10%)100gに加え、ビーズを入れたペイントシェーカーで30分攪拌した。この塗料をアプリケータでPETフィルムに膜厚約100μmに塗布し、乾燥後の表面抵抗を表面抵抗計にて測定した。また、塗膜の性状および隠蔽力を目視にて確認した。この結果を表2に示した。
[ Example 2 and Comparative Example 4]
4.2 g of the white conductive fine powder produced in Example 1 and Comparative Example 3 was added to 100 g of a commercially available acrylic paint (resin content: 10%), and stirred for 30 minutes with a paint shaker containing beads. This paint was applied to a PET film with an applicator to a film thickness of about 100 μm, and the surface resistance after drying was measured with a surface resistance meter. Moreover, the property and hiding power of the coating film were confirmed visually. The results are shown in Table 2.

表2に示すように、試料C1〜C5は何れも粉末体積抵抗が10kΩ・cm以下であり、導電性が高い。一方、試料D1〜D3、D5は粉末体積抵抗が各段に高く、導電性が低い粉末である。また、試料D5塗膜に凝集体が存在する。さらに、試料D3〜D5の塗膜は何れも隠蔽力が不良である。   As shown in Table 2, all of Samples C1 to C5 have a powder volume resistance of 10 kΩ · cm or less and high conductivity. On the other hand, samples D1 to D3 and D5 are powders having high powder volume resistance at each stage and low conductivity. Moreover, an aggregate exists in the sample D5 coating film. Furthermore, all of the coating films of Samples D3 to D5 have poor hiding power.

Figure 0005224160
Figure 0005224160

Claims (5)

基材の白色繊維状無機粉末を水に分散し、これにスズ源を加え、pH4以下で加水分解して該粉末表面にスズ化合物を析出させ、洗浄後、フッ素源を加えて乾燥した後に、不活性ガス雰囲気および水蒸気の存在下、酸素を排除して400℃以上〜800℃以下で熱処理して形成したフッ素含有酸化スズ層を有する白色導電粉末であって、該酸化スズ層中に0.1〜0.5質量%のフッ素を含有し、粉末中の酸化スズ層30〜60質量%において粉末体積抵抗10kΩ・cm以下であり、Lab表色系のL=77〜80、a=−2.5〜−1.2、b=−3.0〜−2.0であることを特徴とするアンチモン、リン、およびインジウムを含まない白色導電粉末。 After dispersing the white fibrous inorganic powder of the base material in water, adding a tin source to this, hydrolyzing at pH 4 or lower to precipitate a tin compound on the powder surface, washing, adding a fluorine source and drying, A white conductive powder having a fluorine-containing tin oxide layer formed by heat treatment at 400 ° C. or higher and 800 ° C. or lower with oxygen excluded in the presence of an inert gas atmosphere and water vapor; 1 to 0.5% by mass of fluorine, 30 to 60% by mass of the tin oxide layer in the powder has a powder volume resistance of 10 kΩ · cm or less, Lab color system L = 77 to 80, a = −2 White conductive powder containing no antimony, phosphorus, and indium, characterized in that 0.5 to -1.2 and b = -3.0 to -2.0. 基材の白色繊維状無機粉末を水に分散し、これにスズ源を加え、pH4以下で加水分解して該粉末表面にスズ化合物を析出させ、洗浄後、フッ素源を加えて乾燥した後に、不活性ガス雰囲気および水蒸気の存在下、酸素を排除して400℃以上〜800℃以下で熱処理することによって、粉末表面にフッ素含有酸化スズ層を形成し、該酸化スズ層中に0.1〜0.5質量%のフッ素を含有し、粉末中の酸化スズ層30〜60質量%において粉末体積抵抗10kΩ・cm以下であり、Lab表色系のL=77〜80、a=−2.5〜−1.2、b=−3.0〜−2.0であるアンチモン、リン、およびインジウムを含まない白色導電粉末を製造する方法。 After dispersing the white fibrous inorganic powder of the base material in water, adding a tin source to this, hydrolyzing at pH 4 or lower to precipitate a tin compound on the powder surface, washing, adding a fluorine source and drying, A fluorine-containing tin oxide layer is formed on the powder surface by excluding oxygen in the presence of an inert gas atmosphere and water vapor and heat treatment at 400 to 800 ° C., and 0.1 to 0.1 in the tin oxide layer. 0.5% by mass of fluorine, 30 to 60% by mass of the tin oxide layer in the powder has a powder volume resistance of 10 kΩ · cm or less, Lab color system L = 77 to 80, a = −2.5 A method for producing a white conductive powder not containing antimony, phosphorus, and indium, which is ˜−1.2 and b = −3.0 to −2.0. 請求項1に記載する白色導電粉末を水に分散してなる分散液。 A dispersion obtained by dispersing the white conductive powder according to claim 1 in water. 請求項1に記載する白色導電粉末を含有する塗料。 A paint containing the white conductive powder according to claim 1. 請求項1に記載する白色導電粉末を含有する塗料によって形成した導電性塗膜。 The electroconductive coating film formed with the coating material containing the white electrically conductive powder of Claim 1.
JP2007087758A 2007-03-29 2007-03-29 White conductive powder and production method and use thereof Active JP5224160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087758A JP5224160B2 (en) 2007-03-29 2007-03-29 White conductive powder and production method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087758A JP5224160B2 (en) 2007-03-29 2007-03-29 White conductive powder and production method and use thereof

Publications (2)

Publication Number Publication Date
JP2008251210A JP2008251210A (en) 2008-10-16
JP5224160B2 true JP5224160B2 (en) 2013-07-03

Family

ID=39975945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087758A Active JP5224160B2 (en) 2007-03-29 2007-03-29 White conductive powder and production method and use thereof

Country Status (1)

Country Link
JP (1) JP5224160B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123302A (en) * 2008-11-17 2010-06-03 Mitsubishi Materials Corp Surface-modified white conductive powder, and method of manufacturing the same
JP2010123428A (en) * 2008-11-20 2010-06-03 Mitsubishi Materials Corp White conductive powder and its manufacturing method
JP2011054508A (en) * 2009-09-04 2011-03-17 Mitsubishi Materials Corp White conductive powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596235A (en) * 1982-07-01 1984-01-13 Res Inst For Prod Dev Electrically conductive white material
JP3256570B2 (en) * 1992-02-18 2002-02-12 財団法人生産開発科学研究所 Manufacturing method of conductive material
JP3195072B2 (en) * 1992-09-29 2001-08-06 三井金属鉱業株式会社 Fibrous conductive filler and method for producing the same
JP2941722B2 (en) * 1996-11-19 1999-08-30 大塚化学株式会社 White conductive substance and method for producing the same
JP4712288B2 (en) * 2003-05-23 2011-06-29 チタン工業株式会社 White conductive powder and its application
JP4830393B2 (en) * 2005-08-03 2011-12-07 三菱マテリアル株式会社 Method and apparatus for producing conductive tin oxide powder

Also Published As

Publication number Publication date
JP2008251210A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5400307B2 (en) White conductive powder and its use
JP5071621B2 (en) Method for producing white conductive powder
JP5062520B2 (en) Transparent tin oxide powder
JP5181322B2 (en) Method for producing conductive tin oxide powder
JP5224160B2 (en) White conductive powder and production method and use thereof
JP5400306B2 (en) White conductive powder and its use
JP5007970B2 (en) Method for producing transparent conductive powder
JP4904575B2 (en) Surface-modified transparent conductive tin oxide fine powder, production method thereof and dispersion thereof
JP5158537B2 (en) Conductive tin oxide powder, production method and use thereof
EP3162773B1 (en) Substrate provided with low-reflection coating, method for its production and photoelectric conversion device containing it.
JP5514436B2 (en) Method for producing white conductive powder having tin oxide layer
JP5335328B2 (en) Method for producing conductive tin oxide powder
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
JP5514435B2 (en) Method for producing white conductive powder
JP5977603B2 (en) White conductive powder, dispersion thereof, paint, and film
JP2010123302A (en) Surface-modified white conductive powder, and method of manufacturing the same
JP5592067B2 (en) Method for producing conductive tin oxide powder
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
JP5562174B2 (en) Transparent conductive tin oxide powder, method for producing the same, and film composition using the same
JP2010123428A (en) White conductive powder and its manufacturing method
JP6453533B2 (en) Fluorine-doped phosphorus-doped conductive tin oxide powder, process for producing the same, and film composition using the same
JP6866184B2 (en) Blue-white titanium nitride powder and its manufacturing method
JP2011054508A (en) White conductive powder
JP6652908B2 (en) Conductive particles
JP5977602B2 (en) White conductive powder, dispersion thereof, paint, and film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5224160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250