JP5499840B2 - Sample analysis chip and sample analysis method using the same - Google Patents

Sample analysis chip and sample analysis method using the same Download PDF

Info

Publication number
JP5499840B2
JP5499840B2 JP2010082321A JP2010082321A JP5499840B2 JP 5499840 B2 JP5499840 B2 JP 5499840B2 JP 2010082321 A JP2010082321 A JP 2010082321A JP 2010082321 A JP2010082321 A JP 2010082321A JP 5499840 B2 JP5499840 B2 JP 5499840B2
Authority
JP
Japan
Prior art keywords
solution
sample analysis
main channel
analysis chip
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010082321A
Other languages
Japanese (ja)
Other versions
JP2011214944A (en
Inventor
雄太 鈴木
知之 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010082321A priority Critical patent/JP5499840B2/en
Publication of JP2011214944A publication Critical patent/JP2011214944A/en
Application granted granted Critical
Publication of JP5499840B2 publication Critical patent/JP5499840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、生化学反応の検出や分析方法に用いる試料分析チップ及び試料分析方法に関する。 The present invention relates to a sample analysis chip and a sample analysis method used for biochemical reaction detection and analysis methods.

従来、例えばDNA反応、たんぱく質反応等の生化学反応の分野において、微量の試料溶液を処理する反応装置として、μ−TAS(Total Analysis System)やLab−on−Chipと呼ばれる技術が知られている。これは、1個のチップやカートリッジに複数の反応室(以下、ウェル)や流路を供えたものであり、複数の検体の解析、あるいは複数の反応を行うことができる。これらの技術はチップ及びカートリッジを小型化することで扱う薬品を少量にすることが出来、様々なメリットがあるとされてきた。   Conventionally, in the field of biochemical reactions such as DNA reaction and protein reaction, a technique called μ-TAS (Total Analysis System) or Lab-on-Chip is known as a reaction apparatus for processing a small amount of sample solution. . This is a single chip or cartridge provided with a plurality of reaction chambers (hereinafter referred to as wells) and channels, and can analyze a plurality of specimens or perform a plurality of reactions. These technologies have been considered to have various merits by reducing the amount of chemicals handled by downsizing the chip and cartridge.

そのメリットとは例えば従来使用していた強酸や強アルカリ薬品の分量が微量化することで人体への影響や環境への影響が格段に低くなること、また、生化学反応等に用いられる高額な試薬類の消費量が微量化することで分析、反応に費やすコストを低減できること、などが挙げられる。   The benefits include, for example, the fact that the amount of strong acids and strong alkaline chemicals that have been used in the past has been reduced to a much lower level, and the impact on the human body and the environment will be significantly reduced. For example, the amount of reagents consumed can be reduced so that the cost of analysis and reaction can be reduced.

チップやカートリッジを用いて生化学反応を最も効率よく行うためには、複数のウェルにそれぞれ異なる種類の薬品や検体、酵素を配置し、これら薬品や検体、酵素と反応を起こす試薬を一本ないし数本の主導管からまとめてウェルに流し入れ、異なった複数の反応を生じさせる必要がある。   In order to perform biochemical reactions most efficiently using chips and cartridges, different types of chemicals, specimens, and enzymes are placed in multiple wells, and one or more reagents that react with these chemicals, specimens, and enzymes are used. It is necessary to pour into several wells from several main conduits to produce different reactions.

この手法を用いれば、複数種の検体を同じ試薬で同時に処理をしたり、また逆に一種類の検体に同時に複数の処理を施したりすることが出来、従来かかっていた時間や手間を大幅に減らすことが可能である。   Using this technique, multiple types of specimens can be processed simultaneously with the same reagent, and conversely, multiple types of specimens can be processed simultaneously, greatly reducing the time and effort required in the past. It is possible to reduce.

この種の手法を用いる際、複数の反応場に等量のサンプルを送液する技術と、各ウェルの中身を混ざり合わないようにする技術が重要となる。このようなウェルへの送液を行うチップについての先行技術としては以下のものが挙げられる。   When using this type of technique, a technique for feeding an equal amount of sample to a plurality of reaction fields and a technique for preventing the contents of each well from being mixed are important. The following is mentioned as a prior art about the chip | tip which performs liquid feeding to such a well.

特許文献1では、主流路の両端に注入口と排出口を有し、主流路に溶液を貯蔵する反応容器を有する分析用チップが公開されているが、注入口に溶液を入れた後、チップを密封容器に入れ、真空ポンプで減圧することにより、主流路から反応容器への溶液を送液している。そのため、真空ポンプのように、減圧するための設備及び装置が必要になり、自動化が困難である。また、反応容器と別の反応容器を結ぶ主流路が湾曲していた場合、圧力差だけでは配液しきれず、チップを自転させる必要があり、複雑な機構とスペースが必要となる。   In Patent Document 1, an analysis chip having an inlet and an outlet at both ends of a main channel and a reaction container for storing a solution in the main channel is disclosed. Is put into a sealed container, and the solution is sent from the main channel to the reaction container by reducing the pressure with a vacuum pump. Therefore, equipment and an apparatus for reducing pressure are required like a vacuum pump, and automation is difficult. Further, when the main flow path connecting the reaction vessel and another reaction vessel is curved, it is not possible to distribute the liquid only by the pressure difference, and it is necessary to rotate the chip, and a complicated mechanism and space are required.

特開2009−178146JP 2009-178146 A

上述のような従来技術の問題を踏まえ、本発明はウェルへの送液を行う試料分析チップにおいて、送液方法が簡便かつ少ない設備でも検出や分析が可能な試料分析チップを提供することを課題とする。また、複数の試料を同時に分析する際に、それぞれの試料がコンタミネーションしないような試料分析チップを提供することを課題とする。ここで言うコンタミネーションとは、本来混合すべきでない試薬同士が混ざり合うことである。混ざり合う量に制限はなく、混ざり合う一方の試薬量が、残り一方の試薬量に対して非常に微量であった場合でも、コンタミネーションとなる。コンタミネーションすることで、本位ではない試薬反応が起きる可能性が高くなるため、出来る限り発生を防ぐ必要がある。   In light of the above-described problems of the prior art, the present invention is to provide a sample analysis chip capable of performing detection and analysis with simple equipment and a small amount of equipment, in a sample analysis chip that supplies liquid to a well. And It is another object of the present invention to provide a sample analysis chip that does not contaminate each sample when analyzing a plurality of samples simultaneously. The term “contamination” as used herein means that reagents that should not be mixed are mixed. There is no limitation on the amount to be mixed, and contamination occurs even when the amount of one reagent to be mixed is very small relative to the amount of the other reagent. Contamination increases the possibility of an unreliable reagent reaction, so it is necessary to prevent it from occurring as much as possible.

上記のような問題を解決するために為された本発明の請求項1に係る発明は、主流路と、前記主流路の端部の一方に開口する第一の溶液を注入するための注入口と、前記主流路の他方の端部に開口する第二の溶液を注入するための注入口と、前記主流路の直線部の複数箇所に設けられ、前記第一及び第二の溶液を収容可能な、非対称の窪みである複数の反応場と、を有し、前記複数の反応場の各々は、前記第一の溶液の注入口側の前記主流路を基準とし前記第一の溶液の注入口側の端面前記主流路のなす角度Aが、前記第二の溶液の注入口側の前記主流路を基準とし前記第二の溶液の注入口側の端面前記主流路のなす角度Bよりも大きいことを特徴とする試料分析チップである。
また、本発明の請求項2に係る発明は、前記角度Aが100°から140°に収まることを特徴とする請求項1に記載の試料分析チップである。
また、本発明の請求項3に係る発明は、前前記角度Bが20°から100°に収まることを特徴とする請求項1又は請求項2に記載の試料分析チップである。
また、本発明の請求項4に係る発明は、少なくとも前記反応場を親水処理したことを特徴とする請求項1ないし請求項3のいずれかに記載の試料分析チップである。
また、本発明の請求項5に係る発明は、前記試料分析チップは前記反応場及び前記流路を形成した第一の基材と、該基材と貼り合わせた第二の基材とを有する請求項1ないし請求項4のいずれかに記載の試料分析チップである。
また、本発明の請求項6に係る発明は、前記基材のいずれか一方が光透過性材料で形成されていることを特徴とする請求項1ないし請求項5のいずれかに記載の試料分析チップである。
また、本発明の請求項7に係る発明は、第一の基材が光透過性の樹脂材料であり、第二の基材が金属材料であることを特徴とする請求項1ないし請求項6のいずれかに記載の試料分析チップである。
また、本発明の請求項8に係る発明は、請求項1ないし請求項7のいずれかに記載の試料分析チップの前記主流路に流す前記第一の溶液が親水性であり、前記第二の溶液が前記第一の溶液と親和性の低い性質を持つ物質であり、前記主流路に溶液を配液する工程の後に、前記第一の溶液を注入した方とは異なる注入口から前記主流路へ前記第二の溶液を注入する工程、各ウェルでの反応・検出工程を有することを特徴とする試料分析方法である。
また、本発明の請求項9に係る発明は、請求項8に記載の試料分析方法を用いることを特徴とする遺伝子解析方法である。
The invention according to claim 1 of the present invention, which has been made to solve the above-described problems, includes a main channel and an injection port for injecting a first solution that opens to one of the end portions of the main channel. An inlet for injecting a second solution that opens to the other end of the main flow path, and a plurality of straight portions of the main flow path, which can accommodate the first and second solutions Do, has a plurality of reaction field is depression asymmetric, each of the plurality of reaction fields were referenced to the main channel of the inlet side of the first solution, the first solution angle a of the end face of the inlet side to the main channel, relative to the said main channel of the inlet side of the second solution, forming of the second solution the main channel and the inlet side end face of the The sample analysis chip is characterized by being larger than the angle B.
The invention according to claim 2 of the present invention is the sample analysis chip according to claim 1, wherein the angle A falls within a range of 100 ° to 140 °.
The invention according to claim 3 of the present invention is the sample analysis chip according to claim 1 or 2, wherein the angle B is within 20 ° to 100 °.
The invention according to claim 4 of the present invention is the sample analysis chip according to any one of claims 1 to 3, wherein at least the reaction field is subjected to a hydrophilic treatment.
In the invention according to claim 5 of the present invention, the sample analysis chip includes a first base material on which the reaction field and the flow path are formed, and a second base material bonded to the base material. A sample analysis chip according to any one of claims 1 to 4.
Further, in the invention according to claim 6 of the present invention, any one of the base materials is formed of a light-transmitting material, and the sample analysis according to any one of claims 1 to 5 Chip.
In the invention according to claim 7 of the present invention, the first base material is a light-transmitting resin material, and the second base material is a metal material. The sample analysis chip according to any one of the above.
Moreover, in the invention according to claim 8 of the present invention, the first solution flowing in the main channel of the sample analysis chip according to any one of claims 1 to 7 is hydrophilic, and the second solution The main channel is formed from a different inlet from the one into which the first solution is injected after the step of distributing the solution to the main channel, wherein the solution is a substance having a low affinity with the first solution. A sample analysis method comprising the step of injecting the second solution into the well and the reaction / detection step in each well.
The invention according to claim 9 of the present invention is a gene analysis method characterized by using the sample analysis method according to claim 8.

本発明による試料分析チップによれば、簡易的で機能的、かつ安価な反応チップを実現することができる。さらに1種類の検体に対して、複数の試薬を用いて反応を見ることができる。 According to the sample analysis chip of the present invention, a simple, functional and inexpensive reaction chip can be realized. Furthermore, the reaction can be observed with respect to one type of specimen using a plurality of reagents.

また、本発明による試料分析チップによれば、主流路から反応場に送液された際、余剰分を、溶液を注入した注入口とは異なる注入口から排出することができる。そのため、全てのウェルに所望の液量よりも多く送液することで、すべての反応場に均一量の配液をすることができ、バラツキをなくすことができる。   Further, according to the sample analysis chip of the present invention, when the liquid is sent from the main channel to the reaction field, the surplus can be discharged from an inlet different from the inlet into which the solution is injected. Therefore, by supplying more liquid than desired in all wells, a uniform amount of liquid can be distributed to all reaction fields, and variations can be eliminated.

また、異なる溶液が疎水性であった場合、主流路に満ちた疎水性の溶液が、反応場の封をすることになるので、反応場内に配液された溶液が他の反応場内の溶液と接触することがなくなり、試薬同士のコンタミネーションを防ぐことができる。   In addition, when the different solutions are hydrophobic, the hydrophobic solution filled in the main channel seals the reaction field, so that the solution distributed in the reaction field is different from the solutions in other reaction fields. Contact is eliminated and contamination between reagents can be prevented.

本発明の試料分析チップの一様態の断面図Sectional drawing of the one aspect | mode of the sample analysis chip | tip of this invention 本発明の試料分析チップにおける反応場の拡大図Enlarged view of reaction field in sample analysis chip of the present invention

本発明の試料分析チップを図面に基づいて説明する。
図1は本発明の試料分析チップの一様態を示した断面図である。本発明のチップは、第一の基材上に、複数の反応場102と、反応場に溶液、例えば液体検体を送液するための流路と、流路へ溶液、たとえば液体検体を注入するための注入口を有している。流路は、各反応場へ溶液を送液するため、各反応場を連絡する主流路101を有する。流路には溶液を注入するために主流路の一端と連絡する注入口103と、主流路のもう一端と連絡する注入口104を有する。
A sample analysis chip of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of the sample analysis chip of the present invention. The chip of the present invention has a plurality of reaction fields 102 on a first substrate, a channel for sending a solution, for example, a liquid sample, to the reaction field, and a solution, for example, a liquid sample, is injected into the channel. It has an inlet for. The flow path has a main flow path 101 that communicates with each reaction field in order to send a solution to each reaction field. The flow path has an injection port 103 that communicates with one end of the main flow path for injecting the solution, and an injection port 104 that communicates with the other end of the main flow path.

本発明の試料分析チップは、注入口103から親水性の溶液(第一の溶液)を主流路101に注入することで、親水性の溶液を反応場102へ配液し、他端の注入口104から疎水性の溶液(第二の溶液)を主流路101に注入する。反応場に溜まった親水性溶液を疎水性溶液で封をするものであることから、疎水性の溶液が反応場へ流入しないことが望ましい。親水性の溶液を注入する注入口103側の主流路と、反応場102のなす角度A201が、疎水性の溶液を注入する注入口104側の主流路と反応場102のなす角度B202よりも大きいことで、反応場に溜まった親水性の溶液を巻き込むことなく、疎水性の溶液を主流路に流すことができる。親水性溶液は、少なくとも溶媒である水および分析用の試薬が含まれた水溶液であり、各反応場に配液された親水性溶液ごとに検出あるいは分析が行なわれる。   The sample analysis chip of the present invention distributes a hydrophilic solution to the reaction field 102 by injecting a hydrophilic solution (first solution) from the injection port 103 into the main flow channel 101, and the injection port at the other end. A hydrophobic solution (second solution) is injected from 104 into the main channel 101. Since the hydrophilic solution accumulated in the reaction field is sealed with the hydrophobic solution, it is desirable that the hydrophobic solution does not flow into the reaction field. An angle A201 formed between the main flow path on the injection port 103 side for injecting the hydrophilic solution and the reaction field 102 is larger than an angle B202 formed between the main flow path on the injection port 104 side for injecting the hydrophobic solution and the reaction field 102. Thus, the hydrophobic solution can be flowed through the main channel without involving the hydrophilic solution accumulated in the reaction field. The hydrophilic solution is an aqueous solution containing at least water as a solvent and a reagent for analysis, and detection or analysis is performed for each hydrophilic solution distributed in each reaction field.

本発明によれば、主流路に満ちた疎水性の溶液が、反応場の封をすることになるので、反応場内に配液された溶液が他の反応場内の溶液と接触することがなくなり、試薬同士のコンタミネーションを防ぐことができる。また、全てのウェルに親水性の溶液を所望の液量よりも多く送液することで、すべての反応場に均一量の親水性の溶液を配液することができ、バラツキをなくすことができる。   According to the present invention, the hydrophobic solution filled in the main channel seals the reaction field, so that the solution distributed in the reaction field does not come into contact with the solution in the other reaction field, Contamination between reagents can be prevented. In addition, by supplying more hydrophilic solution to all wells than desired, a uniform amount of hydrophilic solution can be distributed to all reaction fields, and variations can be eliminated. .

親水性の溶液を注入する注入口側の主流路101と反応場102がなす0°〜180°の角度A201は100°から140°が望ましい。0°〜99°もしくは141°〜180°であれば反応場を親水性の溶液で満たすことが難しいため望ましくない。なお図2に示すように、主流路101と反応場102が曲面で繋がっている場合、主流路101側から延長した接線A203と、反応場の直線形状部分からの接線B204とがなす角(0°〜180°)で定義することができる。   The angle A201 of 0 ° to 180 ° formed by the main flow channel 101 on the inlet side for injecting the hydrophilic solution and the reaction field 102 is preferably 100 ° to 140 °. If it is 0 ° to 99 ° or 141 ° to 180 °, it is difficult to fill the reaction field with a hydrophilic solution. As shown in FIG. 2, when the main channel 101 and the reaction field 102 are connected by a curved surface, an angle (0) formed by a tangent line A203 extending from the main channel 101 side and a tangent line B204 from the linear part of the reaction field. (° to 180 °).

疎水性の溶液を注入する注入口側の主流路101と反応場102がなす0°〜180°の角度B202は、20°から100°が望ましい。0°〜19°もしくは101°〜180°であれば疎水性の溶液が反応場に流れ込む可能性があるため望ましくない。   The angle B202 between 0 ° and 180 ° formed by the reaction channel 102 and the main channel 101 on the inlet side for injecting the hydrophobic solution is preferably 20 ° to 100 °. If it is 0 ° to 19 ° or 101 ° to 180 °, a hydrophobic solution may flow into the reaction field, which is not desirable.

反応場102の容積は5〜20μLであることが望ましい。   The volume of the reaction field 102 is desirably 5 to 20 μL.

また、反応場102あるいは反応場を含む流路全体の内表面を親水処理することで、疎水性の溶液よりも親水性の溶液と反応場102との親和性が高まることから、配液量のバラつきを低減させることができる。親水処理の手法としては、プラズマ処理やコロナ放電処理もしくは薬品処理や微細加工による処理などが挙げられる。   In addition, the hydrophilicity of the reaction field 102 or the entire inner surface of the flow path including the reaction field increases the affinity between the hydrophilic solution and the reaction field 102 compared to the hydrophobic solution. Variations can be reduced. Examples of the hydrophilic treatment include plasma treatment, corona discharge treatment, chemical treatment, and fine processing.

次に本発明の試料分析チップの製造方法について説明する。   Next, the manufacturing method of the sample analysis chip of the present invention will be described.

本発明の試料分析チップは反応場及び主流路及び注入口を有する第一の基材に、第二の基材を貼り合わせることで作成することができる。このとき、第二の基材は、配液した溶液が漏れることを防ぐため、第一の基材が有する反応場及び主流路及び注入口を覆うことができる面積を有する必要がある。   The sample analysis chip of the present invention can be prepared by bonding a second substrate to a first substrate having a reaction field, a main channel, and an inlet. At this time, the second base material needs to have an area that can cover the reaction field, the main flow path, and the injection port of the first base material in order to prevent the distributed solution from leaking.

基材としては、試薬及び配液する溶液の反応性に影響がでないものであれば、特に制限はないが、良好な可視光透過性を確保できる基材、例えるなら、ポリプロピレン、アクリルが望ましい。本発明における光透過性とは、検出光の波長領域での全平均透過率が70%以上であるとする。可視光領域で光透過性材料を用いるとチップ内の試料状態の把握が容易になるが、これに限られるものではない。   The substrate is not particularly limited as long as it does not affect the reactivity of the reagent and the solution to be distributed, but a substrate that can ensure good visible light transmittance, for example, polypropylene and acrylic are preferable. The light transmittance in the present invention is that the total average transmittance in the wavelength region of the detection light is 70% or more. If a light-transmitting material is used in the visible light region, it is easy to grasp the sample state in the chip, but this is not restrictive.

また、樹脂以外の材料としては金属材料、例えるならアルミニウム、銅、銀、ニッケルなどが望ましい。金属材料を用いる場合、熱伝導率及び貼合性能に優れる。   Further, as a material other than the resin, a metal material, for example, aluminum, copper, silver, nickel or the like is desirable. When using a metal material, it is excellent in thermal conductivity and bonding performance.

基材を貼り合わせる前に、反応場102に試薬を固定する。反応場は各々隔離されるため、各反応場に異なる試薬を固定することが可能である。反応場ごとに異なる試薬を固定することで、1つの検体に対して、一度に複数の反応を調べることができる。   The reagent is fixed to the reaction field 102 before the substrates are bonded. Since each reaction field is isolated, it is possible to fix different reagents in each reaction field. By fixing different reagents for each reaction field, a plurality of reactions can be examined at one time for one specimen.

試薬の固定方法としては、例えば、第一の基材の反応場102に液体試薬をピペット等で滴下し、乾燥させることで、反応場に試薬を固定することができる。   As a method for fixing the reagent, for example, the reagent can be fixed to the reaction field by dropping a liquid reagent onto the reaction field 102 of the first substrate with a pipette or the like and drying it.

また、試薬を反応場102上に固定した後に、ワックスを滴下しても良い。例えば、ブロックバス上で溶解させたワックスを、反応場上に固定した試薬の上に、ピペット等で滴下する。このとき、固定された試薬を覆うようにワックスを滴下することで、試薬の流出を防ぐことが可能になる。第一の基材がワックスの融解温度以下であれば、滴下したワックスは直ちに凝固する。   Alternatively, wax may be dropped after fixing the reagent on the reaction field 102. For example, wax dissolved on a block bath is dropped onto a reagent fixed on the reaction field with a pipette or the like. At this time, it is possible to prevent the reagent from flowing out by dripping the wax so as to cover the fixed reagent. If the first substrate is below the melting temperature of the wax, the dropped wax will solidify immediately.

基材の貼合方法としては、一方の基材に接着層として、樹脂コーティングを設け、熱をかけ溶解させることで第一の基材と第二の基材を接着する方法が挙げられる。例えば、第二の基材を金属とすると、樹脂コーティング層は、熱伝導率の高い金属材料側に設け、溶解接着することが望ましい。   As a bonding method of a base material, the method of adhere | attaching a 1st base material and a 2nd base material by providing resin coating as an adhesive layer in one base material, and making it melt | dissolve by applying heat is mentioned. For example, when the second substrate is made of metal, the resin coating layer is desirably provided on the metal material side having high thermal conductivity and melt-bonded.

次に本発明の試料分析チップを用いた試料分析方法について説明する。   Next, a sample analysis method using the sample analysis chip of the present invention will be described.

本発明の試料分析チップは、例えばDNA、たんぱく質等の試料において生化学物質の検出や分析に使用することが出来る。各反応場102に試薬を固定し、固定した試薬の上に、ワックスを滴下する。この場合には、各反応場に異なる試薬を使用することができる。
これにより配液中に試薬が溶液に溶解し流出することを抑えることができる。
The sample analysis chip of the present invention can be used for detection and analysis of biochemical substances in samples such as DNA and protein. A reagent is fixed to each reaction field 102, and wax is dropped on the fixed reagent. In this case, a different reagent can be used for each reaction field.
Thereby, it can suppress that a reagent melt | dissolves in a solution and flows out during liquid distribution.

次に、液体試料を各ウェルに配液する。 Next, a liquid sample is distributed to each well.

次に、第一の基材と第二の基材を貼り合わせた本発明の試料分析チップに対して、まず注入口103から試薬等の溶液を主流路101に注入する。これにより、主流路101と反応場102が溶液で満たされる。   Next, a solution such as a reagent is first injected into the main channel 101 from the injection port 103 with respect to the sample analysis chip of the present invention in which the first substrate and the second substrate are bonded together. Thereby, the main channel 101 and the reaction field 102 are filled with the solution.

次に、試薬等の溶液を注入した試料分析チップに対して、注入口104から試料や試薬の反応を阻害しないような疎水性の溶液、例えばミネラルオイルを主流路101に注入する。これにより、反応中に液の蒸発を防ぐことができ、反応場に溜まった試薬等の溶液の流出を防ぐことができ、コンタミネーションを防ぐことが可能となる。ミネラルオイルは先に配液した溶液よりも比重が軽いものを用いることで、主流路側で各反応場の栓の役割を果たす。ミネラルオイルの種類としては、試料や試薬の反応を阻害しないものであれば特に制限は無い。   Next, a hydrophobic solution such as mineral oil that does not inhibit the reaction of the sample and the reagent is injected into the main channel 101 from the injection port 104 to the sample analysis chip into which the solution such as the reagent has been injected. As a result, the evaporation of the liquid during the reaction can be prevented, the outflow of the solution such as the reagent accumulated in the reaction field can be prevented, and contamination can be prevented. By using a mineral oil having a specific gravity lighter than the previously distributed solution, it plays the role of a plug for each reaction field on the main channel side. The type of mineral oil is not particularly limited as long as it does not inhibit the reaction of the sample or reagent.

次に本発明の試料分析方法の例を説明する。   Next, an example of the sample analysis method of the present invention will be described.

遺伝子解析の1例としては、例えば体細胞変異の検出や、生殖細胞変異の検出が挙げられる。遺伝子型の違いによって、発現するタンパク質の種類等が異なるため、例えば薬の代謝酵素の働きの違いを生み、結果として薬の最適投与量や副作用の出やすさ等に個人差が生じる。この事を医療現場で利用し、各患者の“遺伝子型”を調べる事で、オーダーメイド医療を行うことが出来る。   Examples of gene analysis include detection of somatic mutation and detection of germ cell mutation. Since the type of protein to be expressed differs depending on the genotype, for example, it causes a difference in the function of the metabolic enzyme of the drug, resulting in individual differences in the optimal dose of the drug and the likelihood of side effects. By utilizing this in the medical field and examining the “genotype” of each patient, custom-made medical care can be performed.

・SNPsの検出
ヒトゲノムの中には、その約0.1%に個人特有の塩基配列の違いが存在し、SNP(Single Nucleotide Polymorphism)と呼ばれおり、生殖細胞変異のひとつである。SNPの特定方法の一つとして、例えば蛍光を用いたPCR‐PHFA(PCR−Preferential Homoduplex Formation Assay)法が利用されている。PCR‐PHFA法は検出変異部位を増幅するPCR工程と、増幅断片と対応プローブによる競合的鎖置換反応工程から成り立っている。当該方法によれば、蛍光試薬の発光差によって変異を検出するが、本発明の試料分析チップを用いることで、各ウェルの配液バラツキが少ないため、正確なSNPs検出を行うことが出来る。また上記以外のSNP検出方法としてインベーダー法(登録商標)、Taqman PCR法等についても同様に本発明の試料分析チップを用いることが可能である。
-Detection of SNPs About 0.1% of the human genome has a unique nucleotide sequence difference, which is called SNP (Single Nucleotide Polymorphism), and is one of germline mutations. As one of the SNP identification methods, for example, a PCR-PHFA (PCR-Preferred Modulation Formation Assay) method using fluorescence is used. The PCR-PHFA method includes a PCR process for amplifying a detection mutation site and a competitive strand displacement reaction process using an amplified fragment and a corresponding probe. According to this method, mutation is detected by the difference in luminescence of the fluorescent reagent, but by using the sample analysis chip of the present invention, since there is little liquid distribution variation in each well, accurate SNPs detection can be performed. In addition, the sample analysis chip of the present invention can also be used for the Invader method (registered trademark), the Taqman PCR method and the like as SNP detection methods other than those described above.

以下に、本発明を用いてワルファリン(抗血液凝固剤。心臓病や高血圧用の薬として用いられる)に対する副作用に関与するSNPついてPCR‐PHFA法を使った解析例を説明する。 Hereinafter, an analysis example using the PCR-PHFA method for SNPs involved in side effects on warfarin (an anticoagulant, used as a drug for heart disease and hypertension) will be described using the present invention.

血液などから得られる検体核酸を精製して、溶液試料とする。本発明の試料分析チップに注入前または注入後配液前に、検体核酸の増幅を行なう。なお、ワルファリンに関与するSNPの検出にはVKORC1やCYP2C9内のSNPが議論されることが多く、CYP2C9*2やCYP2C9*3などが有名である。検体からこれらのSNPを含む遺伝子断片をマルチプレックスPCRにて増幅する。 A sample nucleic acid obtained from blood or the like is purified to obtain a solution sample. The sample nucleic acid is amplified before or after the injection into the sample analysis chip of the present invention. Note that SNPs in VKORC1 and CYP2C9 are often discussed for detection of SNPs involved in warfarin, and CYP2C9 * 2 and CYP2C9 * 3 are famous. Gene fragments containing these SNPs from the specimen are amplified by multiplex PCR.

上記の検出方法では、一つのSNPを判定するために2つの検出用のウェルが必要となるので1検体試料につき10個以上のウェルが形成された試料分析チップを使用すると良く、それぞれのウェルに競合的鎖置換反応を行うためのSNP検出用の試薬を固定する。   In the detection method described above, two detection wells are required to determine one SNP. Therefore, it is preferable to use a sample analysis chip in which 10 or more wells are formed for each specimen sample. A reagent for SNP detection for performing competitive strand displacement reaction is fixed.

上記PCRにより核酸が増幅された試料を、各ウェルに配液充填する。各ウェルを温調し、前記試薬に混入された蛍光試薬の発光差によって変異を検出する。一つのSNPに対し2つのウェルのうち一つのみ陽性反応ならばホモ、二つ陽性ならヘテロと判定することができる。   The sample in which the nucleic acid is amplified by the PCR is filled in each well. Each well is temperature-controlled, and mutation is detected by the difference in luminescence of the fluorescent reagent mixed in the reagent. If only one of the two wells is positive for one SNP, it can be determined to be homozygous, and if two are positive, it can be determined to be heterozygous.

本発明の反応チップは、例えば核酸等の試料において生化学物質の検出や分析に使用することができる。特にSNPの変異を検出できることから、変異した細胞や遺伝子の検出に利用することができる。また、複数の乾燥した試薬に液体試薬を同時に混合できることから、反応容器としての応用が可能である。   The reaction chip of the present invention can be used for detection and analysis of biochemical substances in samples such as nucleic acids. In particular, since the mutation of SNP can be detected, it can be used for detection of mutated cells and genes. In addition, since a liquid reagent can be simultaneously mixed with a plurality of dried reagents, application as a reaction container is possible.

101:主流路
102:反応場
103:注入口A
104:注入口B
201:接線Aと接線Bのなす角A
202:注入口104側の主流路と、反応場102のなす角度B
203:主流路と反応場が接続されている側の壁面の主流路側の接線A
204:主流路と反応場が接続されている側の壁面の反応場側の接線B
101: Main channel 102: Reaction field 103: Inlet A
104: Inlet B
201: Angle A formed by tangent line A and tangent line B
202: Angle B formed by the main flow path on the inlet 104 side and the reaction field 102
203: Tangent line A on the main channel side of the wall surface on the side where the main channel and the reaction field are connected
204: Tangent line B on the reaction field side of the wall surface on the side where the main channel and the reaction field are connected

Claims (9)

主流路と、前記主流路の端部の一方に開口する第一の溶液を注入するための注入口と、前記主流路の他方の端部に開口する第二の溶液を注入するための注入口と、前記主流路の直線部の複数箇所に設けられ、前記第一及び第二の溶液を収容可能な、非対称の窪みである複数の反応場と、を有し、
前記複数の反応場の各々は、前記第一の溶液の注入口側の前記主流路を基準とし前記第一の溶液の注入口側の端面前記主流路のなす角度Aが、前記第二の溶液の注入口側の前記主流路を基準とし前記第二の溶液の注入口側の端面前記主流路のなす角度Bよりも大きいことを特徴とする試料分析チップ。
A main channel, an inlet for injecting a first solution that opens to one of the ends of the main channel, and an inlet for injecting a second solution that opens to the other end of the main channel And a plurality of reaction fields that are asymmetric depressions that are provided at a plurality of locations of the linear portion of the main flow path and can contain the first and second solutions ,
Each of the plurality of reaction fields, the first relative to the said main channel of the inlet side of the solution, the angle A of the main channel and the end face of the inlet side of the first solution, the second second the inlet side of the solution relative to the main channel, the second solution sample analysis chip being larger than the angle B of the primary flow passage and the inlet side end face of the.
前記角度Aが100°から140°に収まることを特徴とする請求項1に記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the angle A is within a range of 100 ° to 140 °. 前記角度Bが20°から100°に収まることを特徴とする請求項1又は請求項2に記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the angle B is within a range of 20 ° to 100 °. 少なくとも前記反応場を親水処理したことを特徴とする請求項1ないし請求項3のいずれかに記載の試料分析チップ。 The sample analysis chip according to any one of claims 1 to 3, wherein at least the reaction field is subjected to a hydrophilic treatment. 前記試料分析チップは前記反応場及び前記流路を形成した第一の基材と、該基材と貼り合わせた第二の基材とを有する請求項1ないし請求項4のいずれかに記載の試料分析チップ。 The said sample analysis chip | tip has the 1st base material in which the said reaction field and the said flow path were formed, and the 2nd base material bonded together with this base material. Sample analysis chip. 前記基材のいずれか一方が光透過性材料で形成されていることを特徴とする請求項1ないし請求項5のいずれかに記載の試料分析チップ。 6. The sample analysis chip according to claim 1, wherein any one of the substrates is made of a light transmissive material. 第一の基材が光透過性の樹脂材料であり、第二の基材が金属材料であることを特徴とする請求項1ないし請求項6のいずれかに記載の試料分析チップ。 The sample analysis chip according to any one of claims 1 to 6, wherein the first base material is a light-transmitting resin material, and the second base material is a metal material. 請求項1ないし請求項7のいずれかに記載の試料分析チップの前記主流路に流す前記第一の溶液が親水性であり、前記第二の溶液が前記第一の溶液と親和性の低い性質を持つ物質であり、前記主流路に溶液を配液する工程の後に、前記第一の溶液を注入した方とは異なる注入口から前記主流路へ前記第二の溶液を注入する工程、各ウェルでの反応・検出工程を有することを特徴とする試料分析方法。   The first solution that flows through the main channel of the sample analysis chip according to any one of claims 1 to 7 is hydrophilic, and the second solution has a low affinity with the first solution. A step of injecting the second solution into the main channel from an inlet different from the direction of injecting the first solution after the step of distributing the solution into the main channel, each well A sample analysis method characterized by comprising a reaction / detection step. 請求項8に記載の試料分析方法を用いることを特徴とする遺伝子解析方法。
A gene analysis method using the sample analysis method according to claim 8.
JP2010082321A 2010-03-31 2010-03-31 Sample analysis chip and sample analysis method using the same Active JP5499840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082321A JP5499840B2 (en) 2010-03-31 2010-03-31 Sample analysis chip and sample analysis method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082321A JP5499840B2 (en) 2010-03-31 2010-03-31 Sample analysis chip and sample analysis method using the same

Publications (2)

Publication Number Publication Date
JP2011214944A JP2011214944A (en) 2011-10-27
JP5499840B2 true JP5499840B2 (en) 2014-05-21

Family

ID=44944848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082321A Active JP5499840B2 (en) 2010-03-31 2010-03-31 Sample analysis chip and sample analysis method using the same

Country Status (1)

Country Link
JP (1) JP5499840B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59905743D1 (en) * 1998-03-11 2003-07-03 Steag Microparts Gmbh SAMPLE CARRIER
US7238269B2 (en) * 2003-07-01 2007-07-03 3M Innovative Properties Company Sample processing device with unvented channel
JP5015441B2 (en) * 2005-09-30 2012-08-29 凸版印刷株式会社 Reaction chip and reaction method
JP4717643B2 (en) * 2006-01-20 2011-07-06 凸版印刷株式会社 Reaction container lid and reaction container
JP4957893B2 (en) * 2007-01-29 2012-06-20 独立行政法人産業技術総合研究所 Isolation technology using integrated microwell array
WO2009054473A1 (en) * 2007-10-26 2009-04-30 Toppan Printing Co., Ltd. Reaction chip, reaction method, temperature controlling unit for gene treating apparatus and gene treating apparatus
JP2009162701A (en) * 2008-01-10 2009-07-23 Panasonic Corp Plate for biological sample analysis
JP4556194B2 (en) * 2008-02-01 2010-10-06 セイコーエプソン株式会社 Biological sample reaction method

Also Published As

Publication number Publication date
JP2011214944A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
EP2416160B1 (en) Sample analysis chip, sample analyzer using sample analysis chip, sample analysis method, and method of producing sample analysis chip
US10252261B2 (en) Handling liquid samples
JP5831490B2 (en) Temperature control mechanism for gene processing apparatus and gene processing apparatus
JP4878200B2 (en) Biochemical reaction cassette
US11674173B2 (en) Operation method of multiplex slide plate device
JP4438860B2 (en) Biological material detection cartridge, biological material detection device, and biological material detection method
JP6323274B2 (en) Sample analysis chip
JP2017502653A (en) Micro chamber plate
JP2005505288A (en) Apparatus and method for detecting gene sequences
JP5521454B2 (en) Sample analysis chip, sample analysis apparatus and sample analysis method using the same
JP2007090290A (en) Reaction chip and reaction method
US8551737B2 (en) Method for analysing amplified nucleic acids
JP2012185000A (en) Sample analysis chip and sample analysis method using the same
JP5499840B2 (en) Sample analysis chip and sample analysis method using the same
JP5707683B2 (en) Sample analysis chip, sample analysis device and sample analysis device using the same, and gene analysis method
JP4781144B2 (en) Reaction vessel
JP2011214943A (en) Chip, method and device for analyzing sample
US11135592B2 (en) Multiplex slide plate device having storage tank
JP5505041B2 (en) Biochemical reaction chip and manufacturing method thereof
JP2011211946A (en) Reaction chip, method for producing the same and reaction method
JP2015206715A (en) sample analysis chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250