JP5505041B2 - Biochemical reaction chip and manufacturing method thereof - Google Patents

Biochemical reaction chip and manufacturing method thereof Download PDF

Info

Publication number
JP5505041B2
JP5505041B2 JP2010082322A JP2010082322A JP5505041B2 JP 5505041 B2 JP5505041 B2 JP 5505041B2 JP 2010082322 A JP2010082322 A JP 2010082322A JP 2010082322 A JP2010082322 A JP 2010082322A JP 5505041 B2 JP5505041 B2 JP 5505041B2
Authority
JP
Japan
Prior art keywords
biochemical reaction
reaction chip
chip according
channel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010082322A
Other languages
Japanese (ja)
Other versions
JP2011214945A (en
Inventor
美咲 岩坂
知之 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010082322A priority Critical patent/JP5505041B2/en
Publication of JP2011214945A publication Critical patent/JP2011214945A/en
Application granted granted Critical
Publication of JP5505041B2 publication Critical patent/JP5505041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、反応チップとその製造方法に関する。   The present invention relates to a reaction chip and a manufacturing method thereof.

従来、例えばDNA反応、たんぱく質反応等の生化学反応の分野において、微量の試料溶液を処理する反応装置として、μ−TAS(Total Analysis System)やLab−on−Chipと呼ばれる技術が知られている。これは、1個のチップやカートリッジに複数の反応室や流路を供えたものであり、複数の検体の解析、あるいは複数の反応を行うことができる。これらの技術はチップ及びカートリッジを小型化することで扱う薬品を少量にすることが出来、様々なメリットがあるとされてきた。 Conventionally, in the field of biochemical reactions such as DNA reaction and protein reaction, a technique called μ-TAS (Total Analysis System) or Lab-on-Chip is known as a reaction apparatus for processing a small amount of sample solution. . This is a single chip or cartridge provided with a plurality of reaction chambers and flow paths, and can analyze a plurality of specimens or perform a plurality of reactions. These technologies have been considered to have various merits by reducing the amount of chemicals handled by downsizing the chip and cartridge.

そのメリットとは例えば従来使用していた強酸や強アルカリ薬品の分量が微量化することで人体への影響や環境への影響が格段に低くなること、また、生化学反応等に用いられる高額な試薬類の消費量が微量化することで分析、反応に費やすコストを低減できること、などが挙げられる。   The benefits include, for example, the fact that the amount of strong acids and strong alkaline chemicals that have been used in the past has been reduced to a much lower level, and the impact on the human body and the environment will be significantly reduced. For example, the amount of reagents consumed can be reduced so that the cost of analysis and reaction can be reduced.

チップやカートリッジを用いて生化学反応を最も効率よく行うためには、複数の反応場にそれぞれ異なる種類の薬品や検体、酵素を配置し、これら薬品や検体、酵素と反応を起こす試薬を一本ないし数本の主導管からまとめて反応場に流し入れ、異なった複数の反応を生じさせる必要がある。   In order to perform biochemical reactions most efficiently using chips and cartridges, different types of chemicals, specimens, and enzymes are placed in multiple reaction fields, and a single reagent that reacts with these chemicals, specimens, and enzymes is used. Or it is necessary to flow into several reaction pipes from several main conduits to produce different reactions.

この手法を用いれば、複数種の検体を同じ試薬で同時に処理をしたり、また逆に一種類の検体に同時に複数の処理を施したりすることが出来、従来かかっていた時間や手間を大幅に減らすことが可能である。   Using this technique, multiple types of specimens can be processed simultaneously with the same reagent, and conversely, multiple types of specimens can be processed simultaneously, greatly reducing the time and effort required in the past. It is possible to reduce.

この種の手法を用いる際、複数の反応場に等量のサンプルを送液する技術と、各反応チャンバの中身を混ざり合わないようにする技術が重要となる。 When this type of technique is used, a technique for feeding an equal amount of sample to a plurality of reaction fields and a technique for preventing the contents of each reaction chamber from being mixed are important.

この問題を解決するために様々な工夫がなされ、例えば下記のような技術が存在している。
特許文献1では、液溜めから遠心力を用いて、反応チャンバへの送液を行うチップにおいて、反応チャンバを独立させるために流路を変形、密封している。そのため流路を押しつぶす機構が必要であり、自動化が困難である。
また、従来の遠心送液チップのように中央の液溜りから周囲の反応チャンバに遠心送液を行うと、各反応チャンバへの送液量にばらつきが生じてしまう。特許文献2では遠心方法を自転+公転を織り交ぜることで解決している。しかし、この手法もチップが自転+公転するための複雑な機構とスペースが必要となる。
また、特許文献3では液体貯留部と遠心方向に伸びる流路を有する反応チャンバを複数連結させた分析用媒体が公開されているが、この文献では液の配液性などには注視しておらず、逆に反応チャンバに詰まった空気との押し合いで流体を制御するとある。
この手法では液体貯留部と液体貯留部の間の流路の液体は送液されない上、各反応チャンバに送液される液量は大きくばらつき、反応のたびに結果に差異が生じてしまう。
Various solutions have been made to solve this problem. For example, the following techniques exist.
In Patent Document 1, in a chip that sends liquid to a reaction chamber using centrifugal force from a liquid reservoir, the flow path is deformed and sealed in order to make the reaction chamber independent. Therefore, a mechanism for crushing the flow path is necessary, and automation is difficult.
In addition, when the centrifugal liquid feeding is performed from the central liquid reservoir to the surrounding reaction chambers as in the conventional centrifugal liquid feeding chip, the liquid feeding amount to each reaction chamber varies. In Patent Document 2, the centrifugal method is solved by interweaving rotation + revolution. However, this method also requires a complicated mechanism and space for the tip to rotate and revolve.
Further, Patent Document 3 discloses an analytical medium in which a plurality of reaction chambers having a liquid storage part and a flow path extending in the centrifugal direction are connected. However, in this document, attention is not paid to the liquid distribution property. On the contrary, the fluid is controlled by pushing against the air clogged in the reaction chamber.
In this method, the liquid in the flow path between the liquid reservoir and the liquid reservoir is not sent, and the amount of liquid sent to each reaction chamber varies greatly, resulting in a difference in the results for each reaction.

特表2004−502164 3MSpecial table 2004-502164 3M 特許第3699721 株式会社石川製作所Patent No. 3699721 Ishikawa Seisakusho Co., Ltd. 特開2008−83017 太陽誘電株式会社JP2008-83017 TAIYO YUDEN Co., Ltd.

以上のような従来技術の問題点を鑑みて、本発明は反応チャンバへの送液を行う生化学反応用チップにおいて、送液方法が簡易でかつ各反応チャンバの液量ばらつきがなく、低コストな生化学反応用チップを提供することを課題とする。   In view of the above-described problems of the prior art, the present invention provides a biochemical reaction chip for feeding a reaction chamber with a simple solution feeding method, no variation in the amount of liquid in each reaction chamber, and low cost. It is an object to provide a chip for biochemical reaction.

サンプルに複数の処理を施し、かつ上記のような問題を解決するために本発明の1態様は以下の構成を提供する:
(1) 回転可能な反応チップとなる基材の内側に、試薬注入口・排気口を連結し、回転中心に対して円弧を描くように配置されている主流路と、前記回転によって遠心力が作用する方向に前記主流路から分岐され、放射状に延伸され配置されている複数の側路と、前記複数の側路における、回転中心から遠位の端部にそれぞれ配置されている複数の反応チャンバと、を有し、前記複数の側路の各々は、当該側路の遠心方向の略中間位置において、当該中間位置と前記主流とを接続する細流路によりバイパスされ、前記各側路をバイパスする前記細流路は、バイパスする側路の主流路からの分岐端と、バイパスする側路に隣接する側路の主流路からの分岐端との略中間位置において、前記主流路と接続され、前記試薬注入口から注入され、前記主流路に貯留された溶液を、前記遠心力によって前記反応チャンバに送液するときに、前記側路及び反応チャンバにおける気液の入れ替わり性を向上させることができる、ことを特徴とする生化学反応チップである。これにより、主流路と側路の気液の入れ替わり性を高め、主流路に送液された試薬は小さな遠心力でも安定して等量ずつ反応チャンバに送液される。
In order to perform a plurality of treatments on a sample and solve the above problems, one embodiment of the present invention provides the following configuration:
(1) A reagent injection port / exhaust port is connected to the inside of a base material that becomes a rotatable reaction chip, and a main flow path arranged so as to draw an arc with respect to the rotation center, and centrifugal force is generated by the rotation. A plurality of side passages branched from the main flow path in the acting direction and radially arranged, and a plurality of reaction chambers arranged at end portions distal to the center of rotation in the plurality of side passages. And each of the plurality of side passages is bypassed by a narrow channel connecting the intermediate position and the mainstream at a substantially intermediate position in the centrifugal direction of the side passage, and bypasses each side passage. The narrow channel is connected to the main channel at a substantially intermediate position between the branch end from the main channel of the bypass bypass and the branch end from the main channel of the bypass adjacent to the bypass bypass, and the reagent Injected from the inlet, A biochemical reaction characterized in that when the solution stored in the flow path is sent to the reaction chamber by the centrifugal force, the gas-liquid interchangeability in the side path and the reaction chamber can be improved. Chip. As a result, the gas-liquid interchangeability between the main channel and the side channel is enhanced, and the reagent sent to the main channel is stably sent to the reaction chamber in equal amounts even with a small centrifugal force.

また、本発明の生化学反応チップは以下のように構成しても良い。
(2) 生化学反応チップの前記主流路が各ウェルの間で回転中心に対して一つの山を形成することで、波状の形状をしている。
これにより、山部で送液物が切れ、液分配のムラを低減させることができる。さらには当該流路山部の断面積を小さくすることで、液分配時のムラをより減少させることができる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(2) The main flow path of the biochemical reaction chip forms a peak with respect to the rotation center between the wells, thereby forming a wave shape.
Thereby, a liquid sending thing cuts in a mountain part and the nonuniformity of a liquid distribution can be reduced. Furthermore, by reducing the cross-sectional area of the channel crest, unevenness during liquid distribution can be further reduced.

また、本発明の生化学反応チップは以下のように構成しても良い。
(3) 生化学反応チップの前記バイパスが主流路に比べ断面積が小さい。
これにより、送液物がバイパス内に流れにくくなり、主流路を優先して送液する事ができる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(3) The bypass of the biochemical reaction chip has a smaller cross-sectional area than the main flow path.
Thereby, it becomes difficult for a liquid sending thing to flow into a bypass, and it can send liquid giving priority to a main channel.

また、本発明の生化学反応チップは以下のように構成しても良い。
(4) 生化学反応チップの前記バイパスの断面積が1mm以下である。
これにより、バイパス内に流れ込む送液物の量を限りなく減らすことができ、気液の入れ替わり性や送液のバラつきに影響を与える事が無くなる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(4) The cross-sectional area of the bypass of the biochemical reaction chip is 1 mm 2 or less.
As a result, the amount of liquid to be fed flowing into the bypass can be reduced as much as possible, and there is no influence on gas-liquid exchangeability and liquid feeding variation.

また、本発明の生化学反応チップは以下のように構成しても良い。
(5) 生化学反応チップの前記主流路の少なくとも片端に試薬を送液するための送液口を持つ。
これにより、一箇所の注入口から全ての反応ウェルに対する共通送液物を流しいれる事ができる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(5) A liquid feeding port for feeding a reagent to at least one end of the main channel of the biochemical reaction chip.
As a result, a common solution to be fed to all reaction wells can be poured from one injection port.

また、本発明の生化学反応チップは以下のように構成しても良い。
(6) 生化学反応チップの前記反応チャンバが回転中心に対して円周状に配置されている。
送液のバラつきには直接関係しないが、反応チャンバで起きた反応を検出する際に、同心円状に反応ウェルが並んでいることで検出装置の校正を簡易にすることができる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(6) The reaction chamber of the biochemical reaction chip is arranged circumferentially with respect to the rotation center.
Although it is not directly related to the variation in the liquid feeding, the calibration of the detection device can be simplified by detecting the reaction occurring in the reaction chamber by arranging the reaction wells concentrically.

また、本発明の生化学反応チップは以下のように構成しても良い。
(7) 生化学反応チップの前記反応チャンバの容量が100μl以下である。
これにより、従来の消費される高価な試薬の分量を抑え、検査コストや実験コストを大幅に提言する事が可能となる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(7) The volume of the reaction chamber of the biochemical reaction chip is 100 μl or less.
As a result, it is possible to reduce the amount of the expensive reagent that is conventionally consumed and to greatly recommend the inspection cost and the experimental cost.

また、本発明の生化学反応チップは以下のように構成しても良い。
(8) チップが円形で、遠心送液時の回転中心が円の中央に設定されている。
これにより生化学チップの回転時に偏芯による回転のブレを減らすことができ、送液のバラつきをより抑える事が可能となる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(8) The tip is circular and the center of rotation during centrifugal feeding is set at the center of the circle.
As a result, rotation blur due to eccentricity can be reduced during rotation of the biochemical chip, and variations in liquid feeding can be further suppressed.

また、本発明の生化学反応チップは以下のように構成しても良い。
(9) 生化学反応チップを構成する基材が少なくとも2つ以上の基材を張り合わせることによって製造される。
これにより、複雑な流路を形成する材料や、流路に蓋をするための材料を分ける事が出来、温調や測光に向いた蓋材料と、成形性に富む流路材料を選定する事が可能となる。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(9) The base material constituting the biochemical reaction chip is manufactured by pasting at least two base materials.
This makes it possible to separate the material that forms the complicated flow path and the material that covers the flow path, and select the flow path material that is suitable for temperature control and photometry, and that has excellent moldability. Is possible.

また、本発明の生化学反応チップは以下のように構成しても良い。
(10) 生化学反応チップの前記基材の少なくとも一つが光透過性の基材を使用している。
これにより、反応チャンバ内に生じた反応を蛍光色素等の光として検出することが出来る。
Moreover, you may comprise the biochemical reaction chip | tip of this invention as follows.
(10) At least one of the substrates of the biochemical reaction chip uses a light transmissive substrate.
Thereby, the reaction generated in the reaction chamber can be detected as light such as a fluorescent dye.

また、本発明の生化学反応チップは以下のように製造しても良い。
(11)前記光透過性の基材を樹脂成形品で構成する、生化学反応チップの製造方法。
In addition, the biochemical reaction chip of the present invention may be manufactured as follows.
(11) A method for producing a biochemical reaction chip, wherein the light-transmitting substrate is composed of a resin molded product.

また、本発明の生化学反応チップは以下のように製造しても良い。
(12)基材の樹脂成形品の成形方法が、射出成形であることを特徴とする生化学反応チップの製造方法。
In addition, the biochemical reaction chip of the present invention may be manufactured as follows.
(12) A method for producing a biochemical reaction chip, wherein the molding method of the resin molded product of the substrate is injection molding.

また、本発明の生化学反応チップは以下のように製造しても良い。
(13)生化学反応チップの基材のひとつが、接着層を設けた金属板で構成される生化学反応チップの製造方法。
In addition, the biochemical reaction chip of the present invention may be manufactured as follows.
(13) A method for producing a biochemical reaction chip, wherein one of the base materials of the biochemical reaction chip is composed of a metal plate provided with an adhesive layer.

本発明による生化学反応チップの1態様によれば、簡易で機能的、かつ安全安価な反応チップを実現することができる。さらに、1種類の検体に対して複数の処理を施すことが出来るため、従来の処理時間を大幅に短縮出来る。   According to one aspect of the biochemical reaction chip according to the present invention, a simple, functional, safe and inexpensive reaction chip can be realized. Furthermore, since a plurality of processes can be performed on one type of specimen, the conventional processing time can be greatly shortened.

生化学反応を1チップ上で行う際、複数の処理を行うためには複数の反応チャンバにサンプルを所定の分量で分配しなければならず、また各反応チャンバの試薬同士が混ざり合ってはならない。
本発明では複数の反応チャンバ001と、少なくとも一箇所以上のINLET002、OUTLETをもち、バイパス開口部004(主流路口)とバイパス開口部003(側路口)をバイパス細流路006でバイパスすることで気液の入れ替わり性を向上させ、液分配のムラを無くすことが出来る。
When performing a biochemical reaction on one chip, in order to perform a plurality of processes, a sample must be distributed in a predetermined amount to a plurality of reaction chambers, and reagents in each reaction chamber must not be mixed with each other. .
The present invention has a plurality of reaction chambers 001 and at least one INLET002 and OUTLET, and bypasses the bypass opening 004 (main channel port) and bypass opening 003 (side channel port) with the bypass narrow channel 006. It is possible to improve the exchangeability of the liquid and eliminate the unevenness of the liquid distribution.

上記バイパス細流路を設計するにあたり、細流路の断面積は主流路よりも十分に小さく設計する必要がある。   In designing the bypass narrow channel, the sectional area of the narrow channel needs to be designed to be sufficiently smaller than the main channel.

また、バイパス開口部(主流路口)004から隣接するバイパス開口部(主流路口)004までの主流路の容積を任意に設計すれば、同等の容量のサンプルを前記バイパス開口部(主流路口)004間に側路005を持つ反応チャンバ001に送液することができるため、使用するサンプル量を反応チャンバ001ごとに任意に設定することが出来る。   Further, if the volume of the main flow path from the bypass opening (main flow path port) 004 to the adjacent bypass opening (main flow path port) 004 is arbitrarily designed, a sample having the same capacity is placed between the bypass opening (main flow path port) 004. Therefore, the amount of sample to be used can be arbitrarily set for each reaction chamber 001.

本発明の基本的な形状の説明図Illustration of the basic shape of the present invention

本発明の生化学反応チップを図面に基づいて説明する。
図1は本発明の趣旨を表した基本的な形状である。図1は基材の表面を表す。遠心送液を行うため、反応チャンバ001が同心円上に並び、主流路にサンプル試薬を送液するためにINLET/OUTLET002となる大気開放口を1箇所以上持つ。表面に構成されたバイパス細流路006はバイパス開口部(側路口)003とバイパス開口部(主流路口)004を結んでいる流路である。また、隣り合ったバイパス開口部(主流路口)004同士の間に1つずつ反応チャンバ001を持ち、側路005で主流路007と連通している。
The biochemical reaction chip of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic shape representing the gist of the present invention. FIG. 1 represents the surface of a substrate. In order to perform centrifugal liquid feeding, reaction chambers 001 are arranged concentrically, and have one or more air opening ports serving as INLET / OUTLET002 in order to send a sample reagent to the main channel. A bypass narrow channel 006 formed on the surface is a channel connecting the bypass opening (side channel port) 003 and the bypass opening (main channel port) 004. In addition, one reaction chamber 001 is provided between adjacent bypass openings (main channel ports) 004, and communicates with the main channel 007 through a side channel 005.

本発明の生化学反応チップは、回転可能な生化学反応チップとなる基材の内側に複数の反応チャンバと、反応チャンバに至る複数の側路とを有し、全ての側路と試薬注入口・排気口を連結する主流路が回転中心に対して円弧を描くように配置されている。また、側路と主流路が、細流路によってバイパスされていることを特徴とする。このことにより、主流路と側路の気液の入れ替わり性を高め、主流路に送液された試薬は小さな遠心力でも安定して等量ずつ反応チャンバに送液することができる。 The biochemical reaction chip of the present invention has a plurality of reaction chambers and a plurality of side paths leading to the reaction chamber inside a base material that becomes a rotatable biochemical reaction chip, and all the side paths and reagent injection ports -The main flow path connecting the exhaust ports is arranged to draw an arc with respect to the center of rotation. Further, the side path and the main channel are bypassed by a narrow channel. As a result, the gas-liquid interchangeability between the main channel and the side channel is improved, and the reagent sent to the main channel can be sent to the reaction chamber in an equal amount stably even with a small centrifugal force.

本発明の生化学反応チップは当該チップを回転させることにより生じる遠心力により、各反応チャンバ001に配液するものであることから、中央部に回転軸の貫く点(以下、中心点)のある円盤形状であることが好ましいが、チップを貫く回転軸に対して回転可能に形成されていれば特に制限はない。   Since the biochemical reaction chip of the present invention distributes liquid to each reaction chamber 001 by centrifugal force generated by rotating the chip, there is a point through which the rotation shaft penetrates (hereinafter, center point) in the center. Although it is preferably a disk shape, there is no particular limitation as long as it is formed so as to be rotatable with respect to a rotating shaft that penetrates the chip.

チップが円形であれば、遠心送液時の回転中心が円の中央に設定されていることで、生化学チップの回転時に偏芯による回転のブレを減らすことができ、送液のバラつきをより押さえる事が可能となる。 If the tip is circular, the rotation center at the time of centrifugal feeding is set to the center of the circle, so that rotation blur due to eccentricity can be reduced during rotation of the biochemical tip, and liquid feeding variation It becomes possible to hold down.

さらに生化学反応チップの前記反応チャンバが回転中心に対して円周状に配置されていることで、送液のバラつきには直接関係しないが、反応チャンバで起きた反応を検出する際に、同心円状に反応ウェルが並んでいることで検出装置の校正を簡易にすることができる。 Furthermore, since the reaction chamber of the biochemical reaction chip is arranged circumferentially with respect to the rotation center, it is not directly related to the variation in the liquid feeding, but concentric circles are detected when detecting the reaction occurring in the reaction chamber. Calibration of the detection device can be simplified by arranging reaction wells in a line.

また、本発明の生化学反応チップは生化学反応チップの前記主流路が各ウェルの間で回転中心に対して一つの山を形成することで、波状の形状を持つように構成しても良い。これにより、山部で送液物が切れ、液分配のムラを低減させることができる。さらには当該流路山部の断面積を小さくすることで、液分配時のムラをより減少させることができる。 In addition, the biochemical reaction chip of the present invention may be configured to have a wavy shape by forming one peak with respect to the rotation center between the wells of the main flow path of the biochemical reaction chip. . Thereby, a liquid sending thing cuts in a mountain part and the nonuniformity of a liquid distribution can be reduced. Furthermore, by reducing the cross-sectional area of the channel crest, unevenness during liquid distribution can be further reduced.

また、本発明の生化学反応チップは生化学反応チップの前記バイパスが主流路に比べ断面積が小さいものとすることが好ましい。これにより、送液物がバイパス内に流れにくくなり、主流路を優先して送液する事ができる。 In the biochemical reaction chip of the present invention, it is preferable that the bypass of the biochemical reaction chip has a smaller cross-sectional area than the main flow path. Thereby, it becomes difficult for a liquid sending thing to flow into a bypass, and it can send liquid giving priority to a main channel.

また、本発明の生化学反応チップは生化学反応チップの前記バイパスの断面積が1mm以下であることが好ましい。これにより、バイパス内に流れ込む送液物の量を限りなく減らすことができ、気液の入れ替わり性や送液のバラつきに影響を与える事が無くなる。 In the biochemical reaction chip of the present invention, the cross-sectional area of the bypass of the biochemical reaction chip is preferably 1 mm 2 or less. As a result, the amount of liquid to be fed flowing into the bypass can be reduced as much as possible, and there is no influence on gas-liquid exchangeability and liquid feeding variation.

また、本発明の生化学反応チップは生化学反応チップの前記主流路の少なくとも片端に試薬を送液するための送液口を持つことが好ましい。これにより、一箇所の注入口から全ての反応ウェルに対する共通送液物を流しいれる事ができる。 In addition, the biochemical reaction chip of the present invention preferably has a liquid supply port for supplying a reagent to at least one end of the main flow path of the biochemical reaction chip. As a result, a common solution to be fed to all reaction wells can be poured from one injection port.

また、本発明の生化学反応チップは生化学反応チップの前記反応チャンバの容量が100μl以下であることが好ましい。これにより、従来の消費される高価な試薬の分量を抑え、検査コストや実験コストを大幅に低減する事が可能となる。   In the biochemical reaction chip of the present invention, the volume of the reaction chamber of the biochemical reaction chip is preferably 100 μl or less. As a result, it is possible to suppress the amount of the expensive reagent that is conventionally consumed, and to greatly reduce the inspection cost and the experimental cost.

本発明の生化学反応チップは、生化学反応チップを構成する基材が少なくとも2つ以上の基材を張り合わせることによって製造することができる。   The biochemical reaction chip of the present invention can be produced by laminating at least two base materials that constitute the biochemical reaction chip.

基材の材料としては、ポリプロピレン、ポリカーボネート、アクリル等の樹脂を用いることができる。上記のような樹脂であれば、加工が容易であり、光透過性を持たせることができる。生化学反応チップの前記基材の少なくとも一つが光透過性の基材を使用することで、反応チャンバ内に生じた反応を外部から蛍光色素等の光として検出することが出来る。なお、樹脂成形品の場合、流路形成等の基材の加工は、例えば射出成形で行うことができる。   As a material for the substrate, resins such as polypropylene, polycarbonate, and acrylic can be used. The resin as described above can be easily processed and can have optical transparency. By using a light-transmitting substrate as at least one of the substrates of the biochemical reaction chip, the reaction generated in the reaction chamber can be detected as light from a fluorescent dye or the like from the outside. In the case of a resin molded product, processing of the base material such as flow path formation can be performed by, for example, injection molding.

また、基材の材料にアルミニウム等の熱伝導性、強度の高い金属板を用いてもよい。接着層を設けた金属板を上記樹脂成形で成形したもう一方の基材に接着し、本発明の生化学反応チップを形成することができる。 Moreover, you may use a metal plate with high heat conductivity and intensity | strength, such as aluminum, for the material of a base material. The biochemical reaction chip of the present invention can be formed by adhering a metal plate provided with an adhesive layer to the other substrate formed by the above resin molding.

以下に本発明における実施例を示すが本発明はこれらに限定されるものではない。 Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例(1) SNP解析チップ   Example (1) SNP analysis chip

ヒトゲノムの中には、その約0.1%に個人特有の塩基配列の違いが存在し、SNP(Single Nucleotide Polymorphism)と呼ばれている。このSNPの違いによって、発現するタンパク質の種類等が異なるため、例えばSNPの違いが薬の代謝酵素の働きの違いを生み、結果として薬の最適投与量や副作用の出やすさ等に個人差が生じる。この事を利用し、“SNPの型”と“薬の効果・副作用の起きやすさ”等の関係をあらかじめ調べておけば、患者に対して治療する前に、各患者の“SNP の型”を調べる事で、オーダーメイド医療を実現させる事が出来る。 In the human genome, there are differences in individual nucleotide sequences in about 0.1%, and it is called SNP (Single Nucleotide Polymerism). The type of protein expressed varies depending on the difference in SNP. For example, the difference in SNP results in a difference in the function of the metabolic enzyme of the drug. As a result, there are individual differences in the optimal dose of the drug and the likelihood of side effects. Arise. By using this fact, if the relationship between “SNP type” and “drug effect / ease of side effects” is examined in advance, each patient's “SNP type” By making a survey, custom-made medical care can be realized.

本発明の生化学反応チップは上記のオーダーメイド医療に対して、有用な効果を提供できる。前記反応チャンバに特定のSNPに対応したプローブを固定することで、1検体のSNPを複数調べることが出来る。そのため、反応チャンバの数と搭載するSNPプローブの種類によって、特定の形質に関係のあるSNPをセットで調べることが出来る。 The biochemical reaction chip of the present invention can provide useful effects for the above-mentioned customized medicine. By fixing a probe corresponding to a specific SNP in the reaction chamber, a plurality of SNPs of one specimen can be examined. Therefore, SNPs related to a specific trait can be examined as a set depending on the number of reaction chambers and the type of SNP probe to be mounted.

上記SNP特定方法の一つにインベーダー法があり、本実施例では前記インベーダー法を用いてSNPの解析を行った。ただし、本発明の生化学反応用チップは本実施例の形態に限られるものではない。 One of the SNP identification methods is an invader method. In this example, the SNP was analyzed using the invader method. However, the biochemical reaction chip of the present invention is not limited to the embodiment.

SNP解析用チップ基材として、ポリプロピレン(PP)の成型を用いて、円形の外形を持ち、表面の同心円上に波状の主流路、側路、側路の末端に反応チャンバ、主流路と側路途中を結ぶバイパス細流路をもったチップを成形した。 As a chip substrate for SNP analysis, using polypropylene (PP) molding, it has a circular outer shape, and a corrugated main channel on the surface, a side channel, a reaction chamber at the end of the side channel, a main channel and a side channel A chip having a bypass narrow channel connecting the middle was formed.

該PP基材は側路、細流路、及び反応チャンバを23個持つ。 The PP substrate has 23 side channels, narrow channels, and 23 reaction chambers.

上記PP基材にPP樹脂がコーティングされたアルミニウムシート基材(アルミ基材)を貼り合わせ、内部に流路を形成した。 An aluminum sheet base material (aluminum base material) coated with PP resin was bonded to the PP base material, and a flow path was formed inside.

該樹脂コーティング層は主にPPを材料としており、厚みが0.07mmほどのものを使用した。該樹脂コーティング層は融点が120度前後であり、アルミニウム側に熱を与えれば溶融するように該アルミ基材にコーティングされている。また、アルミニウム層とPP樹脂層の間にカーボンを練りこんだアンカー層を設け、レーザー光による発熱でもPP層が溶融する構成となっている。 The resin coating layer is mainly made of PP and has a thickness of about 0.07 mm. The resin coating layer has a melting point of about 120 degrees, and is coated on the aluminum base material so as to melt when heat is applied to the aluminum side. Further, an anchor layer in which carbon is kneaded is provided between the aluminum layer and the PP resin layer, and the PP layer is melted even by heat generated by the laser beam.

該PP基材の反応容器には4種の異なるSNPプローブを固定し、また、同様にPCR反応を行うための酵素、及びSNPの蛍光検出に用いるインベーダー試薬類をピペットで滴下し乾燥させた。 Four different SNP probes were immobilized on the PP-based reaction vessel, and an enzyme for performing PCR reaction and invader reagents used for fluorescence detection of SNP were dropped with a pipette and dried.

該PP基材と該アルミ基材を重ね合わせ、アルミ基材側に130度以上の熱を与えてやると該アルミ基材にコーティングされた該樹脂層が溶融し、該PP基材とアルミ基材を溶着することで該PP基材の表面内部に流路が形成される。 When the PP base material and the aluminum base material are overlapped and heat of 130 degrees or more is applied to the aluminum base material side, the resin layer coated on the aluminum base material melts, and the PP base material and the aluminum base material are melted. By welding the material, a flow path is formed inside the surface of the PP base material.

この完成したチップに血液検体からゲノムを抽出し、バッファ液で希釈したサンプルを300μlピペットにて送液した。 Genome was extracted from the blood sample on this completed chip, and a sample diluted with a buffer solution was fed with a 300 μl pipette.

チップに遠心力を与える手段として、化学、生物反応における試薬の分離などに用いられる卓上小型遠心機をもちいて、簡易な遠心装置を作成した。遠心時の回転数を回転数測定器にて測定したところ5000rpm前後であった。 As a means for applying centrifugal force to the chip, a simple centrifuge was prepared using a desktop small centrifuge used for separation of reagents in chemical and biological reactions. When the number of rotations at the time of centrifugation was measured with a rotation number measuring device, it was about 5000 rpm.

送液後、5000rpmにてチップ中心を軸としてチップを回転させたところ、各反応場に11μlのサンプルが送液された。続いて、反応に阻害の無いミネラルオイルを同様の手法で300μl送液したところ、サンプルは反応場を満たし、残った溶液で側路の半分程度を満たし、オイルは側路の残り半分とバイパス細流路を満たした。 After feeding the solution, the tip was rotated about the tip center at 5000 rpm, and 11 μl of the sample was sent to each reaction field. Subsequently, when 300 μl of mineral oil that does not interfere with the reaction was sent in the same manner, the sample filled the reaction field, the remaining solution filled about half of the side path, and the oil filled the remaining half of the side path and the bypass trickle. Filled the road.

なお、本実施例は23箇所の反応チャンバの一部に4種のSNPプローブを固定し、コントロールとして1種の反応を行うため、5種の同定解析反応を1つの検体に対し同時に行うことができるものである。 In this example, four types of SNP probes are fixed to some of the 23 reaction chambers, and one type of reaction is performed as a control. Therefore, five types of identification analysis reactions can be performed simultaneously on one sample. It can be done.

該反応容器がオイルによって独立した状態の反応チップに所定の温度をかけることで、SNPsプローブと検体、及び酵素が反応し、蛍光検出反応を生じる。 By applying a predetermined temperature to the reaction chip in a state where the reaction vessel is independent of oil, the SNPs probe, the sample, and the enzyme react to generate a fluorescence detection reaction.

また、このときPP基材側は透明であり、蛍光検出を外部から行うことが出来た。 Moreover, the PP base material side was transparent at this time, and the fluorescence detection was able to be performed from the outside.

本実施例1のように本発明では張り合わせる基材を反応に合った材質で選定することで、より簡易に、かつ短時間で効率よく反応工程を行うことが可能となる。 In the present invention as in Example 1, it is possible to perform the reaction process more easily and efficiently in a short time by selecting the base material to be bonded with a material suitable for the reaction.

001.反応チャンバ
002. INLET/OUTLET
003.バイパス開口部(側路口)
004.バイパス開口部(主流路口)
005.側路
006.バイパス細流路
007.主流路
001. Reaction chamber 002. INLET / OUTLET
003. Bypass opening (side entrance)
004. Bypass opening (main channel port)
005. Side road 006. Bypass narrow channel 007. Main flow path

Claims (12)

回転可能な反応チップとなる基材の内側に、試薬注入口・排気口を連結し、回転中心に対して円弧を描くように配置されている主流路と、前記回転によって遠心力が作用する方向に前記主流路から分岐され、放射状に延伸され配置されている複数の側路と、前記複数の側路における、回転中心から遠位の端部にそれぞれ配置されている複数の反応チャンバと、を有し、A main flow path that is arranged so as to draw a circular arc with respect to the rotation center by connecting a reagent injection port and an exhaust port inside a base material that becomes a rotatable reaction chip, and a direction in which centrifugal force acts by the rotation A plurality of side passages that are branched from the main flow path and are radially extended and arranged, and a plurality of reaction chambers that are respectively arranged at end portions distal to the center of rotation in the plurality of side passages. Have
前記複数の側路の各々は、当該側路の遠心方向の略中間位置において、当該中間位置と前記主流とを接続する細流路によりバイパスされ、  Each of the plurality of side passages is bypassed by a narrow channel connecting the intermediate position and the main flow at a substantially intermediate position in the centrifugal direction of the side passages,
前記各側路をバイパスする前記細流路は、バイパスする側路の主流路からの分岐端と、バイパスする側路に隣接する側路の主流路からの分岐端との略中間位置において、前記主流路と接続され、前記試薬注入口から注入され、前記主流路に貯留された溶液を、前記遠心力によって前記反応チャンバに送液するときに、前記側路及び反応チャンバにおける気液の入れ替わり性を向上させることができる、  The narrow channel that bypasses each side path is the mainstream at a substantially intermediate position between the branch end from the main channel of the bypass side path and the branch end from the main channel of the side path adjacent to the bypass side path. When the solution, which is connected to the channel and injected from the reagent inlet and stored in the main channel, is sent to the reaction chamber by the centrifugal force, the gas-liquid interchangeability in the side channel and the reaction chamber is improved. Can be improved,
ことを特徴とする生化学反応チップ。Biochemical reaction chip characterized by that.
前記主流路が各ウェルの間で回転中心に対して一つの山を形成することで、波状の形状をしていることを特徴とする請求項1記載の生化学反応チップ。 2. The biochemical reaction chip according to claim 1, wherein the main flow path has a wave shape by forming one crest with respect to the rotation center between the wells. 前記バイパスの断面積が1mm以下であることを特徴とする請求項1記載の生化学反応チップ。 The biochemical reaction chip according to claim 1, wherein a cross-sectional area of the bypass is 1 mm 2 or less. 前記主流路の少なくとも片端に試薬を送液するための送液口を持つことを特徴とする請求項1記載の生化学反応チップ。 The biochemical reaction chip according to claim 1, further comprising a liquid supply port for supplying a reagent to at least one end of the main channel. 前記反応チャンバが回転中心に対して円周状に配置されていることを特徴とする請求項1記載の生化学反応チップ。 The biochemical reaction chip according to claim 1, wherein the reaction chamber is arranged circumferentially with respect to the center of rotation. 前記反応チャンバの容量が100μl以下であることを特徴とする請求項1記載の生化学反応チップ。 The biochemical reaction chip according to claim 1, wherein the reaction chamber has a volume of 100 μl or less. 円形で、遠心送液時の回転中心が円の中央に設定されていることを特徴とする請求項1記載の生化学反応チップ。 The biochemical reaction chip according to claim 1, wherein the biochemical reaction chip is circular and has a center of rotation at the time of centrifugal feeding at the center of the circle. 構成する基材が少なくとも2つ以上の基材を張り合わせることによって形成されていることを特徴とする請求項1記載の生化学反応チップ。 The biochemical reaction chip according to claim 1, wherein the constituent base material is formed by pasting at least two base materials. 前記基材の少なくとも一つが光透過性の基材を使用していることを特徴とする請求項8記載の生化学反応チップ。 9. The biochemical reaction chip according to claim 8, wherein at least one of the base materials uses a light-transmitting base material. 前記光透過性の基材を樹脂成形品で構成したことを特徴とする請求項9記載の生化学反応チップ。 The biochemical reaction chip according to claim 9, wherein the light-transmitting substrate is made of a resin molded product. 基材の樹脂成形品の成形方法が、射出成形であることを特徴とする請求項10記載の生化学反応チップの製造方法。 The method for producing a biochemical reaction chip according to claim 10, wherein the molding method of the resin molded product of the base material is injection molding. 生化学反応チップの基材のひとつが、接着層を設けた金属板で構成されることを特徴とする請求項8記載の生化学反応チップ。
9. The biochemical reaction chip according to claim 8, wherein one of the base materials of the biochemical reaction chip is composed of a metal plate provided with an adhesive layer.
JP2010082322A 2010-03-31 2010-03-31 Biochemical reaction chip and manufacturing method thereof Active JP5505041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082322A JP5505041B2 (en) 2010-03-31 2010-03-31 Biochemical reaction chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082322A JP5505041B2 (en) 2010-03-31 2010-03-31 Biochemical reaction chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011214945A JP2011214945A (en) 2011-10-27
JP5505041B2 true JP5505041B2 (en) 2014-05-28

Family

ID=44944849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082322A Active JP5505041B2 (en) 2010-03-31 2010-03-31 Biochemical reaction chip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5505041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016194823A1 (en) * 2015-05-29 2018-03-22 凸版印刷株式会社 Nucleic acid detection method, nucleic acid quantification method, nucleic acid base sequence identification method, nucleic acid mutation or polymorphism identification method, nucleic acid detection kit, and reaction chip

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH634920A5 (en) * 1980-05-05 1983-02-28 Hoffmann La Roche Rotor with cells for analyzers
US5304348A (en) * 1992-02-11 1994-04-19 Abaxis, Inc. Reagent container for analytical rotor
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
WO2002074438A2 (en) * 2001-03-19 2002-09-26 Gyros Ab Structural units that define fluidic functions
US7332129B2 (en) * 2003-01-09 2008-02-19 3M Innovative Properties Company Sample processing device having process chambers with bypass slots
US7238269B2 (en) * 2003-07-01 2007-07-03 3M Innovative Properties Company Sample processing device with unvented channel
TWI243705B (en) * 2004-12-22 2005-11-21 Ind Tech Res Inst Fluid analytical device
TWI362491B (en) * 2007-11-02 2012-04-21 Ind Tech Res Inst Fluid analytical device and fluid analytical method thereof

Also Published As

Publication number Publication date
JP2011214945A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5392369B2 (en) Sample analysis chip, sample analysis apparatus using the same, sample analysis method and gene analysis method, and sample analysis chip manufacturing method
TWI582425B (en) Sample analysis chip, sample analysis method, and gene analysis method
JP6323274B2 (en) Sample analysis chip
CN105964313A (en) Centrifugal type multi-channel microfluidic chip
JP5521454B2 (en) Sample analysis chip, sample analysis apparatus and sample analysis method using the same
JP2015121493A (en) Sample analysis chip
JP2012185000A (en) Sample analysis chip and sample analysis method using the same
JP5728273B2 (en) Disc type analysis chip
JP5707683B2 (en) Sample analysis chip, sample analysis device and sample analysis device using the same, and gene analysis method
JP5505041B2 (en) Biochemical reaction chip and manufacturing method thereof
JP6155591B2 (en) Sample analysis chip and analysis method for analyzing multiple samples
JP2009002933A (en) Analytical medium
JP2011080769A (en) Disk-like analyzing chip and measuring system using the same
JP2011214943A (en) Chip, method and device for analyzing sample
JP2006126011A (en) Microchip for specimen sample
JP4781144B2 (en) Reaction vessel
JP2006349559A (en) Reaction container and substance detecting method using it
JP6155589B2 (en) Biochemical reaction chip for treating or analyzing biochemical substances and analysis method thereof
JP2015206715A (en) sample analysis chip
JP5499840B2 (en) Sample analysis chip and sample analysis method using the same
JP2017053650A (en) Sample analysis chip, sample analysis method, and sample analysis device
JP2012202697A (en) Disk type analysis chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150