JP5512298B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5512298B2
JP5512298B2 JP2010011134A JP2010011134A JP5512298B2 JP 5512298 B2 JP5512298 B2 JP 5512298B2 JP 2010011134 A JP2010011134 A JP 2010011134A JP 2010011134 A JP2010011134 A JP 2010011134A JP 5512298 B2 JP5512298 B2 JP 5512298B2
Authority
JP
Japan
Prior art keywords
layer
solid polymer
polymer electrolyte
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010011134A
Other languages
English (en)
Other versions
JP2010192432A (ja
Inventor
正和 杉本
雅也 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2010011134A priority Critical patent/JP5512298B2/ja
Publication of JP2010192432A publication Critical patent/JP2010192432A/ja
Application granted granted Critical
Publication of JP5512298B2 publication Critical patent/JP5512298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体高分子電解質層と、この固体高分子電解質層の両側に設けられた第1電極層および第2電極層とを備え、これら各層をインサート成形した樹脂成形体で一体化してある燃料電池に関する。
近年のITの発展に伴い、携帯電話、ノートパソコン、デジタルカメラ等のモバイル機器のほとんどの電源は、リチウムイオン二次電池が用いられている。しかし、これらのモバイル機器の高機能化に伴い、消費電力がますます増加する傾向にあり、その電源用あるいは充電用としてクリーンで高効率な燃料電池に注目が集まっている。
このような小型・軽量の燃料電池としては、例えば下記の特許文献1のように、板状の固体高分子電解質と、その一方側に配置されたアノード側電極板と、他方側に配置されたカソード側電極板と、アノード側電極板の外側に配置されたアノード側金属板と、カソード側電極板の外側に配置されたカソード側金属板とを備え、これら金属板の外周部を絶縁材を介してカシメることにより、封止したものが知られている。しかし、金属板のカシメによる封止では、工程が複雑化し、カシメ部分の厚み制御にも精度を要するという問題があった。
そこで、封止工程を簡略化すべく、下記の特許文献2には、板状の固体高分子電解質と、その両側に設けた電極板(触媒層+導電性多孔質体)とを備え、それら各層の周囲をインサート成形した樹脂枠で一体化した燃料電池用セル部材が提案されている。この燃料電池用セル部材は、インサート成形した樹脂枠で各層を一体化することで、簡易な構造、製法を実現している。
特開2005−150008号公報 特開2005−11624号公報
ところで、燃料電池のより一層の小型化、軽量化のためには、燃料電池の薄型化、すなわち、燃料電池の構成部材である固体高分子電解質と電極板等の薄型化が必要となる。また、水素イオンの伝導性を良くして発電効率を高めるためにも、固体高分子電解質の厚みを薄くする必要がある。
しかしながら、上記の特許文献2の燃料電池用セル部材では、固体高分子電解質の厚みを薄くし過ぎると、固体高分子電解質の外周と電極板の外周が接近している場合に、インサート成形後にアノード側からカソード側への水素ガスの拡散が生じやすくなり、発電効率が却って低下することが判明した。また、固体高分子電解質の厚みを薄くし過ぎると、インサート成形時の樹脂圧(樹脂流れによる圧力)で破れたり、変形したりするおそれがあり、また、ハンドリング性が落ちるおそれもあり、その結果、量産性が悪くなるという問題がある。
そこで、本発明の目的は、固体高分子電解質の厚みを薄くした場合にも、発電効率が高められ、しかも量産性を落とすことがない燃料電池を提供することである。
上記課題を解決するため本発明に係る燃料電池は、固体高分子電解質層と、この固体高分子電解質層の両側に設けられた第1電極層および第2電極層とを備え、これら各層をインサート成形した樹脂成形体で一体化してある燃料電池であって、前記固体高分子電解質層の少なくとも一面の周縁部に補強層が設けられていることを特徴とする。
本発明に係る燃料電池は、固体高分子電解質層と、この固体高分子電解質層の両側に設けられた第1電極層および第2電極層とを備え、これら各層をインサート成形した樹脂成形体で一体化している。本発明の燃料電池によれば、固体高分子電解質層の少なくとも一面の周縁部に補強層が設けられているので、固体高分子電解質層の厚みを薄くした場合にも、固体高分子電解質層の外周と第1、第2電極層の外周との間の距離が保たれ、インサート成形後のアノード側からカソード側への水素ガスの拡散を防止することができる。その結果、固体高分子電解質の厚みを薄くした場合にも、発電効率が高められる燃料電池を提供することができる。
さらに、本発明の燃料電池によれば、固体高分子電解質層の少なくとも一面の周縁部に補強層が設けられているので、固体高分子電解質層の厚みを薄くした場合にも、固体高分子電解質層がインサート成形時に発生する周縁部からの樹脂圧によって破れたり、変形したりすることを防止することができる。また、ハンドリング性が損なわれることもない。その結果、量産性を落とすことがない燃料電池を提供することができる。
本発明において、開孔を有する第1金属層および第2金属層が、前記第1電極層および前記第2電極層の更に外側に設けられていることが好ましい。
この構成によれば、第1金属層および第2金属層は開孔を有するので、開孔を介して第1電極層および第2電極層に燃料および酸素等を供給することができる。また、第1金属層および第2金属層を第1電極層および第2電極層の更に外側に設けることで、第1電極層および第2電極層を固体高分子電解質層に十分な圧力で接触させることができ、接触抵抗を低減して出力特性を向上させることができる。
本発明の燃料電池において、前記補強層は、前記固体高分子電解質層と、前記第1電極層または前記第2電極層との間に挟まれており、前記固体高分子電解質層および前記補強層の外周は、前記第1電極層または前記第2電極層の外周よりも突出していることが好ましい。
この構成によれば、補強層が、固体高分子電解質層と第1電極層または第2電極層との間に挟まれているので、固体高分子電解質層に対する補強効果がより大きくなる。また、固体高分子電解質層および補強層の外周が、第1電極層または第2電極層の外周よりも突出しているので、第1電極層の外周と第2電極層の外周との接触を防ぎ、両電極層の間の導電を防ぐことができるので、燃料電池の出力特性が向上する。また、固体高分子電解質層および補強層の外周が、第1電極層または第2電極層の外周よりも突出している場合、各層の外周がすべて同じである場合に比べて、第1電極層の外周と第2電極層の外周との間の距離(行程)が長くなり、その間の樹脂も増えるので、第1電極層または第2電極層の一方から他方への燃料ガスの拡散を防止することができ、その結果、燃料電池の出力特性が向上する。
本発明の燃料電池において、前記補強層は、前記固体高分子電解質層の両面に設けられていることが好ましい。
この構成によれば、補強層は、固体高分子電解質層の両面に設けられているので、固体高分子電解質層に対する補強効果がより大きくなる。また、第1電極層の外周と第2電極層の外周との間の距離がさらに長くなり、第1電極層または第2電極層の一方から他方への燃料ガスの拡散をより一層防止することができる。
本発明の燃料電池において、前記補強層は、前記固体高分子電解質層の片面のみに設けられていることが好ましい。
補強層を固体高分子電解質層の両面に設けると位置合わせが難しくなるが、補強層を固体高分子電解質層の片面のみに設けることで、位置合わせが容易となり製造し易くなる。
本発明の燃料電池において、前記固体高分子電解質層の両面にそれぞれ触媒層が設けられ、カソード側の触媒層がアノード側の触媒層よりも大きいことが好ましい。
アノード側に供給される還元ガスとして水素ガスを用い、カソード側に供給される酸化ガスとして空気を用いる場合、空気は水素ガスに比べて拡散性が良くないが、カソード側の触媒層をアノード側の触媒層よりも大きくすることで、カソード側の反応が良好となり燃料電池の特性が向上する。また、固体高分子電解質層のアノード側の面のみに補強層を設け、この補強層の内方側にアノード側の触媒層を設けるようにすれば、カソード側の触媒層をアノード側の触媒層よりも大きくなるように構成することも容易である。
本発明の燃料電池の一例を示す図であり、(a)は上面図、(b)は(a)のI−I矢視断面図、(c)は底面図 本発明の燃料電池の製造方法の一例を示す正面視断面図 本発明の燃料電池の他の例を示す図であり、(a)は斜視図、(b)は上面図、(c)は要部を示す斜視図 本発明の燃料電池の製造方法の他の例を示す斜視図 比較例1の燃料電池の構成を示す正面視断面図 実施例1等における燃料電池の出力電圧の変化を示すグラフ 本発明の別の実施形態に係る燃料電池の断面図 実施例2の燃料電池の構成を示す正面視断面図 実施例2における燃料電池のIV特性を示すグラフ
本発明に係る燃料電池の好適な実施形態を図面を用いて説明する。図1は、本発明の燃料電池の一例を示す図であり、(a)は上面図、(b)は(a)のI−I矢視断面図、(c)は底面図である。
本発明の燃料電池は、図1に示すように、固体高分子電解質層1と、この固体高分子電解質層1の両側に設けられた第1電極層2及び第2電極層3とを備えている。本実施形態では、これら電極層2,3の更に外側に第1金属層4及び第2金属層5を備えている例を示す。
固体高分子電解質層1としては、従来の固体高分子膜型の燃料電池に用いられるものであれば何れでもよいが、化学的安定性及び導電性の点から、超強酸であるスルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が好適に用いられる。このような陽イオン交換膜としては、ナフィオン(登録商標)が好適に用いられる。その他、例えば、ポリテトラフルオロエチレン等のフッ素樹脂からなる多孔質膜に上記ナフィオンや他のイオン伝導性物質を含浸させたものや、ポリエチレンやポリプロピレン等のポリオレフィン樹脂からなる多孔質膜や不織布に上記ナフィオンや他のイオン伝導性物質を担持させたものでもよい。
固体高分子電解質層1の厚みは、薄くするほど全体の薄型化に有効であるが、イオン伝導機能、強度、ハンドリング性などを考慮すると、10〜300μmが使用可能であるが、15〜60μmが好ましい。
電極層2,3は、固体高分子電解質層1の表面付近でアノード側およびカソード側の電極反応を生じさせるものであれば何れでもよい。なかでも、ガス拡散層としての機能を発揮して、燃料ガス、燃料液、酸化ガス及び水蒸気の供給・排出を行なうと同時に、集電の機能を発揮するものが好適に使用できる。電極層2,3としては、同一又は異なるものが使用でき、その基材には電極触媒作用を有する触媒9を担持させることが好ましい。触媒9は、固体高分子電解質層1と接する内面側に少なくとも担持させるのが好ましい。
電極層2,3の電極基材としては、例えば、カーボンペーパー、カーボン繊維不織布などの繊維質カーボン、導電性高分子繊維の集合体などの電導性多孔質材が使用できる。また、固体高分子電解質層1に触媒を直接付着させたり、カーボンブラックなどの導電性粒子に担持させて固体高分子電解質層1に付着させた電極層2,3を用いることも可能である。
一般に、電極層2,3は、このような電導性多孔質材にフッ素樹脂等の撥水性物質を添加して作製されるものであって、触媒を担持させる場合、白金微粒子などの触媒とフッ素樹脂等の撥水性物質とを混合し、これに溶媒を混合して、ペースト状或いはインク状とした後、これを固体高分子電解質膜と対向すべき電極基材の片面に塗布して形成される。
一般に、電極層2,3や固体高分子電解質層1は、燃料電池に供給される還元ガスと酸化ガスに応じた設計がなされる。本発明では、酸化ガスとして空気が用いられると共に、還元ガスとして水素ガスを用いるのが好ましい。なお、還元ガスの代わりにメタノール等の燃料液を使用することも可能である。
例えば、水素ガスと空気を使用する場合、空気が自然供給される側のカソード側の第2電極層3(本明細書では、アノード側を第1電極層、カソード側を第2電極層と仮定する)では、酸素と水素イオンの反応が生じて水が生成するため、かかる電極反応に応じた設計をするのが好ましい。特に、低作動温度、高電流密度及び高ガス利用率の運転条件では、特に水が生成する空気極において水蒸気の凝縮による電極多孔体の閉塞(フラッディング)現象が起こりやすい。したがって、長期にわたって燃料電池の安定な特性を得るためには、フラッディング現象が起こらないように電極の撥水性を確保することが有効である。
触媒としては、白金、パラジウム、ルテニウム、ロジウム、銀、ニッケル、鉄、銅、コバルト及びモリブデンから選ばれる少なくとも1種の金属か、又はその酸化物が使用でき、これらの触媒をカーボンブラック等に予め担持させたものも使用できる。
電極層2,3の厚みは、薄くするほど全体の薄型化に有効であるが、電極反応、強度、ハンドリング性などを考慮すると、1〜500μmが好ましく、100〜300μmがより好ましい。電極層2,3と固体高分子電解質層1とは、予め接着、融着、又は塗布形成等を行って積層一体化しておいてもよいが、単に積層配置されているだけでもよい。このような積層体は、膜/電極接合体(Membrane Electrode Assembly:MEA)として入手することもでき、これを使用してもよい。
本発明では、第1電極層2及び第2電極層3の外周が固体高分子電解質層1の外周より小さいことが好ましい。すなわち、第1電極層2及び第2電極層3の外形が固体高分子電解質層1の外形より小さいことが好ましい。
本発明では、固体高分子電解質層1の表面の周縁部に補強層8が設けられている。本実施形態では、補強層8が固体高分子電解質層1の両面に設けられている例を示すが、固体高分子電解質層1の片面のみでもよい。
本実施形態では、補強層8は、固体高分子電解質層1と第1電極層2、および固体高分子電解質層1と第2電極層3との間に挟まれた構造をしている。補強層8の外周は、固体高分子電解質層1の外周と同じであり、第1電極層2及び第2電極層3の外周が、触媒層9および固体高分子電解質層1の外周より小さいことが好ましい。
補強層8としては、例えば、PEN樹脂(ポリエチレンナフタレート)、PET樹脂(ポリエチレンテレフタラート)、アクリル樹脂などを使用できる。
補強層8の厚みは、薄くするほど全体の薄型化に有効であるが、電極反応、強度、ハンドリング性などを考慮すると、20〜200μmが好ましく、40〜100μmがより好ましい。
アノード側電極層2の表面にはアノード側の第1金属層4が配置され、カソード側電極層3の表面にはカソード側の第2金属層5が配置される(本明細書では、アノード側を第1金属層、カソード側を第2金属層と仮定する)。第1金属層4は、第1電極層2を部分的に露出させる露出部を有するが、本実施形態では、アノード側金属層4には燃料ガス等を供給するための開孔4aが設けられている例を示す。
第1金属層4の露出部は、アノード側電極層2が露出可能であれば、その個数、形状、大きさ、形成位置などは何れでもよい。アノード側金属層4の開孔4aは、例えば、規則的又はランダムに複数の円孔やスリット等を設けたり、または金属メッシュによって開孔4aを設けたり、第1金属層4を櫛形電極のような形状にしてアノード側電極層2を露出させてもよい。開孔4a部分の面積が締める割合(開孔率)は、電極との接触面積とガスの供給面積のバランスなどの観点から、3〜50%が好ましく、5〜20%がより好ましい。
また、カソード側の第2金属層5は、第2電極層3を部分的に露出させる露出部を有するが、本実施形態では、カソード側金属層5には、空気中の酸素を供給(自然吸気)するための多数の開孔5aが設けられている例を示す。開孔5aは、カソード側電極層3が露出可能であれば、その個数、形状、大きさ、形成位置などは何れでもよい。カソード側金属層5の開孔5aは、例えば、規則的又はランダムに複数の円孔やスリット等を設けたり、または金属メッシュによって開孔5aを設けたり、第2金属層5を櫛形電極のような形状にしてカソード側電極層3を露出させてもよい。開孔5a部分の面積が締める割合(開孔率)は、電極との接触面積とガスの供給面積のバランスなどの観点から、10〜50%が好ましく、15〜30%がより好ましい。
金属層4,5としては、電極反応に悪影響がないものであれば何れの金属も使用でき、例えばステンレス板、ニッケル、銅、銅合金などが挙げられる。但し、導電性、コスト、形状付与性、加圧のための強度などの観点から、銅、銅合金、ステンレス板などが好ましい。また、上記の金属に金メッキなどの金属メッキを施したものでもよい。
なお、金属層4,5の厚みは、薄くするほど全体の薄型化に有効であるが、導電性、コスト、重量、形状付与性、加圧のための強度などを考慮すると、10〜1000μmが好ましく、50〜200μmがより好ましい。
金属層4及び金属層5は、少なくとも一部が樹脂から露出することにより、その部分を電極として電気を外部に取り出すことができる。このため、樹脂成形体6に対して、金属層4及び金属層5を一部露出させた端子部を設けてもよいが、本発明では、金属層4及び金属層5が、単位セルの電極となる突出部4b,5bを備え、これが樹脂成形体6から外部に出ていることが好ましい。この突出部4b,5bは、インサート成形を行う際に、金属層4,5等(積層物L)を成形型内に保持するためにも利用できる。
金属層4及び金属層5の形成や開孔5a、4aの形成は、プレス加工(プレス打ち抜き加工)を利用して行うことができる。また、金属層4及び金属層5の突出部4b,5bには、樹脂の流動や密着性を良好にする目的で、インサート成形される部分に貫通孔を設けてもよい。更に、接続や固定を良好に行うために、突出部4b,5bの露出した部分に貫通孔を設けてもよい。
本発明の燃料電池は、図1に示すように、以上のような固体高分子電解質層1、電極層2,3、金属層4,5、補強層8、触媒層9をインサート成形した樹脂成形体6で一体化してある。本発明では、第1金属層4及び/又は第2金属層5の全面又は略全面を樹脂成形体6で覆うことが好ましく、第1金属層4及び第2金属層5の全面又は略全面を樹脂成形体6で覆うことがより好ましい。その場合、後述するように、樹脂成形体6は部分的に予備成形体を含むものであってもよい。樹脂成形体6は、第1電極層2及び第2電極層3に気体又は液体を供給するための供給部を有することが好ましく、この供給部は、第1金属層4又は第2金属層5の露出部に対応する位置に設けられた開孔6aであることが好ましい。
本実施形態では、第1電極層2及び第2電極層3が開孔6aから露出するように、第1金属層4及び第2金属層5を両側から加圧した状態で、樹脂成形体6によりインサート成形して一体化してある例を示す。
本発明では、金属層4,5の露出部に相当する開孔4a,5aの大きさが、樹脂成形体6の開孔6aの大きさより、大きくてもよく、同じ大きさでもよく、小さくてもよい。但し、第1金属層4及び/又は第2金属層5の露出部の大きさと、開孔6aの大きさとがほぼ等しくなるように、樹脂成形体6を成形してあることが好ましい。具体的には、各々の開孔6aの面積は、各々の開孔4a,5aの面積の60〜150%が好ましく、80〜130%がより好ましい。
本実施形態では、金属層4,5の露出部に相当する開孔4a,5aの大きさが、樹脂成形体6の開孔6aの大きさより小さい場合の例を示す。これにより金属層4,5の開孔4a,5aの周囲に対して、樹脂成形体6の開孔6aに相当する部分を利用して、成型時に加圧することができる(図2(c)参照)。
樹脂成形体6の材質としては、熱硬化性樹脂、熱可塑性樹脂、耐熱性樹脂などが挙げられるが、熱可塑性樹脂、熱硬化性樹脂が好ましい。なお、熱可塑性樹脂としては、ポリカーボネート樹脂、ABS樹脂、液晶ポリマー、ポリプロピレン、ポリスチレン、アクリル樹脂、フッ素樹脂、ポリエステル、ポリアミドなどが挙げられる。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、アミノ樹脂、ポリウレタン樹脂、シリコーン樹脂、または熱硬化性ポリイミド樹脂等が挙げられる。なかでも、成形型内での樹脂の流動性、強度、溶融温度などの観点から、ポリエステル、ポリプロピレン、アクリル樹脂が好ましく、これらはアプリケーションによって選択することが可能である。
樹脂成形体6としては、熱可塑性エラストマーやゴム等を用いることも可能である。その場合、他の材料にも可とう性の有るものを使用することで、燃料電池全体を可とう性にすることが可能である。
樹脂成形体6の全体の厚みとしては、樹脂による一体化の強度や、金属層4,5を加圧する圧力、薄型化などの観点から、0.3〜4mmが好ましく0.5〜2mmがより好ましい。特に、金属層4,5を覆う部分の樹脂成形体6の厚みとしては、金属層4,5を加圧する圧力の観点から、0.2〜1.5mmが好ましく、0.3〜1.0mmがより好ましい。
樹脂成形体6の外形の面積としては、樹脂による一体化の強度や、金属層を加圧する圧力の観点から、固体高分子電解質層1の外形の面積の101〜200%が好ましく、150〜180%がより好ましい。
本発明の燃料電池は、次のようにして燃料等を供給して発電させることができる。例えばカソード側は、そのまま大気開放にしておき、アノード側に設けた空間に水素ガス等の燃料を供給したり、アノード側に設けた空間内で水素ガス等の燃料を発生させることで発電を行うことができる。また、アノード側及び/又はカソード側に対して、流路を形成するための流路形成部材を取り付けて、その流路に酸素含有ガスや燃料を供給することも可能である。流路形成部材としては、例えば流路溝と供給口と排出口を設けた板状体や、スタック型燃料電池のセパレータと類似の構造のものが使用できる。後者を使用するとスタック型燃料電池を構成することができる。
以上のような燃料電池は、例えば以下の製造方法により製造することができる。即ち、この製造方法は、図2(a)〜(d)に示すように、固体高分子電解質層1、補強層8、触媒層9と、その両側に配される第1電極層2及び第2電極層3と、それらの外側に配される第1金属層4及び第2金属層5との積層物Lを成形型10内に配置する工程を含む。本実施形態では、第1金属層4及び第2金属層5が、第1電極層2及び第2電極層3を部分的に露出させる露出部(例えば開孔4a,5a)を有し、その露出部が成形型10の凸部11a,12aにより閉塞した状態で成形型10内に配置する例を示す。
また、燃料電池の製造方法は、上記の成形型10内に樹脂を注入することで、積層物Lを一体化する樹脂成形体6を成形する工程を含む。本実施形態では、第1金属層4及び第2金属層5を両側から加圧した状態で、その成形型10内に樹脂を注入することで、第1電極層2及び第2電極層3に気体又は液体を供給するための供給部を有し、積層物Lを一体化する樹脂成形体6を成形する工程を含む例を示す。つまり、前記供給部に相当する開孔6aを除いて、積層物Lのほぼ全体を樹脂成形体6で覆う例を示す。
まず、例えば、図2(a)に示すように、底面に凸部11aを有する下金型11を準備する。本実施形態では、成形型10を分割構造にして分割した型部材の内面に凸部11a,12aを設け、その凸部11a,12aを第1金属層4及び第2金属層5圧接させる場合の例を示す。凸部11aは、積層物Lの下側の第1金属層4の開孔4aを閉塞させる大きさの上面を有し、各々の開孔4aに対向する位置に設けている。下金型11は、底面の周囲に側壁を有しており、側壁の内面に沿って上金型12が挿入できる。
下金型11(又は上金型12)には、樹脂の注入口11bが設けられているが、注入口11bは複数設けてもよい。また、成型時の樹脂の流れを良好にするために、樹脂の小排出口を1箇所以上に設けてもよい。
更に、第1金属層4及び第2金属層5の突出部4b,5bを、成形後に樹脂成形体6から露出させるために、下金型11の側壁は分割構造になっている(図示省略)。積層物Lを成形型10内に配置する際に、下金型11の側壁に設けた矩形の切欠き部に、第1金属層4及び第2金属層5の突出部4b,5bが位置決めされ、その突出部4b,5bを型部材が押さえる構造になっている。これにより、突出部4b,5bを樹脂成形体6から露出させることができる。
次に、例えば、図2(b)に示すように、積層物Lを下金型11の底面に配置する。その際、底面の凸部11aの上面が、第1金属層4の開孔4aを閉塞可能な位置に配置する。積層物Lを配置する際には、各層の一部又は全部が一体化されていてもよく、一体化されていなくてもよい。また、一部が一体化されていない場合、各層を別々に配置しても、同時に配置してもよい。配置する積層物Lの構成は、前述の通りであるが、配置を行う際に、最終的な樹脂成形体6の形状の一部を予め成形した予備成形体を用いて、この予備成形体を積層物Lと共に成形型10内に配置することも可能である(例えば図4参照)。
次に、例えば、図2(c)に示すように、下金型11の側壁の内面に沿って上金型12を挿入するが、上金型12の下面には凸部12aが設けてある。この凸部12aは、積層物Lの上側の第2金属層5の開孔5aを閉塞させる大きさの上面を有し、各々の開孔5aに対向する位置に設けている。そして、下金型11の凸部11aと上金型12凸部12aとで、金属層4,5を加圧した状態で、積層物Lを成形型10内に配置する。その際、第1金属層4及び第2金属層5の突出部4b,5bが成形型10の内部空間から外側に配置されるようにしてもよい。
その状態で、成形型10内に樹脂(「樹脂」には樹脂の原料液や未硬化物を含む)を注入するが、露出部(例えば開孔4a,5a)が凸部11aと凸部12aによって閉塞されているため、図2(d)に示すように、得られた成形体では第1電極層2及び第2電極層3が開孔6aから露出する。また、樹脂の注入により、固体高分子電解質層1、補強層8、触媒層9、第1電極層2及び第2電極層3、第1金属層4及び第2金属層5を、インサート形成により一体化することができる。
[別の実施形態]
(1)先の実施形態では、樹脂の成形体中に1つの単位セルを含む燃料電池の例を示したが、本発明では、図3(a)〜(c)に示すように、樹脂の成形体中に2つ以上の単位セルを含むものでもよい。この実施形態では、樹脂の成形体中に、第1金属層4及び第2金属層5を一体化した金属板Jを用いて接続された4つの単位セルC1〜C4を含む例を示す。
この燃料電池は、先の実施形態で示したような燃料電池を単位セルCとし、その単位セルCの複数を同じ面内に並設して、各々を電気的に接続した状態で、前記樹脂成形体6を一体に成形して複数の単位セルC1〜C4を一体化したものである。このような燃料電池は、図2に示すような前述の製造方法において、積層物Lを成形型10内に配置する工程で、積層物Lを複数用いて、それらの積層物Lの各々を電気的に接続した状態で成形型10内に並設する方法により製造することができる。
各単位セルC1〜C4の構成は基本的には、前述の通りであるが、金属層の突出部4b,5bと、第1金属層4及び第2金属層5を一体化した金属板Jとが相違している。この実施形態では、各単位セルC1〜C4が直列に接続されているため、金属層の突出部4b,5bは、単位セルC1と単位セルC4とにだけ設けられている。つまり、単位セルC1の第1金属層4の突出部4bと、単位セルC4の第2金属層5の突出部5bとだけが存在する。金属層の突出部4b,5bの必要性や形状等は、前述の通りである。
第1金属層4及び第2金属層5を一体化した金属板Jは、隣り合う単位セルC同士を直列に接続するための部材である。第1金属層4及び第2金属層5を独立して配置する代わりに、この金属板Jを用いることにより、これを成形型10内に配置するだけで、単位セルC1〜C4が直列に接続された燃料電池を製造することができる。
金属板Jは、図3(c)に示すように、相互に平行な面内に隣接して配置された第1金属層4及び第2金属層5が、同じ面内で外側に各々延設された延出部4j,5jを有しており、延出部4j,5jを段差部4sによって連結一体化してある。このような段差部は、金属板を板金加工することで作製することができる。
本発明では、第1金属層4及び第2金属層5を一体化した金属板Jを用いて、単位セルCを接続する代わりに、第1金属層4及び第2金属層5に各々の端子部を設けて、接続板や接続配線などで両者を接続してもよい。
(2)先の実施形態では、予備成形体を使用せずに、上下の成形型の凸部により開孔を形成する例を示したが、本発明では、図4に示すように、予め開孔6aを形成した予備成形体7を使用して、一方の成形型12のみの凸部12aにより開孔6aを形成するようにしてよい。このような予備成形体7を使用することで、積層物Lを成形型10内に配置する際の位置決めを容易にし、樹脂成形体6の開孔6aの形成を容易にすることができる。なお、予備成形体7を使用する場合、これによって一方の金属層が加圧され、他方の金属層は成形型の凸部により加圧される。
まず、図4(a)に示すように、予備成形体7を予め成形する。予備成形体7は、樹脂成形体6の開孔6aに相当する開孔7aを有している。つまり、この開孔7aは、後の樹脂成形の際に開孔7aが維持される。予備成形体7の外形は特に限定されないが、インサート形成後の樹脂成形体6より小さく、固体高分子電解質層1より若干大きい程度でよい。
また、予備成形体7は、第1金属層4を位置決めするための段差部7b又は電極層2,3及び固体高分子電解質層1を位置決めするための段差部7cを有することが好ましい。また、第2金属層5の突出部5bを支持するための支持部7dを有することが好ましい。
次に、図4(b)に示すように、予備成形体7を成形型(図示省略)内に配置し、更に第1金属層4を段差部7bに沿って位置決め配置する。このとき、第1金属層4の開孔4aの位置は、予備成形体7の開孔7aの位置と略一致する。
次に、図4(c)〜(e)に示すように、予備成形体7の段差部7cに沿って、第1電極層2、固体高分子電解質層1、及び第2電極層3を、順次位置決めして配置する。その際、予めこれらが積層一体化されたものを位置決め配置してもよい。その際、段差部7cの大きさに少し余裕をもたせることで、後に樹脂を注入した際に、電極層2,3の外周及び前記固体高分子電解質層1の外周を封止することができる。
次に、図4(f)に示すように、第2金属層5を積層配置する。このとき、第2金属層5の突出部5bは、支持部7dによって支持され、また、第2金属層5の開孔5aが、上金型12の下面に設けた凸部12aの位置と略一致するように配置される。
次に、図4(g)に示すように、セット後の成形型内に樹脂を注入して、予備成形体7が樹脂成形体6と一体化した燃料電池を成形する。そのとき、開孔5aが凸部12aによって閉塞されており、また、予備成形体7の開孔7aが樹脂で塞がれないため、得られた成形体では第1電極層2及び第2電極層3が開孔6aから露出する。なお、予備成形体7によって一方の金属層4が加圧され、他方の金属層5は成形型10の凸部12aにより加圧されるため、第1金属層4及び第2金属層5を両側から加圧した状態で、樹脂成形体6により一体化された構造となる。
(3)先の実施形態では、水素供給型の燃料電池の例を主に示したが、本発明に用いられる燃料電池としては、燃料により発電可能な燃料電池であれば何れでもよく、例えばメタノール改質型、ダイレクトメタノール型、炭化水素供給型などが挙げられる。その他の燃料を用いる燃料電池も各種知られており、それらを何れも採用できる。
その場合、各種の燃料電池に応じた固体高分子電解質層、および電極層等が使用される。例えば、ダイレクトメタノール型の場合、一般的には、ナフィオン系ではクロスオーバーが大きくこれを抑止するために、芳香族炭化水素系の固体高分子電解質を使うことが好ましい。また、電極層には触媒は二種混合(Pt、Ru)を使用することが好ましい。
(4)先の実施形態では、第1金属層3及び/又は第2金属層5の開孔4a,5aの大きさと、開孔6aの大きさとがほぼ等しくなるように、樹脂成形体6により一体化してある例を示したが、本発明では、片面に1つの大きな開孔6aを設けることで、第1金属層4及び/又は第2金属層5の複数の開孔4a,5aの全数又は一部を露出させるようにしてもよい。
また、片面に2つ以上の大きな開孔6aを設けることで、第1金属層4及び/又は第2金属層5の複数の開孔4a,5aの半数又はそれ以下を露出させるようにしてもよい。つまり、本発明では1つの開孔6aから、2つ以上の開孔4a,5aが露出するように成形してもよい。
(5)先の実施形態では、補強層8が固体高分子電解質層1の両面に設けられている例を示したが、補強層8は、固体高分子電解質層1の片面のみに設けられてもよい。また、固体高分子電解質層1の両面にそれぞれ設けられる触媒層9は、カソード側の触媒層9がアノード側の触媒層9よりも大きくなるようにしてもよい。図7(a)にこの実施形態に係る燃料電池の正面視断面図を示す。
この燃料電池は、固体高分子電解質層1のアノード側の面のみに補強層8が設けられている。この補強層8の内方にアノード側触媒層9aが設けられている。一方、カソード側触媒層9bは、固体高分子電解質層1の大きさとほぼ同じとなるように設けられており、アノード側触媒層9aよりも大きくなっている。アノード側電極層2はアノード側触媒層9aとほぼ同じ大きさ、カソード側電極層3はカソード側触媒層9bとほぼ同じ大きさとなるようにしている。ただし、アノード側電極層2は、アノード側触媒層9aと必ずしも同じ大きさとしなくともよい。
図7(b)に、図7(a)に示す燃料電池の製造方法の一例を示す。図に示すように、固体高分子電解質層1、アノード側触媒層9a、およびアノード側電極層2の積層物を切り出して作成したアノード側積層物20を用意しておく。また、固体高分子電解質層1、カソード側触媒層9b、およびカソード側電極層3の積層物を切り出して作成したカソード側積層物30を用意しておく。カソード側積層物30の固体高分子電解質層1の表面に、補強層8およびアノード側積層物20の固体高分子電解質層1を接合する。
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
実施例1
厚み0.2mmのステンレス板を金メッキしたものを図1に示す形状(小判状部の長径33mm、短径12mm)にプレスして打ち抜き、金属層4,5となるステンレス板を2枚作製した。
固体高分子電解質層1(陽イオン交換膜)としてナフィオンフィルム(デュポン社製ナフィオン112、33mm×12mm、厚み15μm)を用いた。この固体高分子電解質層1の両面の周縁部に、図1に示すように補強層8としてPEN樹脂(ポリエチレンナフタレート)を幅500μm、厚み40μmで設けた。
また、固体高分子電解質層1の両面の中央部には、図1に示すように、触媒層9を補強層8とほぼ同じ厚みで設けた。白金触媒は、米国エレクトロケム社製20%白金担持カーボン触媒(EC−20−PTC)を用いた。この白金触媒と、カーボンブラック(アクゾ社ケッチェンブラックEC)、ポリフッ化ビニリデン(カイナー)を、それぞれ75重量%、15重量%、10重量%の割合で混合し、ジメチルホルムアミドを、2.5重量%のポリフッ化ビニリデン溶液となるような割合で、上記白金触媒、カーボンブラック、ポリフッ化ビニリデンの混合物中に加え、乳鉢中で溶解・混合して、触媒ペーストを作製し、固体高分子電解質層1の表面に塗布した。
電極層2,3としては、カーボンペーパー(東レ製TGP−H−90、厚み370μm)を33mm×12mmに切断して用いた。
固体高分子電解質層1、触媒層9、補強層8、電極層2,3の積層物を、上記のステンレス板2枚の中央で挟み込み、図2に示すような金型を用いて、2枚のステンレス板の両側から圧力(1トン)がかかる状態で、金型内に配置した。その状態で、樹脂((株)プライムポリマー製、ポリプロピレン樹脂、J−700GP)を195℃で型内に注入して(射出圧力400kgf/cm)、冷却した後に金型から取り出すことで、樹脂成形体の外寸35mm×14mm×2.2mm厚の燃料電池を得た。
比較例1
実施例1において、補強層8を設けず、さらに、固体高分子電解質層1、触媒層9、電極層2,3の外周を全て同じとした(図5参照)。その他の大きさや厚みなどは実施例1と同じとした。
参考例1
参考例1として、比較例1の固体高分子電解質層1の厚みを30μmとした燃料電池を作製した。
上記の実施例1、比較例1、参考例1の燃料電池を作製し、電池特性を評価した。電池特性は、アノード側に内部空間を有しカソード側が大気開放となる評価治具にセットして、アノード側の内部空間に水素を12mL/分で供給することで発電を行い、評価した。電池特性は、東陽テクニカ製燃料電池評価システムを用い、電流を変化させながら出力電圧の変化を測定した。その際の出力電圧の変化を図6に示す。
固体高分子電解質層の薄い燃料電池(比較例1)は、固体高分子電解質層が厚い燃料電池(参考例1)と比較して出力電圧が低下することが判った。すなわち、発電効率を高める観点からは固体高分子電解質層を薄くすることが好ましいが、薄くし過ぎると却って出力電圧が低下する。しかし、固体高分子電解質層を薄くしても、補強層を設けた燃料電池(実施例1)は、補強層の無い燃料電池(比較例1)と比較して出力電圧が大きく向上することが判った。
実施例2−1
実施例2−1として、図8に示すような固体高分子電解質層1、電極層2,3、補強層8、触媒層9a,9bを備える燃料電池を作成し、IV特性を評価した。固体高分子電解質層1の大きさは13×34mm、アノード側触媒層9a、カソード側触媒層9bの大きさはそれぞれ12×33mmとした。補強層8は、アノード側触媒層9a、カソード側触媒層9bの周囲に幅0.5mmで設けた。
実施例2−2
実施例2−2として、図8に示すような固体高分子電解質層1、電極層2,3、補強層8、触媒層9a,9bを備える燃料電池を作成し、IV特性を評価した。補強層8は、固体高分子電解質層1のアノード側の面のみに設けられている。固体高分子電解質層1の大きさは13×34mm、アノード側触媒層9aの大きさは12×33mm、カソード側触媒層9bの大きさは13×34mmとした。補強層8は、アノード側触媒層9aの周囲に幅0.5mmで設けた。
実施例2−3
実施例2−3として、図8に示すような固体高分子電解質層1、電極層2,3、補強層8、触媒層9a,9bを備える燃料電池を作成し、IV特性を評価した。補強層8は、固体高分子電解質層1のアノード側の面のみに設けられている。固体高分子電解質層1の大きさは13×34mm、アノード側触媒層9aの大きさは11×32mm、カソード側触媒層9bの大きさは13×34mmとした。補強層8は、アノード側触媒層9aの周囲に幅1.0mmで設けた。
実施例2−4
実施例2−4として、図8に示すような固体高分子電解質層1、電極層2,3、補強層8、触媒層9a,9bを備える燃料電池を作成し、IV特性を評価した。補強層8は、固体高分子電解質層1のアノード側の面のみに設けられている。固体高分子電解質層1の大きさは13×34mm、アノード側触媒層9aの大きさは10×31mm、カソード側触媒層9bの大きさは13×34mmとした。補強層8は、アノード側触媒層9aの周囲に幅1.5mmで設けた。
図9に実施例2−1、実施例2−2、実施例2−3、実施例2−4の燃料電池のIV特性のグラフを示す。実施例2−2は、補強層8を固体高分子電解質層1の片面のみに設けているため、実施例2−1に比べ、製造時の位置合わせは容易であるが、IV特性は低下している。これは、補強層8が片面のみの場合、アノード側からカソード側への水素ガスの拡散を十分に防ぐことができないものと思われる。
実施例2−3および実施例2−4は、実施例2−2に比べ、補強層8の幅を広くしている。これに伴い、実施例2−3および実施例2−4のアノード側触媒層9aの大きさは、実施例2−2に比べて小さくなっている。アノード側触媒層9aが小さくなると、電極触媒作用の悪化により性能低下が起こりうるが、補強層8の幅を広くすることによる性能向上効果が大きく、結果としてIV特性は良好となる。また、実施例2−4は、補強層8が片面のみであっても、補強層8が両面にある実施例2−1とほぼ同じIV特性となっている。ただし、実施例2−4の方が、実施例2−1に比べると、位置合わせが容易であり、製造し易い。
1 固体高分子電解質層
2 第1電極層
3 第2電極層
4 第1金属層
4a 開孔
5 第2金属層
5a 開孔
6 樹脂成形体
6a 開孔
7 予備成形体
7a 開孔
8 補強層
9 触媒層
10 成形型
11a 凸部
12a 凸部
C 単位セル
L 積層物

Claims (6)

  1. 固体高分子電解質層と、この固体高分子電解質層の両側に設けられた第1電極層および第2電極層と、これらの電極層の更に外側に設けられた第1金属層および第2金属層とを備え、これら各層をインサート成形した樹脂成形体で一体化してあり、
    前記第1金属層は、前記第1電極層を部分的に露出させる露出部を有し、前記第2金属層は、前記第2電極層を部分的に露出させる露出部を有し、
    前記樹脂成形体は、前記露出部から露出した前記第1電極層及び前記第2電極層に気体又は液体を供給するための供給部を有する燃料電池であって、
    前記固体高分子電解質層の少なくとも一面の周縁部に補強層が設けられている燃料電池。
  2. 前記補強層は、前記固体高分子電解質層と、前記第1電極層または前記第2電極層との間に挟まれており、
    前記固体高分子電解質層および前記補強層の外周は、前記第1電極層または前記第2電極層の外周よりも突出している請求項1に記載の燃料電池。
  3. 前記補強層は、前記固体高分子電解質層の両面に設けられている請求項1又は2に記載の燃料電池。
  4. 前記補強層は、前記固体高分子電解質層の片面のみに設けられている請求項1に記載の燃料電池。
  5. 前記固体高分子電解質層の両面にそれぞれ触媒層が設けられ、カソード側の触媒層がアノード側の触媒層よりも大きい請求項1又はに記載の燃料電池。
  6. 前記樹脂成形体は、前記第1金属層又は前記第2金属層の全面又は略全面を覆う請求項1〜5のいずれか1項に記載の燃料電池。
JP2010011134A 2009-01-22 2010-01-21 燃料電池 Active JP5512298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011134A JP5512298B2 (ja) 2009-01-22 2010-01-21 燃料電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009012125 2009-01-22
JP2009012125 2009-01-22
JP2010011134A JP5512298B2 (ja) 2009-01-22 2010-01-21 燃料電池

Publications (2)

Publication Number Publication Date
JP2010192432A JP2010192432A (ja) 2010-09-02
JP5512298B2 true JP5512298B2 (ja) 2014-06-04

Family

ID=42818217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011134A Active JP5512298B2 (ja) 2009-01-22 2010-01-21 燃料電池

Country Status (1)

Country Link
JP (1) JP5512298B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5420508B2 (ja) * 2010-09-24 2014-02-19 ローム株式会社 燃料電池
JP2019188170A (ja) * 2019-06-11 2019-10-31 株式会社三洋物産 遊技機
JP7007512B1 (ja) * 2021-05-31 2022-02-10 株式会社アテックス 導電部材及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011624A (ja) * 2003-06-18 2005-01-13 Mitsubishi Materials Corp 固体高分子型燃料電池用セル部材およびその製造方法
JP2005150008A (ja) * 2003-11-19 2005-06-09 Nitto Denko Corp 燃料電池
JP2008226722A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp ガスケット一体型膜電極接合体、これを含む燃料電池、膜保護構造体およびガスケット一体型膜電極接合体の製造方法
JP5282871B2 (ja) * 2008-05-30 2013-09-04 ローム株式会社 燃料電池及びその製造方法

Also Published As

Publication number Publication date
JP2010192432A (ja) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4621815B2 (ja) 燃料電池スタック
JP6219035B2 (ja) 非対称構造を伴う燃料電池および燃料電池複合体ならびにその方法
JP5234446B2 (ja) 燃料電池スタック用金属セパレータの積層性向上構造
JP5078689B2 (ja) 燃料電池用スタック
CN103250290A (zh) 燃料电池和燃料电池组
CN104081572A (zh) 固体高分子燃料电池用膜电极接合体
CN211088400U (zh) 一种隔板流道扩散层复合结构及使用该结构的燃料电池
US20080193817A1 (en) Unit cell for fuel cell, method for manufacturing thereof and fuel cell system
JP5512298B2 (ja) 燃料電池
US20090311566A1 (en) Separating plate for fuel cell stack and method of manufacturing the same
CN108258336B (zh) 燃料电池堆和伪电池
JP4511610B2 (ja) 燃料電池及びその製造方法
EP2736108B1 (en) Gasket for fuel cell
JP3683117B2 (ja) 燃料電池用ガスセパレータおよびその製造方法並びに燃料電池
JP5235581B2 (ja) 燃料電池セパレータ
JP5255849B2 (ja) 燃料電池及びセパレータ・シール構成体
KR101027098B1 (ko) 연료 전지 및 그 제조 방법
JP5420508B2 (ja) 燃料電池
JP5282871B2 (ja) 燃料電池及びその製造方法
WO2005050766A1 (ja) 燃料電池
JP4608582B2 (ja) 燃料電池
JP3115434U (ja) 燃料電池セル
JP4872286B2 (ja) 平面型の高分子電解質型燃料電池用のセパレータ組みおよび平面型の高分子電解質型燃料電池
JP2006156034A (ja) 液体燃料電池
JP4083599B2 (ja) 燃料電池およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250