JP5505968B2 - Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor - Google Patents

Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor Download PDF

Info

Publication number
JP5505968B2
JP5505968B2 JP2010050010A JP2010050010A JP5505968B2 JP 5505968 B2 JP5505968 B2 JP 5505968B2 JP 2010050010 A JP2010050010 A JP 2010050010A JP 2010050010 A JP2010050010 A JP 2010050010A JP 5505968 B2 JP5505968 B2 JP 5505968B2
Authority
JP
Japan
Prior art keywords
signal
tap coefficient
complex
received signal
matched filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010050010A
Other languages
Japanese (ja)
Other versions
JP2011188156A (en
Inventor
憲昭 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Network and System Integration Corp
Original Assignee
NEC Network and System Integration Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Network and System Integration Corp filed Critical NEC Network and System Integration Corp
Priority to JP2010050010A priority Critical patent/JP5505968B2/en
Publication of JP2011188156A publication Critical patent/JP2011188156A/en
Application granted granted Critical
Publication of JP5505968B2 publication Critical patent/JP5505968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は適応受信機、並びにそれに用いる適応整合フィルタのタップ係数演算回路及びタップ係数演算方法に係り、特に直交振幅変調(QAM:Quadrature Amplitude Modulation)された受信信号に対して、適応整合フィルタ(AMF:Adaptive Matched Filter)と判定帰還形等化器(DFE:Decision Feedback Equalizer)とを用いて符号間干渉の除去された高品質の受信信号を得る適応受信機、並びにそれに用いる適応整合フィルタのタップ係数演算回路及びタップ係数演算方法に関する。   The present invention relates to an adaptive receiver, and a tap coefficient calculation circuit and a tap coefficient calculation method for an adaptive matched filter used therefor, and more particularly to an adaptive matched filter (AMF) for a received signal that has been subjected to quadrature amplitude modulation (QAM). : Adaptive Matched Filter (DFE) and Decision Feedback Equalizer (DFE), an adaptive receiver that obtains a high-quality received signal from which intersymbol interference is removed, and tap coefficients of an adaptive matched filter used therefor The present invention relates to an arithmetic circuit and a tap coefficient calculation method.

マルチパスフェージングを伴う無線信号伝搬路において、AMFとDFEとを用いて歪みを除去した高品質の受信を行う適応受信機の一例が特許文献1に記載されている。特許文献1に記載された適応受信機は、空間的に離れた複数のアンテナでそれぞれ無線信号を受信し、まず、AMFにおいて、各受信信号を複数の複素乗算器に別々に供給して、対応して設けられた相関器からのタップ係数とそれぞれ乗算し、その乗算後信号を単一の合成器に供給してダイバーシチ合成を行う。   Patent Document 1 describes an example of an adaptive receiver that performs high-quality reception by removing distortion using AMF and DFE in a radio signal propagation path involving multipath fading. The adaptive receiver described in Patent Document 1 receives radio signals with a plurality of spatially separated antennas, and first supplies each received signal separately to a plurality of complex multipliers in the AMF. Each of the tap coefficients from the correlator provided in this manner is multiplied, and the multiplied signal is supplied to a single synthesizer for diversity combining.

次に、適応受信機はAMFから出力されるダイバーシチ合成された合成信号を自動利得制御回路にて増幅して上記相関器にタップ係数を制御するための参照シンボルとして供給する一方、DFEによりマルチパスフェージングによる符号間干渉を除去して受信信号として出力する。   Next, the adaptive receiver amplifies the diversity combined signal output from the AMF by an automatic gain control circuit and supplies it to the correlator as a reference symbol for controlling the tap coefficient, while multipath by the DFE. Intersymbol interference due to fading is removed and output as a received signal.

かかる適応受信機において、AMFのタップ係数は、例えば特許文献2に記載された図9のブロック図に示すタップ係数演算回路にて生成される。同図に示すように、タップ係数演算回路1は、同相信号成分と直交信号成分とからなる受信信号を複素共役器2において共役複素信号に変換した後、その共役複素信号を複素乗算器3において、受信すべき信号を示す参照シンボルと複素乗算させる。そして、タップ係数演算回路1は、時間平均回路4において複素乗算器3からの乗算後信号を時間平均し、任意の期間のタップ係数(相関値)を出力する。   In such an adaptive receiver, the tap coefficient of AMF is generated by, for example, a tap coefficient calculation circuit shown in the block diagram of FIG. As shown in the figure, the tap coefficient calculation circuit 1 converts a reception signal composed of an in-phase signal component and a quadrature signal component into a conjugate complex signal in a complex conjugate unit 2 and then converts the conjugate complex signal into a complex multiplier 3. In FIG. 1, the reference symbol indicating the signal to be received is complex-multiplied. Then, the tap coefficient calculation circuit 1 performs time averaging on the signal after multiplication from the complex multiplier 3 in the time averaging circuit 4, and outputs a tap coefficient (correlation value) for an arbitrary period.

特開2008−42728号公報JP 2008-42728 A 特開平4−271508号公報JP-A-4-271508

しかしながら、図9に示したタップ係数演算回路1においては、複素乗算器3から出力される乗算後信号を時間平均回路4に直接入力しているため、次のような課題がある。   However, the tap coefficient calculation circuit 1 shown in FIG. 9 has the following problems because the multiplied signal output from the complex multiplier 3 is directly input to the time averaging circuit 4.

第1の課題は、受信信号がQAMのような振幅成分の変化のあるデジタル変調方式で変調された信号の場合は、データパターンによる振幅成分の揺らぎが生じ、このため直交位相変調(QPSK:Quadrature Phase Shift Keying)のような振幅成分の変化のないデジタル変調方式で変調された信号の場合と比べ、タップ係数の理想値からの誤差が増大し、雑音となるということである。   The first problem is that when the received signal is a signal modulated by a digital modulation method with a change in amplitude component such as QAM, fluctuation of the amplitude component due to the data pattern occurs, and therefore, quadrature modulation (QPSK: Quadrature) Compared to the case of a signal modulated by a digital modulation method with no change in amplitude component such as (Phase Shift Keying), the error from the ideal value of the tap coefficient increases, resulting in noise.

第2の課題は、システムに求められた許容レベルに雑音成分が収まる帯域に比べて十分狭い帯域の(すなわち、十分長い時間平均を持つ)時間平均回路を適用できないということである。すなわち、上記の振幅成分の揺らぎを抑圧するためには時間平均回路4による時間平均する時間を長くとることが考えられるが、それは搬送波周波数ずれやフェージングの速度などの条件と競合するため、シンボルレートが低く、周波数ずれが大きな場合などの条件によっては、時間平均回路4の時間平均時間を長くすると追随性を保つことができなくなるからである。   The second problem is that a time averaging circuit having a sufficiently narrow band (that is, having a sufficiently long time average) cannot be applied as compared with a band in which a noise component falls within an allowable level required for the system. That is, in order to suppress the fluctuation of the amplitude component, it is conceivable to take a long time for the time averaging by the time averaging circuit 4, but it competes with conditions such as carrier frequency shift and fading speed. This is because, if the time average time of the time averaging circuit 4 is increased, the followability cannot be maintained depending on conditions such as low and a large frequency deviation.

本発明は以上の点に鑑みなされたもので、QAMのような振幅成分の変化のあるデジタル変調方式で変調された受信信号が入力される場合にも、AMFの追随性を犠牲にすることなく、雑音が低減されたタップ係数を生成し、もって高品質の受信を可能とし得る適応受信機、並びにそれに用いる適応整合フィルタのタップ係数演算回路及びタップ係数演算方法を提供することを目的とする。   The present invention has been made in view of the above points, and even when a reception signal modulated by a digital modulation method having a change in amplitude component such as QAM is input, without sacrificing the tracking ability of the AMF. An object of the present invention is to provide an adaptive receiver capable of generating tap coefficients with reduced noise and enabling high-quality reception, and a tap coefficient calculation circuit and a tap coefficient calculation method for an adaptive matched filter used therefor.

上記の目的を達成するため、本発明の適応受信機は、変調波である受信信号又はその受信信号を所定時間遅延した遅延受信信号と、対応するタップ係数とをそれぞれ複素乗算後に合成して、適応整合フィルタリングを行った信号を出力するトランスバーサルフィルタ構成の適応整合フィルタと、適応整合フィルタから出力される信号に対して所定の等化動作を行い、受信信号中の符号間干渉を除去した信号を出力する判定帰還形等化器と、判定帰還形等化器から出力される信号を参照信号として受信信号との複素乗算を行い、適応整合フィルタのタップ係数を演算するタップ係数演算手段とよりなり、タップ係数演算手段は、受信信号の複素共役信号を生成する複素共役手段と、参照信号と複素共役手段から出力される複素共役信号との複素乗算を行う複素乗算手段と、複素乗算手段から出力される複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する振幅正規化手段と、振幅正規化手段から出力された信号を時間平均し、受信信号と参照信号との任意の期間の相関値を生成して、適応整合フィルタへ前記タップ係数として出力する時間平均手段とを備えることを特徴とする。 In order to achieve the above object, the adaptive receiver of the present invention combines a received signal that is a modulated wave or a delayed received signal obtained by delaying the received signal by a predetermined time and a corresponding tap coefficient after complex multiplication, respectively. An adaptive matched filter with a transversal filter configuration that outputs a signal that has undergone adaptive matched filtering, and a signal that eliminates intersymbol interference in the received signal by performing a predetermined equalization operation on the signal output from the adaptive matched filter And a tap coefficient calculation means for performing complex multiplication of the received signal using the signal output from the decision feedback equalizer as a reference signal and calculating the tap coefficient of the adaptive matched filter The tap coefficient calculation means comprises a complex conjugate means for generating a complex conjugate signal of the received signal, and a complex of the reference conjugate signal and the complex conjugate signal output from the complex conjugate means. A complex multiplying means for performing calculations, an amplitude normalizing means for always normalized to the value on the unit circle the absolute value of the amplitude component of the complex multiplication value output from the complex multiplying means, the signal output from the amplitude normalizing means And time averaging means for generating a correlation value of an arbitrary period between the received signal and the reference signal and outputting the correlation value to the adaptive matched filter as the tap coefficient.

また、上記の目的を達成するため、本発明の適応整合フィルタのタップ係数演算回路は、変調波である受信信号の複素共役信号を生成する複素共役手段と、少なくとも受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、複素共役手段から出力される複素共役信号との複素乗算を行う複素乗算手段と、複素乗算手段から出力される複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する振幅正規化手段と、振幅正規化手段から出力された信号を時間平均し、受信信号と参照信号との任意の期間の相関値を生成して、適応整合フィルタへタップ係数として出力する時間平均手段とを有することを特徴とする。 In order to achieve the above object, the tap coefficient arithmetic circuit of the adaptive matched filter of the present invention includes a complex conjugate means for generating a complex conjugate signal of a received signal that is a modulated wave, and at least a tap coefficient for the received signal. The complex multiplication means for performing complex multiplication of the reference signal obtained through the adaptive matched filter for performing complex multiplication of the complex conjugate signal output from the complex conjugate means, and the amplitude component of the complex multiplication value output from the complex multiplication means Amplitude normalization means that always normalizes the absolute value of the signal to a value on the unit circle, and a time average of the signal output from the amplitude normalization means, and generates a correlation value for an arbitrary period between the received signal and the reference signal And a time averaging means for outputting as a tap coefficient to the adaptive matched filter.

また、上記の目的を達成するため、本発明のタップ係数演算方法は、変調波である受信信号の複素共役信号を生成する第1のステップと、少なくとも受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、第1のステップで得られた複素共役信号との複素乗算を行う第2のステップと、第2のステップで得られた複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する第3のステップと、第3のステップで得られた信号を時間平均し、受信信号と参照信号との任意の期間の相関値を生成して、適応整合フィルタへタップ係数として出力する第4のステップとを含むことを特徴とする。 In order to achieve the above object, a tap coefficient calculation method according to the present invention includes a first step of generating a complex conjugate signal of a received signal that is a modulated wave, and a complex multiplication of at least the received signal by a tap coefficient. The second step of performing complex multiplication of the reference signal obtained through the adaptive matched filter for performing the complex conjugate signal obtained in the first step, and the amplitude component of the complex multiplication value obtained in the second step A third step of always normalizing the absolute value of the signal to a value on the unit circle, and a time average of the signals obtained in the third step, and generating a correlation value of an arbitrary period between the received signal and the reference signal And a fourth step of outputting as a tap coefficient to the adaptive matched filter.

更に、上記の目的を達成するため、本発明のタップ係数演算プログラムは、コンピュータに、変調波である受信信号の複素共役信号を生成する第1のステップと、少なくとも受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、第1のステップで得られた複素共役信号との複素乗算を行う第2のステップと、第2のステップで得られた複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する第3のステップと、第3のステップで得られた信号を時間平均し、受信信号と参照信号との任意の期間の相関値を生成して、適応整合フィルタへタップ係数として出力する第4のステップとを実行させることを特徴とする。 Furthermore, in order to achieve the above object, a tap coefficient calculation program according to the present invention provides a computer with a first step of generating a complex conjugate signal of a received signal that is a modulated wave, and at least a tap coefficient for the received signal. The second step of performing complex multiplication of the reference signal obtained through the adaptive matched filter that performs complex multiplication of the complex conjugate signal obtained in the first step, and the complex multiplication value obtained in the second step A third step of always normalizing the absolute value of the amplitude component of the signal to a value on the unit circle, and a time average of the signals obtained in the third step, and a correlation value of an arbitrary period between the received signal and the reference signal And a fourth step of outputting as a tap coefficient to the adaptive matched filter.

本発明によれば、QAM変調方式のような振幅成分の変化のあるデジタル変調方式で変調された受信信号が入力される場合にも、AMFの追随性を犠牲にすることなく、雑音が低減されたタップ係数を生成し、もって高品質の受信を可能とすることができる。   According to the present invention, noise can be reduced without sacrificing AMF tracking even when a received signal modulated by a digital modulation method having a change in amplitude component such as a QAM modulation method is input. The tap coefficient can be generated to enable high quality reception.

本発明の適応受信機の一実施形態のブロック図である。It is a block diagram of one Embodiment of the adaptive receiver of this invention. 図1中の制御信号発生回路の一実施形態のブロック図である。FIG. 2 is a block diagram of an embodiment of a control signal generation circuit in FIG. 1. 本発明の適応整合フィルタのタップ係数演算回路の第1の実施形態のブロック図である。1 is a block diagram of a first embodiment of a tap coefficient calculation circuit of an adaptive matched filter of the present invention. FIG. 受信信号が16QAM信号であるときの受信信号と参照信号と共役複素信号との関係の一例を示す信号点配置図である。It is a signal point arrangement | positioning figure which shows an example of the relationship between a received signal, a reference signal, and a conjugate complex signal when a received signal is a 16QAM signal. 図4の受信信号と参照信号との複素乗算値を示す図である。FIG. 5 is a diagram illustrating a complex multiplication value of a reception signal and a reference signal in FIG. 4. 図3のタップ係数演算回路と図9のタップ係数演算回路の出力の絶対値の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the absolute value of the output of the tap coefficient arithmetic circuit of FIG. 3, and the tap coefficient arithmetic circuit of FIG. 振幅正規化回路の動作を説明する図である。It is a figure explaining operation | movement of an amplitude normalization circuit. 本発明の適応整合フィルタのタップ係数演算回路の第2の実施形態のブロック図である。It is a block diagram of 2nd Embodiment of the tap coefficient calculating circuit of the adaptive matching filter of this invention. 関連発明のタップ係数演算回路の一例を示すブロック図である。It is a block diagram which shows an example of the tap coefficient calculating circuit of related invention.

次に、本発明の実施形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明になる適応受信機の一実施形態のブロック図を示す。同図に示すように、本実施形態の適応受信機10は、図示しない信号処理部と、適応整合フィルタ(AMF:Adaptive Matched Filter)11と、判定帰還形等化器(DFE:Decision Feedback Equalizer)18と、制御信号発生回路20とから構成される。   FIG. 1 shows a block diagram of an embodiment of an adaptive receiver according to the present invention. As shown in the figure, the adaptive receiver 10 of the present embodiment includes a signal processing unit (not shown), an adaptive matched filter (AMF) 11, and a decision feedback equalizer (DFE: Decision Feedback Equalizer). 18 and a control signal generation circuit 20.

AMF11は、変調波である受信信号又はその受信信号を所定時間遅延した遅延受信信号と、対応するタップ係数とをそれぞれ複素乗算後に合成して、非対称なインパルス応答を対称化する適応整合フィルタリングを行った信号を出力するトランスバーサルフィルタである。すなわち、AMF11は、縦続接続されたT/2遅延器12及び13と、T/2遅延器12から出力される遅延受信信号とタップ係数W0との複素乗算を行う複素乗算器14と、T/2遅延器12に入力される受信信号とタップ係数W-1との複素乗算を行う複素乗算器15と、T/2遅延器13から出力される遅延受信信号とタップ係数W1との複素乗算を行う複素乗算器16と、複素乗算器14〜16からの各乗算後信号を加算する加算器17とよりなるトランスバーサルフィルタの構成とされている。なお、上記のTは1ビット信号周期(シンボル周期)を示す。   The AMF 11 performs adaptive matched filtering to symmetrize the asymmetric impulse response by combining the received signal, which is a modulated wave, or a delayed received signal obtained by delaying the received signal with a predetermined time and the corresponding tap coefficient after complex multiplication. This is a transversal filter that outputs the received signal. That is, the AMF 11 includes cascaded T / 2 delay units 12 and 13, a complex multiplier 14 that performs complex multiplication of the delayed reception signal output from the T / 2 delay unit 12 and the tap coefficient W0, and T / A complex multiplier 15 that performs complex multiplication of the received signal input to the two delay unit 12 and the tap coefficient W-1, and a complex multiplication of the delayed received signal output from the T / 2 delay unit 13 and the tap coefficient W1. The transversal filter is composed of a complex multiplier 16 to be performed and an adder 17 for adding signals after multiplication from the complex multipliers 14 to 16. Note that T represents a 1-bit signal period (symbol period).

適応受信機10は、マルチパスフェージングを伴う無線信号伝搬路を経た送信電波をアンテナで受信して得られた受信信号に対して、上記の信号処理部により利得調整やA/D変換等の所定の信号処理を行う。AMF11は、上記の信号処理部により信号処理された受信信号に対して、非対称なインパルス応答を対称化する公知の適応整合フィルタリング処理を行う。ここで、AMF11の内部の複素乗算器14、15及び16は、制御信号発生回路20から出力されるタップ係数W0、W-1、W1を入力として受け、受信信号又は遅延受信信号との複素乗算を行う。   The adaptive receiver 10 performs predetermined adjustments such as gain adjustment and A / D conversion on the received signal obtained by receiving the transmission radio wave through the radio signal propagation path with multipath fading by the antenna by the signal processing unit. Signal processing. The AMF 11 performs a known adaptive matched filtering process for symmetrizing an asymmetric impulse response with respect to the reception signal signal-processed by the signal processing unit. Here, complex multipliers 14, 15 and 16 in the AMF 11 receive tap coefficients W0, W-1 and W1 output from the control signal generation circuit 20 as inputs, and complex multiplication with the received signal or the delayed received signal. I do.

DFE18は、上記のAMF11から出力されたフィルタ後信号に対して、公知の構成による等化動作を行って符号間干渉が除去された受信信号を出力する。制御信号発生回路20は、このDFE18から出力される受信信号と、AMF11に入力される受信信号とからタップ係数W0、W-1、W1を制御信号として生成し、それを複素乗算器14、15、16へ出力する。   The DFE 18 performs an equalization operation with a known configuration on the post-filter signal output from the AMF 11, and outputs a reception signal from which intersymbol interference is removed. The control signal generation circuit 20 generates tap coefficients W0, W-1, and W1 as control signals from the reception signal output from the DFE 18 and the reception signal input to the AMF 11, and generates them as complex multipliers 14, 15 , 16 is output.

図1に示した適応受信機10の基本的なブロック構成自体は公知であるが、本実施形態は、制御信号発生回路20内の構成、特にタップ係数演算回路の構成が新規であることに特徴がある。すなわち、制御信号発生回路20は、QAMのような振幅成分の変化のあるデジタル変調方式で変調された受信信号が適応受信機10に入力される場合にも、AMF11の追随性を犠牲にすることなく、雑音が低減されたタップ係数を生成し、もって高品質の受信を可能とする構成としたものである。なお、本実施形態の適応受信機10はアンテナの本数は1本でも複数本でも差し支えない。   Although the basic block configuration itself of the adaptive receiver 10 shown in FIG. 1 is known, the present embodiment is characterized in that the configuration in the control signal generation circuit 20, particularly the configuration of the tap coefficient arithmetic circuit, is novel. There is. In other words, the control signal generation circuit 20 sacrifices the tracking ability of the AMF 11 even when a reception signal modulated by a digital modulation method with a change in amplitude component such as QAM is input to the adaptive receiver 10. In other words, the tap coefficient with reduced noise is generated, thereby enabling high quality reception. Note that the adaptive receiver 10 of this embodiment may have one or more antennas.

図2は、図1中の制御信号発生回路20の一実施形態のブロック図を示す。図2に示すように、制御信号発生回路20は、縦続接続された3つの遅延器21、22及び23と、参照信号生成回路24と、タップ係数演算回路(相関器)251、252、253とから構成される。遅延器21は入力される受信号に対して遅延時間τだけ遅延して出力する。遅延時間τは、参照信号生成回路24による時間遅れを調整する時間である。これにより、遅延器21から出力される受信信号は、参照信号生成回路24から出力される参照信号との時間合わせがされる。 FIG. 2 shows a block diagram of an embodiment of the control signal generation circuit 20 in FIG. As shown in FIG. 2, the control signal generation circuit 20 includes three delay devices 21, 22 and 23 connected in cascade, a reference signal generation circuit 24, tap coefficient calculation circuits (correlators) 25 1 , 25 2 , 25 3 . Delay device 21 delays the received signal by a delay time τ and outputs the received signal. The delay time τ is a time for adjusting the time delay by the reference signal generation circuit 24. As a result, the received signal output from the delay unit 21 is time aligned with the reference signal output from the reference signal generation circuit 24.

参照信号生成回路24は、AMF11に入力される受信信号と、DFE18から出力される信号とを入力信号として受け、これらに基づいて、適応受信機10が受信すべき値の参照信号(参照シンボル)を公知の方法により生成する。なお、参照信号生成回路24は、システムや設計方針によりその構成は異なるが、本発明とは直接の関係はないので、参照信号生成回路24を削除してDFE18から出力される信号をそのまま参照信号としてもよい。   The reference signal generation circuit 24 receives a reception signal input to the AMF 11 and a signal output from the DFE 18 as input signals, and based on these, a reference signal (reference symbol) having a value to be received by the adaptive receiver 10. Is produced by a known method. Note that the configuration of the reference signal generation circuit 24 differs depending on the system and design policy, but since it is not directly related to the present invention, the reference signal generation circuit 24 is deleted and the signal output from the DFE 18 is directly used as the reference signal. It is good.

タップ係数演算回路(相関器)252は、遅延器21から出力される受信信号と参照信号生成回路24から出力される参照信号とを入力として受けてタップ係数W-1を生成し、図1の複素乗算器15に供給する。タップ係数演算回路(相関器)251は、遅延器21から出力される受信信号をT/2遅延する遅延器22から出力される遅延受信信号と、参照信号生成回路24から出力される参照信号とを入力として受けてタップ係数W0を生成し、図1の複素乗算器14に供給する。タップ係数演算回路(相関器)253は、遅延器22から出力される遅延受信信号を更にT/2遅延する遅延器23から出力される遅延受信信号と、参照信号生成回路24から出力される参照信号とを入力として受けてタップ係数W1を生成し、図1の複素乗算器16に供給する。 The tap coefficient calculation circuit (correlator) 25 2 receives the reception signal output from the delay unit 21 and the reference signal output from the reference signal generation circuit 24 as input, and generates the tap coefficient W−1. To the complex multiplier 15. The tap coefficient calculation circuit (correlator) 25 1 includes a delayed reception signal output from the delay unit 22 that delays the reception signal output from the delay unit 21 by T / 2, and a reference signal output from the reference signal generation circuit 24. Are received as inputs and a tap coefficient W0 is generated and supplied to the complex multiplier 14 of FIG. The tap coefficient calculation circuit (correlator) 25 3 outputs the delayed reception signal output from the delay unit 23 that further delays the delayed reception signal output from the delay unit 22 by T / 2, and the reference signal generation circuit 24. The tap signal W1 is generated by receiving the reference signal as an input and supplied to the complex multiplier 16 in FIG.

本発明は、上記のタップ係数演算回路(相関器)251、252、253の構成に特徴があり、以下その各実施形態の構成及び動作について詳細に説明する。なお、タップ係数演算回路(相関器)251、252、253は、それぞれ同一構成であるので、代表して一つのタップ係数演算回路(相関器)について説明する。 The present invention is characterized by the configuration of the tap coefficient calculation circuits (correlator) 25 1 , 25 2 , 25 3 , and the configuration and operation of each embodiment will be described in detail below. Since the tap coefficient calculation circuits (correlator) 25 1 , 25 2 , 25 3 have the same configuration, only one tap coefficient calculation circuit (correlator) will be described as a representative.

(第1の実施形態)
図3は、本発明になる適応整合フィルタのタップ係数演算回路の第1の実施形態のブロック図を示す。同図に示すように、本実施形態のタップ係数演算回路25は、受信信号が入力される複素共役器251と、複素共役器251からの共役複素信号とDFE(図1の18)からの参照信号(参照シンボル)との複素乗算を行う複素乗算器252と、振幅正規化回路253と、時間平均回路254とから構成される。
(First embodiment)
FIG. 3 shows a block diagram of a first embodiment of the tap coefficient arithmetic circuit of the adaptive matched filter according to the present invention. As shown in the figure, the tap coefficient calculation circuit 25 of this embodiment includes a complex conjugate 251 to which a received signal is input, a conjugate complex signal from the complex conjugate 251 and a reference from DFE (18 in FIG. 1). A complex multiplier 252 that performs complex multiplication with a signal (reference symbol), an amplitude normalization circuit 253, and a time averaging circuit 254 are configured.

複素共役器251に入力される受信信号は、各タップに入力された伝搬路でのマルチパスフェージングを受けたQAM信号である。複素共役器251は、この受信信号の共役複素信号を出力する。複素乗算器252は、複素共役器251からの共役複素信号と参照信号との複素乗算を行う。DFE(図1の18)からの参照信号は、受信信号が受信されるべき本来の振幅及び位相を示す。   The received signal input to the complex conjugate 251 is a QAM signal that has undergone multipath fading in the propagation path input to each tap. The complex conjugate unit 251 outputs a conjugate complex signal of this received signal. The complex multiplier 252 performs complex multiplication of the conjugate complex signal from the complex conjugate unit 251 and the reference signal. The reference signal from the DFE (18 in FIG. 1) indicates the original amplitude and phase at which the received signal is to be received.

振幅正規化回路253は、複素乗算器252から出力される乗算後信号の振幅を正規化する。この振幅正規化回路253における振幅正規化のための演算方法は、例えばCORDEC法や振幅を除算する等の公知の手法が適用可能であり、どのような手法を用いてもよい。   The amplitude normalization circuit 253 normalizes the amplitude of the multiplied signal output from the complex multiplier 252. As a calculation method for amplitude normalization in the amplitude normalization circuit 253, for example, a known method such as a CORDEC method or an amplitude division can be applied, and any method may be used.

時間平均回路254は、振幅正規化回路253から出力される信号を時間平均し、受信信号と参照信号との任意の期間の相関値を出力する。この時間平均回路254は、移動平均フィルタ等のローパスフィルタで構成できる。   The time averaging circuit 254 performs time averaging on the signal output from the amplitude normalization circuit 253, and outputs a correlation value for an arbitrary period between the received signal and the reference signal. The time averaging circuit 254 can be composed of a low pass filter such as a moving average filter.

次に、本実施形態の動作について説明する。いま、受信信号として16QAM信号が入力されたものとすると、複素共役器251は、この16QAM信号の同相信号成分Iと直交信号成分Qとを共役複素信号に変換して複素乗算器252に供給する。複素乗算器252は、複素共役器251からの共役複素信号と参照シンボルとを複素乗算する。   Next, the operation of this embodiment will be described. Assuming that a 16QAM signal is input as a received signal, the complex conjugate unit 251 converts the in-phase signal component I and the quadrature signal component Q of the 16QAM signal into a conjugate complex signal and supplies the complex signal to the complex multiplier 252. To do. The complex multiplier 252 performs complex multiplication on the conjugate complex signal from the complex conjugate unit 251 and the reference symbol.

ここで、受信信号が図4の信号点配置図に黒丸で示す16個の信号点からなる16QAM信号であり、かつ、図4に実線の矢印Iで示すような(a+ja)で表される信号であるものとする。複素共役器251は、この受信信号の共役複素信号(aーja)を生成する。この共役複素信号(a−ja)は図4に点線の矢印IIで示される。複素乗算器252は、参照信号が図4にIIIで示す受信信号と同じ位相、振幅の(a+ja)で表される信号であるものとすると、共役複素信号(a−ja)と、参照信号(a+ja)とを乗算して、図5に矢印IVで示す、値が2a2である複素乗算値を出力する。なお、図5ではa=1として図示してある。このように、受信信号と参照信号との位相が一致している場合は、図5に示すように、複素乗算値は位相0の実軸上の値を示す。換言すると、複素乗算値が実軸上の値であれば、受信信号と参照信号との位相が一致していることが分かる。 Here, the received signal is a 16QAM signal composed of 16 signal points indicated by black circles in the signal point arrangement diagram of FIG. 4, and a signal represented by (a + ja) as indicated by a solid arrow I in FIG. Suppose that The complex conjugate unit 251 generates a conjugate complex signal (a-ja) of this received signal. This conjugate complex signal (a-ja) is indicated by a dotted arrow II in FIG. Assuming that the reference signal is a signal represented by (a + ja) having the same phase and amplitude as the received signal indicated by III in FIG. 4, the complex multiplier 252 and the conjugate complex signal (a−ja) and the reference signal ( a + niv) and by multiplying the indicated by an arrow IV in FIG. 5, and outputs the complex multiplication value value is 2a 2. In FIG. 5, it is illustrated as a = 1. As described above, when the phases of the received signal and the reference signal coincide with each other, the complex multiplication value indicates a value on the real axis of phase 0 as shown in FIG. In other words, if the complex multiplication value is a value on the real axis, it can be seen that the phases of the received signal and the reference signal are the same.

同様に、複素乗算器252は、受信信号が上記以外のベクトルで表される信号であり、かつ、参照信号が受信信号と完全に一致している場合、値が2a2、10a2、18a2の3通りの値のいずれかを出力する。すなわち、複素乗算器252は、例えば、上記の受信信号及び参照信号が、(aーja)、(−a+ja)、又は(−a−ja)のときには値2a2を出力し、また、(a+j3a)、(a−j3a)、(3a+ja)、(−a−j3a)、(−a+j3a)、又は(−3a−ja)のときには値10a2を出力し、また、(3a+j3a)、(−3a−j3a)、(3a−j3a)、又は(−3a+j3a)のときには値18a2を出力する。 Similarly, the complex multiplier 252 has a value of 2a 2 , 10a 2 , 18a 2 when the received signal is a signal represented by a vector other than the above and the reference signal completely matches the received signal. Any one of the following three values is output. That is, the complex multiplier 252 outputs the value 2a 2 when the received signal and the reference signal are (a−ja), (−a + ja), or (−a−ja), and (a + j3a). ), (a-j3a), (3a + ja), (- a-j3a), (- a + j3a), or outputs the value 10a 2 when the (-3a-ja), also, (3a + j3a), ( - 3a- J3A), and outputs the value 18a 2 when the (3a-j3a), or (-3a + j3a).

つまり、複素乗算器252は、受信信号と参照信号が完全に一致している場合でも、上記の3通りの値のいずれか一の複素乗算値を出力するため、この複素乗算値を図9の回路と同様にそのまま時間平均回路に入力した場合、平均すると時間長における送信データパターンによる振幅値の割合によって、時間平均回路の出力であるタップ係数演算出力の絶対値が図6にVで示すようになり、同図にVIIで示す理想的な値との誤差が生じる。   That is, the complex multiplier 252 outputs any one of the above three complex multiplication values even when the received signal and the reference signal completely match. When the signal is directly input to the time averaging circuit as in the circuit, the absolute value of the tap coefficient calculation output, which is the output of the time averaging circuit, is indicated by V in FIG. Thus, an error from the ideal value indicated by VII in FIG.

そこで、本実施形態では複素乗算器252から出力される複素乗算値を振幅正規化回路253によって振幅成分を正規化した後、時間平均回路254に供給する。振幅正規化回路253は、振幅成分の絶対値を常に単位円上の値に正規化するので振幅成分の誤差を除去できる。   Therefore, in this embodiment, the complex multiplication value output from the complex multiplier 252 is supplied to the time averaging circuit 254 after the amplitude component is normalized by the amplitude normalization circuit 253. Since the amplitude normalization circuit 253 always normalizes the absolute value of the amplitude component to a value on the unit circle, the amplitude component error can be removed.

また、振幅正規化回路253は、受信信号と参照信号との位相が一致していない場合には、例えば、図7に矢印VIIIで示すベクトルで表される複素乗算値が入力された場合には同図に矢印IXで示すように、入力複素乗算値の偏角θ1が保存され、かつ、振幅が点線で示す単位円上に正規化されたベクトルで表される信号を出力する。同様に、振幅正規化回路253は、例えば、図7に矢印Xで示すベクトルで表される複素乗算値が入力された場合には同図に矢印XIで示すように、入力複素乗算値の偏角θ2が保存され、かつ、振幅が点線で示す単位円上に正規化されたベクトルで表される信号を出力する。時間平均回路254は、振幅正規化回路253から出力された信号を時間平均し、受信信号と参照信号との任意の期間の相関値をタップ係数として出力する。 Further, the amplitude normalization circuit 253, when the phase of the received signal and the reference signal do not match, for example, when a complex multiplication value represented by a vector indicated by an arrow VIII in FIG. 7 is input. As indicated by an arrow IX in the figure, the deviation angle θ1 of the input complex multiplication value is stored, and a signal represented by a normalized vector on a unit circle whose amplitude is indicated by a dotted line is output. Similarly, for example, when a complex multiplication value represented by a vector indicated by an arrow X in FIG. 7 is input, the amplitude normalization circuit 253 deviates the input complex multiplication value as indicated by an arrow XI in FIG. The angle θ2 is stored, and a signal represented by a vector normalized on a unit circle whose amplitude is indicated by a dotted line is output. The time averaging circuit 254 performs time averaging on the signal output from the amplitude normalization circuit 253, and outputs a correlation value of an arbitrary period between the received signal and the reference signal as a tap coefficient.

このように、本実施形態のタップ係数演算回路25によれば、振幅正規化回路253により振幅成分の誤差の発生を防ぐことができ、また、受信信号と参照信号が一致していない場合でも、複素乗算器252から出力される複素乗算値の位相成分は保存されるため、位相制御やタイミング制御などのAMFタップ係数としての性能は保ったまま、誤差の少ない係数を得ることができる。   As described above, according to the tap coefficient calculation circuit 25 of the present embodiment, the amplitude normalization circuit 253 can prevent the occurrence of an amplitude component error, and even when the received signal and the reference signal do not match, Since the phase component of the complex multiplication value output from the complex multiplier 252 is preserved, a coefficient with less error can be obtained while maintaining the performance as an AMF tap coefficient such as phase control and timing control.

図6のVIは、本実施形態のタップ係数演算回路25内の時間平均回路254の出力であるタップ係数の絶対値の時間変化を示し、同図にVIIで示す理想的な値との誤差が殆ど生じないことが分かる。このように、本実施形態によれば、QAMにおけるシンボルの振幅成分に由来する誤差を取り除き、QPSKなどの位相変調と同等のタップ係数精度を実現できる。従って、本実施形態によれば、QAMのような振幅成分の変化のあるデジタル変調方式で変調された受信信号が入力される場合にも、AMFの追随性を犠牲にすることなく、雑音が低減されたタップ係数を生成し、もって高品質の受信を可能とすることができる。また、同じ雑音量であれば、図9の回路構成よりも追随性を高めることが可能になる。   VI of FIG. 6 shows the time change of the absolute value of the tap coefficient which is the output of the time averaging circuit 254 in the tap coefficient calculation circuit 25 of the present embodiment, and an error from the ideal value shown by VII in FIG. It turns out that it hardly occurs. Thus, according to the present embodiment, it is possible to remove the error derived from the amplitude component of the symbol in QAM and realize tap coefficient accuracy equivalent to phase modulation such as QPSK. Therefore, according to the present embodiment, noise is reduced without sacrificing AMF tracking even when a received signal modulated by a digital modulation method with a change in amplitude component such as QAM is input. The generated tap coefficient can be generated, thereby enabling high quality reception. Further, if the amount of noise is the same, it becomes possible to improve the followability as compared with the circuit configuration of FIG.

(第2の実施形態)
次に、本発明のタップ係数演算回路の第2の実施形態について説明する。図8は、本発明になる適応整合フィルタのタップ係数演算回路の第2の実施形態のブロック図を示す。同図に示すように、本実施形態のタップ係数演算回路30は、受信信号が入力される複素共役器31と、参照信号(参照シンボル)が入力される振幅正規化回路33と、複素共役器31からの共役複素信号と振幅正規化回路33からの参照信号との複素乗算を行う複素乗算器32と、時間平均回路34とから構成される。
(Second Embodiment)
Next, a second embodiment of the tap coefficient calculation circuit of the present invention will be described. FIG. 8 shows a block diagram of a second embodiment of the tap coefficient arithmetic circuit of the adaptive matched filter according to the present invention. As shown in the figure, the tap coefficient calculation circuit 30 of this embodiment includes a complex conjugate device 31 to which a received signal is input, an amplitude normalization circuit 33 to which a reference signal (reference symbol) is input, and a complex conjugate device. A complex multiplier 32 that performs complex multiplication of the conjugate complex signal from 31 and the reference signal from the amplitude normalization circuit 33 and a time averaging circuit 34 are configured.

本実施形態のタップ係数演算回路30は、参照信号のみ振幅正規化回路33により振幅を正規化する点に特徴がある。振幅正規化回路33の構成は、図3の振幅正規化回路253と同一である。これにより、複素乗算器32は、複素共役器31からの共役複素信号と振幅正規化回路33で振幅が正規化された参照信号との複素乗算値を出力する。   The tap coefficient calculation circuit 30 of the present embodiment is characterized in that the amplitude is normalized by the amplitude normalization circuit 33 only for the reference signal. The configuration of the amplitude normalization circuit 33 is the same as that of the amplitude normalization circuit 253 in FIG. Thereby, the complex multiplier 32 outputs a complex multiplication value of the conjugate complex signal from the complex conjugater 31 and the reference signal whose amplitude is normalized by the amplitude normalization circuit 33.

ここで、受信信号と参照信号とが一致している場合、振幅正規化回路33により振幅正規化された参照信号は、絶対値が1で偏角が受信信号に等しい信号になる。よって、受信信号を複素共役器31を通して得られた受信信号の共役複素信号と、振幅正規化された参照信号との複素乗算値は、絶対値が受信信号の絶対値そのままで、偏角が0の実数になる。従って、理想的な受信信号の絶対値は、(√2)a、(√10)a、3(√2)aのいずれかであるので、複素乗算値の絶対値は理想的な場合、これら3通りのいずれかの値となる。   Here, when the received signal and the reference signal match, the reference signal whose amplitude is normalized by the amplitude normalization circuit 33 becomes a signal whose absolute value is 1 and whose deflection angle is equal to that of the received signal. Therefore, the complex multiplication value of the conjugate complex signal of the received signal obtained by passing the received signal through the complex conjugater 31 and the amplitude-normalized reference signal has the absolute value as it is and the declination is 0. The real number of Therefore, the absolute value of the ideal received signal is any one of (√2) a, (√10) a, and 3 (√2) a. One of three values.

時間平均回路34は、複素乗算器32からの複素乗算値を時間平均し、受信信号と参照信号との任意の期間の相関値をタップ係数として出力する。   The time averaging circuit 34 averages the complex multiplication value from the complex multiplier 32 and outputs a correlation value of an arbitrary period between the received signal and the reference signal as a tap coefficient.

本実施形態のタップ係数演算回路30においては、受信信号は正規化されていないため、第1の実施の形態と比較すると複素乗算値のバラツキの範囲は大きくなる。しかし、図9に示したタップ係数演算回路と比較した場合は、本実施形態の方が正規化の効果が得られる。また、参照信号は変調方式によって既知の値をとるので、リアルタイムの正規化演算をする必要がないため、演算量を低減することができる。正規化の演算は手法にもよるが除算、逆正接(アークタンジェンント)などの比較的演算量が大きくなる処理が必要となるため、本実施形態は演算量の低減が必要なシステムで、誤差量の劣化が許容できる場合において有効である。   In the tap coefficient calculation circuit 30 of the present embodiment, since the received signal is not normalized, the range of variation of the complex multiplication value is larger than that of the first embodiment. However, when compared with the tap coefficient calculation circuit shown in FIG. 9, the present embodiment can provide a normalization effect. In addition, since the reference signal takes a known value depending on the modulation method, it is not necessary to perform a real-time normalization operation, so that the amount of calculation can be reduced. Although the normalization calculation depends on the method, processing that requires a relatively large amount of calculation such as division and arc tangent (arc tangent) is required, so this embodiment is a system that requires a reduction in the amount of calculation. This is effective when the amount of error can be tolerated.

なお、以上の第1及び第2の実施形態のタップ係数演算回路25、30において、タップ係数(相関値)が大きくなる領域では、受信信号と参照信号との位相が一致する割合が高いため、タップ係数演算回路25、30により振幅の誤差を低減することの効果が、位相が一致する割合が低いタップ係数(相関値)が小さくなる領域に比べて相対的に高まる。そのため、タップ係数演算回路25、30により演算するタップ係数(相関値)を全てのタップに適用するのではなく、タップ係数(相関値)が大きくなるセンタータップのみに適用するなどの構成も可能である。その際、適用するタップは予め定めておく方法や、またはタップ係数の分布により動的に制御する方法も可能である。   In the tap coefficient calculation circuits 25 and 30 according to the first and second embodiments described above, in the region where the tap coefficient (correlation value) is large, the ratio of the phase of the received signal and the reference signal is high. The effect of reducing the amplitude error by the tap coefficient calculation circuits 25 and 30 is relatively higher than that in the region where the tap coefficient (correlation value) having a low ratio of matching phases is small. Therefore, it is possible to adopt a configuration in which the tap coefficient (correlation value) calculated by the tap coefficient calculation circuits 25 and 30 is not applied to all the taps but only to the center tap where the tap coefficient (correlation value) increases. is there. At this time, a tap to be applied may be determined in advance, or may be dynamically controlled by a distribution of tap coefficients.

なお、本発明は以上の実施形態に限定されるものではなく、例えば、AMF11のタップ数は3つとしたが、これに限定されるものではない。また、以上の実施形態では、入力される受信信号が16QAM信号であるものとして説明したが、本発明は64QAMなどの他のQAM変調方式や振幅位相変調(APSK:Amplitude Phase Shift Keying)方式その他の振幅成分の変化のあるデジタル変調方式で変調された受信信号に適用して好適であるが、QPSK変調方式や周波数変調(FSK:Frequency Shift Keying)方式その他の振幅成分の変化のないデジタル変調方式で変調された受信信号にも適用可能である。   The present invention is not limited to the above embodiment. For example, although the number of taps of the AMF 11 is three, the present invention is not limited to this. In the above embodiments, the input received signal is assumed to be a 16QAM signal. However, the present invention is not limited to other QAM modulation schemes such as 64QAM, amplitude phase modulation (APSK) schemes, and others. It is suitable to be applied to a received signal modulated by a digital modulation method having a change in amplitude component, but it is suitable for a digital modulation method having no change in amplitude component, such as a QPSK modulation method, a frequency modulation (FSK: Frequency Shift Keying) method, etc. The present invention can also be applied to a modulated received signal.

更に、本発明は、図3や図8に示したタップ係数演算回路25、30の動作をコンピュータにより実行させるタップ係数演算プログラムも包含するものである。   Furthermore, the present invention includes a tap coefficient calculation program that causes a computer to execute the operations of the tap coefficient calculation circuits 25 and 30 shown in FIGS.

上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。   A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.

(付記1)
変調波である受信信号又はその受信信号を所定時間遅延した遅延受信信号と、対応するタップ係数とをそれぞれ複素乗算後に合成して、適応整合フィルタリングを行った信号を出力するトランスバーサルフィルタ構成の適応整合フィルタと、
前記適応整合フィルタから出力される信号に対して所定の等化動作を行い、前記受信信号中の符号間干渉を除去した信号を出力する判定帰還形等化器と、
前記判定帰還形等化器から出力される信号を参照信号として前記受信信号との複素乗算を行い、前記適応整合フィルタのタップ係数を演算するタップ係数演算手段と
よりなり、前記タップ係数演算手段は、
前記受信信号の複素共役信号を生成する複素共役手段と、
前記参照信号と前記複素共役手段から出力される前記複素共役信号との複素乗算を行う複素乗算手段と、
前記複素乗算手段から出力される複素乗算値の振幅を正規化する振幅正規化手段と、
前記振幅正規化手段から出力された信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する時間平均手段と
を備えることを特徴とする適応受信機。
(Appendix 1)
Adaptation of a transversal filter configuration that combines a received signal that is a modulated wave or a delayed received signal obtained by delaying the received signal by a predetermined time and a corresponding tap coefficient after complex multiplication and outputs a signal subjected to adaptive matched filtering A matched filter;
A decision feedback equalizer that performs a predetermined equalization operation on the signal output from the adaptive matched filter and outputs a signal in which intersymbol interference in the received signal is removed;
The tap coefficient calculating means comprises a tap coefficient calculating means for performing complex multiplication with the received signal using the signal output from the decision feedback equalizer as a reference signal and calculating the tap coefficient of the adaptive matched filter. ,
Complex conjugate means for generating a complex conjugate signal of the received signal;
Complex multiplication means for performing complex multiplication of the reference conjugate signal and the complex conjugate signal output from the complex conjugate means;
Amplitude normalizing means for normalizing the amplitude of the complex multiplication value output from the complex multiplication means;
Time averaging means for averaging the signal output from the amplitude normalization means, generating a correlation value of the reception signal and the reference signal for an arbitrary period, and outputting the correlation coefficient to the adaptive matched filter as the tap coefficient; An adaptive receiver comprising:

(付記2)
変調波である受信信号又はその受信信号を所定時間遅延した遅延受信信号と、対応するタップ係数とをそれぞれ複素乗算後に合成して、適応整合フィルタリングを行った信号を出力するトランスバーサルフィルタ構成の適応整合フィルタと、
前記適応整合フィルタから出力される信号に対して所定の等化動作を行い、前記受信信号中の符号間干渉を除去した信号を出力する判定帰還形等化器と、
前記判定帰還形等化器から出力される信号を参照信号として前記受信信号との複素乗算を行い、前記適応整合フィルタのタップ係数を演算するタップ係数演算手段と
よりなり、前記タップ係数演算手段は、
前記受信信号の複素共役信号を生成する複素共役手段と、
前記参照信号の振幅を正規化する振幅正規化手段と、
前記複素共役手段から出力される前記複素共役信号と、前記振幅正規化手段から出力される振幅正規化後参照信号との複素乗算を行う複素乗算手段と、
前記複素乗算手段から出力される複素乗算値を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する時間平均手段と
を備えることを特徴とする適応受信機。
(Appendix 2)
Adaptation of a transversal filter configuration that combines a received signal that is a modulated wave or a delayed received signal obtained by delaying the received signal by a predetermined time and a corresponding tap coefficient after complex multiplication and outputs a signal subjected to adaptive matched filtering A matched filter;
A decision feedback equalizer that performs a predetermined equalization operation on the signal output from the adaptive matched filter and outputs a signal in which intersymbol interference in the received signal is removed;
The tap coefficient calculating means comprises a tap coefficient calculating means for performing complex multiplication with the received signal using the signal output from the decision feedback equalizer as a reference signal and calculating the tap coefficient of the adaptive matched filter. ,
Complex conjugate means for generating a complex conjugate signal of the received signal;
Amplitude normalizing means for normalizing the amplitude of the reference signal;
Complex multiplication means for performing complex multiplication of the complex conjugate signal output from the complex conjugate means and the amplitude-normalized reference signal output from the amplitude normalization means;
Time averaging means for averaging the complex multiplication values output from the complex multiplication means, generating a correlation value for an arbitrary period between the received signal and the reference signal, and outputting the correlation value to the adaptive matched filter as the tap coefficient An adaptive receiver comprising: and.

(付記3)
前記受信信号は、振幅成分の変化のあるデジタル変調方式で変調された信号であることを特徴とする付記1又は2記載の適応受信機。
(Appendix 3)
The adaptive receiver according to appendix 1 or 2, wherein the received signal is a signal modulated by a digital modulation method having a change in amplitude component.

(付記4)
変調波である受信信号の複素共役信号を生成する複素共役手段と、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、前記複素共役手段から出力される前記複素共役信号との複素乗算を行う複素乗算手段と、
前記複素乗算手段から出力される複素乗算値の振幅を正規化する振幅正規化手段と、
前記振幅正規化手段から出力された信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する時間平均手段と
を有することを特徴とする適応整合フィルタのタップ係数演算回路。
(Appendix 4)
Complex conjugate means for generating a complex conjugate signal of a received signal that is a modulated wave;
Complex multiplication means for performing complex multiplication of a reference signal obtained through an adaptive matched filter that performs at least complex multiplication of the received signal with a tap coefficient and the complex conjugate signal output from the complex conjugate means;
Amplitude normalizing means for normalizing the amplitude of the complex multiplication value output from the complex multiplication means;
Time averaging means for averaging the signal output from the amplitude normalization means, generating a correlation value of the reception signal and the reference signal for an arbitrary period, and outputting the correlation coefficient to the adaptive matched filter as the tap coefficient; A tap coefficient calculation circuit for an adaptive matched filter, comprising:

(付記5)
変調波である受信信号の複素共役信号を生成する複素共役手段と、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号の振幅を正規化する振幅正規化手段と、
前記複素共役手段から出力される前記複素共役信号と、前記振幅正規化手段から出力される振幅正規化後参照信号との複素乗算を行う複素乗算手段と、
前記複素乗算手段から出力される複素乗算値を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する時間平均手段と
を有することを特徴とする適応整合フィルタのタップ係数演算回路。
(Appendix 5)
Complex conjugate means for generating a complex conjugate signal of a received signal that is a modulated wave;
Amplitude normalizing means for normalizing the amplitude of the reference signal obtained through an adaptive matched filter that performs complex multiplication of at least the received signal with a tap coefficient;
Complex multiplication means for performing complex multiplication of the complex conjugate signal output from the complex conjugate means and the amplitude-normalized reference signal output from the amplitude normalization means;
Time averaging means for averaging the complex multiplication values output from the complex multiplication means, generating a correlation value for an arbitrary period between the received signal and the reference signal, and outputting the correlation value to the adaptive matched filter as the tap coefficient A tap coefficient calculation circuit for an adaptive matched filter, characterized by comprising:

(付記6)
前記受信信号は、振幅成分の変化のあるデジタル変調方式で変調された信号であることを特徴とする付記4又は5記載の適応整合フィルタのタップ係数演算回路。
(Appendix 6)
6. The tap coefficient arithmetic circuit for an adaptive matched filter according to appendix 4 or 5, wherein the received signal is a signal modulated by a digital modulation method having a change in amplitude component.

(付記7)
変調波である受信信号の複素共役信号を生成する第1のステップと、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、前記第1のステップで得られた前記複素共役信号との複素乗算を行う第2のステップと、
前記第2のステップで得られた複素乗算値の振幅を正規化する第3のステップと、
前記第3のステップで得られた信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する第4のステップと
を含むことを特徴とするタップ係数演算方法。
(Appendix 7)
A first step of generating a complex conjugate signal of a received signal that is a modulated wave;
A second step of performing a complex multiplication of a reference signal obtained through an adaptive matched filter that performs at least a complex multiplication with a tap coefficient on the received signal and the complex conjugate signal obtained in the first step; ,
A third step of normalizing the amplitude of the complex multiplication value obtained in the second step;
A fourth step of averaging the signal obtained in the third step, generating a correlation value for an arbitrary period between the received signal and the reference signal, and outputting the correlation value to the adaptive matched filter as the tap coefficient; A tap coefficient calculation method comprising: and.

(付記8)
変調波である受信信号の複素共役信号を生成する第1のステップと、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号の振幅を正規化する第2のステップと、
前記第1のステップで得られた前記複素共役信号と、前記第2のステップで得られた振幅正規化後参照信号との複素乗算を行う第3のステップと、
前記第3のステップで得られた複素乗算値を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する第4のステップと
を含むことを特徴とするタップ係数演算方法。
(Appendix 8)
A first step of generating a complex conjugate signal of a received signal that is a modulated wave;
A second step of normalizing the amplitude of a reference signal obtained through an adaptive matched filter that performs complex multiplication of at least the received signal with a tap coefficient;
A third step of performing a complex multiplication of the complex conjugate signal obtained in the first step and the amplitude-normalized reference signal obtained in the second step;
The complex multiplication value obtained in the third step is time-averaged to generate a correlation value for an arbitrary period between the received signal and the reference signal, and output to the adaptive matched filter as the tap coefficient The tap coefficient calculation method characterized by including these steps.

(付記9)
前記受信信号は、振幅成分の変化のあるデジタル変調方式で変調された信号であることを特徴とする付記7又は8記載のタップ係数演算方法。
(Appendix 9)
9. The tap coefficient calculation method according to appendix 7 or 8, wherein the received signal is a signal modulated by a digital modulation method having a change in amplitude component.

(付記10)
コンピュータに、
変調波である受信信号の複素共役信号を生成する第1のステップと、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、前記第1のステップで得られた前記複素共役信号との複素乗算を行う第2のステップと、
前記第2のステップで得られた複素乗算値の振幅を正規化する第3のステップと、
前記第3のステップで得られた信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する第4のステップと
を実行させることを特徴とするタップ係数演算プログラム。
(Appendix 10)
On the computer,
A first step of generating a complex conjugate signal of a received signal that is a modulated wave;
A second step of performing a complex multiplication of a reference signal obtained through an adaptive matched filter that performs at least a complex multiplication with a tap coefficient on the received signal and the complex conjugate signal obtained in the first step; ,
A third step of normalizing the amplitude of the complex multiplication value obtained in the second step;
A fourth step of averaging the signal obtained in the third step, generating a correlation value for an arbitrary period between the received signal and the reference signal, and outputting the correlation value to the adaptive matched filter as the tap coefficient; A tap coefficient calculation program characterized by causing and to be executed.

(付記11)
コンピュータに、
変調波である受信信号の複素共役信号を生成する第1のステップと、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号の振幅を正規化する第2のステップと、
前記第1のステップで得られた前記複素共役信号と、前記第2のステップで得られた振幅正規化後参照信号との複素乗算を行う第3のステップと、
前記第3のステップで得られた複素乗算値を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する第4のステップと
を実行させることを特徴とするタップ係数演算プログラム。
(Appendix 11)
On the computer,
A first step of generating a complex conjugate signal of a received signal that is a modulated wave;
A second step of normalizing the amplitude of a reference signal obtained through an adaptive matched filter that performs complex multiplication of at least the received signal with a tap coefficient;
A third step of performing a complex multiplication of the complex conjugate signal obtained in the first step and the amplitude-normalized reference signal obtained in the second step;
The complex multiplication value obtained in the third step is time-averaged to generate a correlation value for an arbitrary period between the received signal and the reference signal, and output to the adaptive matched filter as the tap coefficient A tap coefficient calculation program characterized by executing the following steps.

(付記12)
前記受信信号は、振幅成分の変化のあるデジタル変調方式で変調された信号であることを特徴とする付記10又は11記載のタップ係数演算プログラム。
(Appendix 12)
12. The tap coefficient calculation program according to appendix 10 or 11, wherein the received signal is a signal modulated by a digital modulation method having a change in amplitude component.

10 適応受信機
11 適応整合フィルタ(AMF)
12、13 T/2遅延器
14、15、16 複素乗算器
17 加算器
18 判定帰還形等化器(DFE)
20 制御信号発生回路
21、22、23 遅延器
24 参照信号生成回路
25、251、252、253、30タップ係数演算回路(相関器)
31、251 複素共役器
32、252 複素乗算器
33、253 振幅正規化回路
34、254 時間平均回路
10 Adaptive receiver 11 Adaptive matched filter (AMF)
12, 13 T / 2 delay units 14, 15, 16 Complex multiplier 17 Adder 18 Decision feedback equalizer (DFE)
20 control signal generation circuit 21, 22, 23 delay unit 24 reference signal generation circuit 25, 25 1 , 25 2 , 25 3 , 30 tap coefficient calculation circuit (correlator)
31, 251 Complex conjugate unit 32, 252 Complex multiplier 33, 253 Amplitude normalization circuit 34, 254 Time averaging circuit

Claims (6)

変調波である受信信号又はその受信信号を所定時間遅延した遅延受信信号と、対応するタップ係数とをそれぞれ複素乗算後に合成して、適応整合フィルタリングを行った信号を出力するトランスバーサルフィルタ構成の適応整合フィルタと、
前記適応整合フィルタから出力される信号に対して所定の等化動作を行い、前記受信信号中の符号間干渉を除去した信号を出力する判定帰還形等化器と、
前記判定帰還形等化器から出力される信号を参照信号として前記受信信号との複素乗算を行い、前記適応整合フィルタのタップ係数を演算するタップ係数演算手段と
よりなり、前記タップ係数演算手段は、
前記受信信号の複素共役信号を生成する複素共役手段と、
前記参照信号と前記複素共役手段から出力される前記複素共役信号との複素乗算を行う複素乗算手段と、
前記複素乗算手段から出力される複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する振幅正規化手段と、
前記振幅正規化手段から出力された信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する時間平均手段と
を備えることを特徴とする適応受信機。
Adaptation of a transversal filter configuration that combines a received signal that is a modulated wave or a delayed received signal obtained by delaying the received signal by a predetermined time and a corresponding tap coefficient after complex multiplication and outputs a signal subjected to adaptive matched filtering A matched filter;
A decision feedback equalizer that performs a predetermined equalization operation on the signal output from the adaptive matched filter and outputs a signal in which intersymbol interference in the received signal is removed;
The tap coefficient calculating means comprises a tap coefficient calculating means for performing complex multiplication with the received signal using the signal output from the decision feedback equalizer as a reference signal and calculating the tap coefficient of the adaptive matched filter. ,
Complex conjugate means for generating a complex conjugate signal of the received signal;
Complex multiplication means for performing complex multiplication of the reference conjugate signal and the complex conjugate signal output from the complex conjugate means;
Amplitude normalization means for always normalizing the absolute value of the amplitude component of the complex multiplication value output from the complex multiplication means to a value on a unit circle;
Time averaging means for averaging the signal output from the amplitude normalization means, generating a correlation value of the reception signal and the reference signal for an arbitrary period, and outputting the correlation coefficient to the adaptive matched filter as the tap coefficient; An adaptive receiver comprising:
変調波である受信信号の複素共役信号を生成する複素共役手段と、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、前記複素共役手段から出力される前記複素共役信号との複素乗算を行う複素乗算手段と、
前記複素乗算手段から出力される複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する振幅正規化手段と、
前記振幅正規化手段から出力された信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する時間平均手段と
を有することを特徴とする適応整合フィルタのタップ係数演算回路。
Complex conjugate means for generating a complex conjugate signal of a received signal that is a modulated wave;
Complex multiplication means for performing complex multiplication of a reference signal obtained through an adaptive matched filter that performs at least complex multiplication of the received signal with a tap coefficient and the complex conjugate signal output from the complex conjugate means;
Amplitude normalization means for always normalizing the absolute value of the amplitude component of the complex multiplication value output from the complex multiplication means to a value on a unit circle;
Time averaging means for averaging the signal output from the amplitude normalization means, generating a correlation value of the reception signal and the reference signal for an arbitrary period, and outputting the correlation coefficient to the adaptive matched filter as the tap coefficient; A tap coefficient calculation circuit for an adaptive matched filter, comprising:
前記受信信号は、振幅成分の変化のあるデジタル変調方式で変調された信号であることを特徴とする請求項記載の適応整合フィルタのタップ係数演算回路。 3. The tap coefficient calculation circuit for an adaptive matched filter according to claim 2 , wherein the received signal is a signal modulated by a digital modulation method having a change in amplitude component. 変調波である受信信号の複素共役信号を生成する第1のステップと、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、前記第1のステップで得られた前記複素共役信号との複素乗算を行う第2のステップと、
前記第2のステップで得られた複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する第3のステップと、
前記第3のステップで得られた信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する第4のステップと
を含むことを特徴とするタップ係数演算方法。
A first step of generating a complex conjugate signal of a received signal that is a modulated wave;
A second step of performing a complex multiplication of a reference signal obtained through an adaptive matched filter that performs at least a complex multiplication with a tap coefficient on the received signal and the complex conjugate signal obtained in the first step; ,
A third step of always normalizing the absolute value of the amplitude component of the complex multiplication value obtained in the second step to a value on a unit circle;
A fourth step of averaging the signal obtained in the third step, generating a correlation value for an arbitrary period between the received signal and the reference signal, and outputting the correlation value to the adaptive matched filter as the tap coefficient; A tap coefficient calculation method comprising: and.
前記受信信号は、振幅成分の変化のあるデジタル変調方式で変調された信号であることを特徴とする請求項記載のタップ係数演算方法。 5. The tap coefficient calculation method according to claim 4 , wherein the received signal is a signal modulated by a digital modulation method having a change in amplitude component. コンピュータに、
変調波である受信信号の複素共役信号を生成する第1のステップと、
少なくとも前記受信信号に対してタップ係数との複素乗算を行う適応整合フィルタを通して得られた参照信号と、前記第1のステップで得られた前記複素共役信号との複素乗算を行う第2のステップと、
前記第2のステップで得られた複素乗算値の振幅成分の絶対値を常に単位円上の値に正規化する第3のステップと、
前記第3のステップで得られた信号を時間平均し、前記受信信号と前記参照信号との任意の期間の相関値を生成して、前記適応整合フィルタへ前記タップ係数として出力する第4のステップと
を実行させることを特徴とするタップ係数演算プログラム。
On the computer,
A first step of generating a complex conjugate signal of a received signal that is a modulated wave;
A second step of performing a complex multiplication of a reference signal obtained through an adaptive matched filter that performs at least a complex multiplication with a tap coefficient on the received signal and the complex conjugate signal obtained in the first step; ,
A third step of always normalizing the absolute value of the amplitude component of the complex multiplication value obtained in the second step to a value on a unit circle;
A fourth step of averaging the signal obtained in the third step, generating a correlation value for an arbitrary period between the received signal and the reference signal, and outputting the correlation value to the adaptive matched filter as the tap coefficient; A tap coefficient calculation program characterized by causing and to be executed.
JP2010050010A 2010-03-08 2010-03-08 Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor Active JP5505968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050010A JP5505968B2 (en) 2010-03-08 2010-03-08 Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050010A JP5505968B2 (en) 2010-03-08 2010-03-08 Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor

Publications (2)

Publication Number Publication Date
JP2011188156A JP2011188156A (en) 2011-09-22
JP5505968B2 true JP5505968B2 (en) 2014-05-28

Family

ID=44793928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050010A Active JP5505968B2 (en) 2010-03-08 2010-03-08 Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor

Country Status (1)

Country Link
JP (1) JP5505968B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251023B2 (en) * 1991-02-27 2002-01-28 日本電気株式会社 Automatic equalizer
JP2770839B2 (en) * 1992-02-26 1998-07-02 日本電気株式会社 Adaptive receiver
JP2885618B2 (en) * 1993-07-15 1999-04-26 日本電気株式会社 Adaptive receiver
JP3444258B2 (en) * 2000-01-28 2003-09-08 日本電気株式会社 Adaptive filter, control method thereof, and storage medium storing program
JP3424816B2 (en) * 2000-04-18 2003-07-07 日本電気株式会社 Diversity receiver and diversity reception control method
CN101454993A (en) * 2006-09-29 2009-06-10 松下电器产业株式会社 Waveform equalizing device

Also Published As

Publication number Publication date
JP2011188156A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP4773294B2 (en) Adaptive equalization apparatus and reception apparatus
JP5102738B2 (en) IQ mismatch correction circuit
US7016406B1 (en) Adaptation structure and methods for analog continuous time equalizers
US7978799B2 (en) Adaptive digital filter, FM receiver, signal processing method, and program
JPH08288870A (en) Interference wave elimination device
JP3859386B2 (en) Waveform equalizer, waveform equalizer, and receiver
JP2008519554A (en) Method and apparatus for estimating and correcting baseband frequency error in a receiver
WO2007043124A9 (en) Oversampling transversal equalizer
JP5685908B2 (en) Loop filter
US8223829B2 (en) Adaptive digital filter, signal processing method, FM receiver, and program
WO2014111997A1 (en) Peak suppression apparatus and peak suppression method
JP5505968B2 (en) Adaptive receiver, tap coefficient arithmetic circuit and tap coefficient arithmetic method for adaptive matched filter used therefor
WO2021249650A1 (en) A device and a method for cancelling noise in a communication system
JP4822946B2 (en) Adaptive equalizer
US7139343B2 (en) Digital radio receiver
JP3494370B2 (en) Waveform equalizer, frequency offset compensation method, program, recording medium, mobile station radio apparatus, base station radio apparatus, and mobile communication system using waveform equalizer
JPH08317012A (en) Digital demodulator
KR100480881B1 (en) A Blind Adaptive Decision Feedback Equalizer using Error Feedback
EP2048844A2 (en) Receiving apparatus having equalizer and receiving method
JP6063041B2 (en) Adaptive equalization processing circuit and adaptive equalization processing method
JP6009953B2 (en) Optical receiver
JP2009100357A (en) Waveform equalizer and its control method
JP4966121B2 (en) Received signal equalizer
JP3324496B2 (en) Automatic equalizer
KR100710294B1 (en) Channel equalizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130816

A975 Report on accelerated examination

Effective date: 20130823

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Effective date: 20130910

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20131008

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Effective date: 20140313

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5505968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150