JP5511607B2 - Manufacturing method of all-solid-state secondary battery - Google Patents

Manufacturing method of all-solid-state secondary battery Download PDF

Info

Publication number
JP5511607B2
JP5511607B2 JP2010211481A JP2010211481A JP5511607B2 JP 5511607 B2 JP5511607 B2 JP 5511607B2 JP 2010211481 A JP2010211481 A JP 2010211481A JP 2010211481 A JP2010211481 A JP 2010211481A JP 5511607 B2 JP5511607 B2 JP 5511607B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
layer
negative electrode
positive electrode
laminated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010211481A
Other languages
Japanese (ja)
Other versions
JP2012069305A (en
Inventor
英丈 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2010211481A priority Critical patent/JP5511607B2/en
Publication of JP2012069305A publication Critical patent/JP2012069305A/en
Application granted granted Critical
Publication of JP5511607B2 publication Critical patent/JP5511607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体二次電池の製造方法に関するものである。   The present invention relates to a method for manufacturing an all-solid secondary battery.

近年、携帯電話・PDA・ノートパソコンなどの高機能化に伴い、長時間使用が可能であり、且つ小型・軽量で、安全性の高い二次電池が強く要望されている。この要望に応える二次電池として、他の二次電池と比べて高エネルギー密度を有するリチウム二次電池が、従来から多用されている。   In recent years, there has been a strong demand for a secondary battery that can be used for a long time, is small in size and light in weight, and has high safety, with an increase in functionality of a mobile phone, a PDA, a notebook personal computer, and the like. As a secondary battery that meets this demand, lithium secondary batteries having a higher energy density than other secondary batteries have been frequently used.

しかし、通常用いられるリチウム二次電池の多くは、電解液として可燃性の有機溶媒を用いており、過充電時や濫用時に液漏れや発火の危険性がある。そのため、電解液の代わりに固体電解質を用いることで液漏れや発火を防止できる全固体二次電池が鋭意研究されている。   However, many of the lithium secondary batteries that are normally used use a flammable organic solvent as an electrolyte, and there is a risk of liquid leakage or ignition during overcharge or abuse. Therefore, an all-solid secondary battery that can prevent liquid leakage and ignition by using a solid electrolyte instead of an electrolytic solution has been intensively studied.

このような全固体二次電池のエネルギー密度を向上させるため、高容量電極である硫化リチウムを用いることが考えられるが、硫化リチウムは電子伝導性をほとんど有しない。しかし、高圧および高温(600〜1400℃)の状態下で炭素材料とともに直流パルス電流を通電することで、この問題を解消し得る全固体二次電池の製造方法が開示されている(例えば、特許文献1)。   In order to improve the energy density of such an all-solid secondary battery, it is conceivable to use lithium sulfide which is a high-capacity electrode, but lithium sulfide has almost no electronic conductivity. However, a method for manufacturing an all-solid-state secondary battery that can solve this problem by applying a DC pulse current together with a carbon material under high pressure and high temperature (600 to 1400 ° C.) is disclosed (for example, patents). Reference 1).

国際公開第2010/35602号International Publication No. 2010/35602

ところで、上記特許文献1における全固体二次電池の充放電容量は、理論容量の1/6程度に過ぎない。これは、全固体二次電池の電極内のイオン伝導パスまたは電子伝導パスが十分に形成されていないためと考えられる。   By the way, the charge / discharge capacity of the all-solid-state secondary battery in Patent Document 1 is only about 1/6 of the theoretical capacity. This is considered because the ion conduction path or the electron conduction path in the electrode of the all-solid-state secondary battery is not sufficiently formed.

そこで、本発明は、電極内のイオン伝導パスまたは電子伝導パスを十分に形成し、充放電容量を向上させた全固体二次電池の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing an all-solid-state secondary battery in which an ion conduction path or an electron conduction path in an electrode is sufficiently formed and charge / discharge capacity is improved.

上記課題を解決するため、本発明の請求項1に係る全固体二次電池の製造方法は、硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、負極活物質を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行うものである。
In order to solve the above-mentioned problems, a method for producing an all-solid-state secondary battery according to claim 1 of the present invention is a solid electrolyte comprising a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte , and an inorganic solid electrolyte. A method for producing an all-solid-state secondary battery comprising a layer and a negative electrode layer having a negative electrode active material,
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
In the state which pressurized this laminated member and heated in the range of 45-220 degreeC, charging / discharging to the said laminated member is performed at least once.

また、本発明の請求項2に係る全固体二次電池の製造方法は、硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、負極活物質を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を袋状容器に封入するとともに袋状容器内の空気を吸引して所定の真空状態にし、
この袋状容器を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行い、
さらに、上記袋状容器を減圧および冷却した状態において、袋状容器内の空気を吸引して所定の真空状態にするとともに、当該積層部材に充放電を行うものである。
According to a second aspect of the present invention, there is provided a method for producing an all solid state secondary battery comprising : a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte ; a solid electrolyte layer comprising an inorganic solid electrolyte ; A method for producing an all-solid-state secondary battery comprising a negative electrode layer having a substance,
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
Enclose this laminated member in a bag-like container and suck the air in the bag-like container to a predetermined vacuum state,
In a state where the bag-like container is pressurized and heated in the range of 45 to 220 ° C., the laminated member is charged and discharged at least once,
Further, in a state where the bag-like container is depressurized and cooled, the air in the bag-like container is sucked into a predetermined vacuum state, and the laminated member is charged and discharged.

また、本発明の請求項3に係る全固体二次電池の製造方法は、請求項1または2に記載の全固体二次電池の製造方法において、負極活物質が、結晶性炭素材料に低結晶性炭素材料を被覆した炭素材料であるものである。 According to a third aspect of the present invention, there is provided a method for producing an all solid state secondary battery according to the first or second aspect , wherein the negative electrode active material is a low crystal in a crystalline carbon material. It is a carbon material coated with a functional carbon material.

また、本発明の請求項4に係る全固体二次電池の製造方法は、硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、リチウムまたはリチウム化合物を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行うものである。
According to a fourth aspect of the present invention, there is provided a method for producing an all solid state secondary battery comprising : a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte ; a solid electrolyte layer comprising an inorganic solid electrolyte; A method for producing an all-solid-state secondary battery comprising a negative electrode layer having a lithium compound,
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
In the state which pressurized this laminated member and heated in the range of 45-220 degreeC, charging / discharging to the said laminated member is performed at least once.

また、本発明の請求項5に係る全固体二次電池の製造方法は、硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、リチウムまたはリチウム化合物を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を袋状容器に封入するとともに袋状容器内の空気を吸引して所定の真空状態にし、
この袋状容器を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行い、
さらに、上記袋状容器を減圧および冷却した状態において、袋状容器内の空気を吸引して所定の真空状態にするとともに、当該積層部材に充放電を行うものである。
According to a fifth aspect of the present invention, there is provided a method for producing an all solid state secondary battery comprising : a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte ; a solid electrolyte layer comprising an inorganic solid electrolyte; A method for producing an all-solid-state secondary battery comprising a negative electrode layer having a lithium compound,
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
Enclose this laminated member in a bag-like container and suck the air in the bag-like container to a predetermined vacuum state,
In a state where the bag-like container is pressurized and heated in the range of 45 to 220 ° C., the laminated member is charged and discharged at least once,
Further, in a state where the bag-like container is depressurized and cooled, the air in the bag-like container is sucked into a predetermined vacuum state, and the laminated member is charged and discharged.

さらに、本発明の請求項6に係る全固体二次電池の製造方法は、請求項1乃至5のいずれか一項に記載の全固体二次電池の製造方法において、充放電での電流密度が1.5mA/cm以下であるものである。 Furthermore, the manufacturing method of the all-solid-state secondary battery which concerns on Claim 6 of this invention is the manufacturing method of the all-solid-state secondary battery as described in any one of Claims 1 thru | or 5. It is 1.5 mA / cm 2 or less.

全固体二次電池の上記製造方法によると、イオン伝導パスまたは電子伝導パスを形成して充放電容量を向上させた全固体二次電池を得ることができる。   According to the manufacturing method of an all-solid-state secondary battery, an all-solid-state secondary battery having an improved charge / discharge capacity by forming an ion conduction path or an electron conduction path can be obtained.

本発明の実施の形態に係る全固体二次電池を示す斜視図である。It is a perspective view which shows the all-solid-state secondary battery which concerns on embodiment of this invention. 同全固体二次電池の積層部材の成形を説明するための一部切欠斜視図であり、(a)は固体電解質層の成形を説明するための図、(b)は負極層の成形を説明するための図、(c)は正極合材層の成形を説明するための図である。It is a partially cutaway perspective view for explaining the formation of the laminated member of the all-solid-state secondary battery, (a) is a view for explaining the formation of the solid electrolyte layer, (b) is the explanation of the formation of the negative electrode layer. (C) is a figure for demonstrating shaping | molding of a positive mix layer. 同全固体二次電池を製造するための予備充放電を説明する一部切欠斜視図である。It is a partially notched perspective view explaining the preliminary charging / discharging for manufacturing the same all-solid-state secondary battery. 同全固体二次電池を製造するための本充放電を説明する一部切欠斜視図である。It is a partially notched perspective view explaining the main charging / discharging for manufacturing the same all-solid-state secondary battery. 実施例1での予備充放電(60℃)および本充放電(30℃)の充放電容量と、比較例1での本充放電(30℃)の充放電容量との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging capacity | capacitance of the preliminary charging / discharging (60 degreeC) in Example 1 and this charging / discharging (30 degreeC), and the charging / discharging capacity | capacitance of this charging / discharging (30 degreeC) in Comparative Example 1. .

以下、本発明の実施の形態に係る全固体二次電池の製造方法を図面に基づいて説明する。なお、本実施の形態では、全固体二次電池の一例として、全固体リチウムイオン二次電池について説明する。   Hereinafter, a method for producing an all-solid-state secondary battery according to an embodiment of the present invention will be described with reference to the drawings. Note that in this embodiment, an all-solid lithium ion secondary battery will be described as an example of an all-solid secondary battery.

まず、全固体リチウムイオン二次電池の基本的構成について説明する。
この全固体リチウムイオン二次電池は、図示しないが、正極合材層と負極層との間に固体電解質層が配置(積層)され、正極合材層の固体電解質層とは反対側の表面に正極集電体が、また負極層の固体電解質層とは反対側の表面に負極集電体が、負極層の外周に絶縁体フィルムがそれぞれ配置されたものである。
First, the basic configuration of the all solid lithium ion secondary battery will be described.
Although not shown in the figure, this all solid lithium ion secondary battery has a solid electrolyte layer disposed (laminated) between the positive electrode mixture layer and the negative electrode layer, and is on the surface of the positive electrode mixture layer opposite to the solid electrolyte layer. The positive electrode current collector, the negative electrode current collector on the surface of the negative electrode layer opposite to the solid electrolyte layer, and the insulator film on the outer periphery of the negative electrode layer, respectively.

上記正極合材層は、硫黄を成分とする正極活物質と固体電解質と導電助剤との混合物からなり、これらの重量比は、硫黄を成分とする正極活物質25%、固体電解質50%、導電助剤25%である。また固体電解質層は、固体電解質からなる。さらに上記負極層は、負極活物質と固体電解質との混合物からなり、これらの重量比は、負極活物質60%、固体電解質40%である。なお、各層の原料としては、いずれも粉末状のものが用いられている。   The positive electrode mixture layer is composed of a mixture of a positive electrode active material containing sulfur as a component, a solid electrolyte, and a conductive additive. These weight ratios are 25% for a positive electrode active material containing sulfur as a component, 50% for a solid electrolyte, The conductivity aid is 25%. The solid electrolyte layer is made of a solid electrolyte. Furthermore, the negative electrode layer is composed of a mixture of a negative electrode active material and a solid electrolyte, and the weight ratio thereof is 60% for the negative electrode active material and 40% for the solid electrolyte. In addition, as a raw material for each layer, a powdery material is used.

上記正極活物質には、硫黄を成分とするので例えば硫化リチウム(LiS)が用いられ、正極合材層の固体電解質には、例えばリチウムイオン伝導性固体電解質[LiS(70mol%)−P5(30mol%)]が用いられ、導電助剤には、アセチレンガスを熱分解して得られる炭素微粒子であるアセチレンブラックが用いられる。 Since the positive electrode active material contains sulfur as a component, for example, lithium sulfide (Li 2 S) is used. For the solid electrolyte of the positive electrode mixture layer, for example, lithium ion conductive solid electrolyte [Li 2 S (70 mol%) —P 2 S 5 (30 mol%)] is used, and acetylene black, which is carbon fine particles obtained by thermally decomposing acetylene gas, is used as the conductive assistant.

また、固体電解質層の固体電解質には、例えば正極合材層の固体電解質と同一のリチウムイオン伝導性固体電解質[LiS(70mol%)−P5(30mol%)]が用いられる。 For example, the same lithium ion conductive solid electrolyte [Li 2 S (70 mol%)-P 2 S 5 (30 mol%)] as the solid electrolyte of the positive electrode mixture layer is used as the solid electrolyte of the solid electrolyte layer.

さらに、上記負極活物質には、例えば結晶性炭素材料である黒鉛に低結晶性炭素材料を被覆し且つ重量あたりの実効容量が0.35Ah/g以上の炭素材料が用いられる。なお、負極活物質が結晶性炭素材料のみであれば、容量は大きいものの、充放電時の負極活物質におけるリチウムイオンの挿入脱離は一方向だけで行われることになる。したがって、任意の方向で負極活物質におけるリチウムイオンの挿入脱離を可能にすることで充放電時の負極におけるリチウムイオンの挿入脱離をスムーズにするためにも、結晶性炭素材料に低結晶性炭素材料を被覆したものを負極活物質として用いる。一方、負極層の固体電解質には、例えば正極合材層や固体電解質層の固体電解質と同一のリチウムイオン伝導性固体電解質が用いられる。   Furthermore, as the negative electrode active material, for example, a carbon material in which graphite, which is a crystalline carbon material, is coated with a low crystalline carbon material and an effective capacity per weight is 0.35 Ah / g or more is used. Note that if the negative electrode active material is only a crystalline carbon material, the capacity is large, but insertion / extraction of lithium ions in the negative electrode active material during charge / discharge is performed in only one direction. Therefore, the crystalline carbon material has low crystallinity in order to facilitate the insertion and desorption of lithium ions in the negative electrode during charge and discharge by enabling the insertion and desorption of lithium ions in the negative electrode active material in any direction. A material coated with a carbon material is used as the negative electrode active material. On the other hand, for the solid electrolyte of the negative electrode layer, for example, the same lithium ion conductive solid electrolyte as the solid electrolyte of the positive electrode mixture layer or the solid electrolyte layer is used.

ところで、正極集電体には例えば錫(Sn)の箔が用いられ、負極集電体には例えば銅(Cu)の箔が用いられる。
以下に、図2〜図4に基づき上記全固体リチウムイオン二次電池の製造方法について説明する。
By the way, for example, a tin (Sn) foil is used for the positive electrode current collector, and for example, a copper (Cu) foil is used for the negative electrode current collector.
Below, the manufacturing method of the said all-solid-state lithium ion secondary battery is demonstrated based on FIGS.

まず、固体電解質層を成形する。具体的には、図2(a)に示すように、冷間ダイス鋼(SDK)など超硬性の鋼材で製造された内径10mmの円筒形状の型(以下、単に円筒金型Mという)に、固体電解質層3の原料であるリチウムイオン伝導性固体電解質50mgを秤量して入れ、188MPaで1回加圧して固体電解質層3を成形する。   First, a solid electrolyte layer is formed. Specifically, as shown in FIG. 2 (a), a cylindrical mold having an inner diameter of 10 mm (hereinafter simply referred to as a cylindrical mold M) manufactured from superhard steel such as cold die steel (SDK). 50 mg of lithium ion conductive solid electrolyte which is a raw material of the solid electrolyte layer 3 is weighed and put in, and pressed once at 188 MPa to form the solid electrolyte layer 3.

次に、負極層を成形する。具体的には、図示しないが黒鉛に低結晶性炭素材料を被覆したもの60mgとリチウムイオン伝導性固体電解質40mgとを秤量して乳鉢に入れ、十分混合する。そして、この混合物30mgを秤量し、図2(b)に示すように、円筒金型Mに固体電解質層3の上から入れ、それぞれ188MPaで3回加圧して負極層4を成形する。   Next, the negative electrode layer is formed. Specifically, although not shown, 60 mg of graphite coated with a low crystalline carbon material and 40 mg of lithium ion conductive solid electrolyte are weighed and placed in a mortar and mixed thoroughly. Then, 30 mg of this mixture is weighed, and, as shown in FIG. 2 (b), the solid electrolyte layer 3 is put into the cylindrical mold M and pressed at 188 MPa three times to form the negative electrode layer 4.

その後、正極合材層を成形する。具体的には、図示しないがボールミル用でステンレス製のボールおよびポットを準備し、このボールを入れたポットに、硫化リチウム50mgと、リチウムイオン伝導性固体電解質100mgと、アセチレンブラック50mgとを秤量して入れ、30分間ボールミル混合を行う。そして、この混合物20mgを秤量し、図2(c)に示すように、円筒金型Mの固体電解質層3の上(負極層4とは反対側)から入れ、順次376MPa、752MPa、1050MPaで加圧して正極合材層2を成形する。   Thereafter, a positive electrode mixture layer is formed. Specifically, although not shown, a ball and a pot made of stainless steel are prepared for a ball mill, and 50 mg of lithium sulfide, 100 mg of lithium ion conductive solid electrolyte, and 50 mg of acetylene black are weighed into the pot containing the ball. And ball mill mixing for 30 minutes. Then, 20 mg of this mixture was weighed, and placed from above the solid electrolyte layer 3 of the cylindrical mold M (on the side opposite to the negative electrode layer 4) as shown in FIG. To form the positive electrode mixture layer 2.

次に、この正極合材層2、固体電解質層3および負極層4からなる積層部材7を円筒金型Mから取り出す。次に、図示しないが、内径11mmの円環形状の絶縁体フィルムを、この絶縁体フィルムと同じ外径の円形状の銅箔である負極集電体の上に配置する。そして、上記積層部材7の負極層4が負極集電体に接するように、積層部材7(外径10mm)を絶縁体フィルムの環内(内径11mm)に入れる。その後、積層部材7の正極合材層2の上に錫箔の正極集電体を配置して、図1に示す構成とする。   Next, the laminated member 7 composed of the positive electrode mixture layer 2, the solid electrolyte layer 3 and the negative electrode layer 4 is taken out from the cylindrical mold M. Next, although not shown, an annular insulator film having an inner diameter of 11 mm is placed on a negative electrode current collector that is a circular copper foil having the same outer diameter as the insulator film. Then, the laminated member 7 (outer diameter 10 mm) is placed in the ring (inner diameter 11 mm) of the insulator film so that the negative electrode layer 4 of the laminated member 7 is in contact with the negative electrode current collector. Thereafter, a positive electrode current collector made of tin foil is disposed on the positive electrode mixture layer 2 of the laminated member 7 to obtain the configuration shown in FIG.

そして、この積層部材7、正極集電体、負極集電体および絶縁体フィルムからなる部材を、図1に示す正極リード13および負極リード14を有する袋状容器であるラミネートセル(ラミネートフィルムともいう)Lに封入し、このラミネートセルLから空気を吸引して所定の真空度を維持することで、ラミネートセルL内の空気が含んでいる水分の影響を上記部材(積層部材7、正極集電体、負極集電体および絶縁体フィルムからなる部材)が受けないようにし、さらに後述する予備充放電の際の圧力がラミネートセルLに均一に負荷するようにする。なお以下では、積層部材7、正極集電体、負極集電体および絶縁体フィルムからなる部材をラミネートセルLに封入して所定の真空度に維持したものを、単にラミネートセルLという。   And the member which consists of this laminated member 7, a positive electrode collector, a negative electrode collector, and an insulator film is a laminate cell (also called a laminate film) which is a bag-like container having the positive electrode lead 13 and the negative electrode lead 14 shown in FIG. ) L is sealed, and air is sucked from the laminate cell L to maintain a predetermined degree of vacuum, so that the influence of moisture contained in the air in the laminate cell L is affected by the above members (laminated member 7, positive electrode current collector). Body, a negative electrode current collector, and an insulating film) are not received, and the pressure during pre-charging / discharging described later is uniformly applied to the laminate cell L. In the following, a member formed of the laminated member 7, the positive electrode current collector, the negative electrode current collector, and the insulator film is enclosed in the laminate cell L and maintained at a predetermined degree of vacuum is simply referred to as a laminate cell L.

次に、図3に示すように上記ラミネートセルLを恒温槽H内に配置して、60MPaまで加圧するとともに、この恒温槽Hによる温度制御でラミネートセルLを45〜220℃のいずれかの温度まで加熱し、この状態を8時間維持した後、充電終止電圧が3.5V、放電終止電圧が0.5Vおよび充放電の電流密度が0.1mA/cmとなる条件で、定電流による予備充放電をラミネートセルLに行う。 Next, as shown in FIG. 3, the laminate cell L is placed in a constant temperature bath H and pressurized to 60 MPa, and the temperature of the laminate cell L is controlled at any temperature of 45 to 220 ° C. by the constant temperature bath H. Until the charge end voltage is 3.5 V, the discharge end voltage is 0.5 V, and the charge / discharge current density is 0.1 mA / cm 2. Charging / discharging is performed on the laminate cell L.

その後、ラミネートセルLを恒温槽H内から取り出して加圧から開放(減圧)するとともに常温に戻す(冷却する)。そして、再びラミネートセルLから空気を吸引して所定の真空度を維持することで、予備充放電で発生したガスを抜くとともに、大気圧をラミネートセルLに封入した部材(積層部材7、正極集電体、負極集電体および絶縁体フィルム)に均一に負荷させて固体/固体界面の接触状態を改善する。   Thereafter, the laminate cell L is taken out from the thermostat H and released from the pressurization (reduced pressure) and returned to room temperature (cooled). Then, by sucking air from the laminate cell L again to maintain a predetermined degree of vacuum, the gas generated by the preliminary charge / discharge is removed, and a member (laminated member 7, positive electrode collector) in which atmospheric pressure is enclosed in the laminate cell L is extracted. The contact state of the solid / solid interface is improved by uniformly loading the current collector, the negative electrode current collector, and the insulator film.

次に、図4に示すように再びラミネートセルLを恒温槽Hに戻して、温度制御により30℃の状態で約8時間維持した後、充電終止電圧が3.5V、放電終止電圧が0.5Vおよび充放電の電流密度が0.1mA/cmとなる条件で、定電流による本充放電をラミネートセルLに行う。 Next, as shown in FIG. 4, the laminate cell L is returned to the thermostat H again and maintained at 30 ° C. for about 8 hours by temperature control, and then the charge end voltage is 3.5 V and the discharge end voltage is 0. The main charge / discharge with a constant current is performed on the laminate cell L under the condition that the current density of 5 V and the charge / discharge is 0.1 mA / cm 2 .

この本充放電を終えたラミネートセルLが、本発明に係る製造方法で製造された全固体リチウムイオン二次電池となる。
以下、本発明の具体的な実施例および比較例について説明する。これら実施例および比較例における予備充放電を行う温度と本充放電での初期充放電容量との関係を、表1に示す。なお、以下の実施例において、特に条件の明記がないものは、上記実施の形態で説明した条件(例えば、予備充放電での圧力は60MPa)を用いる。
The laminate cell L that has completed this main charge / discharge is an all solid lithium ion secondary battery manufactured by the manufacturing method according to the present invention.
Hereinafter, specific examples and comparative examples of the present invention will be described. Table 1 shows the relationship between the temperature at which preliminary charge / discharge is performed in these Examples and Comparative Examples and the initial charge / discharge capacity in the main charge / discharge. In the following examples, unless otherwise specified, the conditions described in the above embodiment (for example, the pressure during pre-charging / discharging is 60 MPa) are used.

予備充放電を行う温度を60℃とした。この場合、図5での破線で示すように、予備充放電での初期充電容量は545mAh/g、初期放電容量は520mAh/gであった。また、図5での一点鎖線で示すように、本充放電での初期充電容量は505mAh/g、初期放電容量は460mAh/gであった。   The temperature at which pre-charging / discharging was performed was 60 ° C. In this case, as indicated by a broken line in FIG. 5, the initial charge capacity in the preliminary charge / discharge was 545 mAh / g, and the initial discharge capacity was 520 mAh / g. Moreover, as shown by the one-dot chain line in FIG. 5, the initial charge capacity in the main charge / discharge was 505 mAh / g, and the initial discharge capacity was 460 mAh / g.

予備充放電を行う温度を45℃とした。この場合、本充放電での初期充電容量は375mAh/g、初期放電容量は340mAh/gであった。   The temperature at which pre-charging / discharging was performed was 45 ° C. In this case, the initial charge capacity in the main charge / discharge was 375 mAh / g, and the initial discharge capacity was 340 mAh / g.

予備充放電を行う温度を100℃とした。この場合、本充放電での初期充電容量は815mAh/g、初期放電容量は725mAh/gであった。   The temperature at which pre-charging / discharging was performed was set to 100 ° C. In this case, the initial charge capacity in the main charge / discharge was 815 mAh / g, and the initial discharge capacity was 725 mAh / g.

予備充放電を行う温度を150℃とした。この場合、本充放電での初期充電容量は970mAh/g、初期放電容量は850mAh/gであった。   The temperature at which pre-charging / discharging was performed was set to 150 ° C. In this case, the initial charge capacity in the main charge / discharge was 970 mAh / g, and the initial discharge capacity was 850 mAh / g.

予備充放電を行う温度を200℃とした。この場合、本充放電での初期充電容量は1095mAh/g、初期放電容量は930mAh/gであった。   The temperature at which pre-charging / discharging was performed was 200 ° C. In this case, the initial charge capacity in the main charge / discharge was 1095 mAh / g, and the initial discharge capacity was 930 mAh / g.

予備充放電を行う温度を220℃とした。この場合、本充放電での初期充電容量は990mAh/g、初期放電容量は790mAh/gであった。
[比較例1]
The temperature at which pre-charging / discharging was performed was 220 ° C. In this case, the initial charge capacity in the main charge / discharge was 990 mAh / g, and the initial discharge capacity was 790 mAh / g.
[Comparative Example 1]

予備充放電を行う温度を30℃(加熱なし)とし、加圧は行わなかった。この場合、図5での実線で示すように、本充放電での初期充電容量は225mAh/g、初期放電容量は220mAh/gであった。
[比較例2]
The temperature at which pre-charging / discharging was performed was 30 ° C. (no heating), and no pressure was applied. In this case, as indicated by a solid line in FIG. 5, the initial charge capacity in the main charge / discharge was 225 mAh / g, and the initial discharge capacity was 220 mAh / g.
[Comparative Example 2]

予備充放電を行う温度を60℃とし、加圧は行わなかった。この場合、本充放電での初期充電容量は235mAh/g、初期放電容量は225mAh/gであった。   The temperature for pre-charging / discharging was set to 60 ° C., and no pressure was applied. In this case, the initial charge capacity in the main charge / discharge was 235 mAh / g, and the initial discharge capacity was 225 mAh / g.

Figure 0005511607
このように、加圧および加熱をしないで予備充放電を行った比較例1に対し、加熱および加圧をして予備充放電を行った実施例1〜6では、本充放電容量の向上が見られた。
Figure 0005511607
As described above, in Examples 1 to 6 in which preliminary charging / discharging was performed by heating and pressurization compared to Comparative Example 1 in which preliminary charging / discharging was performed without pressurization and heating, the present charge / discharge capacity was improved. It was seen.

また、加熱のみをして予備充放電を行った比較例2では、加圧および加熱をして予備充放電を行った実施例1ほどの本充放電容量の向上が見られなかった。
さらに、実施例3〜6のように、加圧し且つ100〜220℃の範囲で加熱をして予備充放電を行った場合には、本充放電容量の顕著な向上が見られた。
Further, in Comparative Example 2 in which preliminary charging / discharging was performed only by heating, the improvement in the main charging / discharging capacity as in Example 1 in which preliminary charging / discharging was performed by pressurization and heating was not observed.
Furthermore, when pre-charging / discharging was performed by pressurizing and heating in the range of 100-220 ° C. as in Examples 3-6, a significant improvement in the main charge / discharge capacity was observed.

したがって、ラミネートセルLを加圧し且つ45〜220℃の範囲で加熱した状態において、積層部材7に充放電を少なくとも一回行うことにより、イオン伝導パスまたは電子伝導パスを形成して固体/固体界面の接触状態を改善し、充放電容量の向上を図ることができる。   Therefore, in a state where the laminate cell L is pressurized and heated in the range of 45 to 220 ° C., the laminated member 7 is charged / discharged at least once, thereby forming an ion conduction path or an electron conduction path to form a solid / solid interface. The contact state can be improved, and the charge / discharge capacity can be improved.

また、予備充放電の後にラミネートセルLを加圧から開放(減圧)するとともに常温に戻し、このラミネートセルLから空気を吸引して所定の真空度を維持するので、予備充放電で発生したガスを抜くとともに、大気圧をラミネートセルLに封入した部材(積層部材7、正極集電体、負極集電体および絶縁体フィルム)に均一に負荷させて固体/固体界面の接触状態を一層改善し、さらに充放電容量の向上を図ることができる。   Further, after the preliminary charge / discharge, the laminate cell L is released from pressure (reduced pressure) and returned to room temperature, and air is sucked from the laminate cell L to maintain a predetermined degree of vacuum. In addition, the contact state of the solid / solid interface is further improved by uniformly loading the member (laminate member 7, positive electrode current collector, negative electrode current collector and insulator film) in which atmospheric pressure is enclosed in the laminate cell L. Further, the charge / discharge capacity can be improved.

ところで、上記では予備充放電の回数を1回として説明したが、複数回であっても良い。
また、予備充放電を行う圧力を、上記では60MPaとして説明したが、この値に限定されるものではなく、少なくとも0.5MPa以上とするのが好ましい。0.5MPa未満であれば、粒子の接触状態が十分維持されず、十分なイオン伝導パスまたは電子伝導パスが形成されないからである。
By the way, although the number of times of preliminary charging / discharging has been described above as one time, it may be a plurality of times.
Moreover, although the pressure which performs preliminary charging / discharging was demonstrated as 60 Mpa above, it is not limited to this value, It is preferable to set it as at least 0.5 Mpa or more. If it is less than 0.5 MPa, the contact state of the particles is not sufficiently maintained, and a sufficient ion conduction path or electron conduction path is not formed.

さらに、硫黄を成分とする正極活物質として硫化リチウムについて説明したが、これに限定されるものではない。具体的に説明すると、負極活物質がリチウムを含まない場合では、正極活物質はリチウムを含む硫化物であればよく、負極活物質がリチウムを含む場合では、正極活物質は硫黄、リチウムを含む硫化物、またはリチウムを含まない硫化物であればよい。   Furthermore, although lithium sulfide was demonstrated as a positive electrode active material which uses sulfur as a component, it is not limited to this. Specifically, when the negative electrode active material does not contain lithium, the positive electrode active material may be a sulfide containing lithium. When the negative electrode active material contains lithium, the positive electrode active material contains sulfur and lithium. Any sulfide or sulfide containing no lithium may be used.

また、負極活物質についても上記した内容に限定されるものではない。具体的に説明すると、正極活物質がリチウムを含む場合では、負極活物質は錫、ケイ素、合金系負極、リチウム箔など他の物質であってもよい。   Further, the negative electrode active material is not limited to the contents described above. Specifically, when the positive electrode active material contains lithium, the negative electrode active material may be other materials such as tin, silicon, an alloy-based negative electrode, and a lithium foil.

また、予備充放電および本充放電での電流密度を0.1mA/cmとして説明したが、この値に限定されるものではなく、電流の速さに電池反応が追随できる電流密度であればよい。具体的には、1.5mA/cm以下の範囲であり、この範囲内であれば、電流の速さに電池反応が追随できるため、十分なイオン伝導パスまたは電子伝導パスが形成される。 Moreover, although the current density in preliminary charging / discharging and main charging / discharging was described as 0.1 mA / cm 2 , the current density is not limited to this value. Good. Specifically, it is in a range of 1.5 mA / cm 2 or less, and if it is within this range, the battery reaction can follow the speed of the current, so that a sufficient ion conduction path or electron conduction path is formed.

2 正極合材層
3 固体電解質層
4 負極層
7 積層部材
13 正極リード
14 負極リード
H 恒温槽
L ラミネートセル
M 円筒金型
2 Positive electrode mixture layer 3 Solid electrolyte layer 4 Negative electrode layer 7 Laminating member 13 Positive electrode lead 14 Negative electrode lead H Thermostatic bath L Laminating cell M Cylindrical mold

Claims (6)

硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、負極活物質を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行うことを特徴とした全固体二次電池の製造方法。
A method for producing an all-solid-state secondary battery comprising a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte , a solid electrolyte layer comprising an inorganic solid electrolyte , and a negative electrode layer having a negative electrode active material. ,
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
In the state which pressurized this laminated member and heated in the range of 45-220 degreeC, charging / discharging to the said laminated member is performed at least once, The manufacturing method of the all-solid-state secondary battery characterized by the above-mentioned.
硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、負極活物質を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を袋状容器に封入するとともに袋状容器内の空気を吸引して所定の真空状態にし、
この袋状容器を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行い、
さらに、上記袋状容器を減圧および冷却した状態において、袋状容器内の空気を吸引して所定の真空状態にするとともに、当該積層部材に充放電を行うことを特徴とした全固体二次電池の製造方法。
A method for producing an all-solid-state secondary battery comprising a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte , a solid electrolyte layer comprising an inorganic solid electrolyte , and a negative electrode layer having a negative electrode active material. ,
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
Enclose this laminated member in a bag-like container and suck the air in the bag-like container to a predetermined vacuum state,
In a state where the bag-like container is pressurized and heated in the range of 45 to 220 ° C., the laminated member is charged and discharged at least once,
Furthermore, in a state where the bag-like container is decompressed and cooled, the air in the bag-like container is sucked into a predetermined vacuum state, and the laminated member is charged and discharged. Manufacturing method.
負極活物質が、結晶性炭素材料に低結晶性炭素材料を被覆した炭素材料であることを特徴とする請求項1または2に記載の全固体二次電池の製造方法。 The method for producing an all solid state secondary battery according to claim 1 , wherein the negative electrode active material is a carbon material obtained by coating a crystalline carbon material with a low crystalline carbon material. 硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、リチウムまたはリチウム化合物を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行うことを特徴とした全固体二次電池の製造方法。
A method for producing an all-solid-state secondary battery comprising a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte , a solid electrolyte layer made of an inorganic solid electrolyte , and a negative electrode layer having lithium or a lithium compound. And
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
In the state which pressurized this laminated member and heated in the range of 45-220 degreeC, charging / discharging to the said laminated member is performed at least once, The manufacturing method of the all-solid-state secondary battery characterized by the above-mentioned.
硫化リチウムの正極活物質および無機固体電解質を有する正極合材層と、無機固体電解質からなる固体電解質層と、リチウムまたはリチウム化合物を有する負極層とを具備する全固体二次電池の製造方法であって、
上記固体電解質層を、上記正極合材層と負極層の間に配置して積層部材を成形し、
この積層部材を袋状容器に封入するとともに袋状容器内の空気を吸引して所定の真空状態にし、
この袋状容器を加圧し且つ45〜220℃の範囲で加熱した状態において、当該積層部材に充放電を少なくとも一回行い、
さらに、上記袋状容器を減圧および冷却した状態において、袋状容器内の空気を吸引して所定の真空状態にするとともに、当該積層部材に充放電を行うことを特徴とした全固体二次電池の製造方法。
A method for producing an all-solid-state secondary battery comprising a positive electrode mixture layer having a positive electrode active material of lithium sulfide and an inorganic solid electrolyte , a solid electrolyte layer made of an inorganic solid electrolyte , and a negative electrode layer having lithium or a lithium compound. And
The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode layer to form a laminated member,
Enclose this laminated member in a bag-like container and suck the air in the bag-like container to a predetermined vacuum state,
In a state where the bag-like container is pressurized and heated in the range of 45 to 220 ° C., the laminated member is charged and discharged at least once,
Furthermore, in a state where the bag-like container is decompressed and cooled, the air in the bag-like container is sucked into a predetermined vacuum state, and the laminated member is charged and discharged. Manufacturing method.
充放電での電流密度が1.5mA/cm以下であることを特徴とする請求項1乃至5のいずれか一項に記載の全固体二次電池の製造方法。 Method for manufacturing an all solid state secondary battery according to any one of claims 1 to 5 current density at charging and discharging is characterized in that at 1.5 mA / cm 2 or less.
JP2010211481A 2010-09-22 2010-09-22 Manufacturing method of all-solid-state secondary battery Active JP5511607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211481A JP5511607B2 (en) 2010-09-22 2010-09-22 Manufacturing method of all-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211481A JP5511607B2 (en) 2010-09-22 2010-09-22 Manufacturing method of all-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2012069305A JP2012069305A (en) 2012-04-05
JP5511607B2 true JP5511607B2 (en) 2014-06-04

Family

ID=46166328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211481A Active JP5511607B2 (en) 2010-09-22 2010-09-22 Manufacturing method of all-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP5511607B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222501A (en) * 2012-04-12 2013-10-28 Osaka Prefecture Univ Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
JP5880409B2 (en) * 2012-11-28 2016-03-09 トヨタ自動車株式会社 Manufacturing method of all-solid lithium secondary battery
WO2014141962A1 (en) * 2013-03-11 2014-09-18 株式会社村田製作所 All-solid-state battery
EP3012887B1 (en) * 2013-06-21 2017-10-18 Nagase ChemteX Corporation Positive electrode mixture and all-solid-state lithium sulfur cell
JP6380883B2 (en) 2013-10-16 2018-08-29 ナガセケムテックス株式会社 Positive electrode mixture, method for producing the same, and all solid-state lithium-sulfur battery
JP6828240B2 (en) * 2016-01-12 2021-02-10 トヨタ自動車株式会社 Manufacturing method of all-solid-state battery
US11437612B2 (en) 2017-08-09 2022-09-06 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same
US11271243B2 (en) 2017-12-18 2022-03-08 Samsung Electronics Co., Ltd. All-solid secondary battery
JP7156157B2 (en) * 2018-06-01 2022-10-19 トヨタ自動車株式会社 Positive electrode mixture, all-solid battery, method for producing positive electrode mixture, and method for producing all-solid battery
CN112385069A (en) * 2018-07-13 2021-02-19 日立造船株式会社 Manufacturing equipment of all-solid-state secondary battery
JP2020013732A (en) * 2018-07-19 2020-01-23 ブラザー工業株式会社 Lithium sulfur battery
JP7035984B2 (en) 2018-11-27 2022-03-15 トヨタ自動車株式会社 Manufacturing method of positive electrode mixture, all-solid-state battery and positive electrode mixture
JPWO2022172612A1 (en) * 2021-02-12 2022-08-18
JP7400765B2 (en) * 2021-04-01 2023-12-19 トヨタ自動車株式会社 All-solid-state battery manufacturing method
WO2024195089A1 (en) * 2023-03-23 2024-09-26 日産自動車株式会社 Reacted all-solid-state battery and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803866B2 (en) * 1995-11-14 2006-08-02 大阪瓦斯株式会社 Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP2008097940A (en) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd Bipolar type secondary battery
JP2008103284A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All-solid battery
JP2009295289A (en) * 2008-06-02 2009-12-17 Panasonic Corp Lithium-ion secondary battery and method of manufacturing the same
JP5559989B2 (en) * 2008-07-30 2014-07-23 出光興産株式会社 All-solid secondary battery and device comprising the same
JP2010033937A (en) * 2008-07-30 2010-02-12 Idemitsu Kosan Co Ltd Lithium-ion battery
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP2010113968A (en) * 2008-11-06 2010-05-20 Sumitomo Electric Ind Ltd Method of manufacturing nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2012069305A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5511607B2 (en) Manufacturing method of all-solid-state secondary battery
KR101939959B1 (en) CELLULAR MATERIAL FOR SOLID BATTERY, PROCESS FOR PRODUCING THE SAME, AND ALL SOLID LITHIUM SULFATE BATTERY USING THE CELLULAR MATERIAL FOR SOLID CELL
KR101987608B1 (en) A pre-solid lithium-sulfur battery and its manufacturing method
CN106716686B (en) Negative electrode, lithium secondary battery comprising same, battery module comprising same, and method for manufacturing same
CN105556731B (en) All-solid-state battery
KR102198115B1 (en) Electrode, method of producing the same, battery, and electronic device
US9577285B2 (en) Solid electrolyte, method for preparing same, and rechargeable lithium battery comprising solid electrolyte and solid electrolyte particles
JP5755400B2 (en) Negative electrode mixture, negative electrode mixture mixture, negative electrode, all solid lithium battery and apparatus
CN110148719B (en) Preparation method and application of modified thin-wall hierarchical porous carbon for lithium-sulfur battery
JP2011096630A (en) Solid-state lithium secondary battery, and method for producing the same
EP3203549A1 (en) Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode
WO2016157751A1 (en) Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
CN110121804A (en) Negative electrode active material and its manufacturing method, cathode, battery, battery pack, electronic equipment, electric vehicle, electrical storage device and electric system
JP2021517729A (en) Lithium electrode and lithium secondary battery containing it
KR20160005102A (en) Positive electrode mixture and all-solid-state lithium sulfur cell
US20210175539A1 (en) Anode-less all-solid-state battery
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
CN113451586A (en) Electrode plate of secondary battery, secondary battery and preparation method of secondary battery
KR20140058928A (en) The non-aqueous and high-capacity lithium secondary battery
JP7482436B2 (en) Manufacturing method of electrode active material
KR20190028848A (en) All solid state battery and manufacturing method thereof
WO2011093129A1 (en) Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
US20200358080A1 (en) Negative electrode active material for solid battery, negative electrode using the active material, and solid battery
WO2015170481A1 (en) Electrode, method of producing the same, battery, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5511607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250