JP5500836B2 - 空気圧縮設備の運転制御方法 - Google Patents

空気圧縮設備の運転制御方法 Download PDF

Info

Publication number
JP5500836B2
JP5500836B2 JP2009034783A JP2009034783A JP5500836B2 JP 5500836 B2 JP5500836 B2 JP 5500836B2 JP 2009034783 A JP2009034783 A JP 2009034783A JP 2009034783 A JP2009034783 A JP 2009034783A JP 5500836 B2 JP5500836 B2 JP 5500836B2
Authority
JP
Japan
Prior art keywords
compressor
compressed air
energy demand
energy
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009034783A
Other languages
English (en)
Other versions
JP2010190108A (ja
Inventor
勝幸 鈴木
武司 石田
正教 神永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009034783A priority Critical patent/JP5500836B2/ja
Publication of JP2010190108A publication Critical patent/JP2010190108A/ja
Application granted granted Critical
Publication of JP5500836B2 publication Critical patent/JP5500836B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、空気圧縮設備の運転制御方法に係り、特にエネルギー需要予測値に基づいて目標圧力を補正し、空気圧縮設備の圧力を制御する空気圧縮設備の運転制御方法に関する。
近年、省エネルギー化のニーズに伴い、製造プラントでは、高精度な生産管理をしつつ、運転コストの最小化が求められている。例えば、製造工程の電力や蒸気を供給する用役プラント(ユーティリティプラントともいう)は、製造工程でのエネルギー需要を満たして、運転コストも低減させる必要がある。また、自家発電設備を備えた製造プラントでは、電力の売り買いを考慮しながら運転コストを最小化することが必要である。
このような製造工程で必要不可欠な設備の一つに、空気圧縮設備がある。空気圧縮設備では、生産工程側の空気使用量の変化、いわゆる負荷変化に応じた圧縮空気の吐出圧力制御や、コンプレッサーの台数制御を行う。省エネルギー運転の観点からは、吐出圧力低減やコンプレッサー運転台数の最適化が必要とされる。
従来の空気圧縮設備の運転制御方法としては、〔特許文献1〕に記載の吐出圧力制御があり、この制御では、圧力降下を予測して圧縮機の起動開始を決定することで、安定した吐出圧力制御を実現している。
また、〔特許文献2〕に記載の運転制御方法では、生産工程の負荷側の圧力を監視し、吐出圧力の目標値を補正することで運転台数を決定している。
特許第3404492号公報 特開2000−38990号公報
〔特許文献1〕,〔特許文献2〕に記載の従来の空気圧縮設備の運転制御方法では、圧力計測値を用いた制御が主であるため、台数制御や吐出圧力制御が頻繁に実行される可能性がある。また、気温,湿度など環境条件の変化がある場合は管理が困難であり、生産条件の変更は人手による場合が多く、設備が分散している場合はその管理が困難である。
また、大規模の生産工程では、たとえば電力や冷却水のようなユーティリティの取り合いとなる場合があり、必要な圧縮空気を得るために不要なユーティリティを消費する場合がある。
本発明の目的は、エネルギー需要予測値に基づいて目標圧力を補正し、空気圧縮設備の圧力を制御する空気圧縮設備の運転制御方法を提供することにある。
本発明の他の目的は、エネルギー需要予測値に基づいて目標圧力を補正し、省エネルギー運転を実現できる空気圧縮設備の運転制御方法を提供することにある。
本発明は、空気圧縮設備の運転制御方法として、エネルギー需要と生産負荷を予測し、ヘッダー圧力と比較して圧縮機の運転台数を設定する方法を用いる。ここで、空気圧縮設備の省エネルギー運転を目的とし、エネルギー需要予測データと、ヘッダー圧力を考慮し、かつ圧縮機の性能データを考慮した台数制御を適用することにより実現した。
本発明の空気圧縮設備の運転制御方法によれば、エネルギー需要と生産負荷を予測し、圧縮機台数制御を行うことで、エネルギー供給能力に見合った制御を実行することが可能となる。また、ヘッダー圧力と比較して圧縮機台数制御を行うことで、生産工程の負荷変化を考慮した制御が可能となる。この結果、省エネルギー運転ができ、温暖化ガス排出量を抑えた運転が可能となる。
本発明の実施例1である空気圧縮設備を具備した製造プラントの構成図である。 本実施例の空気圧縮設備の運転制御方法のフローチャートを示した図である。 本実施例の圧縮空気供給能力判定部の構成図である。 エネルギー需要データの一例を示した図である。 運転コストデータの一例を示した図である。 圧縮機性能データの一例を示した図である。 本実施例の需要変化と吐出圧力供給能力の計算結果の説明図である 本発明の実施例2の空気圧縮設備を具備した製造プラントの構成図である。 本実施例の空気圧縮設備の運転制御方法のフローチャートを示した図である。 本実施例の需要変化と吐出圧力供給能力の計算結果の説明図である 本実施例の空気圧縮設備の運転制御方法の運転計画案の計算結果の説明図である。
本発明の各実施例を図面により説明する。
本発明の実施例1を図1から図7により説明する。図1は、本実施例の空気圧縮設備を具備した製造プラントの構成図である。図1に示すように、製造プラントには、空気圧縮設備10,空気圧縮機の吐出側に設けられたヘッダー30,ヘッダー30に接続され圧縮空気が供給される生産設備20,空気圧縮設備10の計測されたエネルギー使用量,ヘッダー圧力,生産設備20の生産負荷をフィードバックしてエネルギー需要予測を行うエネルギー需要予測部61,エネルギー需要予測部61からの情報により供給能力の判定を行う供給能力判定部62,エネルギー需要予測部61と供給能力判定部62と実績DB63を具備した省エネルギー制御部60,供給能力判定部62からの情報,ヘッダー圧力のフィードバックにより吐出圧力の制御を行う吐出圧力制御部51,吐出圧力制御部51からの情報により圧縮機の運転台数設定を行う運転台数設定部52,吐出圧力制御部51と運転台数設定部52を具備した圧縮機制御部50で構成されている。
空気圧縮設備10は、1台の圧縮機で構成される場合もあるが、通常は、複数台の圧縮機で構成されている。本実施例では、複数台の圧縮機で構成されている空気圧縮設備を対象としている。圧縮機には一定速で運転するもの、インバーターなどにより可変速運転されるものが含まれる。
生産設備20は、圧縮空気を用いる製造ラインあるいは装置であり、複数台の圧縮機で、複数の製造ライン或いは複数台の装置に圧縮空気を供給している。通常、製造ライン、或いは装置は圧縮機の台数より多く設置される。
ヘッダー30は、空気圧縮設備10と生産設備20をつなぐ位置に設置され、圧縮機の吐出圧力をヘッダー30の圧力を計測することにより監視している。このヘッダー圧力が生産設備20の要求する圧力を下回ることがないように制御される。
制御部50は、空気圧縮設備10の吐出圧力を制御し、圧縮機の台数制御を行う。吐出圧力制御部51は、圧縮機のモータ制御などを行い、運転台数設定部52では、設定された運転計画に基づき、圧縮機のオンオフ制御を行う。各々圧力制御信号と圧縮機起動停止信号を出力する。
本実施例の運転制御を行う省エネルギー制御部60は、上述したように、エネルギー需要予測部61,供給能力判定部62、および実績DB63で構成される。
エネルギー需要予測部61は、空気圧縮設備10からエネルギー使用量として、例えば電力量を読み取る。生産設備20から生産負荷として、例えば末端圧力や圧縮空気使用量を読み取る。ヘッダー30からは、ヘッダー圧力を読み取る。読み取ったエネルギー使用量,生産負荷、およびヘッダー圧力の実績値は実績DB63に保存し、エネルギー需要予測において学習データとして用いる。
供給能力判定部62は、エネルギー需要予測値を用いて、空気圧縮設備10における圧縮空気の供給能力を判定し、吐出圧力目標値と圧縮機運転台数を導出する。この場合、エネルギー需要の対象には、すくなくとも圧縮空気が含まれ、予測した圧縮空気の使用量をもとに圧縮機制御を行う。
図2は、本実施例の一連の処理をフローチャートで記述した図である。ステップF10で、エネルギー使用量,ヘッダー圧力値、および生産負荷を読み込み、ステップF20で、エネルギー使用実績を読み込み、ステップF30でエネルギー需要を計算する。ステップF30で計算されたエネルギー需要予測結果を受けて、ステップF40で、圧縮空気の供給能力を判定し、ステップF50で吐出圧力制御を行い、ステップF60で運転台数設定を実行する。ステップF70で、運転計画を作成し、ステップF80で作成された運転計画をプリンタ或いは画面に出力する。
図3は、本実施例の供給能力判定部62の構成例を示す図である。エネルギー需要予測部61で推定されたエネルギー需要予測とエネルギー需要の実績値を記録するエネルギー需要データ600と、運転コストおよび温暖化ガス推定値620に基づき、最適化計算手段610により、吐出圧力目標値650と、吐出圧力目標値650に基づいて運転台数設定手段630で運転台数設定が求められる。最適化計算手段610で演算される計算方法は、例えば整数計画法や線形計画法であり、数値最適化方法であれば特に限定されない。運転台数設定手段630の演算結果は、運転計画データ640として出力される。
本実施例の供給能力判定部62は、製造プラントのエネルギー需要データ600と、プラントの運転コスト及び温暖化ガス推定値620を考慮し、圧縮空気の供給能力が需要を上回りつつ、最小の運転コストとなるように、空気圧縮設備10の吐出圧力目標値,圧縮機の起動停止を決定し、製造プラントの低コスト運転、すなわち省エネルギー運転を実現するものである。また、必要に応じて温暖化ガス使用量が最小となるように制御される。
エネルギー需要データ600は、製造プラントの製造工程の要求を記載したものであり、当日の需要または予測データ等が含まれる。エネルギー需要データ600として、図4に示すように、例えば工場等で使用される電力,設備に供給される圧縮空気のヘッダー圧力,圧縮空気の使用量の需要または予測データが含まれている。エネルギー需要データ600は、図1に示す実績DB63に記憶されている。
図4の1行目に示す製造プラントの電力,圧力,空気使用量,その他A,その他B毎に、図4の1行目に示す時刻単位に、2行目以降に時系列順に、例えば1時間間隔または日間隔で圧縮空気の需要または使用量の予測データ等の各データが記録されている。
図3に示す運転コスト及び温暖化ガス推定値620は、圧縮機の運転に要するコスト,温暖化ガスの発生量を推定するためのデータが記録されている。運転コストデータには、空気圧縮設備10の運転に要するコストが記録され、圧縮機毎に運転コストとして、例えば単位時間当たりの費用が記録されている。この圧縮機毎の運転コストとして、圧縮機の起動コストが規定されている。また、圧縮機毎の圧縮空気供給能力等がデータベースに記憶されている。
例えば、圧縮機IDが圧縮機Aの場合、定常運転時の運転コストが1時間当たりP1であり、圧縮機Aを停止状態から起動する際にかかる起動コストはq1である。圧縮機IDが圧縮機B,圧縮機C等の場合も同様である。
図6は、圧縮機性能データを示す図で、圧縮機毎の可能な吐出圧力,圧縮空気の供給能力等が記録されている。例えば、図6に示す圧縮機IDが圧縮機Aでは、圧縮機A単体で吐出圧力P1まで到達可能であり、圧縮空気量S1を供給可能である。
図3に示す最適化計算手段610は、制約条件を満たし、目的関数を最適化する問題を解く。制約条件は、例えば、吐出圧力は正の値であり、圧縮機の圧縮空気供給能力の範囲であること等である。
目的関数は、本実施例では、運転コストの合計を最小化できるか、或いは温暖化ガス使用量を最小化できるかである。
以下、最適化計算手段610に整数計画法を適用した場合を例にとり説明する。整数計画問題の解法として、ナップサック問題を適用し、エネルギー需要データを制約条件に用い、目的関数が最小化となるように、例えば単位時間毎の吐出圧力目標値と、運転する圧縮機の組み合せと起動停止を求める。
圧縮機の起動停止に関する運転計画を作成することから、例えば、圧縮機の起動が「1」、圧縮機の停止が「0」で表されるので、最適化計算手段610の出力結果は、圧縮機の起動停止状態に対応した「1」か「0」のデータ、またはオンかオフデータである。また、圧縮機の状態に応じて、運転コストデータを更新する。例えば、圧縮機が停止状態の場合は、起動に要する起動コストを加えて運転コストデータを修正する。圧縮機が稼動している場合は、起動コストがかからないので、起動コストは加算しない。停止に要するコストがかかる場合も同様に運転コストデータを修正する。
エネルギー需要データ600は、図4に示すように、各対象エネルギーの需要項目(図4の1行目2列以降)毎に所定の時間間隔で並んだ数値データ(図4の2行2列目以降参照)であり、以下の表1の書式をとる。
Figure 0005500836
エネルギー需要データ600は、前述したように、予測値の場合もある。この場合は、需要予測データがエネルギー需要データ600であり、対応する時刻は未来の時刻が記載される。
同様に、最適化計算手段610は、図5に示す運転コストデータを運転コスト及び温暖化ガス推定値620から読み込む。運転コストデータは、前述したように、圧縮機毎の運転にかかるコストを金額ベースで記載したものであり、主に、単位時間当たりの費用,運転に要する人件費などから決定され、表2の書式をとる。
Figure 0005500836
表2に示される運転コストは、定常運転のコストであり、追加コストは、図5のその他に記載される起動コストなどが相当する。
最適化計算手段610は、図6に示す圧縮機性能データを記録している。圧縮機性能データは、前述したように、各圧縮機の到達圧力や供給能力を示すデータである。各圧縮機毎にデータ定義をするが、例えば複数の供給が可能な圧縮機を考慮し、性能項目を複数設定する。例えば、供給能力と定格値を併記した場合を表3に示す。
Figure 0005500836
こうして、エネルギー需要データ600,運転コスト及び温暖化ガス推定値620、および圧縮機性能データを読み込んだ後、最適化計算手段610において、整数計画問題を構築の上、後述する最適化計算を実行する。
本実施例の整数計画問題は、数1で示される目的関数と数2で示される制約条件から構成される。
(数1)
目的関数:Σcj×xj (i=1,...,m,j=1,...,n) …(1)
(数2)
制約条件:Σaij×xj≦bi (i=1,...,m,j=1,...,n) …(2)
なお、変数jは運転計画の対象となる圧縮機毎に設定され、変数iは需要項目毎に設定される。例えば、圧縮機が10台ある場合は、j=1,...,10である。また需要項目が電力と圧力、空気使用量の場合は、i=1,2,3となる。
図4に示すエネルギー需要データ600の各需要量は、数2の変数biであり、運転コストデータは数1の変数cjであり、圧縮機性能データは、数2の変数aijに対応する。
例えば、図6に示すように、圧縮機Cの圧力については、需要項目は1つ目のi=1であり、圧縮機Cの圧縮機IDが3つ目であるので、j=3であり、数3となる。
(数3)
13=E3 …(3)
また、変数xjは圧縮機が運転しているか停止しているかを示す変数である。すなわち、運転または停止に対応して、0または1の整数値が対応する。
最適化計算結果の読み込みが行われ、最適化計算結果である0または1の整数値を圧縮機の状態が運転か停止に対応付けする。対応付けした結果に基づいて、圧縮機の起動停止を制御するか、或いは運転計画を立案する。また、運転コストデータは更新される。
圧縮機が運転状態か停止状態かにより、運転コストデータを修正する。例えば、停止状態の圧縮機jについては、数4で示すように、該当する通常の運転中の運転コストに、起動に要するコストを考慮する。
(数4)
j=cj+(起動コスト) …(4)
変数cjは、例えば、図5に示すように、圧縮機Bが停止状態の場合、起動に要するコストは、その他に記載のq2なので、停止状態の圧縮機B全体の運転コストをp2+q2として設定する。
数4で、圧縮機Bは2つ目の圧縮機なので、jは2であり、数5となる。
(数5)
2=p2+q2 …(5)
数4では起動コストを加算したが、数1の目的関数によっては減算の場合もある。
同様に、運転状態の圧縮機jについては、定格運転中は費用が少なくて済む場合を考慮し、数6に示すように、運転コストを更新する場合もある。
(数6)
j=cj−(定格運転により減少する燃料コスト相当) …(6)
数4および数6は、次回の最適化計算実行に反映される。
運転計画作成F70では、最適化計算結果読み込みから運転計画を作成する。具体的には、時刻毎に圧縮機の起動停止パターンを出力する。出力する形式としては、表形式,ガントチャートなどがある。
F80では、図2のF70までで得た結果を書き出す等して出力する。なお、圧縮機の制御信号として出力する場合もある。
以上の計算を、エネルギー需要データ600が入力される度か、または、定周期で実行する。定周期とは、エネルギー需要データ600に記載の時刻間隔に従う場合、或いは時刻間隔の整数倍の間隔で実行する場合がある。
図4に示す(需要項目)の各需要値のエネルギー需要データ600を、数2の制約条件の右辺のbiの導出に用いる。
次に、最適化計算手段610における演算について詳述する。本実施例では、整数計画問題の解法として、ナップサック問題を適用する。
稼動状態の圧縮機グループと停止状態の圧縮機グループが与えられる。これは、数1および数2の変数xjの値に対応する。すなわち、変数xjが0または1何れかの運転状態を示す値の場合は、圧縮機jは稼動状態の設備機器グループ内にあり、変数xjが0または1何れかの停止状態を示す値の場合は、圧縮機jは停止状態の設備機器グループ内にある。
例えば、xjとして運転状態が1をとる場合には停止状態は0とし、その反対に運転状態が0をとる場合、停止状態は1とする。
整数計画問題求解処理では、数1と数2を解く。目的関数の最適化については、最大化または最小化とするが、本実施例では、最大化、すなわち数7とする。
(数7)
目的関数:Σcj×xj → 最大化 (i=1,...,m,j=1,...,n)…(7)
そのため、本実施例では、停止状態の圧縮機グループで、大きな運転コストがかかるコスト効率の悪い圧縮機を含め、全圧縮機の運転コストの合計を最小化することができるか、その組み合せを求める。
次に、数2の右辺のbi(需要量)については、停止状態の圧縮機による供給量と、図4に示すエネルギー需要データ600の需要量との合計が、設備機器の最大供給能力を超えないようにする。何故なら、全圧縮機の供給量は、エネルギー需要データ600の需要量をまかなう稼動中の圧縮機の供給量と停止状態の圧縮機の供給量との和であり、エネルギー需要データ600の需要量をまかなう稼動中の設備機器の供給量は、エネルギー需要データ600の需要量以上の関係にあるからである。
従って、
(停止状態の圧縮機能力)+(需要量)<=(全圧縮機最大能力)
であり、
(停止状態の圧縮機能力)<=(全圧縮機最大能力)−(需要量)
となるので、数8となる。
(数8)
i<=(全圧縮機最大能力)−(需要量i) …(8)
数7および数8により、停止させる圧縮機の運転コストを最大化する問題を解くことで、エネルギー需要をまかなう製造プラントの全圧縮機の運転コストの最小化を満たすことができる。数8の如く制約条件をかけることで、図4に示すエネルギー需要データ600に記載の需要データを下回らないように、停止する圧縮機に制約を満たした解を導出する。
数2および数8より、数9を得る。
(数9)
Σaij×xj<=bi<=(全機器最大能力)−(需要量i) …(9)
まず、ヘッダー圧力(i=1)について、数10の関係になるように、添字jの順序を並べ替える。
(数10)
1/a11>=c2/a12>=c3/a13>=c4/a14>= …(10)
jは、各圧縮機(j=1,2,…)の運転コストであり、aijは、各圧縮機(j=1,2,…)の圧縮機性能(i=1(圧力))である。
数10の順、すなわち、運転コストがかかるコスト効率の悪い各圧縮機の順(j=1,2,…)に数8のΣaij×xjの演算を行い、ヘッダー圧力に関して、数9の制約条件を満たし、かつ、数7を最大化、すなわち、停止した圧縮機の総コストが最大となる停止状態の圧縮機グループをナップサック法により求める。
続いて、供給能力(i=2)について、数11のように、添字jの順序を並べ替える。
(数11)
1/a21>=c2/a22>=c3/a23>=c4/a24>= …(11)
なお、cjは、各圧縮機(j=1,2,…)のコストであり、aijは、各圧縮機(j=1,2,…)の圧縮機性能(i=2(供給能力))である。
数11の順、すなわち、運転コストがかかりコスト効率の悪い圧縮機の順(j=1,2,…)に数8のΣaij×xjの演算を行い、供給能力に関して、数9の制約条件を満たし、かつ、数7を最大化、すなわち停止した圧縮機の総コストが最大となる停止状態の圧縮機グループをナップサック法により求める。
この供給能力に関する計算結果により、供給能力に関して停止状態の圧縮機グループに入った圧縮機で、供給能力に関して稼動状態の圧縮機グループに入った圧縮機があれば、最終的に稼動状態とする。これが、圧縮機の制約を満たした解となる。
以上、エネルギー項目がヘッダー圧力および供給能力の場合を説明したが、エネルギー項目が3以上の場合も同様に、各エネルギー項目で、それまでのエネルギー項目の計算で未稼動状態の圧縮機で、エネルギー項目の計算で稼動状態にすべき圧縮機が現れた場合には、稼動状態にするという解法で解くことができる。
なお、上記解法は一例を示したものであり、これ以外の解法を適用してもよく、この解
法に限定されない。
このように、最適化計算を実行した結果、圧縮機Aが停止、圧縮機Bが稼動、圧縮機Cが稼動を継続する結果となった場合、すなわち、
設備機器A:稼動状態→停止状態
設備機器B:停止状態→起動状態
設備機器C:稼動状態継続
の場合、運転コストデータは以下のように更新する。
圧縮機Aは、稼動状態から停止状態となるので、運転コスト変数c1は、通常の運転コストp1に起動コストq1が加算され、運転コスト変数c1は、数12のようになる。
(数12)
1=p1+q1 …(12)
圧縮機Bは、停止状態から起動状態となるので、運転コスト変数c2は、通常の運転コストから電力節約コストr2が減算され、運転コスト変数c2は、数13のようになる。
(数13)
2=p2−r2 …(13)
なお、r2は圧縮機Bが稼動状態を継続したことによる電力節約コストを示すものである。
圧縮機Cは、稼動状態を継続するので、運転コスト変数c3は、通常の運転コストp3であり、数14のようになる。
(数14)
3=p3 …(14)
このように、運転コスト変数cjを更新することにより、運転中の圧縮機は、出来るだけ運転を継続し、停止中の圧縮機は、できるだけ停止を継続することにより、起動コストを削減したり、電力節約コストを生み出したりして、製造プラントの運転における低コスト化を図ることができる。
この結果から運転台数設定部52では、例えば単位時間毎の運転する台数と運転する圧縮機が設定される。
図7は、本実施例の制御方法により算出される吐出圧力供給能力とヘッダー圧力、および生産負荷として予測された圧縮空気使用量を図示した一例である。本実施例の制御方法により、吐出圧力供給能力は、ヘッダー圧力を上回るよう導出されるが、生産負荷に応じて、供給能力と実際の圧力との間の余裕度を可変としている。例えば、休憩時間などにより生産負荷が低下することが予め予測できる場合、その時間に対応する供給能力を下げ、過剰供給を防ぐようにする。
本発明の実施例2を図8から図11により説明する。図8は、本実施例の空気圧縮設備を具備した製造プラントの構成図である。
本実施例の製造プラントは、図1に示す実施例1と同様に構成されているが、本実施例では、冷却媒体71と回収媒体72の管理部70を備えており、管理部70は、空気圧縮設備10をもつ生産設備全体を管理対象としており、冷却媒体は、圧縮空気の冷却以外にも用いられる。本実施例ではエネルギー需要予測部61は、管理部70から冷却媒体および回収媒体の供給能力を読み込む。
省エネルギー制御部60は、実施例1と同様に、エネルギー需要予測部61,供給能力判定部62、および実績DB63で構成されている。
エネルギー需要予測部61は、空気圧縮設備10からエネルギー使用量として、例えば電力量を読み取る。生産設備20から生産負荷として、例えば末端圧力や圧縮空気使用量を読み取る。ヘッダー30からは、ヘッダー圧力を読み取る。また、これらエネルギー使用量,生産負荷、およびヘッダー圧力の実績値は実績DB63に保存し、エネルギー需要予測において学習データとして用いる。
供給能力判定部62は、エネルギー需要予測値を用いて、空気圧縮設備10による圧縮空気の供給能力を判定し、吐出圧力目標値と圧縮機運転台数を算出する。この場合、エネルギー需要の対象は、すくなくとも圧縮空気であり、予測した圧縮空気の使用量をもとに圧縮機制御を行う。
図9は、本実施例の一連の処理をフローチャートで記述した図である。ステップF10で、エネルギー使用量,ヘッダー圧力値、および生産負荷を読み込み、ステップF20で、エネルギー使用実績を読み込み、ステップF25で冷却能力を読み込み、ステップF30でエネルギー需要を計算する。ステップF30で計算されたエネルギー需要予測結果を受けて、ステップF40で、圧縮空気の供給能力を判定し、ステップF50で吐出圧力制御を行い、ステップF60で運転台数設定を実行する。ステップF70で、運転計画を作成し、ステップF80で作成された運転計画をプリンタ或いは画面に出力する。
10は、本実施例の吐出圧力供給能力とヘッダー圧力、および圧縮機の冷却能力の時間変化を図示した一例である。吐出圧力供給能力は、ヘッダー圧力を上回るよう導出されるが、冷却能力が低下した場合はそれにともない、供給能力と実際の圧力との間の余裕度を可変とする。すなわち、他の生産設備で冷却媒体を通常よりも使用するため、冷却能力を低下させることが予め予測できる場合、その時間に対応する供給能力を下げ、過剰供給を防ぐようにする。
図1は、本実施例の制御方法を適用した結果、得られた圧縮空気設備の運転計画をガントチャートで示した例を示す。図11は、図2および図9に示すステップF80で書き出した図である。5台の圧縮機の起動停止スケジュールを表示することで、ユーティリティ設備の運転計画を操作員に提示することが可能となる。
各実施例では、エネルギー使用対象として電力量を用いたが、これに限定されるものではなく、空気圧縮設備の圧縮機に関連するユーティリティについて適用可能である。また、圧縮機冷却媒体や冷却により回収した排熱媒体の状態量、たとえば供給能力を台数制御にて考慮することが可能となり、圧縮空気を用いる多くの生産設備に適用可能である。また、省エネルギー監視や、温暖化ガス排出量管理にも適用可能である。
10 空気圧縮設備
20 生産設備
30 ヘッダー
50 制御部
60 省エネルギー制御部
70 管理部

Claims (6)

  1. エネルギー需要予測部により圧縮機設備の計測されたエネルギー使用量、ヘッダー圧力、生産設備の生産負荷をフィードバックしてエネルギー需要予測を行って製造工程の需要である圧縮空気のヘッダー圧力の予測値と圧縮空気使用量の予測値をエネルギー需要データとして記憶し、
    前記エネルギー需要データとしての圧縮空気のヘッダー圧力の予測値と圧縮空気使用量の予測値と、圧縮機毎のヘッダー圧力に係る性能と空気使用量に係る性能を記録した圧縮機性能データとを用い、
    ヘッダーのヘッダー圧力が前記エネルギー需要データに記録された前記ヘッダー圧力の予測値を下回ることがなく、かつ、前記生産設備に供給可能な圧縮空気使用量が前記エネルギー需要データに記録された前記圧縮空気使用量の予測値を下回ることがないように最適化計算手段により各圧縮機の起動停止に関する運転計画を作成して各圧縮機の運転を制御する圧縮空気製造設備の運転制御方法。
  2. 前記運転計画の作成が、圧縮機の運転コスト或いは温暖化ガス排出量が最小となるように、前記各圧縮機の起動停止が決定される請求項1に記載の圧縮空気製造設備の運転制御方法。
  3. 前記エネルギー需要予測は、圧縮機の冷却により得られた熱エネルギーを用いて予測するものである請求項1の圧縮空気製造設備の運転制御方法。
  4. 前記圧縮機の冷却により得られた熱エネルギーを温暖化ガス排出量の評価に用いる請求項1に記載の圧縮空気製造設備の運転制御方法。
  5. 前記圧縮機の冷却に必要な熱エネルギーと供給能力を比較し、圧縮機台数決定に用いることを特徴とする請求項1に記載の圧縮空気製造設備の運転制御方法。
  6. エネルギー需要と生産負荷を予測し、ヘッダー圧力の目標設定値を決定する請求項1に記載の圧縮空気製造設備の運転制御方法。
JP2009034783A 2009-02-18 2009-02-18 空気圧縮設備の運転制御方法 Expired - Fee Related JP5500836B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034783A JP5500836B2 (ja) 2009-02-18 2009-02-18 空気圧縮設備の運転制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034783A JP5500836B2 (ja) 2009-02-18 2009-02-18 空気圧縮設備の運転制御方法

Publications (2)

Publication Number Publication Date
JP2010190108A JP2010190108A (ja) 2010-09-02
JP5500836B2 true JP5500836B2 (ja) 2014-05-21

Family

ID=42816408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034783A Expired - Fee Related JP5500836B2 (ja) 2009-02-18 2009-02-18 空気圧縮設備の運転制御方法

Country Status (1)

Country Link
JP (1) JP5500836B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042271A1 (ja) * 2011-09-22 2013-03-28 富士通株式会社 電子計算機システム及び仮想マシン配置方法
JP6200905B2 (ja) * 2013-02-08 2017-09-20 株式会社日立産機システム 流体圧縮システムまたはその制御装置
JP6539319B2 (ja) * 2017-08-28 2019-07-03 株式会社日立産機システム 流体圧縮システムまたはその制御装置
CN112415931B (zh) * 2020-11-23 2021-09-24 四川虹美智能科技有限公司 压缩机启动控制方法和装置
JP7153814B1 (ja) 2022-01-26 2022-10-14 Dmg森精機株式会社 工作機械システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729648B2 (ja) * 1998-07-21 2005-12-21 株式会社日立製作所 空気圧縮装置の制御装置および制御方法
JP4592221B2 (ja) * 2001-06-28 2010-12-01 株式会社東芝 ポンプ台数制御装置
JP2004116381A (ja) * 2002-09-26 2004-04-15 Shin Nippon Jusetsu Corporation:Kk 空気圧縮機自動運転システム

Also Published As

Publication number Publication date
JP2010190108A (ja) 2010-09-02

Similar Documents

Publication Publication Date Title
JP6419887B2 (ja) 運転計画最適化装置、運転計画最適化方法及び運転計画最適化プログラム
KR101733393B1 (ko) 전력 플랜트의 부하 스케줄링을 위한 방법 및 제어 시스템
JP5500836B2 (ja) 空気圧縮設備の運転制御方法
US20070068162A1 (en) Control system and control method for cogeneration system
KR20110139184A (ko) 에너지 공급 시스템
JP6692365B2 (ja) 電力制御システム、方法及び制御装置
JP5501893B2 (ja) プラント運転評価装置
JP4512074B2 (ja) エネルギー需要予測方法、予測装置、プログラム及び記録媒体
JPWO2010109782A1 (ja) エネルギー供給システム
JP5033710B2 (ja) プラント運転計画立案装置およびそのプログラム
JP2020067769A (ja) 演算装置、システム、報知装置、演算方法及びプログラム
JP2006350920A (ja) エネルギー需要予測システム及び需要予測方法
JP6567302B2 (ja) エネルギー管理装置、エネルギー管理方法およびプログラム
JP4296140B2 (ja) プラント最適運転支援システムと方法、プログラム
JP6106052B2 (ja) エネルギ管理システムおよびその方法、ならびにプログラム
KR101472061B1 (ko) 발전예측모델 기반 계획 및 판매운영 시스템
JP2005160171A (ja) 産業用エネルギー管理システム
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
JPH07151369A (ja) 熱負荷予測装置およびプラント熱負荷予測装置
JP2017173945A (ja) 契約電力最適化装置
JP5763499B2 (ja) 内燃力発電機運転制御装置及び方法
JP6163407B2 (ja) プラント最適運転計画立案装置および方法
JP2004151830A (ja) エネルギー需要最適化システム及び生産計画作成支援システム
JP6929405B2 (ja) 発電設備の運用支援装置
JP2004287921A (ja) エネルギ提供手段の運用支援システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R151 Written notification of patent or utility model registration

Ref document number: 5500836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees