JP2006349559A - Reaction container and substance detecting method using it - Google Patents

Reaction container and substance detecting method using it Download PDF

Info

Publication number
JP2006349559A
JP2006349559A JP2005177655A JP2005177655A JP2006349559A JP 2006349559 A JP2006349559 A JP 2006349559A JP 2005177655 A JP2005177655 A JP 2005177655A JP 2005177655 A JP2005177655 A JP 2005177655A JP 2006349559 A JP2006349559 A JP 2006349559A
Authority
JP
Japan
Prior art keywords
reaction
well
detection
substance
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177655A
Other languages
Japanese (ja)
Inventor
Tomoko Fujimura
友子 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005177655A priority Critical patent/JP2006349559A/en
Publication of JP2006349559A publication Critical patent/JP2006349559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction container for detection having well-shaped reaction parts, capable of detecting a substance from its base side with good sensitivity without exerting an adverse effect on a reaction system and causing no fluctuations in detection in a plurality of the well-shaped reaction parts, and a substance detecting method using the reaction container. <P>SOLUTION: In the reaction container constituted by providing a well-shaped reaction detecting part to a substrate, the average light transmittance at a wavelength of 400-650 nm of the substrate between the base of the well-shaped reaction detecting part and the back of the substrate is 80% or above and the haze of the substrate is 10 or below. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば抗原抗体反応による抗原の検出及びDNAの検出等に用いられる反応容器及びこれを用いた物質の検出方法に関するものである。   The present invention relates to a reaction vessel used for antigen detection and DNA detection, for example, by an antigen-antibody reaction, and a substance detection method using the same.

近年、化学反応やDNA反応、たんぱく質反応などをチップ上にて行うμ−Total Analysis System技術やLab−on−Chip技術が研究され実現してきており、今まで大型の実験装置や大量の試薬が必要であった反応実験が数ミリ角以下のチップで少量の試薬で行えるようになってきている。   In recent years, μ-Total Analysis System technology and Lab-on-Chip technology for performing chemical reactions, DNA reactions, protein reactions, etc. on the chip have been researched and realized, and so far large-scale experimental devices and a large amount of reagents are required. It is now possible to perform reaction experiments with a small amount of reagent on a chip of several millimeters or less.

このようなチップとしては、例えばDNAチップとして、スライドガラス上にプローブDNAを配置し、検体を作用させ、DNAの検出を行うもの(特許文献1参照)や、ガラスなどにウェルと呼ばれる微小な穴やくぼみが形成を形成し、ウェル内で検出反応を行うものなどが知られていた。   As such a chip, for example, as a DNA chip, a probe DNA is placed on a slide glass, a sample is allowed to act, and DNA is detected (see Patent Document 1), or a minute hole called a well in glass or the like It has been known that a hollow forms a formation and performs a detection reaction in a well.

ウェルタイプのものとしては、例えば、基板表面に多数のウェルが設けられている検出用基板が開示されている(特許文献2参照)。   As the well type substrate, for example, a detection substrate having a large number of wells provided on the substrate surface is disclosed (see Patent Document 2).

これらの検出チップの検出方法はさまざまなものが知られているが、一般的なのは、蛍光検出を用いるもので、ウェル状の反応検出部が存在するチップの上面に蛍光検出部を設け、検出する方法である。   Various detection methods of these detection chips are known, but the general method is to use fluorescence detection, and a fluorescence detection unit is provided on the upper surface of the chip where a well-like reaction detection unit exists to detect the detection. Is the method.

しかし、上面からの検出は、ウェル状反応検出部が複数ある場合、各ウェルの反応液の液量が一定でないと、液面から検出部までの距離にばらつきが生じ正確なデータが得られないことがある。また、ウェル状の反応検出部で反応、検出を行う場合、蒸発を防ぐために、反応液上に反応液より比重の軽いミネラルオイルなどを添加することがある。このような場合、反応液である下層とオイルからなる上層の界面での屈折の影響を受ける可能性がある。特に反応液、オイルの量にばらつきがあると、各ウェルでの条件も変わってくるので正確なデータが得られない。また、上層の液が着色、縣濁していても同様に正確な検出はできない。   However, the detection from the upper surface, when there are multiple well-like reaction detection units, if the amount of the reaction solution in each well is not constant, the distance from the liquid level to the detection unit will vary and accurate data cannot be obtained Sometimes. When reaction and detection are performed in a well-like reaction detection unit, mineral oil having a lighter specific gravity than the reaction solution may be added to the reaction solution in order to prevent evaporation. In such a case, there is a possibility of being affected by refraction at the interface between the lower layer, which is the reaction solution, and the upper layer made of oil. In particular, if there are variations in the amount of reaction solution and oil, the conditions in each well will change, so accurate data cannot be obtained. Similarly, even if the upper layer liquid is colored or suspended, accurate detection cannot be performed.

一方、下層から検出する場合、液の底面から検出部までの距離は複数のウェルにおいて、同条件にすることが容易であるが、基材の透明性などの光学特性の影響を受けてしまう。例えば、スライドガラスのような光散乱性の基材や着色されている基材など光吸収性の基材を用いた場合、反応液の底面から検出部までの距離は複数のウェルにおいて、同じ条件にすることができるが、基材をはさむため、蛍光が散乱または吸収され、検出感度が落ちてしまう。また、ウェルを作成する際、成型の仕方により底面の表面に凹凸が生じ、それによる光の散乱も考えられる。また、基材には耐薬品性、耐熱性や反応系に悪影響を与えないものなどその他の要求もあり、基材の選定、ウェルの成型法が限定される。   On the other hand, when detecting from the lower layer, the distance from the bottom surface of the liquid to the detection part can be easily set to the same condition in a plurality of wells, but is affected by optical characteristics such as transparency of the substrate. For example, when using a light-absorbing base material such as a light-scattering base material such as a slide glass or a colored base material, the distance from the bottom surface of the reaction solution to the detection unit is the same for multiple wells. However, since the substrate is sandwiched, the fluorescence is scattered or absorbed, and the detection sensitivity is lowered. In addition, when forming a well, irregularities are generated on the surface of the bottom surface depending on the molding method, and light scattering due to the irregularity can also be considered. In addition, the base material has other requirements such as chemical resistance, heat resistance, and a material that does not adversely affect the reaction system, and the selection of the base material and the method of molding the well are limited.

特表平11−512293号公報Japanese National Patent Publication No. 11-512293 WO2003/031972号公報WO2003 / 031972

本発明は、このような事情を考慮してなされたもので、ウェル状反応部を有する反応容器において、反応系に悪影響与えることなく、ウェル状反応容器の底面側からの検出が感度良くできる検出用反応容器を提供することを目的とする。また、複数のウェル状反応部において、検出にばらつきのない検出用反応容器を提供することを目的とする。さらにこの反応容器を用いた検出法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in a reaction vessel having a well-like reaction part, detection that can be detected from the bottom side of the well-like reaction vessel with high sensitivity without adversely affecting the reaction system. An object is to provide a reaction vessel for use. It is another object of the present invention to provide a detection reaction container having no variation in detection in a plurality of well-like reaction units. Furthermore, it aims at providing the detection method using this reaction container.

請求項1記載の発明は、基板に、ウェル状反応検出部を有する反応容器において、ウェル状反応検出部の底面と基板の裏面の間の基板の波長400〜650nmにおける平均光線透過率が80%以上であり、かつヘイズが10以下の範囲内であることを特徴とする反応容器である。   According to the first aspect of the present invention, in a reaction container having a well-like reaction detection unit on a substrate, the average light transmittance at a wavelength of 400 to 650 nm between the bottom surface of the well-like reaction detection unit and the back surface of the substrate is 80%. It is the above and it is a reaction container characterized by haze being in the range of 10 or less.

請求項2記載の発明は、前記ウェル状反応検出部の底面と基板の裏面の間の距離が0.3以上1mm未満であることを特徴とする請求項1記載の反応容器である。   The invention according to claim 2 is the reaction container according to claim 1, wherein the distance between the bottom surface of the well-like reaction detector and the back surface of the substrate is 0.3 or more and less than 1 mm.

請求項3記載の発明は、前記ウェル状反応検出部の底面が平坦であることを特徴とする請求項1又は2に記載の反応容器である。   A third aspect of the present invention is the reaction container according to the first or second aspect, wherein the bottom surface of the well-like reaction detector is flat.

請求項4記載の発明は、前記ウェル状反応検出部が複数であることを特徴とする請求項1〜3のいずれかに記載の反応容器である。   A fourth aspect of the present invention is the reaction container according to any one of the first to third aspects, wherein a plurality of the well-like reaction detection units are provided.

請求項5記載の発明は、前記基材がシクロオレフィン系樹脂又はメチルペンテン系樹脂であることを特徴とする請求項1〜4のいずれかに記載の反応容器である。   The invention according to claim 5 is the reaction container according to any one of claims 1 to 4, wherein the base material is a cycloolefin resin or a methylpentene resin.

請求項6記載の発明は、さらにウェル状の試薬収容部を有することを特徴とする請求項1〜5のいずれかに記載の反応容器である。   A sixth aspect of the present invention is the reaction container according to any one of the first to fifth aspects, further comprising a well-like reagent container.

請求項7記載の発明は、さらにPCR反応部を有することを特徴とする請求項1〜6のいずれかに記載の反応容器である。   The invention according to claim 7 is the reaction container according to any one of claims 1 to 6, further comprising a PCR reaction unit.

請求項8記載の発明は、基板にウェル状反応検出部を有し、かつウェル状反応部の底面と基板の裏面の間の基板の波長400〜650nmにおける平均光線透過率が80%以上であり、かつヘイズが10以下であるウェル状反応検出部内に認識物質を注入する工程と、ウェル状反応検出部に検出物質を注入する工程とを有し、前記認識物質又は前記検出物質のいずれかが蛍光標識されており、前記認識物質と前記検出物質との反応の有無を前記ウェル状反応検出部の底部側から蛍光検出する工程を有することを特徴とする物質の検出方法である。   In the invention according to claim 8, the substrate has a well-like reaction detecting portion, and the average light transmittance at a wavelength of 400 to 650 nm of the substrate between the bottom surface of the well-like reaction portion and the back surface of the substrate is 80% or more. And a step of injecting a recognition substance into a well-like reaction detector having a haze of 10 or less, and a step of injecting a detection substance into the well-like reaction detector, wherein either the recognition substance or the detection substance is A substance detection method comprising a step of detecting fluorescence from the bottom side of the well-like reaction detection unit, which is fluorescently labeled and detects the presence or absence of a reaction between the recognition substance and the detection substance.

請求項9記載の発明は、前記検出物質が核酸であることを特徴とする請求項7記載の物質の検出方法である。   The invention according to claim 9 is the method for detecting a substance according to claim 7, wherein the detection substance is a nucleic acid.

本発明によれば、ウェル状反応部を有する検出用の反応容器において、反応系に悪影響与えることなく、ウェル状の底面側から感度良く反応の有無を検出できる。また複数のウェル状反応部において、検出にばらつきのなく反応の有無を検出できる。   According to the present invention, in a detection reaction vessel having a well-like reaction part, the presence or absence of a reaction can be detected with high sensitivity from the well-like bottom side without adversely affecting the reaction system. In addition, the presence or absence of a reaction can be detected without variation in detection in a plurality of well-like reaction parts.

以下、本発明の実施形態について、図面を参照して説明する。
図1に、本発明における一実施形態を示す図を示す。図1は、略長方形の板状の基板に、試料及び試薬を反応させるためのウェル状反応検出部が複数形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, a plurality of well-like reaction detectors for reacting a sample and a reagent are formed on a substantially rectangular plate-like substrate.

本発明に用いる基板は、透明性が高く、反応系に悪影響を与えないものであればよい。
このようなものとして、例えば、PC(ポリカーボネート)、PP(ポリプロピレン)、シクロオレフィン系ポリマー、フッ素ポリマー、シリコン樹脂などを用いることができる。
中でも透明性、耐熱性、耐薬品性や反応系に対する影響などの点からシクロオレフィン系樹脂(ゼオノア(日本ゼオン株式会社製))やメチルペンテン系樹脂(TPX(三井化学株式会社製))を用いることが好ましい。
The substrate used in the present invention may be any substrate that has high transparency and does not adversely affect the reaction system.
As such, for example, PC (polycarbonate), PP (polypropylene), cycloolefin polymer, fluoropolymer, silicon resin, and the like can be used.
Of these, cycloolefin resins (Zeonor (manufactured by ZEON Corporation)) and methylpentene resins (TPX (manufactured by Mitsui Chemicals)) are used in terms of transparency, heat resistance, chemical resistance and influence on the reaction system. It is preferable.

このような合成樹脂を用いて基板を作成すれば、耐熱性、耐薬品性、成形加工性などに優れているため好ましい。さらに、2種類以上の樹脂を接合して用いてもよい。この場合、それぞれの樹脂の特徴を活かして基板を作成することにより、試薬及び試料等の特性に応じた多様な基板とすることが可能となり、用途ごとに使い分けることができる。例えば、基板の上半分と下半分とで材料を分けたりすることも可能となる。また、後述の試薬収容部やPCR反応部など部分ごとに材料を分けることもできる。
なお、基板の素材としてガラスを用いてもよい。
It is preferable to form a substrate using such a synthetic resin because it is excellent in heat resistance, chemical resistance, moldability, and the like. Further, two or more kinds of resins may be joined and used. In this case, by creating a substrate by taking advantage of the characteristics of each resin, it becomes possible to make various substrates according to the characteristics of the reagent, the sample, and the like, which can be used for each application. For example, it is possible to divide the material between the upper half and the lower half of the substrate. In addition, the material can be divided into parts such as a reagent storage section and a PCR reaction section described later.
In addition, you may use glass as a raw material of a board | substrate.

そして、基板には、ウェル状の反応検出部を備える。
ウェル状反応検出部は、基材がプラスチック、合成樹脂系であれば切削加工、成型加工により形成することができる。ガラスであれば切削加工により形成することができる。
また、ウェル状反応検出部は複数有することができる。
The substrate includes a well-like reaction detection unit.
The well-like reaction detector can be formed by cutting or molding if the base material is plastic or synthetic resin. If it is glass, it can be formed by cutting.
Further, a plurality of well-like reaction detection units can be provided.

本発明では、基板の下部方向からの高感度な発光検出のため、ウェル状反応部の底面と基板の裏面の間の基板の波長400〜650nmにおける平均光線透過率が80%以上であり、かつヘイズが10以下の範囲内であることが必要である。   In the present invention, the average light transmittance at a wavelength of 400 to 650 nm of the substrate between the bottom surface of the well-like reaction part and the back surface of the substrate is 80% or more for highly sensitive light emission detection from the lower direction of the substrate, and It is necessary that the haze is within the range of 10 or less.

蛍光検出における蛍光波長は主に400〜650nmの間であり、この範囲で平均光線透過率が80%以上、好ましくは85%以上であることがよい。80%未満であると、検出の際の発光強度が落ち、バックグランドの影響も大きくなり、精度の高い検出は困難になる。例えばDNA関連技術などライフサイエンス分野における各反応は、用いる試料の量が少なく、また用いる蛍光物質もμlレベルと非常に少ない。そのため、他の分野に比べそれほど強い強度は望めない。もともとの発光強度が強ければ、基材の光線透過率が低くても検出は可能であるが、ライフサイエンス分野の分析に用いられる蛍光物質の場合、前述の範囲内であることが好ましい。   The fluorescence wavelength in fluorescence detection is mainly between 400 and 650 nm, and the average light transmittance in this range is 80% or more, preferably 85% or more. If it is less than 80%, the light emission intensity at the time of detection is lowered, the influence of the background is increased, and detection with high accuracy becomes difficult. For example, each reaction in the life science field, such as DNA-related technology, uses a small amount of sample and uses a very small amount of fluorescent substance at the μl level. Therefore, it cannot be expected to be so strong compared to other fields. If the original light emission intensity is strong, detection is possible even if the light transmittance of the substrate is low, but in the case of a fluorescent substance used for analysis in the life science field, it is preferably within the above-mentioned range.

なお、光線透過率は前記範囲が好ましいが、励起用の光の波長及び検出用の蛍光波長の±30nmの範囲内での光線透過率が80%以上、好ましくは85%以上であってもよい。   The light transmittance is preferably within the above range, but the light transmittance within a range of ± 30 nm of the wavelength of excitation light and the fluorescence wavelength for detection may be 80% or more, preferably 85% or more. .

なお、ライフサイエンス分野で用いられる蛍光標識物質としては、例えばFAM(励起波長470nm、蛍光波長520nm)、RED(励起波長570nm、蛍光波長620nm)などがある。   Examples of fluorescent labeling substances used in the life science field include FAM (excitation wavelength 470 nm, fluorescence wavelength 520 nm) and RED (excitation wavelength 570 nm, fluorescence wavelength 620 nm).

ヘイズが10より大きいと、散乱により検出部に届く発光が減少し、高感度な検出が困難になる。なお、ここでいうヘイズは、異なる3点で測定した平均値をいう。   If the haze is greater than 10, light emission reaching the detection unit due to scattering is reduced, and high-sensitivity detection becomes difficult. In addition, haze here says the average value measured by three different points.

ウェルの形状は、底部が平坦であることが好ましい。底部先端が球面上や尖がっている円錐形状であると光が、屈折または散乱し感度良く検出できない。   The well shape is preferably flat at the bottom. If the bottom tip has a spherical shape or a conical shape with a sharp point, light is refracted or scattered and cannot be detected with high sensitivity.

また、ウェル底部の表面の中心線平均粗さ(Ra)は低い方が好ましい。前述のヘイズは、基材そのものの性質や膜厚に関係するが、同様の性質、膜厚の基材であれば、Raが低い方がヘイズ値が低くなるため好ましい。具体的には、中心線平均粗さ(Ra)が5μm未満、好ましくは1μm未満であることが好ましい。なお、中心線平均粗さ(Ra)は、公知のレーザー顕微鏡を用いて測定できる。   Further, the center line average roughness (Ra) of the surface of the well bottom is preferably low. The above-mentioned haze is related to the properties and film thickness of the substrate itself. However, if the substrate has the same properties and film thickness, the lower the Ra, the lower the haze value. Specifically, the center line average roughness (Ra) is less than 5 μm, preferably less than 1 μm. The center line average roughness (Ra) can be measured using a known laser microscope.

また、気泡の混入など反応液の注入性を考慮すると、ウェル開口部から底面まで壁面が傾斜している円錐台形状であることが好ましい。このような形状であれば気泡の混入なく液を注入できる。
また、ウェルの大きさは、特に限定はしないが、ライフサイエンス分野では極微量での反応、検出が行われることが多く、開口部の直径及び深さが5mm以下、特に0.01mm〜5mmの範囲内であればよい。
又、ウェル状反応検出部の内表面は、平滑であることが好ましい。底部においてはヘイズ、光線透過率などの光学特性が向上し、側面においては液の充填が容易になるためである。
Further, in consideration of the injectability of the reaction solution such as mixing of bubbles, a truncated cone shape in which the wall surface is inclined from the well opening to the bottom is preferable. With such a shape, the liquid can be injected without mixing bubbles.
In addition, the size of the well is not particularly limited, but in the life science field, reaction and detection in a very small amount are often performed, and the diameter and depth of the opening is 5 mm or less, particularly 0.01 mm to 5 mm. It may be within the range.
Moreover, it is preferable that the inner surface of a well-like reaction detection part is smooth. This is because optical properties such as haze and light transmittance are improved at the bottom, and liquid filling is facilitated at the side.

また、ウェルの底部から基材の裏面までの距離(図1(b)参照)は0.3mm以上1mm未満であることが好ましい。0.3mm未満であると反応時の熱などで変形などを起こす可能性がある。1mm以上であると透明性が低下し、検出感度が落ちる。上記範囲内であれば成形によるミスショットも少なくなり、好ましい。   Moreover, it is preferable that the distance (refer FIG.1 (b)) from the bottom part of a well to the back surface of a base material is 0.3 mm or more and less than 1 mm. If it is less than 0.3 mm, deformation may occur due to heat during reaction. When it is 1 mm or more, the transparency is lowered and the detection sensitivity is lowered. If it is within the above range, the number of miss shots due to molding is reduced, which is preferable.

また、ウェル状反応検出部内への試液の充填を行いやすくするために、親水化処理を施しても良い。具体的には、純水との接触角が60度未満、好ましくは30度未満であるとよい。このような親水化処理としては、例えば、大気圧プラズマ処理により行うことができる。
なお、接触角の測定は、公知の接触角計を用いて測定し、反応液の充填には、分注器、注射器、シリンジ等を用いて充填する。又、親水化処理は大気圧プラズマ処理に限られず、コロナ処理や、コーティング処理で行っても良い。
Moreover, in order to make it easy to fill the well-like reaction detector with the test solution, a hydrophilic treatment may be performed. Specifically, the contact angle with pure water is less than 60 degrees, preferably less than 30 degrees. As such a hydrophilic treatment, for example, atmospheric pressure plasma treatment can be performed.
The contact angle is measured using a known contact angle meter, and the reaction solution is filled using a dispenser, a syringe, a syringe, or the like. Further, the hydrophilization treatment is not limited to the atmospheric pressure plasma treatment, and may be performed by corona treatment or coating treatment.

また、同一基板上に、試薬収容部を設けても良い(図2、3、4参照)。試薬収容部はウェル状に形成することができ、大きさなどに特に制限はない。試薬収容部は用いる試薬の種類などに応じて複数設けることができる。例えば、試薬収容部には検出物質を含む溶液や、認識物質が複数あり、多段階反応を行う場合は、1種の認識物質を含む溶液、またはその他バッファー、希釈液などを入れておくことができる。   In addition, a reagent container may be provided on the same substrate (see FIGS. 2, 3, and 4). The reagent container can be formed in a well shape, and there is no particular limitation on the size. A plurality of reagent storage units can be provided according to the type of reagent used. For example, the reagent container contains a solution containing a detection substance and a plurality of recognition substances, and when performing a multi-step reaction, a solution containing one kind of recognition substance, or other buffers, diluents, etc. it can.

また、DNAの検出反応に用いる場合、同一チップ上にPCR反応部を設けても良い(図3参照)。
PCR反応部を設けることにより、同一チップ上で検体の調整、DNAの検出を行うことができる。
PCR反応部としては、ウェル状の反応部を設けても良いし、流路を設け流路内で反応を行っても良い。
また、その他の反応部を設けても良い。
In addition, when used for DNA detection reaction, a PCR reaction unit may be provided on the same chip (see FIG. 3).
By providing a PCR reaction section, sample preparation and DNA detection can be performed on the same chip.
As the PCR reaction part, a well-like reaction part may be provided, or a flow path may be provided to carry out the reaction in the flow path.
Moreover, you may provide another reaction part.

また、ウェル状反応検出部同士を接続する流路を設けてもよい(図4参照)。またウェル状反応検出部と試薬収容穴部、PCR反応部、その他の反応部を接続する流路を設けてもよい。これら流路を形成することにより、連続した反応を行わせることが可能となる。これにより、検査時間の短縮が図れるとともに微量な試料及び試薬で各種の分析を行うことができ、コストの削減を実現することができる。   Moreover, you may provide the flow path which connects well-like reaction detection parts (refer FIG. 4). Further, a flow path connecting the well-like reaction detection unit, the reagent storage hole, the PCR reaction unit, and other reaction units may be provided. By forming these flow paths, it is possible to perform a continuous reaction. As a result, the inspection time can be shortened, various analyzes can be performed with a small amount of sample and reagent, and the cost can be reduced.

本発明の反応容器は、様々な生化学系の反応用として用いることができ、例えば抗原抗体反応及びDNA反応の検出などに用いることができる。
本発明でいう検出物質とは、検出をしようとする対象物質のことで、認識物質とは、検出物質を特定するために用いる物質のことを言う。
抗原抗体反応による抗原検出の場合、例えば、予め各ウェル状反応検出部内に認識物質として抗原を含む試料を入れておき、後から検出物質として抗体を含む試薬を添加し、認識物質または、検出物質のいずれかに標識物質を付けておくことで、反応の有無を検出できる。標識物質としては、蛍光などの発光物質が一般的に用いられる。なおこの場合、基板上に試薬収容部を設けて置き、検出物質を収容しておいてもよい。
The reaction container of the present invention can be used for various biochemical reactions, for example, for detection of antigen-antibody reaction and DNA reaction.
In the present invention, the detection substance is a target substance to be detected, and the recognition substance is a substance used for specifying the detection substance.
In the case of antigen detection by antigen-antibody reaction, for example, a sample containing an antigen as a recognition substance is placed in each well-like reaction detection unit in advance, and then a reagent containing an antibody is added as a detection substance. The presence or absence of reaction can be detected by attaching a labeling substance to any of the above. As the labeling substance, a luminescent substance such as fluorescence is generally used. In this case, a reagent storage unit may be provided on the substrate to store the detection substance.

DNAの検出の場合、例えば、予めウェル状反応検出部内に認識物質として核酸プローブを用意しておく。次に、検出物質として検体DNAをウェル状反応検出部に供給し、核酸プローブと検体DNAのハイブリダイゼーション反応により、DNAの検出を行うことができる。その際、検出物質に標識物質を付けておけば、その標識物質の有無を検出することにより検出が可能となる。また、検体DNAは、血液等から抽出したDNAをPCR法、LAMP法などにより調整しておいたものを用いることができる。また、認識物質である核酸プローブとして配列の異なる核酸を複数用意することで検出物質としての検体DNAがどのような配列であるかを検出することができる。なおこの場合、基板上に試薬収容部を設けて置き、検出物質を収容しておいてもよい。   In the case of detecting DNA, for example, a nucleic acid probe is prepared in advance in the well-like reaction detection unit as a recognition substance. Next, sample DNA can be supplied to the well-like reaction detection unit as a detection substance, and DNA can be detected by a hybridization reaction between the nucleic acid probe and the sample DNA. In this case, if a labeling substance is attached to the detection substance, detection can be performed by detecting the presence or absence of the labeling substance. The sample DNA can be prepared by adjusting DNA extracted from blood or the like by the PCR method, the LAMP method, or the like. In addition, by preparing a plurality of nucleic acids having different sequences as nucleic acid probes that are recognition substances, it is possible to detect the sequence of the sample DNA as the detection substance. In this case, a reagent storage unit may be provided on the substrate to store the detection substance.

また、基板上にPCR反応部を設けておき、チップ上で連続して、血液などから抽出したDNAをPCR反応により増幅させ、それを検体とし、反応検出部で認識物質との反応の有無を検出してもよい。具体的には、例えばウェル状試薬収容部に検出物質として血液などから抽出したDNAを収容しておき、分注動作により、PCR反応部へ分注し、PCR反応により調整した検出物質をウェル状の反応検出部へ分注すればよい。ウェル状試薬収容部からPCR反応部、ウェル状反応検出部へは流路を用いて送液しても良い。   In addition, a PCR reaction unit is provided on the substrate, DNA extracted from blood or the like is continuously amplified on the chip by PCR reaction, and this is used as a sample, and the reaction detection unit determines whether or not there is a reaction with a recognition substance. It may be detected. Specifically, for example, DNA extracted from blood or the like is stored as a detection substance in a well-like reagent storage part, and dispensed to the PCR reaction part by a dispensing operation, and the detection substance adjusted by the PCR reaction is in a well state. It may be dispensed to the reaction detection part. You may send a liquid from a well-like reagent accommodating part to a PCR reaction part and a well-like reaction detection part using a flow path.

また、一塩基遺伝子多型(SNP)の解析にも用いることができる。なお、認識物質は複数あってもよく、検出物質が蛍光標識されていない場合には、認識物質のひとつが標識されていればよい。   It can also be used to analyze single nucleotide gene polymorphisms (SNPs). Note that there may be a plurality of recognition substances, and when the detection substance is not fluorescently labeled, it is sufficient that one of the recognition substances is labeled.

また、標識物質は、反応した認識物質と検出物質に特有に作用するものを、認識物質と検出物質の反応後に加えることもできる。このようなものとしては、DNAの検出におけるインターカレーターなどがある。また、ここでいう標識物質とは間接的なものも含む。すなわち、蛍光物質などに結合する物質を標識物質として認識物質または検出物質に結合させておき、後から蛍光物質を加えても良い。   In addition, as the labeling substance, a substance that acts specifically on the reacted recognition substance and detection substance can be added after the reaction between the recognition substance and the detection substance. Such an example includes an intercalator for detecting DNA. Further, the labeling substance here includes indirect substances. That is, a substance that binds to a fluorescent substance or the like may be bound to a recognition substance or a detection substance as a labeling substance, and the fluorescent substance may be added later.

また、多段階反応を行ってSNPまたはDNAを検出してもよい。
例えば、インベーダー・アッセイ法(サードウェイブテクノロジーズ,Inc(米国ウィスコンシン州マディソン市)を用いても良い。これによりSNP解析の具現化を図ることが可能となる。
Alternatively, SNP or DNA may be detected by performing a multistep reaction.
For example, an invader assay method (Third Wave Technologies, Inc. (Madison, Wisconsin, USA)) may be used, thereby enabling realization of SNP analysis.

この場合、認識物質が複数種でもよく、予めウェル状反応検出部内に少なくとも1種の認識物質を入れておき、その後、検出物質と認識物質を同時または順次注入し、反応をおこなっても良い。   In this case, a plurality of types of recognition substances may be used. At least one type of recognition substance may be placed in advance in the well-like reaction detection unit, and then the detection substance and the recognition substance may be injected simultaneously or sequentially to carry out the reaction.

また、ウェル状反応検出部、PCR反応部には、反応用液の乾燥を防ぐ目的でミネラルオイルなどの反応用液より比重の軽い溶液を加えても良い。
また、認識物質はウェル状反応検出部内に固定してもよいし、固定させずに保持させておくだけでもよい。
Further, a solution having a lighter specific gravity than the reaction solution such as mineral oil may be added to the well-like reaction detection unit and the PCR reaction unit in order to prevent the reaction solution from drying.
Further, the recognition substance may be fixed in the well-like reaction detection unit or may be held without being fixed.

また、前記ウェル状反応検出部、試薬収容部、PCR反応部には、フィルムなどのフタ材で被覆しても良い。   The well-like reaction detection unit, reagent storage unit, and PCR reaction unit may be covered with a lid material such as a film.

本発明では、ウェル状反応検出部での反応の有無を反応容器下部方向からの蛍光検出により検出することを特徴とする。
図5に一例を示す。図5において、反応容器1の下部方向に励起源10、蛍光検出部9を有しており、励起源9より蛍光物質を励起することのできる波長の光を照射し、励起光により励起され、発した蛍光を蛍光検出部9により検出する。
The present invention is characterized in that the presence or absence of a reaction in the well-like reaction detector is detected by fluorescence detection from the lower direction of the reaction vessel.
An example is shown in FIG. In FIG. 5, it has the excitation source 10 and the fluorescence detection part 9 in the lower direction of the reaction container 1, and it irradiates the light of the wavelength which can excite a fluorescent substance from the excitation source 9, and is excited by excitation light, The emitted fluorescence is detected by the fluorescence detection unit 9.

次に、上述した反応容器を実際に試験に用いる場合について、説明する。
<実施例>
(チップ作成(成形))
図1のウェル形状の検出チップを、成形により作成する。成形に用いた樹脂は、日本ポリプロ株式会社ノバティックPP MA04Aを用いて成形品を作成した。成形温度は210℃、型締め力は50tonF、金型温度は20℃、計量値24mmで行った。成形機は住友重機械工業サイキャップM3で成形を行い、スクリュー系はφ35mmである。検出部底厚は0.3mmで成形を行った。
Next, a case where the above-described reaction container is actually used for the test will be described.
<Example>
(Chip creation (molding))
The well-shaped detection chip of FIG. 1 is produced by molding. As the resin used for molding, a molded product was prepared using NOVTIC PP MA04A from Nippon Polypro Co., Ltd. The molding temperature was 210 ° C., the clamping force was 50 ton F, the mold temperature was 20 ° C., and the measurement value was 24 mm. The molding machine performs molding with Sumitomo Heavy Industries Psycap M3, and the screw system is φ35 mm. The detection part bottom thickness was 0.3 mm.

(ウェル内の透過率測定)
透過率測定装置(オリンパス OSP−SP200)を用いて、ウェル内の透過率測定を行ったところ、470nmでは透過率84.3%、520nmでは85.2%であった。また、570nmでは透過率は86.4%、620nmでは87.4%であった。
ウェル内のヘイズの値は測定が困難であった為、0.3mm板を射出成形にて作成して、板のヘイズの値を、ヘイズメーター(NIPPON DENSHOKU HAZE Meter NDH 2000)を用い測定した。測定値は、異なる3点を測定した平均値は5.06(5.14, 5.08, 4.98)であった。
また、ウェル底部の中心線平均粗さをOLYMPUS 走査型レーザー顕微鏡 OLS1100により測定した。なお、3箇所で測定した平均の値を用いた。得られた値は0.508μmであった。
(Measurement of transmittance in the well)
When the transmittance in the well was measured using a transmittance measuring device (Olympus OSP-SP200), the transmittance was 84.3% at 470 nm and 85.2% at 520 nm. Further, the transmittance was 86.4% at 570 nm, and 87.4% at 620 nm.
Since it was difficult to measure the haze value in the well, a 0.3 mm plate was prepared by injection molding, and the haze value of the plate was measured using a haze meter (NIPPON DENSHOKU HAZE Meter NDH 2000). The average value obtained by measuring three different points was 5.06 (5.14, 5.08, 4.98).
Further, the center line average roughness at the bottom of the well was measured with an OLYMPUS scanning laser microscope OLS1100. In addition, the average value measured in three places was used. The value obtained was 0.508 μm.

(インベーダー反応)
インベーダー反応はインベーダーアッセイキット(ThirdWaveTechonogy社製に順ずる)。
ウェル状反応検出部にインベーダープローブ0.15μlを加えて、乾燥させた。
検出物質としてPCR反応により調整済みのPCR産物1μlに対して、インベーダー試薬3.644μl、蛍光物質としてFAMが結合しているFRET 0.75μl、Clevase 0.75μlを乾燥させたインベーダープローブが底に乾燥しているウェル状反応検出部に2μlずつ加える。ミネラルオイルを4μl加えて、61℃、40分間インベーダー反応を行う。反応が完了したら、蛍光検出を行った。なお、ここでいうインベーダープローブ、インベーダー試薬、FRET、Clevaseは認識物質である。
(Invader reaction)
The invader reaction is an invader assay kit (according to Third Wave Technology).
0.15 μl of invader probe was added to the well-like reaction detector and dried.
An invader probe in which 3.644 μl of invader reagent, 0.75 μl of FRET to which FAM is bound as a fluorescent substance, and 0.75 μl of Clevase are dried is dried at the bottom with respect to 1 μl of a PCR product adjusted by PCR reaction as a detection substance. Add 2 μl to each well-like reaction detector. 4 μl of mineral oil is added and an invader reaction is performed at 61 ° C. for 40 minutes. When the reaction was complete, fluorescence detection was performed. In addition, the invader probe, invader reagent, FRET, and Clevase here are recognition substances.

(蛍光検出)
反応容器の下2mm厚の場所に測定の設定を行い、リアルタイムPCR(ABI PRISM 7000)を用いて検出した。
なお、反応及び蛍光検出は3つのウェルで行った。結果を図6に示す。
(Fluorescence detection)
Measurement was set at a location 2 mm below the reaction vessel, and detection was performed using real-time PCR (ABI PRISM 7000).
The reaction and fluorescence detection were performed in three wells. The results are shown in FIG.

<比較例>
(チップ作成(成形))
図1のウェル形状の検出チップを、成形により作成する。成形に用いた樹脂は、日本ポリプロ株式会社ノバティックPP MA04Aを用いて成形品を作成した。成形温度は210℃、型締め力は50tonF、金型温度は20℃、計量値24mmで行った。成形機は住友重機械工業サイキャップM3で成形を行い、スクリュー系はφ35mmである。検出部底厚の厚さは、形状は図と同じだが、検出部厚は1.0mmにして成形を行った。
<Comparative example>
(Chip creation (molding))
The well-shaped detection chip of FIG. 1 is produced by molding. As the resin used for molding, a molded product was prepared using NOVTIC PP MA04A from Nippon Polypro Co., Ltd. The molding temperature was 210 ° C., the clamping force was 50 ton F, the mold temperature was 20 ° C., and the measurement value was 24 mm. The molding machine performs molding with Sumitomo Heavy Industries Psycap M3, and the screw system is φ35 mm. The thickness of the bottom thickness of the detection part was the same as that in the figure, but the detection part thickness was 1.0 mm.

(ウェル内の透過率測定)
実施例と同様の方法でウェル内の透過率測定を行ったところ、470nmでは透過率72.1%、520nmでは75.7%であった。また、570nmでは透過率は78.8%、620nmでは80.9%であった。
ウェル内のヘイズの値は測定が困難であった為、1.0mm板を射出成形にて作成して、板のヘイズの値を、ヘイズメーター(NIPPON DENSHOKU HAZE Meter NDH 2000)を用い測定した。測定値は、異なる3点を測定した平均値は11.89(11.94, 12.83, 10.91)であった。
また、ウェル底部の中心線平均粗さをOLYMPUS 走査型レーザー顕微鏡 OLS1100により測定した。なお、3箇所で測定した平均の値を用いた。得られた値は0.579μmであった。
(Measurement of transmittance in the well)
When the transmittance in the well was measured in the same manner as in Example, the transmittance was 72.1% at 470 nm and 75.7% at 520 nm. Further, the transmittance was 78.8% at 570 nm and 80.9% at 620 nm.
Since it was difficult to measure the haze value in the well, a 1.0 mm plate was prepared by injection molding, and the haze value of the plate was measured using a haze meter (NIPPON DENSHOKU HAZE Meter NDH 2000). The average value of three different points measured was 11.89 (11.94, 12.83, 10.91).
Further, the center line average roughness at the bottom of the well was measured with an OLYMPUS scanning laser microscope OLS1100. In addition, the average value measured in three places was used. The value obtained was 0.579 μm.

(インベーダー反応)
インベーダー反応はインベーダーアッセイキット(ThirdWaveTechonogy社製に順ずる)。
ウェル状反応検出部にインベーダープローブ0.15μlを加えて、乾燥させた。
検出物質としてPCR反応により調整済みのPCR産物1μlに対して、インベーダー試薬3.644μl、蛍光物質としてFAMが結合しているFRET 0.75μl、Clevase 0.75μlを乾燥させたインベーダープローブが底に乾燥しているウェル状反応検出部に2μlずつ加える。ミネラルオイルを4μl加えて、61℃、40分間インベーダー反応を行う。反応が完了したら、蛍光検出を行った。なお、ここでいうインベーダープローブ、インベーダー試薬、FRET、Clevaseは認識物質である。
(Invader reaction)
The invader reaction is an invader assay kit (according to Third Wave Technology).
0.15 μl of invader probe was added to the well-like reaction detector and dried.
An invader probe in which 3.644 μl of invader reagent, 0.75 μl of FRET to which FAM is bound as a fluorescent substance, and 0.75 μl of Clevase are dried is dried at the bottom with respect to 1 μl of a PCR product adjusted by PCR reaction as a detection substance. Add 2 μl to each well-like reaction detector. 4 μl of mineral oil is added and an invader reaction is performed at 61 ° C. for 40 minutes. When the reaction was complete, fluorescence detection was performed. In addition, the invader probe, invader reagent, FRET, and Clevase here are recognition substances.

(蛍光検出)
反応容器の下2mm厚の場所に測定の設定を行い、リアルタイムPCR(ABI PRISM 7000)を用いて検出した。
なお、反応及び蛍光検出は3つのウェルで行った。結果を図7に示す。
(Fluorescence detection)
Measurement was set at a location 2 mm below the reaction vessel, and detection was performed using real-time PCR (ABI PRISM 7000).
The reaction and fluorescence detection were performed in three wells. The results are shown in FIG.

<評価>
図6、7より実施例のサンプルはいずれも18分ぐらいから強度が一定になり、また強度も高いものとなった。それに対し比較例のサンプルは、20分過ぎても強度が一定にならず、判定が困難であり、また最終的に一定になった強度も低いものとなった。さらに実施例のサンプルは3つともばらつきのないデータが得られたが、比較例のサンプルでは多少のばらつきがみられた。
また、強度が一定になるまでの時間、グラフの傾きを用いて分析する場合、実施例に比べ比較例は判定が困難なものとなる。
<Evaluation>
As shown in FIGS. 6 and 7, the strength of the sample of the example became constant from about 18 minutes, and the strength was also high. On the other hand, the strength of the sample of the comparative example was not constant even after 20 minutes, it was difficult to determine, and the strength that finally became constant was low. Further, all the three samples of the examples obtained data having no variation, but the samples of the comparative example showed some variation.
Also, when analyzing using the time until the intensity becomes constant and the slope of the graph, the comparative example is more difficult to determine than the example.

本発明の反応容器の一例を示す概略図である。It is the schematic which shows an example of the reaction container of this invention. 本発明の反応容器の一例を示す概略図である。It is the schematic which shows an example of the reaction container of this invention. 本発明の反応容器の一例を示す概略図である。It is the schematic which shows an example of the reaction container of this invention. 本発明の反応容器の一例を示す概略図である。It is the schematic which shows an example of the reaction container of this invention. 本発明の反応容器を用いた蛍光検出を説明する概略図である。It is the schematic explaining the fluorescence detection using the reaction container of this invention. 実施例の蛍光測定の結果を示すグラフ図である。It is a graph which shows the result of the fluorescence measurement of an Example. 比較例の蛍光測定の結果を示すグラフ図である。It is a graph which shows the result of the fluorescence measurement of a comparative example.

符号の説明Explanation of symbols

1 反応容器
2 基板
3 ウェル状反応検出部
4 ウェル状反応検出部底部と基板裏面間の距離
5 試薬収納部
6 PCR反応部(流路タイプ)
7 流路
8 反応溶液
9 蛍光検出部
10 励起源
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Substrate 3 Well-like reaction detection part 4 Distance between well-like reaction detection part bottom and substrate back surface 5 Reagent storage part 6 PCR reaction part (channel type)
7 Channel 8 Reaction solution 9 Fluorescence detector 10 Excitation source

Claims (9)

基板に、ウェル状反応検出部を有する反応容器において、ウェル状反応検出部の底面と基板の裏面の間の基板の波長400〜650nmにおける平均光線透過率が80%以上であり、かつヘイズが10以下の範囲内であることを特徴とする反応容器。   In a reaction vessel having a well-like reaction detection unit on a substrate, the average light transmittance at a wavelength of 400 to 650 nm between the bottom surface of the well-like reaction detection unit and the back surface of the substrate is 80% or more, and the haze is 10 A reaction vessel characterized by being in the following range. 前記ウェル状反応検出部の底面と基板の裏面の間の距離が0.3以上1mm未満であることを特徴とする請求項1記載の反応容器。   The reaction container according to claim 1, wherein a distance between the bottom surface of the well-like reaction detection unit and the back surface of the substrate is 0.3 or more and less than 1 mm. 前記ウェル状反応検出部の底面が平坦であることを特徴とする請求項1又は2に記載の反応容器。   The reaction container according to claim 1, wherein a bottom surface of the well-like reaction detection unit is flat. 前記ウェル状反応検出部が複数であることを特徴とする請求項1〜3のいずれかに記載の反応容器。   The reaction container according to claim 1, wherein there are a plurality of well-like reaction detection units. 前記基材がシクロオレフィン系樹脂又はメチルペンテン系樹脂であることを特徴とする請求項1〜4のいずれかに記載の反応容器。   The reaction container according to claim 1, wherein the base material is a cycloolefin resin or a methylpentene resin. さらにウェル状の試薬収容部を有することを特徴とする請求項1〜5のいずれかに記載の反応容器。   Furthermore, it has a well-shaped reagent storage part, The reaction container in any one of Claims 1-5 characterized by the above-mentioned. さらにPCR反応部を有することを特徴とする請求項1〜6のいずれかに記載の反応容器。   Furthermore, it has a PCR reaction part, The reaction container in any one of Claims 1-6 characterized by the above-mentioned. 基板にウェル状反応検出部を有し、かつウェル状反応部の底面と基板の裏面の間の基板の波長400〜650nmにおける平均光線透過率が80%以上であり、かつヘイズが10以下であるウェル状反応検出部内に認識物質を注入する工程と、ウェル状反応検出部に検出物質を注入する工程とを有し、前記認識物質又は前記検出物質のいずれかが蛍光標識されており、前記認識物質と前記検出物質との反応の有無を前記ウェル状反応検出部の底部側から蛍光検出する工程を有することを特徴とする物質の検出方法。   The substrate has a well-like reaction detection portion, and the average light transmittance at a wavelength of 400 to 650 nm between the bottom surface of the well-like reaction portion and the back surface of the substrate is 80% or more, and the haze is 10 or less. A step of injecting a recognition substance into the well-like reaction detection unit; and a step of injecting a detection substance into the well-like reaction detection unit, wherein either the recognition substance or the detection substance is fluorescently labeled, and the recognition A method for detecting a substance, comprising the step of detecting fluorescence from the bottom side of the well-like reaction detection unit by the presence or absence of a reaction between the substance and the detection substance. 前記検出物質が核酸であることを特徴とする請求項7記載の物質の検出方法。   The method for detecting a substance according to claim 7, wherein the detection substance is a nucleic acid.
JP2005177655A 2005-06-17 2005-06-17 Reaction container and substance detecting method using it Pending JP2006349559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177655A JP2006349559A (en) 2005-06-17 2005-06-17 Reaction container and substance detecting method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177655A JP2006349559A (en) 2005-06-17 2005-06-17 Reaction container and substance detecting method using it

Publications (1)

Publication Number Publication Date
JP2006349559A true JP2006349559A (en) 2006-12-28

Family

ID=37645570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177655A Pending JP2006349559A (en) 2005-06-17 2005-06-17 Reaction container and substance detecting method using it

Country Status (1)

Country Link
JP (1) JP2006349559A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054474A1 (en) * 2007-10-26 2009-04-30 Toppan Printing Co., Ltd. Allele judging device and method, and computer program
JP2009106160A (en) * 2007-10-26 2009-05-21 Nipro Corp Cell culture container and cell culture method
JP2010014648A (en) * 2008-07-07 2010-01-21 Murata Mfg Co Ltd Probe array and manufacturing method thereof
CN105466920A (en) * 2015-11-20 2016-04-06 鲁翌 A rapid antithrombin III detecting kit based on interaction between thrombin and a chromogenic substrate and a detecting method thereof
WO2017119337A1 (en) * 2016-01-06 2017-07-13 シャープ株式会社 Container for component analysis and component analysis system
JP2022171616A (en) * 2021-04-29 2022-11-11 アエネアス・ゲーエムベーハー・ウント・コ・カーゲー Test strip assembly with container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139705A (en) * 2001-10-30 2003-05-14 Sumitomo Bakelite Co Ltd Substrate for micro chip
JP2003177098A (en) * 2001-12-13 2003-06-27 Sumitomo Bakelite Co Ltd Plastic substrate for micro chip
JP2003247990A (en) * 2002-02-26 2003-09-05 Dna Chip Research Inc Test substrate for biochemical test and minute substrate used therefor
JP2004012411A (en) * 2002-06-11 2004-01-15 Hitachi Ltd Emission detecting apparatus
JP2004125476A (en) * 2002-09-30 2004-04-22 Nippon Sheet Glass Co Ltd Chip for microchemical system and manufacturing method therefor
JP2004532002A (en) * 2001-01-26 2004-10-21 日立化成工業株式会社 PCR plate easy to use for robots

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532002A (en) * 2001-01-26 2004-10-21 日立化成工業株式会社 PCR plate easy to use for robots
JP2003139705A (en) * 2001-10-30 2003-05-14 Sumitomo Bakelite Co Ltd Substrate for micro chip
JP2003177098A (en) * 2001-12-13 2003-06-27 Sumitomo Bakelite Co Ltd Plastic substrate for micro chip
JP2003247990A (en) * 2002-02-26 2003-09-05 Dna Chip Research Inc Test substrate for biochemical test and minute substrate used therefor
JP2004012411A (en) * 2002-06-11 2004-01-15 Hitachi Ltd Emission detecting apparatus
JP2004125476A (en) * 2002-09-30 2004-04-22 Nippon Sheet Glass Co Ltd Chip for microchemical system and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054474A1 (en) * 2007-10-26 2009-04-30 Toppan Printing Co., Ltd. Allele judging device and method, and computer program
JP2009106160A (en) * 2007-10-26 2009-05-21 Nipro Corp Cell culture container and cell culture method
JPWO2009054474A1 (en) * 2007-10-26 2011-03-10 凸版印刷株式会社 Allele determination apparatus and method, and computer program
JP2010014648A (en) * 2008-07-07 2010-01-21 Murata Mfg Co Ltd Probe array and manufacturing method thereof
JP4687756B2 (en) * 2008-07-07 2011-05-25 株式会社村田製作所 Probe array and manufacturing method thereof
US8110817B2 (en) 2008-07-07 2012-02-07 Murata Manufacturing Co., Ltd. Probe array and method of manufacturing the same
CN105466920A (en) * 2015-11-20 2016-04-06 鲁翌 A rapid antithrombin III detecting kit based on interaction between thrombin and a chromogenic substrate and a detecting method thereof
WO2017119337A1 (en) * 2016-01-06 2017-07-13 シャープ株式会社 Container for component analysis and component analysis system
JP2017122617A (en) * 2016-01-06 2017-07-13 シャープ株式会社 Container for component analysis and component analysis system
JP2022171616A (en) * 2021-04-29 2022-11-11 アエネアス・ゲーエムベーハー・ウント・コ・カーゲー Test strip assembly with container

Similar Documents

Publication Publication Date Title
US20210190779A1 (en) Sample Plate Systems and Methods
JP6075293B2 (en) Sample analysis chip, sample analysis method and gene analysis method
US8900528B2 (en) Disc-shaped analysis chip
US10718776B2 (en) Method for detecting biological substance
US10207268B2 (en) Sample plate systems and methods
EP2386060A2 (en) Sample collection and measurement in a single container by back scattering interferometry
JP2006349559A (en) Reaction container and substance detecting method using it
JP4769026B2 (en) Reaction vessel and method for detecting substance using the same
JPWO2006062149A1 (en) Biological sample analysis plate
JP2006254838A (en) Detection chip and method for detecting substance using the same
JP6155591B2 (en) Sample analysis chip and analysis method for analyzing multiple samples
EP1355146A2 (en) Use of the multipin platform as anchor device
JP4781144B2 (en) Reaction vessel
JP2017049151A (en) Biological material detection method
Tan et al. Absorbance and fluorometric sensing with capillary wells microplates
US20210379584A1 (en) Multiplexed Sample Plate
JP2006308447A (en) Plate for biological sample analysis and biological sample analysis method
JP2006345807A (en) Reaction chip
JP2006226752A (en) Plate for bio-sample discrimination device
CN105874320B (en) Gas emptying system for nano-fluid biosensor
JP2007189962A (en) Reaction container
JP2006346613A (en) Reaction chip and dispensation method
JP2006220531A (en) Biological sample discriminating plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914