JP2006126011A - Microchip for specimen sample - Google Patents

Microchip for specimen sample Download PDF

Info

Publication number
JP2006126011A
JP2006126011A JP2004314653A JP2004314653A JP2006126011A JP 2006126011 A JP2006126011 A JP 2006126011A JP 2004314653 A JP2004314653 A JP 2004314653A JP 2004314653 A JP2004314653 A JP 2004314653A JP 2006126011 A JP2006126011 A JP 2006126011A
Authority
JP
Japan
Prior art keywords
sample
channel
dispensing
flow path
microchip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004314653A
Other languages
Japanese (ja)
Other versions
JP4458253B2 (en
Inventor
Masaaki Kobayashi
正昭 小林
Hiroshi Ichikawa
央 市川
Eiichi Tamiya
栄一 民谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Seisakusho Ltd
Original Assignee
Ishikawa Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Seisakusho Ltd filed Critical Ishikawa Seisakusho Ltd
Priority to JP2004314653A priority Critical patent/JP4458253B2/en
Publication of JP2006126011A publication Critical patent/JP2006126011A/en
Application granted granted Critical
Publication of JP4458253B2 publication Critical patent/JP4458253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchip for specimen samples which can allow a liquid-like inspection sample, such as a PCR reaction solution and blood, to flow into a plurality of chambers accurately by using a conventional rotary drive, and dispenses with a conventional, large and expensive spotter apparatus. <P>SOLUTION: A channel pattern comprises a circumferential or arc-like channel Cr that continues from an input port S1 for injecting specimen samples, a channel Ce for dispensing formed wider than the channel Cr on the circumferential or arc-like channel Cr, and chambers T1, T2 for detection that become parts for inspecting the specimen samples continuously via the channel Ce for dispensing and channels p1, p2 for connection that are narrower than the channel Ce for dispensing. The chambers T1, T2 for detection are formed radially via the channel p1 toward the outer periphery from the channel Ce for dispensing, and are formed wider than the channel p1 toward the outer periphery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学反応・生化学反応や血液検査など、微量の反応液や検体試料を定量かつ簡便に配置し、検査するための検体試料用マイクロチップに関する。   The present invention relates to a microchip for a specimen sample for quantitatively and simply arranging and examining a small amount of a reaction solution and a specimen sample such as a chemical reaction / biochemical reaction and a blood test.

例えば、極微量の試料から標的とする遺伝子(DNA)などを検出・診断する場合などに使用される検体試料用マイクロチップは、内部に検査目的に応じた特定形状の微少断面積の流路(チャンネルパターン)を有し、例えば、フロー形状の入力ポート部より被検体をチャンネルパターン内に送液し、遺伝子増幅反応などによって所定の医学的評価を行い、あるいは、チャンネルパターンに検体試料を充填して電圧を印可したときに生じる検体試料の反応によって所定の評価を行う際に使用される。検体試料用マイクロチップは、ポリマー基板に微細な金型を用いてのホットエンボス加工や射出成形等によってチャンネルパターンを形成し、チャンネルパターンを形成したポリマー基板に対し、シート状または板状のポリマー被覆基板を貼着することによってチャンネルパターンを内部に封入する構造のものや、チャンネルパターンを形成したポリマーシートを一対のポリマー被覆基板で挟み込む構造のものなどがある。
特開平8−62225号公報 特開2002−340911号公報 特表2003−185627号公報 特開2003−166975号公報
For example, a specimen sample microchip used for detecting and diagnosing a target gene (DNA) or the like from a very small amount of sample has a microscopic cross-sectional area channel (in a specific shape corresponding to the inspection purpose). Channel pattern), for example, a sample is fed into the channel pattern from a flow-shaped input port, and a predetermined medical evaluation is performed by a gene amplification reaction or the like, or a sample sample is filled in the channel pattern. This is used when a predetermined evaluation is performed by the reaction of the specimen sample that occurs when a voltage is applied. The microchip for specimen sample forms a channel pattern by hot embossing or injection molding using a fine mold on the polymer substrate, and the polymer substrate on which the channel pattern is formed is coated with a sheet-like or plate-like polymer. There are a structure in which a channel pattern is enclosed inside by attaching a substrate, a structure in which a polymer sheet on which the channel pattern is formed is sandwiched between a pair of polymer-coated substrates, and the like.
JP-A-8-62225 JP 2002-340911 A Special table 2003-185627 gazette JP 2003-166975 A

特許文献1には、検体試料を受け入れる試料チャンバや廃物チャンバなどを有し、所定の流路を形成した検体試料用マイクロチップ(試験ユニット)が開示されると共に、試料チャンバから廃物チャンバへの方向に向けて検体試料に遠心力が加わるように軸線を中心に回転させて検定を行う方法と、遠心力を加えるための装置が開示されている(その図1や図2を参照)。特許文献2には、複数枚の可撓性シートを積層させた積層体の内部に検体を入れるなどの第1から第3の空隙部を有する検体試料用マイクロチップが開示されると共に、この検体試料用マイクロチップの検体に遠心力を加える回転駆動手段と、遠心分離した検体を移動させる移動手段などが開示されている。特許文献3には、分離用チャンネルと、導入用チャンネルとを有する電気泳動用検体試料用マイクロチップと、先端に複数本のピペッタチップ70が装着された多連ピペッタ機構と、これをXY方向などに稼動させることが可能な電気泳動作装置が開示されている(その図2や図4を参照)。特許文献4は、長方形状のチップにおいて、一側面側から対向する他側面側に向かって複数の流路となるチャンネルパターンが形成されている。   Patent Document 1 discloses a sample sample microchip (test unit) having a sample chamber, a waste chamber, and the like for receiving a sample, and having a predetermined flow path, and a direction from the sample chamber to the waste chamber. A method for performing an assay by rotating about an axis so that a centrifugal force is applied to a specimen sample toward the object and a device for applying the centrifugal force are disclosed (see FIGS. 1 and 2). Patent Document 2 discloses a microchip for a specimen sample having first to third gaps such as putting a specimen inside a laminated body in which a plurality of flexible sheets are laminated. There are disclosed a rotation driving means for applying a centrifugal force to the specimen of the sample microchip, a moving means for moving the centrifuged specimen, and the like. Patent Document 3 discloses an electrophoresis sample sample microchip having a separation channel and an introduction channel, a multiple pipettor mechanism having a plurality of pipettor chips 70 attached to the tip thereof, and the like in the XY direction. An electrophoretic device that can be operated is disclosed (see FIGS. 2 and 4). In Patent Document 4, in a rectangular chip, channel patterns serving as a plurality of flow paths are formed from one side to the other side facing the chip.

しかしながら、上記検体試料用マイクロチップは所定のチャンネルパターンが複数の流路として形成されているが、上記のような回転装置では、検体試料用マイクロチップを遠心分離装置の搭載位置に正確に配置させる必要があり、その位置が若干ずれると所定の位置(廃棄チャンバなど)までに検体試料を流し込むことができず、偏りやときには逆流が生じる問題を有していた。特に、チャンネルパターンの数が増加することにより流路の幅が狭くなると所定の位置(廃棄チャンバなど)までに検体試料を流し込むことは一層困難になる。特許文献1の検体試料用マイクロチップ(試験ユニット)は、複数のチャンネルパターンに一つ一つPCR反応溶液などの検体試料を注入させる必要があると共に、試料チャンバや廃棄チャンバの大きさや流路などの設定を細かく設定する必要もあり、更に、これを回転装置で回転させても所定の位置(廃棄チャンバなど)までに検体試料を流し込むことができない場合が生じている。すなわち、放射状の複数のチャンネルパターンがその中心から僅かにずれて形成されている場合、上記のように検体試料用マイクロチップを回転駆動装置の搭載位置に正確に配置されていない場合や、回転駆動手段であるモータの軸のブレなどにより検体試料を均一に流し込むことができない場合が生じている。また、従来の検体試料用マイクロチップを使用して検定するためには、大型で高価なスポッタ装置(上記多連ピペッタ機構)を必要とするとともに、これをXY方向などに精密に移動させる機構が必要であり、場所と設備が大掛かりとなり、高価である問題を有していた。   However, the sample sample microchip has a predetermined channel pattern formed as a plurality of flow paths. However, in the rotating apparatus as described above, the sample sample microchip is accurately arranged at the mounting position of the centrifuge. If the position is slightly deviated, the specimen sample cannot be poured up to a predetermined position (such as a waste chamber), and there is a problem that bias and sometimes back flow occur. In particular, when the width of the flow path is narrowed by increasing the number of channel patterns, it becomes more difficult to flow the specimen sample to a predetermined position (such as a waste chamber). The sample sample microchip (test unit) of Patent Document 1 needs to inject a sample sample such as a PCR reaction solution into a plurality of channel patterns one by one, as well as the size and flow path of the sample chamber and the waste chamber, etc. In addition, there is a case where the specimen sample cannot be flowed to a predetermined position (such as a waste chamber) even if it is rotated by a rotating device. That is, when the plurality of radial channel patterns are formed slightly shifted from the center, the specimen sample microchip is not accurately placed at the mounting position of the rotation drive device as described above, or the rotation drive There is a case where the specimen sample cannot be poured uniformly due to the shake of the shaft of the motor as a means. In addition, in order to test using a conventional specimen sample microchip, a large and expensive spotter device (the above-mentioned multiple pipetter mechanism) is required, and a mechanism for precisely moving the spotter device in the XY directions or the like is required. It was necessary, and the place and equipment became large, and there was a problem that it was expensive.

そこで本発明の目的は、従来の回転駆動装置を使用して、PCR反応溶液や血液などの液状の検体試料を複数のチャンバに正確に流し込むことができ、従来の大型で高価なスポッタ装置を必要としなくなる検体試料用マイクロチップを提供することにある。   Accordingly, an object of the present invention is to use a conventional rotary drive device to accurately flow a liquid sample sample such as a PCR reaction solution or blood into a plurality of chambers, and requires a conventional large and expensive spotter device. An object of the present invention is to provide a microchip for a specimen sample that will not be obtained.

本発明の請求項1記載の検体試料用マイクロチップは、液状の検体試料の流路となるチャンネルパターンが形成された検体試料用マイクロチップにおいて、チャンネルパターンは、このチップの中心部に検体試料を注入する入力ポートから連続する円周状又は円弧状の流路と、この円周状又は円弧状の流路上であってこの流路よりも広幅に形成された分注用チャネルと、この分注用チャネルとこれよりも狭い連結用の流路を介して連続して検体試料を検査する部分となる検出用チャンバとを備え、上記分注用チャネルは、検出用チャンバに検体試料を切り離すように分けて注入するときにその分注量を定量化するものであることを特徴とする。   The sample sample microchip according to claim 1 of the present invention is a sample sample microchip in which a channel pattern serving as a flow path for a liquid sample sample is formed. The channel pattern has a sample sample at the center of the chip. A circumferential or arc-shaped flow path continuous from the input port to be injected, a dispensing channel formed on the circumferential or arc-shaped flow path and wider than the flow path, and the dispensing And a detection chamber that is a part for continuously inspecting the specimen sample through a connecting flow path narrower than the above, and the dispensing channel is configured to separate the specimen sample from the detection chamber. It is characterized by quantifying the amount dispensed when injecting separately.

本発明によれば、入力ポートから検体試料を注入して、所定の回転装置の回転盤に搭載して回転駆動をかければ、チャンネルパターンの分注量を定量するための分注用チャネルが円周状又は円弧状の流路上に形成されていることから、円周状の流路に広がると共に、この広がりにより検出用チャンバに検体試料を切り離すように分けて注入する分注が行われることとなる。   According to the present invention, if a specimen sample is injected from an input port and mounted on a rotating disk of a predetermined rotating device and driven to rotate, a dispensing channel for quantifying the dispensing amount of the channel pattern is circular. Since it is formed on a circumferential or arc-shaped flow path, it spreads in a circumferential flow path, and by this spread, dispensing is performed so as to separate and inject the specimen sample into the detection chamber. Become.

本発明の請求項2記載の検体試料用マイクロチップは、前記検出用チャンバは、前記分注用チャネルの外周側に直線上に位置するように配置され、この分注用チャネルは、検出用チャンバとほぼ同じ大きさであることを特徴とする。   The microchip for specimen sample according to claim 2 of the present invention is arranged so that the detection chamber is positioned on a straight line on the outer peripheral side of the dispensing channel, and the dispensing channel is a detection chamber. It is characterized by being almost the same size.

本発明によれば、入力ポートから注入された検体試料が分注用チャネルに配置され、その後、所定の回転を与えると、放射状の広がりを見せて、外周に向かう流路よりも広く形成されている検出用チャンバに一定量の検体試料ごとにチャネルパターンから切り離すようにして検出用チャンバに均一に分注させることができる。   According to the present invention, the specimen sample injected from the input port is arranged in the dispensing channel, and then, when given a predetermined rotation, shows a radial spread and is formed wider than the flow path toward the outer periphery. In the detection chamber, a certain amount of specimen sample can be uniformly dispensed into the detection chamber so as to be separated from the channel pattern.

本発明の請求項3記載の検体試料用マイクロチップは、前記円弧状の流路のチャネルパターンが2つ以上設けられており、それぞれに検体試料を注入する入力ポートと、円弧状の流路上であってこの流路よりも広幅に形成された分注用チャネルと、この分注用チャネルとこれよりも狭い連結用の流路を介して連続して検体試料を検査する部分となる検出用チャンバとを備え、それぞれの入力ポートに異なる検体試料を注入し、検出用チャンバに検体試料を切り離すように分けて注入する分注により少なくとも2種以上の検体を同時に検査することを特徴とする。   The specimen sample microchip according to claim 3 of the present invention is provided with two or more channel patterns of the arc-shaped flow path, each of which has an input port for injecting the sample sample and an arc-shaped flow path. A detection chamber which is a portion for inspecting a specimen sample continuously through a dispensing channel formed wider than the flow channel, and the dispensing channel and a connecting flow channel narrower than the dispensing channel. In which different specimen samples are injected into each input port, and at least two kinds of specimens are simultaneously inspected by dispensing that separates and injects the specimen sample into the detection chamber.

本発明によれば、一方のチャネルパターンに液状の検体試料を注入して、他方のチャネルパターンには、異なる液状の検体試料を注入することにより、円弧状に連続するそれぞれのチャネルパターンから、異なる検体試料が検出用チャンバに同時かつ均一に分注されることとなる。   According to the present invention, a liquid sample sample is injected into one channel pattern, and a different liquid sample sample is injected into the other channel pattern. The specimen sample is dispensed simultaneously and uniformly into the detection chamber.

本発明の検体試料用マイクロチップは、入力ポートから検体試料を注入して、所定の回転装置の回転盤に搭載して回転駆動をかければ、チャンネルパターンの分注量を定量化するための分注用チャネルが円周状上に形成されていることから、円周状の流路に広がると共に、この広がりにより外周の検出用チャンバに検体試料が均一に送られることとなり、従来のように各チャンネルパターン毎に溶液滴下部を形成しなくともよくなり、又、放射状の複数のチャンネルパターンがその中心から僅かにずれて形成されている場合、検体試料用マイクロチップが回転盤に正確に配されず若干ずれている場合や、回転駆動手段であるモータの軸のブレなどによっても均等に配置される。そして、比較的簡単な構造で実現でき、従来の大型で高価なスポッタ装置を必要としなくなる利点がある。   The sample sample microchip according to the present invention can be used for quantifying the dispensing amount of a channel pattern by injecting a sample sample from an input port and mounting the sample sample on a rotating plate of a predetermined rotating device and rotating the sample. Since the injection channel is formed on the circumference, it spreads in the circumferential flow path, and this spread allows the specimen sample to be uniformly sent to the outer detection chamber. It is not necessary to form a solution dripping portion for each channel pattern, and when a plurality of radial channel patterns are formed slightly shifted from the center, the specimen sample microchip is accurately arranged on the rotating disk. Even when they are slightly deviated from each other, or even when the shaft of the motor that is the rotation driving means is shaken, the arrangement is even. And it is realizable with a comparatively simple structure, and there exists an advantage which does not require the conventional large-sized expensive spotter apparatus.

以下、本発明を適用した最良の実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments to which the invention is applied will be described in detail with reference to the drawings.

(第1の実施の形態)
本実施の形態の検体試料用マイクロチップは、外形が円形又は正方形であり、その中心部に検体試料を注入する入力ポートS1から連続する円周状の流路Crと分注用チャネルCeを持つチャンネルパターンが連続するように形成されるとともに、この円周状の分注用チャネルCeの外周に連続して検体試料を検査する部分となる検出用チャンバT1,T2が形成されている(図1)。検出用チャンバT1,T2は、円周状の分注用チャネルCeから外周に向かう流路p1を介して放射状に形成されるとともに、外周に向かう流路p1よりも広く形成されている。
(First embodiment)
The sample sample microchip of the present embodiment has a circular or square outer shape, and has a circumferential flow channel Cr and a dispensing channel Ce continuous from the input port S1 for injecting the sample sample at the center thereof. The channel pattern is formed so as to be continuous, and detection chambers T1 and T2 that are portions for inspecting the specimen sample are formed continuously on the outer periphery of the circumferential dispensing channel Ce (FIG. 1). ). The detection chambers T1 and T2 are formed radially through the flow channel p1 from the circumferential dispensing channel Ce to the outer periphery, and are formed wider than the flow channel p1 toward the outer periphery.

図1に示す検体試料用マイクロチップ1Fは、その分注用チャネルCeの数が19チャンネルであり、各分注用チャネルCeの外周側に第1の検出用チャンバT1が同じ数形成され、第1の検出用チャンバT1の外側に第2の検出用チャンバT2が同じ数形成されている。上記のチャンネルは、その両端部のチャンネルの間隔以外は、等間隔で形成されおり、両端部には、入力ポートS1と空気穴S2が形成されている。この入力ポートS1は、円周状に連続するチャンネルパターンに液状の検体試料を注入するためにあり、他方の空気穴S2は、検体試料を注入の際に押し出される空気を排出するものである。   The sample sample microchip 1F shown in FIG. 1 has 19 dispensing channels Ce, and the same number of first detection chambers T1 are formed on the outer peripheral side of each dispensing channel Ce. The same number of second detection chambers T2 are formed outside one detection chamber T1. The above-described channels are formed at equal intervals except for the interval between the channels at both ends, and an input port S1 and an air hole S2 are formed at both ends. The input port S1 is for injecting a liquid specimen sample into a circumferentially continuous channel pattern, and the other air hole S2 is for exhausting air pushed out when the specimen sample is injected.

円周状の流路Crは、細幅で形成されており、この流路Crの上に形成される分注用チャネルCeは、ほぼ円形状に形成され、円周状の流路Crの幅よりも広い幅に形成されている。分注用チャネルCeは、液状の検体試料を検出用チャンバT1やT2に予め決められた量のみ送り込むために形成されており、回転駆動を与えた際に検出用チャンバT1に定量的に分注されるように設計されているもので、細幅の円周状の流路Crとの関係では広幅で形成されることで、細幅の円周状の流路Crに注されている検体試料を無視して、分注用チャネルCeに注入された検体試料のみを検出用チャンバT1やT2に予め決められた量のみ送り込む。すなわち、分注用チャネルCeの検体試料の体積分が検出用チャンバT1やT2に送り込まれる溶液の量が決定される。分注用チャネルCeと第1の検出用チャンバT1との間にある第1の流路p1と、第1の検出用チャンバT1と第2の検出用チャンバT2との間に第2の流路p2が形成され、第1の流路p1よりも第2の流路p2の方が狭くなっている。また、第1の検出用チャンバT1は、円周状の分注用チャネルCeから外周に向かう流路p1を介して放射状に形成されるとともに、外周に向かう流路p1よりも広く形成され、第2の検出用チャンバT2は、外周に向かう流路p1と第1の検出用チャンバT1を介して連続する外周に向かう流路p2よりも広く形成されている。そして、分注用チャネルCeは、検出用チャンバT1やT2に予め決められた量のみ送り込む役割を果たすため、検出用チャンバT1,T2とほぼ同じ大きさであり、余分な量が送られたりすることがないようにしている。なお、図2に示すように、検出用チャンバT1は,分注用チャネルCeの外周側に直線上に位置するように一つ配される検体試料用マイクロチップ1Gであっても良い。   The circumferential channel Cr is formed with a narrow width, and the dispensing channel Ce formed on the channel Cr is formed in a substantially circular shape, and the width of the circumferential channel Cr It is formed with a wider width. The dispensing channel Ce is formed to feed a liquid specimen sample into the detection chambers T1 and T2 only in a predetermined amount, and quantitatively dispenses into the detection chamber T1 when a rotational drive is applied. The specimen sample poured into the narrow circumferential channel Cr is formed so as to be wide with respect to the narrow circumferential channel Cr. Is ignored, and only the specimen sample injected into the dispensing channel Ce is fed into the detection chambers T1 and T2 by a predetermined amount. That is, the amount of the solution in which the volume of the specimen sample in the dispensing channel Ce is sent to the detection chambers T1 and T2 is determined. A first flow path p1 between the dispensing channel Ce and the first detection chamber T1, and a second flow path between the first detection chamber T1 and the second detection chamber T2. p2 is formed, and the second flow path p2 is narrower than the first flow path p1. Further, the first detection chamber T1 is formed radially through the flow path p1 from the circumferential dispensing channel Ce to the outer periphery, and is formed wider than the flow path p1 toward the outer periphery. The second detection chamber T2 is formed wider than the flow path p1 toward the outer periphery and the flow path p2 toward the outer periphery that is continuous through the first detection chamber T1. The dispensing channel Ce plays a role of feeding only a predetermined amount to the detection chambers T1 and T2, and is therefore almost the same size as the detection chambers T1 and T2, and an extra amount is sent. I'm trying not to get it. As shown in FIG. 2, the detection chamber T1 may be a sample sample microchip 1G arranged so as to be positioned linearly on the outer peripheral side of the dispensing channel Ce.

本実施の形態の検体試料用マイクロチップ1F,1Gは、ホットエンボシング装置を使用し、安価なポリマー基材や、或いは金属やガラスなどにそれらの表面の微細な流路形状に加工された凹凸を熱転写させて作製することができる。また、マスクなどを使用する半導体リソグラフィー技術を用いて作製するPDMS(Polydimethylsiloxane)にて微細な流路形状を持った検体試料用マイクロチップを作製することもできる。さらに、その他の手法として、例えば、RIE(Reactive ion etching)、レーザー、NC加工機などを使用して作製することができる。ここでは、Rapid Prototypingを用いて、圧膜フォトレジスト(SU−8)による鋳型をSi基板上に作成し、これをPDMSに転写し、流路となるチャンネルパターンCpなどが形成された一方側のポリマー基材(上方側のチップ)を作成し、他方、Si基板を下部とし、Oプラズマにより貼り合わせて検体試料用マイクロチップ1Fを作成した。作成した検体試料用マイクロチップ1Fは、正方形のものは、外形が約40mm×約40mmであり、厚さが約3mmである。また、円形のものは、直径が約40mmであり、厚さが約3mmである。流路深さを120μmに設計し、チップに必要な試料の分量(19チャンネル分)を約8μlとした。ポリマー基材としては、PDMSの他にも、アクリル、ポリプロピレン、ポリエチレン、ポリスチレン、シクロオレフィンポリマー、ポリカーボネイト等の汎用樹脂材料は、いずれも本発明に使用することができる。 The specimen sample microchips 1F and 1G of the present embodiment use a hot embossing device, and are processed into an inexpensive polymer substrate or metal or glass into a fine channel shape on the surface thereof. Can be produced by thermal transfer. In addition, a microchip for a specimen sample having a fine channel shape can be manufactured by PDMS (Polydimethylsiloxane) manufactured using a semiconductor lithography technique using a mask or the like. Furthermore, as another method, for example, it can be produced using RIE (Reactive ion etching), laser, NC processing machine or the like. Here, using Rapid Prototyping, a template made of a pressure film photoresist (SU-8) is created on a Si substrate, transferred to PDMS, and a channel pattern Cp or the like serving as a flow path is formed on one side. A polymer base material (upper chip) was prepared, and on the other hand, the Si substrate was used as the lower part and bonded by O 2 plasma to prepare a microchip 1F for specimen sample. The prepared sample sample microchip 1F has a square shape with an outer shape of about 40 mm × about 40 mm and a thickness of about 3 mm. In addition, the circular shape has a diameter of about 40 mm and a thickness of about 3 mm. The channel depth was designed to be 120 μm, and the amount of sample necessary for the chip (19 channels) was about 8 μl. As the polymer substrate, in addition to PDMS, any of general-purpose resin materials such as acrylic, polypropylene, polyethylene, polystyrene, cycloolefin polymer, and polycarbonate can be used in the present invention.

検体試料用マイクロチップ1F,1G使用した検体試料の回転駆動装置としては、従来の回転駆動手段やスピンコータ等の自転状の回転駆動をするもので足りる。すなわち、駆動手段であるモータの軸に上記検体試料用マイクロチップ1F,1Gを搭載する回転盤などを有するもので良い。なお、回転盤には、位置合わせ用の孔を放射状に形成して、この所定位置の孔にピン及び固定用治具、バインダなどを差し込んで位置合わせすることなどの工夫を凝らしたり、回転盤に検体試料用マイクロチップ1F,1Gを搭載し易くするために、位置決めの印や溝などを形成することは実施に応じて可能である。なお、これらを使用せずに両面テープなどを使用して回転盤に検体試料用マイクロチップ1F,1Gを搭載することも可能である。   As a sample sample rotation driving device using the sample sample microchips 1F and 1G, a conventional rotation driving device, a spin coater, or the like that rotates in a rotating manner is sufficient. That is, it may have a rotating disk or the like on which the specimen sample microchips 1F and 1G are mounted on the shaft of a motor as a driving means. In addition, the rotating plate is formed with radial holes, and pins, fixing jigs, binders, etc. are inserted into the holes at the predetermined positions to adjust the position. In order to make it easier to mount the specimen sample microchips 1F and 1G, it is possible to form positioning marks, grooves, and the like according to the implementation. It is also possible to mount the specimen sample microchips 1F and 1G on the rotating disk using a double-sided tape or the like without using them.

次に、上記実施の形態のうちの検体試料用マイクロチップ1F,1Gを上記した検体試料の遠心分離装置の回転盤に搭載して、検体試料用マイクロチップ1Fが各々の軸の位置から若干ズレて配置された場合などにおいても第1の検出用チャンバT1に均等に分離注入することができるかを検討した。ここでは、検体試料用マイクロチップ1Fの円周状の流路Crと分注用チャネルCeにミネラルオイル(オイル)を注入した後に、これをスピンコータ等の回転駆動装置の回転盤に搭載させて3000〜9000rpmでこの検体試料用マイクロチップ1Fを回転させ、外周に位置する検出用チェンバT2にオイルを流し込んだ。そして、検体試料の代わりに色素溶液Rを入力ポートS1から注入し、上記回転盤を回転駆動させると、分注用チャネルCeの持つ体積に相当する色素溶液Rのみが検出用チャンバT2に送られ、均一に配置することが出来た(図1(b)、図2(b))。なお、色素溶液Rは第2の検出用チャンバT2の位置で行き止ることとなる。検体試料用マイクロチップ1Fが回転盤の中心位置から若干ズレて配置された場合おいても、回転盤の中心位置が流路Crと分注用チャネルCeが連続している円周状のチャンネルパターンの内側に位置していれば、均等に色素溶液を配置することが出来る。さらに、オイルと色素溶液Rの比重の違いから2液が置換され、Ceにはエア、T1にはオイル、T2には色素溶液Rの順に配置(分注)できることが確認できた。また、この状態で検体試料用マイクロチップを高温で加熱しても、オイルが蓋の替わりを果たし、検体試料の蒸発を防ぐことができ、安定であることが分かった。このことから、遺伝子増幅法(PCRなど)を利用した遺伝子検査などへの応用が可能である。   Next, the sample sample microchips 1F and 1G in the above-described embodiment are mounted on the rotating disk of the sample sample centrifuge, and the sample sample microchip 1F is slightly shifted from the position of each axis. Even in the case where they are arranged, it has been examined whether they can be separated and injected equally into the first detection chamber T1. Here, after injecting mineral oil (oil) into the circumferential flow path Cr and the dispensing channel Ce of the sample sample microchip 1F, it is mounted on a rotating disk of a rotary drive device such as a spin coater and 3000. The specimen sample microchip 1F was rotated at ˜9000 rpm, and oil was poured into the detection chamber T2 located on the outer periphery. Then, when the dye solution R is injected from the input port S1 instead of the specimen sample and the rotating disk is rotated, only the dye solution R corresponding to the volume of the dispensing channel Ce is sent to the detection chamber T2. It was possible to arrange them uniformly (FIG. 1 (b), FIG. 2 (b)). Note that the dye solution R stops at the position of the second detection chamber T2. Even when the sample sample microchip 1F is arranged slightly shifted from the center position of the turntable, the center position of the turntable is a circumferential channel pattern in which the flow path Cr and the dispensing channel Ce are continuous. If it is located inside, the dye solution can be arranged evenly. Furthermore, it was confirmed that the two liquids were replaced due to the difference in specific gravity between the oil and the dye solution R, and that the air could be arranged (dispensed) in the order of Ce for air, T1 for oil, and T2 for dye solution R. Further, it was found that even when the sample sample microchip was heated at a high temperature in this state, the oil could replace the lid, prevent the sample sample from evaporating, and be stable. Therefore, it can be applied to genetic testing using a gene amplification method (such as PCR).

次に、PCR反応溶液を使用した場合の実施例を説明する。   Next, an example in which a PCR reaction solution is used will be described.

実施例1
まず、PCR(Polymerase Chain Reaction)反応とは、ポリメラーゼ連鎖反応とも呼ばれ、特定の遺伝子の配列をもとにその遺伝子を短時間に100万倍に複製する技術である。生物工学的な分野での利用以外にも、最近では血液及び髄液などから遺伝的な疾患やウイルス・病原菌などを診断・検出するために利用される。この生成過程を解析する事により、そのDNAの含有量そのものを定量する事が可能であり、PCR反応の手順としては、次の(1)〜(6)などの手順により行われる。(1)DNAを抽出(2)二重螺旋の形態をとるDNAを加熱し、1本鎖の状態にする。(3)4つの塩基により構成されている遺伝子は特定の塩基と結合する。(4)この塩基の配列が遺伝子配列であり、標的とする遺伝子を対象とする配列をもとに作成し、これと対となる遺伝子の断片(プライマー)を加える。(5)プライマーは、目的とする遺伝子配列と結合する。(6)熱耐性酵素(Taq酵素)は、プライマーが1本鎖遺伝子と結合している場合、その結合部位から、もとの2重螺旋DNAを再生する。
Example 1
First, the PCR (Polymerase Chain Reaction) reaction is also called a polymerase chain reaction, and is a technique for replicating a gene 1 million times in a short time based on the sequence of a specific gene. In addition to its use in the biotechnological field, it has recently been used to diagnose and detect genetic diseases, viruses and pathogens from blood and cerebrospinal fluid. By analyzing this production process, it is possible to quantify the DNA content itself, and the PCR reaction is performed according to the following procedures (1) to (6). (1) Extraction of DNA (2) DNA in the form of a double helix is heated to form a single strand. (3) A gene composed of four bases binds to a specific base. (4) The base sequence is a gene sequence, prepared based on the target gene sequence, and a gene fragment (primer) paired therewith is added. (5) The primer binds to the target gene sequence. (6) The thermotolerant enzyme (Taq enzyme) regenerates the original double-stranded DNA from the binding site when the primer is bound to the single-stranded gene.

この過程にて、1本の二重螺旋DNAから、2本の同一二重螺旋DNAが生成される。これを再び、加熱し、二重螺旋をほどいた上で、一連の過程でプライマーとの結合、DNAの再生を行う。この結果2本の二重螺旋DNAが4本の二重螺旋DNAとなる。この繰り返しにより、生成されるDNAは、指数的に増加する。これらの一連の過程は、サーマルサークラーと呼ばれる装置にて、正確に温度制御を行い、連続して繰り返される。   In this process, two identical double helix DNAs are generated from one double helix DNA. This is heated again to unwind the double helix and then bind to the primer and regenerate DNA in a series of steps. As a result, two double helix DNAs become four double helix DNAs. By this repetition, the DNA produced increases exponentially. These series of processes are repeated in succession with accurate temperature control in an apparatus called a thermal cycler.

以上のような技術をもとに、PCR反応を用いた従来の反応検出は、検査用チャンバへスポッタ装置などを用いて何種類かのプライマーを配置させた後、スポッタ装置などを用いてPCR反応溶液を滴下させてから基板を貼り合わせて、ヒータにて正確に温度制御し増幅させ反応結果を検出する。チャンバT1,T2へは、スポッタ装置により微量、定量が望まれナノリットル、ピコリットル単位で吐出しされるが、チャンバに異なるプライマーが配置されるときは、PCR反応溶液は各チャンバ間で非接触でなければならない(分離注入させる必要がある)。なお、プライマーとPCR反応溶液との反応の際、PCR反応では所定の温度まで温度上昇させる場合もある。   Based on the above techniques, conventional reaction detection using PCR reaction is performed by placing several types of primers in a test chamber using a spotter device and then using the spotter device. After dropping the solution, the substrates are bonded together, and the temperature is accurately controlled and amplified by a heater to detect the reaction result. The chambers T1 and T2 are dispensed in nanoliters and picoliters by a spotter device, and a small amount is desired. When different primers are placed in the chambers, the PCR reaction solution is not contacted between the chambers. Must be (separate injection required). In the reaction between the primer and the PCR reaction solution, the temperature may be raised to a predetermined temperature in the PCR reaction.

実施例1では、始めにミネラルオイルを入力ポートS1から検体試料用マイクロチップ1Fの円周状の流路Crおよび分注用チャネルCeにミネラルオイル(オイル)を注入した後に、これをスピンコータ等の回転駆動装置の回転盤に搭載させて3000〜9000rpmでこの検体試料用マイクロチップ1Fを回転させ、外周に位置する検出用チェンバT2にオイルを流し込んだ。次に、PCR溶液を入力ポートS1から注入し、上記回転盤を回転駆動させ、分注用チャネルCeの持つ体積に相当するPCR溶液のみを検出用チャンバT2に送り込んだ。この際、ミネラルオイルとPCR溶液はその比重の違いから置換され、T1にオイル、T2にPCR溶液の配置となる。さらに、PCR溶液の内側には均一にオイルの膜ができ、PCR反応溶液と空気の接触もなくなり蓋をした状態となる。次いで、検体試料用マイクロチップ1を遠心分離装置の回転盤より取り外し、正確な温度制御を行うヒータテーブル(サーマルサイクラ)に設置し、PCR増幅法による温度制御を実施する。PCR反応終了後、若しくはリアルタイム検出にて、円周上の各検出用チャンバT1,T2を蛍光検出し、反応結果を診断した。   In Example 1, first, mineral oil (oil) is injected from the input port S1 into the circumferential channel Cr and the dispensing channel Ce of the sample sample microchip 1F, and then this is applied to a spin coater or the like. The specimen sample microchip 1F was rotated at 3000 to 9000 rpm by being mounted on a rotary disk of a rotary drive device, and oil was poured into the detection chamber T2 located on the outer periphery. Next, a PCR solution was injected from the input port S1, and the rotating disk was rotated to feed only the PCR solution corresponding to the volume of the dispensing channel Ce into the detection chamber T2. At this time, the mineral oil and the PCR solution are replaced due to the difference in specific gravity, and the oil is arranged in T1 and the PCR solution is arranged in T2. Furthermore, an oil film is uniformly formed inside the PCR solution, and the PCR reaction solution does not come into contact with air, and the lid is covered. Next, the specimen sample microchip 1 is removed from the rotating disk of the centrifuge and placed on a heater table (thermal cycler) that performs accurate temperature control, and temperature control is performed by PCR amplification. After completion of the PCR reaction or by real-time detection, the detection chambers T1 and T2 on the circumference were detected with fluorescence, and the reaction result was diagnosed.

実施例1では、ヒトゲノムDNAからのSRY遺伝子(ヒト性判定遺伝子)の検出を行った。まず、PCR溶液(dNTP mixture:5μl、10×Buffer:5μl、25mM MgCl2: 8μl、Amplitaq Gold DNA polymerase : 1μl、TaqMan primer:5μl、Forward primer:5μl、Reverse primer:5μl、H2O:10μl、2.5% PVP: 5μl、Human Male DNA: 1μl)を作製し、回転を与えることで検体試料用マイクロチップのチャンバに配置した。次にマイクロチップをサーマルサイクラに置き、温度条件 95℃:5分の加熱後、95℃: 15秒−60℃: 60秒の加熱を45サイクル行い、DNAを増幅させた。その後、蛍光顕微鏡を用いて、各チャンバの蛍光強度変化(ex460-490、em510-550)を測定したところ、ヒトゲノムDNAを含むチャンバの蛍光強度は、含まないチャンバの蛍光強度に比べ、平均で1.84倍上昇していた。この結果から、検体試料用マイクロチップを用いて標的とする遺伝子の検出が可能であることが分かった。 In Example 1, the SRY gene (human sex determination gene) was detected from human genomic DNA. First, PCR solution (dNTP mixture: 5 μl, 10 × Buffer: 5 μl, 25 mM MgCl 2 : 8 μl, Amplitaq Gold DNA polymerase: 1 μl, TaqMan primer: 5 μl, Forward primer: 5 μl, Reverse primer: 5 μl, H 2 O: 10 μl, 2.5% PVP: 5 μl, Human Male DNA: 1 μl) were prepared, and placed in the sample sample microchip chamber by applying rotation. Next, the microchip was placed in a thermal cycler, and after heating for 95 minutes at a temperature condition of 95 ° C for 45 cycles of heating at 95 ° C for 15 seconds to 60 ° C for 60 seconds, DNA was amplified. Thereafter, the fluorescence intensity change (ex460-490, em510-550) of each chamber was measured using a fluorescence microscope. It was rising twice. From this result, it was found that a target gene can be detected using a sample sample microchip.

実施例2
次に、検体試料用マイクロチップ1Fを図3に示すように設定して、これを上記回転駆動装置にかけて回転させた。検体試料用マイクロチップ1Fは、第1の検出用チャンバT1の幅H1と第2の検出用チャンバT2の幅H2と分注用チャンバCeの幅H3とは同じ幅であり、2000μmである。第1の流路p1の幅p1hは、500μm、第2の流路p2の幅p2hは、750μm、円周状の流路Crの幅Crhは、100μmに設定されている。そして、第2の検出用チャンバT2と第2の流路p2にミネラルオイルOが配させているが(図4(a))、入力ポートS1から色素Rを円周状の流路Crを注入し(図4(b))、そして回転駆動させると、所定数の回転により、オイルOと色素溶液Rの比重の違いから2液が置換され、分注用チャンバCeにはエア(空気)A、第1の検出用チャンバT1にはオイルO、第2の検出用チャンバT2には色素Rの順に配置(分注)できることが確認できた(図4(c))。ここで、円周状の流路Crの幅Crhが100μm程度で、分注用チャンバCeの幅H3が上記2000μm程度であるとすると、分注用チャンバCeのPCR反応溶液である検体試料は、細幅の円周状の流路Crに注されている検体試料を無視して、分注用チャネルCeに注入された検体試料のみが検出用チャンバT1に予め決められた量を送り込まれることとなる。
Example 2
Next, the sample sample microchip 1F was set as shown in FIG. 3 and rotated by the rotation driving device. In the sample sample microchip 1F, the width H1 of the first detection chamber T1, the width H2 of the second detection chamber T2, and the width H3 of the dispensing chamber Ce are the same width and are 2000 μm. The width p1h of the first channel p1 is set to 500 μm, the width p2h of the second channel p2 is set to 750 μm, and the width Crh of the circumferential channel Cr is set to 100 μm. The mineral oil O is disposed in the second detection chamber T2 and the second flow path p2 (FIG. 4A), and the dye R is injected from the input port S1 into the circular flow path Cr. (FIG. 4 (b)), and when driven to rotate, two liquids are replaced by a predetermined number of rotations due to the difference in specific gravity between the oil O and the dye solution R, and the dispensing chamber Ce has air (air) A. It was confirmed that oil O could be arranged (dispensed) in the first detection chamber T1 and dye R could be arranged (dispensed) in the second detection chamber T2 (FIG. 4C). Here, assuming that the width Crh of the circumferential channel Cr is about 100 μm and the width H3 of the dispensing chamber Ce is about 2000 μm, the specimen sample which is a PCR reaction solution in the dispensing chamber Ce is Ignoring the specimen sample poured into the narrow circumferential channel Cr, only the specimen sample injected into the dispensing channel Ce is fed a predetermined amount into the detection chamber T1. Become.

(第2の実施の形態)
本実施の形態の検体試料用マイクロチップは、図5に示するように、チップの中心部の流路Crが円弧状の流路として形成され、これが2組合わさって両方で円周状を形成している。すなわち、円弧状の流路Crのチャネルパターンが2つ設けられており、それぞれに検体試料を注入する入力ポートS1と、円弧状の流路Cr上であってこの流路Crよりも広幅に形成された分注用チャネルCeと、分注用チャネルCeとこれよりも狭い連結用の流路p1,p2を介して連続する検出用チャンバT1,T2とを備える。そして、二組みのそれぞれの入力ポートS1,S1に異なる検体試料を注入し、検出用チャンバT1,T2に検体試料を切り離すように分けて注入することで2種の検体を同時に検査する。本実施の形態においても、外形は円形又は正方形であり、検出用チャンバT1,T2が二個配置されている点等は第1の実施の形態と同様である。なお、本実施の形態では円弧状の流路Crのチャネルパターンが2つであるが、2個以上に同じように形成することも可能である。
(Second Embodiment)
As shown in FIG. 5, in the microchip for specimen sample of the present embodiment, the flow path Cr at the center of the chip is formed as an arc-shaped flow path, and two of these are combined to form a circumferential shape. is doing. That is, two channel patterns of the arc-shaped channel Cr are provided, and each of them is formed on the input port S1 for injecting the specimen sample to each of them, and on the arc-shaped channel Cr and wider than the channel Cr. The dispensing channel Ce, the dispensing channel Ce, and detection chambers T1 and T2 that are continuous through the connecting flow paths p1 and p2 narrower than the dispensing channel Ce are provided. Then, different specimen samples are injected into each of the two sets of input ports S1 and S1, and the two specimens are simultaneously examined by separately injecting the specimen samples into the detection chambers T1 and T2. Also in the present embodiment, the outer shape is circular or square, and the two detection chambers T1 and T2 are arranged in the same manner as in the first embodiment. In the present embodiment, there are two channel patterns of the arc-shaped flow path Cr, but two or more channel patterns may be formed in the same manner.

本発明の第1の実施の形態の検体試料用マイクロチップ示す平面図である。It is a top view which shows the microchip for specimen samples of the 1st Embodiment of this invention. 上記第1の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of the said 1st Embodiment. 本発明の検体試料用マイクロチップの大きさの一例を説明する図である。It is a figure explaining an example of the magnitude | size of the microchip for specimen samples of this invention. 本発明の検体試料の分離注入過程を説明する図である。It is a figure explaining the separation injection process of the sample sample of this invention. 本発明の第2の実施の形態の検体試料用マイクロチップを示す平面図である。It is a top view which shows the microchip for specimen samples of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1F,1G 検体試料用マイクロチップ、
Cr 円周状又は円弧状の流路、
Ce 分注用チャネル、
p1,p2 外周に向かう流路、p1h,p2h 流路の幅、
R 検体試料(色素溶液)、
S1 入力ポート、
S2 空気穴、
T1,T2, 検出用のチャンバ、
H1 第1の検出用のチャンバの幅、
H2 第2の検出用のチャンバの幅、
H3 分注用チャンバの幅、
1F, 1G specimen sample microchip,
Cr circumferential or arc-shaped flow path,
Ce dispensing channel,
p1, p2 flow path toward the outer periphery, p1h, p2h flow path width,
R specimen sample (dye solution),
S1 input port,
S2 air hole,
T1, T2, detection chambers,
H1 width of the first detection chamber;
H2 width of the second detection chamber,
The width of the H3 dispensing chamber,

Claims (3)

液状の検体試料の流路となるチャンネルパターンが形成された検体試料用マイクロチップにおいて、
チャンネルパターンは、このチップの中心部に検体試料を注入する入力ポートから連続する円周状又は円弧状の流路と、この円周状又は円弧状の流路上であってこの流路よりも広幅に形成された分注用チャネルと、この分注用チャネルとこれよりも狭い連結用の流路を介して連続して検体試料を検査する部分となる検出用チャンバとを備え、上記分注用チャネルは、検出用チャンバに検体試料を切り離すように分けて注入するときにその分注量を定量化するものであることを特徴とする検体試料用マイクロチップ。
In the sample sample microchip on which the channel pattern that becomes the flow path of the liquid sample sample is formed,
The channel pattern consists of a circumferential or arc-shaped flow path continuous from the input port for injecting the specimen sample into the center of the chip, and a width wider than the flow path on the circumferential or arc-shaped flow path. And a detection chamber that is a part for inspecting a specimen sample continuously through the dispensing channel and a flow path for connection narrower than the dispensing channel. A sample sample microchip characterized by quantifying a dispensing amount when a channel is separately injected into a detection chamber so as to separate the sample sample.
前記検出用チャンバは、前記分注用チャネルの外周側に直線上に位置するように配置され、この分注用チャネルは、検出用チャンバとほぼ同じ大きさであることを特徴とする請求項1記載の検体試料用マイクロチップ。   The said detection chamber is arrange | positioned so that it may be located in a straight line in the outer peripheral side of the said dispensing channel, This dispensing channel is a substantially the same magnitude | size as the detection chamber. The microchip for specimen samples as described. 前記円弧状の流路のチャネルパターンが2つ以上設けられており、それぞれに検体試料を注入する入力ポートと、円弧状の流路上であってこの流路よりも広幅に形成された分注用チャネルと、この分注用チャネルとこれよりも狭い連結用の流路を介して連続して検体試料を検査する部分となる検出用チャンバとを備え、それぞれの入力ポートに異なる検体試料を注入し、検出用チャンバに検体試料を切り離すように分けて注入する分注により少なくとも2種以上の検体を同時に検査することを特徴とする請求項1又は請求項2記載の検体試料用マイクロチップ。   Two or more channel patterns of the arc-shaped flow path are provided, each of which has an input port for injecting a specimen sample and a dispensing pipe formed on the arc-shaped flow path and wider than the flow path. A channel, a detection chamber that is a part that continuously inspects the sample through the dispensing channel and a narrower connecting flow path, and injects a different sample into each input port. 3. The specimen sample microchip according to claim 1, wherein at least two kinds of specimens are simultaneously examined by dispensing the specimen samples separately into the detection chamber.
JP2004314653A 2004-10-28 2004-10-28 Microchip for specimen sample Expired - Fee Related JP4458253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314653A JP4458253B2 (en) 2004-10-28 2004-10-28 Microchip for specimen sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314653A JP4458253B2 (en) 2004-10-28 2004-10-28 Microchip for specimen sample

Publications (2)

Publication Number Publication Date
JP2006126011A true JP2006126011A (en) 2006-05-18
JP4458253B2 JP4458253B2 (en) 2010-04-28

Family

ID=36720894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314653A Expired - Fee Related JP4458253B2 (en) 2004-10-28 2004-10-28 Microchip for specimen sample

Country Status (1)

Country Link
JP (1) JP4458253B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270922A (en) * 2008-05-07 2009-11-19 Seiko Epson Corp Biosample reaction method
JP2010066195A (en) * 2008-09-12 2010-03-25 Seiko Epson Corp Biological sample reaction chip, centrifugal apparatus for filling biological sample reaction chip with reaction liquid, and method for filling biological sample reaction chip with reaction liquid
JP2011062119A (en) * 2009-09-16 2011-03-31 Seiko Epson Corp Chip for quantitatively determining biological sample
JP2011062197A (en) * 2010-09-06 2011-03-31 Seiko Epson Corp Quantitative method for biological sample
JP2011064475A (en) * 2009-09-15 2011-03-31 Toppan Printing Co Ltd Sample analyzing chip, and device and method for analyzing sample using the same
US7919306B2 (en) 2007-12-06 2011-04-05 Seiko Epson Corporation Biological sample reaction chip, biological sample reaction apparatus, and biological sample reaction method
US8092999B2 (en) 2008-02-01 2012-01-10 Seiko Epson Corporation Biological sample reaction chip and biological sample reaction method
JP2015516085A (en) * 2012-05-09 2015-06-04 スタット−ダイアグノスティカ アンド イノベーション, エス. エル. Multiple reaction chambers in test cartridge
CN105102976B (en) * 2013-04-05 2017-12-12 浦项工科大学校产学协力团 Micro-fluidic chip for chromium in continuous monitoring water and the survey chromium device comprising it
CN112387317A (en) * 2020-10-15 2021-02-23 上海市第五人民医院 Microfluidic droplet chip for rapidly detecting methylation of serum Septin9

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533681A (en) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト Microfluidic device and method for performing cell-based analysis
JP2004150804A (en) * 2002-10-28 2004-05-27 Arkray Inc Analyzing instrument and analyzing apparatus
WO2004061414A2 (en) * 2002-12-19 2004-07-22 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
WO2004062802A1 (en) * 2003-01-09 2004-07-29 3M Innovative Properties Company Sample processing device having process chambers with bypass slots

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533681A (en) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト Microfluidic device and method for performing cell-based analysis
JP2004150804A (en) * 2002-10-28 2004-05-27 Arkray Inc Analyzing instrument and analyzing apparatus
WO2004061414A2 (en) * 2002-12-19 2004-07-22 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
JP2006511810A (en) * 2002-12-19 2006-04-06 バイエル ヘルスケア エルエルシー Method and apparatus for dividing a specimen into multiple channels of a microfluidic device
WO2004062802A1 (en) * 2003-01-09 2004-07-29 3M Innovative Properties Company Sample processing device having process chambers with bypass slots
JP2006513421A (en) * 2003-01-09 2006-04-20 スリーエム イノベイティブ プロパティズ カンパニー Sample processing apparatus having a process chamber with a bypass slot

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919306B2 (en) 2007-12-06 2011-04-05 Seiko Epson Corporation Biological sample reaction chip, biological sample reaction apparatus, and biological sample reaction method
US8092999B2 (en) 2008-02-01 2012-01-10 Seiko Epson Corporation Biological sample reaction chip and biological sample reaction method
JP2009270922A (en) * 2008-05-07 2009-11-19 Seiko Epson Corp Biosample reaction method
JP2010066195A (en) * 2008-09-12 2010-03-25 Seiko Epson Corp Biological sample reaction chip, centrifugal apparatus for filling biological sample reaction chip with reaction liquid, and method for filling biological sample reaction chip with reaction liquid
JP2011064475A (en) * 2009-09-15 2011-03-31 Toppan Printing Co Ltd Sample analyzing chip, and device and method for analyzing sample using the same
JP2011062119A (en) * 2009-09-16 2011-03-31 Seiko Epson Corp Chip for quantitatively determining biological sample
JP2011062197A (en) * 2010-09-06 2011-03-31 Seiko Epson Corp Quantitative method for biological sample
JP2017142271A (en) * 2012-05-09 2017-08-17 スタット−ダイアグノスティカ アンド イノベーション, エス. エル. Plurality of reaction chambers in test cartridge
JP2015516085A (en) * 2012-05-09 2015-06-04 スタット−ダイアグノスティカ アンド イノベーション, エス. エル. Multiple reaction chambers in test cartridge
US9855553B2 (en) 2012-05-09 2018-01-02 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
US9968928B2 (en) 2012-05-09 2018-05-15 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
US10092900B2 (en) 2012-05-09 2018-10-09 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
US10099216B2 (en) 2012-05-09 2018-10-16 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
US10159972B2 (en) 2012-05-09 2018-12-25 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
CN105102976B (en) * 2013-04-05 2017-12-12 浦项工科大学校产学协力团 Micro-fluidic chip for chromium in continuous monitoring water and the survey chromium device comprising it
CN112387317A (en) * 2020-10-15 2021-02-23 上海市第五人民医院 Microfluidic droplet chip for rapidly detecting methylation of serum Septin9
CN112387317B (en) * 2020-10-15 2023-07-07 上海市第五人民医院 Microfluidic liquid drop chip for rapidly detecting serum Septin9 methylation

Also Published As

Publication number Publication date
JP4458253B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP3699721B1 (en) Centrifugal dispensing method and centrifugal dispensing apparatus for specimen sample
US11896978B2 (en) Assay cartridges and methods of using the same
EP2280905B1 (en) Multilevel microfluidic systems and methods
Peytavi et al. Microfluidic device for rapid (< 15 min) automated microarray hybridization
US8058630B2 (en) Microfluidic devices and methods
US6706519B1 (en) Devices and methods for the performance of miniaturized in vitro amplification assays
US7919306B2 (en) Biological sample reaction chip, biological sample reaction apparatus, and biological sample reaction method
JP5298718B2 (en) Centrifugal device for filling biological sample reaction chip with reaction solution
JP6323274B2 (en) Sample analysis chip
EP2840129B1 (en) Dna chip with micro-channel for dna analysis
JP4458253B2 (en) Microchip for specimen sample
Juelg et al. Automated serial dilutions for high-dynamic-range assays enabled by fill-level-coupled valving in centrifugal microfluidics
Kulkarni et al. A review on recent advancements in chamber-based microfluidic PCR devices
JP2023537142A (en) Cartridges for rotation-based analytical methods with one-sided heat input, rotation-based analytical methods, and methods of using cartridges
JP2009002933A (en) Analytical medium
JP5131538B2 (en) Reaction liquid filling method
JP2010213649A (en) Reaction vessel and reaction method for biological specimen
JP2009121985A (en) Microchannel chip, and apparatus and method for processing microchannel chip using microchannel chip
KR20190111588A (en) Analysis Plate For Polymerase Chain Reaction
US20230400452A1 (en) Sample Analysis Chip and Sample Analysis Method Using Sample Analysis Chip
JP2009171933A (en) Chip for biological specimen reaction, and method for biological specimen reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

R150 Certificate of patent or registration of utility model

Ref document number: 4458253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees